Exercise-1

 \mathbf{x} Marked Questions are for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

SECTION - A # NUCLEIC ACIDS (THE SEARCH FOR GENETIC MATERIAL, DNA, RNA)

1.	To prove that DNA is the genetic material, Griffith used					
	(1) Neurospora crassa		(2) Drosophila melanogaster			
	(3) Diplococcus pneum	oniae	(4) Escherichia coli			
2.	Who experimently prov	ed that DNA is the basic	genetic material?			
	(1) J. D Watson	(2) H.G. Khorana	(3) Alfred Griffith	(4) Hershey & Chase		
3.2a	Radioactive (35S) was d	letected in?				
	(1) Supernatant	(2) Sediment	(3) Both 1 and 2	(4) None of these		
4.	DNA was first discovered	ed by				
	(1) Beadle and Tatum	(2) Watson and Crick	(3) Friedrich Miescher	(4) A. Kornberg		
5.2	 With respect to the bacteriophage, choose the correct sequence of Harshey-Chase experime (1) (a) Blending, (b) Infection, (c) Centrifugation (2) (a) Infection, (b) Centrifugation, (c) Blending (3) (a) Infection, (b) Blending, (c) Centrifugation (4) (a) Centrifugation, (b) Blending, (c) Infection 					
6.	A nucleoside is					
	(1) purine / pyrimidine	+ phosphate	(2) purine / pyrimidine	+ sugar		
	(3) pyrimidine + purine + phosphate		(4) Purine + sugar + phosphate			
7.2	A DNA molecule makes	s complete turn after eve	ery			
	(1) 3.4 Å	(2) 20Å	(3) 10 bases	(4) 12 bases		
8.	The two stands of DNA	are				
	(1) Similar in nature and			(2) Antiparallel and complementary		
	(3) Always single strand	ded	(4) Rarely double stranded			
9.	The similarity between	DNA & RNA is that both				
	(1) are double stranded	I	(2) have simillar sugars			
	(3) are polymers		(4) have similar pyrimic	lines		
10.	In which of the following	g, double stranded RNA	is present?			
	(1) bacteria	(2)	(3) retrovirus	(4) reovirus		
11.	 Why does cytosine make pair with guanine and not with adenine? (1) Polar nature of C and A (2) C - A pair would not reach across the double helix (3) C - A pair would be wider than double helix (4) Hydrogen bond forming functional groups are not complementary between C and A 					

12.	 Regarding to features of double helix structure of DNA which of the following is wrong (1) Two polynucleotide chains have antiparallel polarity (2) The bases in two strands are paired through phosphodiester bonds (3) Adenine form two hydrogen bonds with thymine (4) The pitch of the helix is 3.4 nm 				
13.	In the experiments on the chemistry of DNA Chargaff estimated the base composition of human sperms and found that adenine constituted 31% and guanine 19%. The quantity of cytosine in DNA of a human somatic cell is likely to be (1) 10% (2) 28% (3) 21% (4) 62%				
	(1) 19%	(2) 38%	(3) 31%	(4) 62%	
14.	In a given sample of nucleic acid G + A content is not equal to C + T. This indicates that sample is (1) GC rich (2) AT rich				
	(3) single-stranded DN/		(4) double-stranded DN	IA	
15.		ially synthesized in vitro	•		
	(1) Ochoa and Kornber(3) Nirenberg and Ocho	-	(2) Nirnberg and Ochoa(4) Kornberg and Niren		
16.	The haploid content of			berg	
10.	(1) 3.3×10^{9} bp	(2) 3.3×10^{9} kbp	(3) 4·6 × 10 ⁶ bp	(4) 48502 bp	
17.2	Histone proteins are ric (1) Tryptophan, Lysine		(3) Histidine, Arginine	(4) Histidine, Tryptophan	
18.	Bacterial DNA is assoc (1) Few polyamines or (3) No proteins		(2) Histone proteins (4) Non histone acidic p	proteins	
19.	Which was first genetic	material?			
	(1) RNA	(2) DNA	(3) Protein	(4) Both (1) and (2)	
20.	Which RNA occurs abu (1) r RNA	indantly in a cell? (2) t RNA	(4) m RNA	(3) Primer RNA	
21.๖	The length of DNA mol		e dimensions of the nucl	eus in the eukaryotic cells. How	
	(1) Super coiling in nuc(3) Through elimination		(2) DNase digestion(4) Deletion of non-ess	ential genes	
22.	 Which of the following is/are wrong regarding double helical structure of DNA (a) DNA is made up of two polynucleotide chains (b) Backbone of DNA is constituted by sugar & Nitrogenous base (c) The two chain have anti parallel polarity (d) The pitch of the helix is 3.4 A^o 				
	(1) b & c	(2) a & d	(3) b only	(4) b & d	
23.	 (1) b & c (2) a & d (3) b only (4) b & d (5) b only (6) b & d (7) b & d (8) b & d (9) b & d (9) b & d (1) Ability of the following is not a criteria for determination of genetic material (1) Ability of replication (2) Chemically and structurally stable (3) It should be non mutable (4) Ability to expres itself in form of Mendelian characters 				

24.	 Choose the incorrect one: (1) Nucleosomes in chromatin are seen as "beads on string structure" (2) Nucleosome in a histone octamer (3) Nucleosome is present in both prokaryotic & eukaryotic DNA (4) A typical nucleosome contains 200 bp. of DNA helix Number of Nucleosomes found in helical coil of 30 nm chromatin fibre is 				
25.	Number of Nucleosom (1) 6	es found in helical coil c (2) 10	of 30 nm chromatin fibre i (3) 12	is (4) 15	
26. 🕿	 Which is incorrect regarding nucleosome? (a) A typical nucleosome contain 200 bp of DNA helix (b) Histone are rich in the basic amino acid residue lysines & arginines (c) The packaging of chromatin at higher level require additional set of proteins that collectively are referred to as Non-histone chromosomal (NHC) protein 				
	(1) a only	(2) a & c both	(3) c only	(4) None	
27.	 Which is incorrect for t-RNA (1) t-RNA has an anticodon loop that has bases complementary to the codon of m-RNA (2) t-RNA are specific for each amino acid (3) Three t-RNA are present for stop codon (4) In actual structure, the t-RNA is a compact molecule which looks like inverted L. 				
28.	Heat killed pathogenion The result would be	bacterial cells and live	e nonpathogenic cells a	re mixed and injected into mice.	
	(1) Mice develop disea(3) Mice remain health(5) All mice remain health	у	(2) Mice die without d (4) 50% mice develop		
29.	Chargaff's rules are ap (1) Single stranded RN (3) Single stranded DN	IA	(2) Single stranded D (4) Double stranded D		
I	DNA REPLICATIO		ION - B # N, GENETIC CODE	AND TRANSLATION	
1.	The experimental syst	em used in the studies c	on the discovery of replic	ation of DNA has been	
	(1) Drosophila melano	gaster	(2) Pneumococcus		
	(3) Escherichia coli		(4) Neurospora crass	a	
2.2	DNA replication is				
	(1) Semiconservative	and semi discontinous	(2) Semiconservative		
	(3) Conservative		(4) Conservative and	aiscontinous	
3.	DNA replication is aide (1) DNA polymerase o	•			
	(3) Both DNA polymer	-	(2) DNA ligase only (4) RNA polymerase		
4.		h new strand is produce			
	(1) complementary		(2) template		
	(3) primer		(4) elongating		

5.24	In DNA replication, primer strand is formed by (1) A small piece of deoxyribonucleotide polymer (2) A small piece of ribonucleotide polymer (3) Deoxyribonucleotides + pyrophosphates (4) DNA replicase + nucleotide + ATP				
6.	The enzyme which cata (1) Reverse transcripta (3) DNA polymerase	•	RNA from DNA template is known as (2) RNA polymerase (4) Nucleases		
7.	Ligase - an ezyme is u (1) joining bits of DNA (3) denaturation	sed for	(2) splitting DNA thread (4) none of the above	l into small bits	
8.	The protein which helps to unwind DNA doubl (1) DNA polymerase (2) DNA gyrase		helix during replication is (3) helicase	s (4) DNA topoisomerase	
9.	Small fragments of DN (1) Nucleotides (3) Okazaki fragements		lication of DNA are called (2) Genes (4) Single stranded DNA		
10.	The strand of DNA whi (1) leading strand	ch is synthesized continu (2) lagging strand	iously during replication i (3) sense strand	is called (4) antisense strand	
11.2	DNA polymerase enzy (1) Kornberg	me was discovered by (2) Nirenberg	(3) Khorana	(4) Ochoa	
12.	The first codon discove (1) GGG	ered by Nirenberg and Ma (2) CCC	athaei was (3) UUU	(4) AAA	
13.	A codon is said to be degenerate because (1) It degenerates soon after coding (2) more than one amino acid can be coded by a single codon (3) the same amino acid can have many codons (4) all the above				
14.	Which of the following (1) AUG	serves as a termination of (2) CGC	codon? (3) UAG	(4) GUG	
15.	In the genetic code dic (1) 20	tionary, how many codor (2) 64	as are used to code for al (3) 61	l the 20 essential amino acids? (4) 60	
16.๖	 There are 64 codons in genetic code dictionary because (1) There are 64 types of tRNA found in the cell (2) There are 44 meaningless and 20 codons for amino acids (3) There are 64 amino acids to be coded (4) Genetic code is triplet 				
17.	The DNA chain acting What will be the order (1) TCGT AAGCT	-	synthesis has the followin (3) UCG UAG CT	ng order of bases AGCTTCGA (4) UCG AAG CU	
18.	Which of the following (1) 5' AATAAT3'	is Pribnow box? (2) 5' ATATTA3'	(3) 5' TATAAT3'	(4) 5TAATTA3'	

19.১	During elongation occuring in translation, the er (1) Peptidyl transferase (3) Protease		nzyme which catalyses the synthesis of peptide bond is (2) Peptidyl synthetase (4) Amino acyl synthetase		
20.	Identify the characterist (1) Non-Polar	tic which is not applicable (2) Non-overlapping	e to the genetic code (3) Commaless	(4) Universal	
21.	(1) Activate the DNA te(2) Synthesize DNA nu	cleotides for the formatic n of new strand on the te	n of new strand		
22.	At the end of the proce the (1) Okazaki fragements	·	e newly formed lagging strand is also continuous due to (2) Semiconservative method of replication		
	(3) DNA ligases		(4) Double-stranded na		
23.	Find out the correct ma	itching			
	a Helicase b Gyrase c Primase d DNA polymerase (1) a - ii, b - iii, c - iv, c (3) a - iv, b - iii, c - i, d	i – i	NA		
24. 🕿	 Transcriptionally active chromatin is called as(a)and transcriptionally inactive chromatin is called as(b) One strand of DNA, replication is continuous & it is called as(c)while on another strand of DNA replication is discontinuous & it is called as(d) Here (a), (b), (c) & (d) respectively: (1) (a) Heterochromatin, (b) Euchromatin, (c) Lagging strand, (d) Leading strand (2) (a) Euchromatin, (b) Heterochromatin, (c) Leading strand, (d) Lagging strand (3) (a) Heterochromatin, (b) Euchromatin, (c) Leading strand, (d) Continuous strand (4) (a) Euchromatin, (b) Heterochromatin, (c) Discontinuous strand, (d) Leading strand 				
25.	Termination of the trans (1) 5' end of the DNA to (3) 3' end of t-RNA	slation process occurs at emplate	the (2) 3' end of the mRNA (4) 5' end of mRNA		
26.	The amino acid valine i code is referred to as (1) Degeneracy	is recognised by the triple (2) Universality	ets GUU, GUC, GUA and (3) Non-ambiguity	d GUG and this character of the (4) Commalessness	
27.	 (1) Despected (1) (2) Watson and Crick (3) Nirenberg and Matthaei 		(2) Nirenberg and Lede (4) Crick		
28.	The m-RNA, AUGCAG as	GAUCGU recognises fo	ur amino acid and this c	haracter of the code referred to	
	(1) Degeneracy	(2) Universality	(3) Non-amibiguity	(4) Commalessness	

29.	Sigma factor is component of (1) RNA polymerase (2) Dissociation factor (3) DNA ligase (4) DNA polymerase				
30.	After reaching into cyto (1) 40S particle	oplasm the m-RNA attach (2) ER	es itself to (3) 70 ribosomes	(4) 60S particle	
31.	Functional unit of gene (1) Recon	that specifies synthesis ((2) Cistron	of one polypeptides is (3) Codon	(4) Muton	
32.	Starting and stopping ((1) AUG and UGA	codons are (2) GUA and AAA	(3) UCA and UAA	(4) GUC and AUG	
33.24	The amino acids with a (1) Phenylalanine and (3) Glutamic acid and a	glycine	(2) Methionine and Tryp (4) Proline and Glycine	•	
34.	5'AUG CUA UACCUC this m-RNA-	of the processed m–RNA CUUUAUCUGUGA–3' H	ow many different t–RN	A molecule require to translate	
	(1) 8	(2) 7	(3) 6	(4) 5	
35.	Which of the following (1) Initiation	is exclusive property of tr (2) Elongation	anscription found in RNA (3) Termination	A-polymerase (4) Processing	
36.	Which of the following contiguous manner (1) Chromosomal struc (3) Substitutional muta	ctural mutations	tic basis of proof that codon is a triplet and it is read in a (2) Chromosomal numerical mutations (4) Frame shift insertion or deletion mutation		
37.	 What is wroing about transcription? (1) RNA polymerase is associated with initiation factor (σ) & termination factor (2) There is only one RNA polymerase is present in eukaryotes. (3) In eukaryotes, hn-RNA undergoes additional processing called as capping & tailing. (4) Transcription is monocistronic in eukaryotes & polycistronic in prokaryotes. 				
38.	 Read the following statements. (a) During protein synthesis formation of a peptide bonds do not require energy (b) The UTRS are present at both 5' and at 3' end. (c) The structural gene in a transcription unit could be said as monocstronic mostly in eucaryotes. How many of above statement are correct. (1) One (2) Two (3) Three (4) All are correct 				
39.	Enzyme required for p (1) Peptidase	()		(4) Nitrate reductase	
40.	cDNA is formed by (1) DNA dependent DI (3) DNA dependent RI		(2) RNA dependent DN (4) DNA ligase	A polymerase	
41.	Mode of DNA replication (1) Conservative and u (3) Conservative and b		(2) Semiconservative a(4) Semiconservative a		

42. Match the columns Column I

Column II

a.	Termination	1.	Aminoacyl tRNA synthetase			
b.	Translation	2.	Okazaki fragments			
c.	Transcription	3.	GTP dependent release factor			
d.	DNA replication	4.	RNA polymerase			
(1) a	- 2, b - 3, c - 1, c	l – 4	(2) a − 1, b − 4, c − 2, d − 3			
(3) a	- 3, b - 1, c - 4, c	l – 2	(4) a − 2, b − 4, c − 1, d − 3			
(5) a	- 2, b - 4, c - 1, c	l – 3.				

43. In Rous sarcoma virus, the flow of information is

(1) DNA \rightarrow RNA \rightarrow Proteins				(2) DNA –	Proteins -	$\rightarrow RNA$

- (3) $RNA \rightarrow DNA \rightarrow RNA \rightarrow proteins$ (4) RNA \rightarrow DNA \rightarrow proteins
- 44. While working on Neurospora crassa Beadle and Tatum proved
 - (1) Every gene is responsible for a specific enzyme
 - (2) Plant cells are totipotent
 - (3) DNA replication is semiconservative
 - (4) Viruses have genetic material.
- 45. The sequence of events mentioned below are symbolised by alphabets. Choose the correct answer where the alphabets are matched with the processes

RNA \xrightarrow{a} DNA \xrightarrow{b} DNA \xrightarrow{c} mRNA \xrightarrow{d} Polypeptide

- (1) a = Reverse transcription. b= Replication, c = Transcription, d = Translation
- (2) a = Replication, b = Transformation, c = Transcription, d = Translation
- (3) a = Reverse transcription, b = Transformation c= Transcription, d = Translation
- (4) a = Replication, b = Transduction. c = Translation, d = Transcription.
- 46. Match the column:

	Column I	Column II		
a.	Transforming principle	i.	Watson & Crick	
b.	Semiconservative replication	ii.	Gamow	
C.	Lac operon model	iii.	Griffith	
d.	Triplet codon	iv	Jacob & Monod	

(1) $a \rightarrow iii$, $b \rightarrow i$, $c \rightarrow iv$, $d \rightarrow ii$

(3) $a \rightarrow i$, $b \rightarrow ii$, $c \rightarrow iii$, $d \rightarrow iv$

(2) $a \rightarrow iv$, $b \rightarrow ii$, $c \rightarrow iii$, $d \rightarrow i$

(4) $a \rightarrow iii$, $b \rightarrow iv$, $c \rightarrow i$, $d \rightarrow ii$

SECTION - C #

REGULATION OF GENE EXPRESSION, HGP AND DNA FINGERPRINTING

- 1. Which of the following is/are the level of regulating of gene expression in eukaryotes
 - (a) Translational level
 - (b) Transport of mRNA from nucleus to the cytoplasm
 - (c) Processing level
 - (d) Transcriptional level
 - (1) a, b only (2) d, c, b only (3) d, c, a only (4) d, c, b, a all

2.	Operon contains (1) Operator and regula (2) Operator and struct (3) Operator and regula	ural gene		
	(4) Operator gene, reg	ulator gene repressor, s	tructural genes and prom	oter gene
3.	Which one of the follow (1) z, a, y	ving is the correct seque (2) z, y, a	ence of structural gene in (3) a, z, y	lac operon? (4) y, a, z
4.	According to Operon c (1) A general inhibitor (3) A repressor	oncept a regulator gene	forms (2) A small peptide (4) An inducer	
5.	In lac operon, sturctura (1) β-galactosidase (3) Galactosidase trans		(2) Galactosidase perr (4) None of the above.	
6.	The function of promot (1) Bind to gyrase (3) Code for DNA polyr		(2) Bind to RNA polym (4) Process mRNA.	erase
7.	Due to high degree of ((1) 0.1—2kb (3) 0.01 — 20 kb	polymorphism, size of V	NTR varies from (2) 0.1—20 kb (4) 0.1 — 200 kb	
8.	Crime scene sample	rou charge with the crim 1 Suspect 2	e	
	-			

- (1) Both suspect 1 and 2
- (3) Only suspect 2

- (2) Only suspect 1
- (4) Neither suspect 1 nor suspect 2

9. A Match the column:

10.

		Column – I		Column – II		
	a.	VNTR	i.	β-Galactosidase		
	b.	Lac operon	ii.	DNA ligase		
	c.	Genetic code	iii.	DNA finger printing		
	d.	Okazaki fragments	iv.	Unambiguous		
((1) a→iv, b→ii, c→iii, d→i			(2) a→iii, b→i, c→iv, d→ii		
((3) a→i, b→ii, c→iii, d→iv			(4) a→iii, b→iv, c→i, d→ii		
				(2) Error in bas (4) DNA replica	•	

11.	Which of the following (1) BAC & YAC cloning (3) VNTR	is not related with HGP g vector	(2) Bioinformatics(4) EST'S		
12.	(b) Hybridisation using	NA finger printing was in I labelled VNTR probe is uence among human is t	nitially developed by Alec Jeffreys. one of the step utilize in DNA finger printing the same.		
	(1) 'a' only	(2) 'b' only	(3) 'c' only	(4) None	
13.	Best method to determine parternity is (1) Protein analysis (3) Gene counting		(2) Chromosome counting(4) DNA finger printing		
		MISCELLANEC	US QUESTIONS		
1.	Which is true accordin	g to Chargaff's rule			
	(1) A + G = T + C	(2) A = C	(3) G = T	$(4) \frac{A+T}{C+G} = 1$	
2.	DNA element with abil (1) Cistron	ity to change its position (2) Transposon	is (3) Intron	(4) Recon.	
3.	Intron is part of DNA which (1) Codes for protein synthesis (3) Does not code for protein synthesis		(2) Helps in joining pieces of DNA(4) Initiates transcription.		
4.	In DNA replication, the	e leading strand is the on	e which replicates in		
	(1) 5' \longrightarrow 3' direction of	continuously	(2) $3' \rightarrow 5'$ direction of	continuously	
	(3) 5' \longrightarrow 3' direction of	discontinuously	(4) $3' \rightarrow 5'$ direction of	discontinuously.	
5.	Hargobind Khorana wa (1) Deciphering geneti (3) Nucleotide sequen		for (2) Artificial gene synthesis (4) Discovery of transposons.		
6.	t-RNA has the function of (1) Transcription (2) Adapter for attaching amino acids over mRNA template (3) Transferring information to mRNA (4) Carry genetic code to cytoplasm.				
7.	Length of mRNA that o (1) Muton	carries information for co (2) Codon	mplete polypeptide synth (3) Operon	nesis is (4) Cistron.	
8.	Codon AUG specifies (1) Methionine	(2) Valine	(3) Tyrosine	(4) Phenylalanine	
9.	Which one codes for a (1) Cistron	n amino acid (2) Exon	(3) Intron	(4) Codon	

10.	Okazaki fragments are (1) RNA primers (3) Short DNA frageme	nts on lagging strand	(2) Short DNA fragmer (4) DNA fragements fro	-			
11.	Repressor binds to ope (1) Lactose is unable to (3) Galactosidase does	remove the repressor	(2) RNA polymerase is (4) Structural genes z,	activated y and a fail to transcribe.			
12.	Enzyme catalysing pep (1) Smaller subunit of ri (3) Central part of tRNA		in (2) Larger subunit of rib (4) None of the above	posome			
13.	Who was awarded Nob (1) Kornberg	el Prize for in vitro synth (2) Tatum	esis of polyribonucleotid (3) Ochoa	es? (4) Khorana			
14.	What is correct (1) mRNA is polycistronic in eukaryotes and moncistronic in prokaryotes (2) mRNA is polycistronic in both eukaryotes and prokaryotes (3) mRNA is monocistronic in both eukaryotes and prokaryotes (4) mRNA is polycistronic in prokaryotes and monocistronic in eukaryotes						
15.	VNTR is employed for (1) Protoplasmic culture (3) Regulation of plant growth hormones		(2) DNA finger printing (4) Enhancing photosynthesis in desert plant.				
16.	Smallest part of DNA th (1) Muton	nat can undergo recomb (2) Cistron	ination is (3) Replicon	(4) Recon			
17.	DNA and RNA differs b (1) Nitrogen bases and (3) Number of C- atoms	sugars	(2) Nitrogen bases and phosphate groups (4) Sugar and phosphate groups.				
18.	DNA acts as a template (1) RNA	e for synthesis of (2) DNA	(3) Both (1) and (2)	(4) Protein			
19.	Length of DNA with 23 (1) 78·4 Å	base pairs is (2) 78⋅2 Å	(3) 78 Å	(4) 74 ·8 Å			
20.	Find the correct match (1) UUA – Valine	(2) AUG – Cysteine	(3) AAA – Lysine	(4) CCC- Alanine			
21.	– CCA 3' end of t-RNA (1) Anticodon loop	is called (2) DHU loop	(3) TψC	(4) Amino acid binding site			
22.	Portion of gene which is (1) Exon	s transcribed but not tran (2) Intron	nslated is (3) Cistron	(4) Codon			
23.	The bond formed betwe (1) Sulphide bond (3) Hydrogen bond	een phosphate and pent	ose sugars of DNA is (2) Phosphodiester bor (4) Covalent bond	nd			
24.	Unwinding due to releat (1) Gyrase	se of coiling tension ahe (2) Unwindase	ead of moving replication (3) Topoisomerase	fork is due to (4) All the above			

25.	Synthesis of RNA mole (1) Alpha factor	ecule is terminated by (2) Gamma factor	(3) Delta factor	(4) rho factor		
26.	(2) Starts at operator r(3) Starts at promoter	region and ends at stop egion and ends at telome region and ends are term and ends at TATA box.	eric end			
27.	In ATG ACC AGG ACC CCA ACA sequence, the first base gets mutated. It will affect (1) Change in types and sequence of amino acids (2) Change in first amino acid only (3) No change (4) One amino acid less					
28.	Hn-RNA is (1) Heteronuclear RNA (3) Heterogeneous RN		(2) Homonuclear RNA (4) Useful RNA.			
29.	Continuously functiona (1) House keeping ger (3) Mild genes	• •	ated on the tissue level are (2) Luxury genes (4) Gene battery.			
30.	Which amino acid is sp (1) Leucine	Decified by genetic codes (2) Methionine	ACU, ACC, ACA, ACG (3) Glycine	showing degeneracy? (4) Threonine		
31.	Transfer of DNA bands (1) Southern transfer	s from agarose gel to nitr (2) Western transfer	ocellulose or nylon mem (3) Northern transfer	brane is (4) Eastern transfer		
32.	Complete turns in 450 (1) 45	00 bp DNA would (2) 450	(3) 4500	(4) 45, 000.		
33.	Teminious central dog (1) DNA \rightarrow DNA \rightarrow mI (3) gRNA \rightarrow DNA \rightarrow n	•	is (2) mRNA \rightarrow gRNA \rightarrow DNA \rightarrow Protein (4) DNA \rightarrow gRNA \rightarrow mRNA \rightarrow Protein			
34.	DNA replication requir (1) DNA polymerase	es (2) DNA ligase	(3) RNA polymerase	(4) All the above		
35.	The RNA primer is use (1) Translation	ed in (2) Replication	(3) Conjugation	(4) Transformation		
36.	In a DNA, percentage (1) 20%	of thymine is 20% what i (2) 40%	s the percentage of guar (3) 30%	nine (4) 60%		
37.	•	-operon concept, which ssing the activity of the o (2) Regulator gene		e bacterial genetic material is ence of lactose? (4) Promoter gene.		
38.	-	ukaryotes the anticodon t (2) 3' – UAC – 5'	-			

39.	-	ving six coils, there are ses are found in that se	•	linked by two hydrogen bonds.	
	(1) 22	(2) 38	(3) 44	(4) 76	
40.	Identify the triplet codo	ns which code for aminc	acids serine and proline).	
	(a) UCC The correct answer is	(b) CCA	(c) GGG	(d) AAG	
	(1) a and c	(2) b and d	(3) c and d	(4) a and b	
41.		ng as template for m-RN			
	(a) Coding strand The correct answer is	(b) Noncoding strand	(c) Sense strand	(d) Antisense strand	
	(1) a and c	(2) a and d	(3) b and c	(4) b and d	
42.		ntains two kinds of bas	e sequences. Which of	these plays an important role in	
	protein synthesis (1) Introns	(2) Exons	(3) Both (1) and (2)	(4) None of these	
	Exercise	2			
		·Z			
1.	Restriction endonuclear of bond do they act on	•	eave DNA molecules int	o smaller fragments. Which type [KVPY_2010_SB]	
	 N-glycosidic Bond Hydrogen bond 		(2) Phosphodiester bond(4) Disulfide bond		
2.	If the sequence of bas will be :	e in DNA is 5'- ATGTAT	CTCAAT- 3', then the se	quence of bases in its transcript [KVPY_2011_SB]	
	(1) 5' - TACATAGAGT (3) 5' - AUGUAUCUCA		(2) 5' - UACAUAGAGL (4) 5' - AUUGAGAUAC		
3.			osed by Watson & Crick		
	(1) left handed helix			[KVPY_2011_SB]	
	(2) helix that makes a f	ull turn every 70 nm.			
		n of DNA contains 20 ba	•		
		where each strand has o			
4.	-	plete turn of a DNA doub		[KVPY_2011_SB]	
_	(1) 34 Å	(2) 34 nm	(3) 3.4 Å	(4) 3.4 μm	
5.	expect that the baby w	ould be		io cones in his eyes. We would [KVPY_2012_SA]	
	(1) color blind	(2) night blind	(3) blind in both eyes	(4) blind in one eye	
6.	Transfer RNA (tRNA) (1) is present in the rib (2) usually has clover b	osomes and provides str	uctural integrity	[KVPY_2012_SB]	
	., .	rmation from DNA to ribo	osomes		
7.	DNA mutations that do	not cause any functiona	I change in the protein p	roduct are known as [KVPY_2012_SB]	
	(1) nonsense mutation	s (2) missense mutation	s (3) deletion mutations	(4) silent mutations	

8.	-		IA is 5'-GTTCATCG-3, t	hen the sequence of bases in its		
	RNA transcript would be (1) 5'-GTTCATCG-3'	e (2) 5'GUUCAUCG-3	(3) 5'CAAGTAGC-3'	[KVPY_2012_SB] (4) 5'CAAGUAGC -3		
9.	roan (red and white colo will have phenotypic rati	our in equal proportion) io (red : roan : white) is	. If F ₁ progeny are self- -	express equally in F ₁ to produce bred, the resulting progeny in F ₂ [KVPY_2012_SB]		
10.	(1) 1 : 1 : 1 'a' person with blood gro	(2) 3 : 9 : 3 oun "A" can (a) donate t	(3) 1 : 2 : 1	(4) 3 : 9 : 4 receive blood from		
10.	a person wan blood gre			[KVPY_2013_SA]		
	 (1) (a) persons with bloc (2) (a) person with blocc (3) (a) person with blocc (4) (a) person with any blocc 	d group "A" or "AB", and d group "B" or "AB", and	l (b) "A" or "O" blood gro l (b) "B" or "O" blood gro	ups		
11.	The sequences of four E i. TATATATATATATA ATATATATATATATAT Which one of these DNA	ii. TTTCCCGGGAAA AAAGGGCCCTTT	iii. TTGCGTTGCC AACGCAACGG	G CGGCCTAGGCCG		
	(1) i	(2) ii	(3) iii	(4) iv		
12.	If DNA codons are ATG (1) non-sense mutation	•		esults in, [KVPY_2013_SB] tion (4) silent mutation		
13.	According to Mendel,	So	egregate and	assort independently.		
	(1) alleles of a gene; alle(3) dominanat traits; rec	-	(2) alleles of difference(4) recessive traits	[KVPY_2013_SB] ent genes; alleles of a gene recessive traits		
14.	Watson and Crick mode	el of DNA is		[KVPY_2013_SB]		
	 (1) B-form DNA with a spiral length of 34 Å and a diameter of 20 Å (2) A-form DNA with a spiral length of 15 Å and a diameter of 20 Å (3) Z-form DNA with a spiral length of 34 Å and a diameter of 20 Å (4) B-form DNA with a spiral length of 28 Å and a diameter of 14 Å 					
15.	In Griffith's experiments	mice died when injecte	d with:	[KVPY_2014_SB]		
	(1) heat killed S-strain(3) heat killed R-strain		(2) heat killed S-strain(4) live R-strain	combined with R-strain		
16.	Which of the following is (1) a polypeptide (3) either polypeptide or		ene? (2) an RNA only (4) a nucleotide only	[KVPY_2014_SB]		
17.	Which one of the followi	ing is the complementar	y sequence for the DNA			
	(1) 5'-TAGTACG-3'	(2) 5'-ATCATGC-3'	(3) 5'-UTCUTGC-3'	[KVPY_2014_SB] (4) 5'-GCUAGCA-3'		

Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

1.	Length of one coil of B-		(2) 40	(4) 00	(AIPMT-2000)
_	(1) 0-34 nm	(2) 3·4 nm	(3) 10 nm	(4) 20 nm	
2.	Three dimensional sha		(2) V shared	(1) V shared	(AIPMT-2000)
	(1) L-shaped	(2) Clover leaf-like	(3) X-shaped	(4) Y- shaped	
3.	•	A and RNA is that both ha		lipption	(AIPMT-2000)
	(1) Similar sugars(3) Similar pyrimidines		(2) Similar mode of repl(4) Polymers of nucleot		
4.	.,	union of DNA fragments			(AIPMT-2002)
4.	(1) Ligase	(2) Polymerase	(3) Helicase	(4) Endonuclea	,
-					
5.	(1) Four	ases operative in eukaryo (2) Three	otes are (3) Two	(4) One	(AIPMT-2001)
			(3) 1 WU	(4) One	
6.	<i>Escherichia coli</i> is allo correct	wed to replicate once i	n medium having radioa	active thymidine	. Which one is
	(1) Both strands of DNA	A become radioactive	(2) One strand become	s radioactive	(AIPMT-2001)
	(3) Each strand is half i	radioactive	(4) None is redioactive.		
7.	Evolution was termed F	RNA world due to discove	ery of		(AIPMT-2001)
	(1) Absence of RNAs in	n some cells	(2) Genomic RNA		
	(3) RNA enzymes		(4) Synthesis of proteins by mRNA, tRNA, and rRNA.		
8.		oosed operon concept	on the basis of their s	tudy of lactose	
	Escherichia coli. The co		(2) All prokenistes and	aama aukanyata	(AIPMT-2002)
	(1) All prokaryotes only(3) All prokaryotes and		(2) All prokaryotes and some eukaryotes(4) All prokaryotes and some protozoans.		
•		-			
9.	-	periment on bacteria was		rium	(AIPMT-2002)
	(1) Escherichia coli(3) Pasteurella pestis		(2) Salmonella typhimurium(4) Diplococcus pneumoniae.		
40					
10.	(1) Overlapping genes	odes are for 20 types of a	(AIPMI-200) (AIPMI-200) (AIPMI-200) (AIPMI-200)		(AIPMT-2002)
	(3) Wobbling of codons		(2) Degeneracy of generic code (4) Universality of codons		
11.	Exon segments are reu		()	-	(AIPMT-2002)
•••	(1) RNA primase	(2) RNA protease	(3) RNA polymerase	(4) RNA ligase	. ,
12.		matched with its specifici		., .	
12.	which one is correctly		ty for an annino aciu, star		(AIPMT-2002)
	(1) UCG – start	(2) UUU – stop	(3) UGU – Leucine	(4) UAC – Tyrc	. ,

13.	A gene encoding for polypeptide of 50 amino acids get mutated at 25 codon UAU becoming result would be (AII (1) Polypeptide of 24 amino acid (2) Two polypeptides one with 24 amino acids and second with 25 amino acids (3) A polypeptide with 49 amino acid (4) A polypeptide of 25 amino acids						
14.	During transcription, R (1) Regulator	NA polymerase binds to I (2) Promoter	DNA site (3) Enhancer	(4) Receptor.	(AIPMT-2003)		
15.	Degeneration of geneti (1) First member of coo (3) Third member of co		(2) Second member of(4) Entire codons.	codons	(AIPMT-2003)		
16.	What does lac refer to (1) Lactase	in lac operon (2) 1,00,000	(3) Lac insect	(4) Lactose	(AIPMT-2003)		
17.	(1) Formation of formyl(2) Binding of 30 S sub(3) Association of 30S	ation in prokaryotes GTP met - tRNA punit of ribosome with mR - mRNA with formyl - me subunit of ribosome with	NA et - tRNA		(AIPMT-2003)		
18.	In genetic code dictions (1) 20	ary, codons used to code (2) 60	for all the 20 essential a (3) 61	mino acids are (4) 64	(AIPMT-2003)		
19.	In gene mutation, ader (1) Frame-shift mutatio	nine is replaced by guanir n (2) Transcription	ne. It is (3) Transition	(4) Transversio	(AIPMT-2004)		
20.	The ratio constant for a (1) A + G/C + T	a species is (2) T + C/G + A	(3) A + C/T + G	(4) G + C/A + T	(AIPMT-2004)		
21.	In bacterial DNA replica (1) Involves RNA prime (3) Proceeds unidirecti		rom the site of origin of r (2) Requires telomeras (4) Moves bidirectionall	e	(AIPMT-2004)		
22.	 DNA finger printing is related to (1) Molecular analysis of profiles of DNA samples (2) Analysis of DNA samples using imprinting devices (3) Techniques used for molecular analysis of different specimens of DNA (4) Techniques used in identification of finger prints of different persons 						
23.	On which organism Be	adle and Tatum worked t	o propose one gene-one	enzyme hypoth	esis (AIPMT-2007)		
	 (1) Drosophila (3) Neurospora crassa 		(2) Escherichia coli (4) Nostoc				
24.	saddle like structure at	that point. The sequence	e is called		NA assumes a (AIPMT-2007)		
	(1) AAAT box	(2) TATA box	(3) GGTT box	(4) CAAT box.			
25.	Amino acid sequence i (1) rRNA	n protein synthesis is det (2) tRNA	ermined by sequence of (3) mRNA	(4) cDNA.	(AIPMT-2006)		

26.	Antiparallel strands of (1) One strand turns c (2) One strand turns a			(AIPMT-2006)
	.,		the same position their trands are in opposite po	
27.	A sequential expression	on of a set of human gen	es occurs when a steroid	d molecule binds to
				(AIPMT-2007)
	(1) mRNA	(2) DNA sequence	(3) tRNA	(4) Ribosome
28.	The two polynucleotide (1) Discontinuous	e chains of DNA are (2) Antiparallel	(3) Parallel	(AIPMT-2007) (4) Semiconservative
29.	In the DNA molecule			(AIPMT-2008)
	(2) There are two strait(3) The total amount of	nds which run antiparalle	mine varies with the organized one in 5' \rightarrow 3' direction pyrimidine nucleotides is the 5' \rightarrow 3' direction.	and other in $3' \rightarrow 5'$
30.		• ·	correctly matched with t	heir function or the signal for the
	particular amino acid? (1) AUG, ACG – start/ (3) GUU – Alanine		(2) UUA, UCA – Leuc (4) UAG, UGA – stop	(AIPMT-2008) ne
31.	gene (2) RNA polymerase p (3) A cell displaying a	RNA that is complement	synthesis of antigens	(AIPMT-2008) to stop expression of a specific
32.	What is not for genetic (1) It is unambiguous (2) A codon in mRNA (3) It is nearly universa (4) It is degenerate	is read in a non-contigue	ous fashion	(АІРМТ-2009)
33.	Semiconservative repl	lication of DNA was first	demonstrated in	(AIPMT-2009)
	(1) Salmonella typhim	urium	(2) Drosophila melang	
	(3) Escherichia coli		(4) Streptococcus pne	
34.	Removal of introns an (1) Looping	d joining of exons in a de (2) Inducing	efined order during transo (3) Slicing	cription is called: (AIPMT-2009) (4) Splicing
35.	The one aspect which (1) Ambiguous	is not a salient feature c (2) Universal	f genetic code, is its beir (3) Specific	ng (AIPMT-2010) (4) Degenerate

36.	(a) Glucose or galactor(b) In the absence of la(c) The z-gene codes f	se may bind with the rep actose the repressor bin for permease d by Francois Jacob and	ur (a-d) given below abou pressor and inactivate it ids with the operator regio d jacque Monod	
	(1) (a) and (c)	(2) (b) and (d)	(3) (a) and (b)	(4) (b) and (c)
37.	Satellite DNA is useful (1) Sex determination (3) Genetic engineerin		(2) Forensic science (4) Organ transplantati	(AIPMT-2010) on
38.	What are those structue electron microscope?	ures that appear as bea	ads - on - string in the ch	romosomes when viewed under (AIPMT-2011)
	(1) Genes	(2) Nucleotides	(3) Nucleosomes	(4) Base pairs
39.	Removal of RNA polyn (1) t-RNA	nerase III from nucleopl (2) hn-RNA	asm will affect the synthes (3) m-RNA	sis of: (AIPMT Pre. 2012) (4) r-RNA
40.	Which one of the follow (1) The inducer	wing is not a part of a tra (2) A terminator	anscription unit in DNA? (3) A promoter	(AIPMT Pre. 2012) (4) The structural gene
41.	 Which one of the follow (1) 5' - GAATTC - 3' 3' - CTTAAG - 5' (2) 5' - CCAATG - 3' 3' - GAATCC - 5' (3) 5' - CATTAG - 3' 3' - GATAAC - 5' (4) 5' - GATACC - 3' 3' - CCTAAG - 5' 	wing represents a palinc	Iromic sequence in DNA?	(AIPMT Mains 2012)
42.	(1) The relative propor(2) The relative difference(3) The relative amount		imidines in DNA nce in blood, skin and sali nd grooves of the fingerpi	
43.	(B) Regulation of <i>lac</i> o(C) The human genom(D) Haemophilia is a second se	enosine pairs with uraci	eferred to as positive regul 0,000 genes.	(AIPMT Mains 2012) ation.

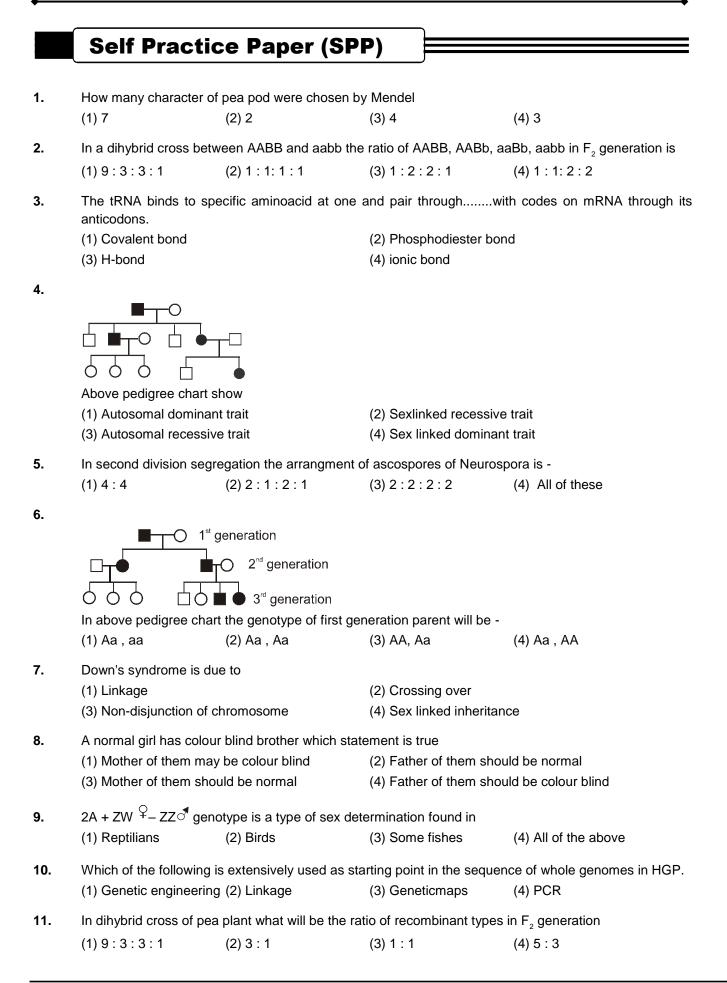
44.	The diagram shows an in	nportant concept i	n the genetic implication of	DNA. Fill in the blanks A to C.
	O A A M M M A B $Protector B$	• •		(NEET- 2013
	(1) A - translation B - trans	_	n Chargaff	(NEE1-2013)
	(2) A -transcription B - tra		-	
	(3) A - translation B - exte			
	(4) A - transcription B - re	plication C - Jame	es Watson	
45.	Which one of the following	g is wrongly match	ned?	(AIPMT-2014)
	(1) Transscription - Writing			, , , , , , , , , , , , , , , , , , ,
	(2) Transscription - Using	information in m -	RNA to make protein	
	(3) Repressor protein - Bi	nds to a operature	e to stop enzme synthes	
	(4) Operon - Structural ge	nes, operator and	promoter.	
46.	Transformation was disco	vered by:		(AIPMT-2014)
	(1) Meseson and stahl		(2) Hershey and chas	se
	(3) Griffith		(4) Waston and crick	
47.	Select the correct option:			(AIPMT-2014)
	Directionof RNA	Direction of read	ling of the template	
	synthesis	DNA strand	ing of the template	
	(1) 5' - 3'	3' - 5'		
	(2) 3' - 5'	5' - 3'		
	(3) 5' - 3'	5' - 3'		
	(4) 3' - 5'	3' - 5'		
48.	Commonly used vectors f	or human genome	e sequencing are:	(AIPMT-2014)
	(1) T - DNA		(2) BAC and YAC	
	(3) Expression Vectors		(4) T/A Cloning Vecto	ors
49.			d, 17% of the bases were s	-
		•	ted to be present in this D	· · · · · · · · · · · · · · · · · · ·
	(1) G 17%, A 16.5%, T32.		(2) G 17%, A 33%,T	
	(3) G8.5%,A50%, T24.5%)	(4) G 34%,A 24.5%,T	24.5%
50.	A somatic cell that has jus species, has :	st completed the S	S-phase of its cell cycle, as	compared to gamete of the same (AIPMT-2015)
	(1) same number of chron	nosomes but twice	e the amount of DNA	, , , , , , , , , , , , , , , , , , ,
	(2) twice the number of ch	nromosomes and f	four times the amount of DI	NA
	(3) four time the number of	of chromosomes a	nd twice the amount of DN	A
	(4) twice the number of ch	romosomes and t	twice the amount of DNA	
51.	Satelliete DNA is importar	nt because it:		(Re-AIPMT-2015)
	 shows high degree of individual, which is heritat 		• •	me degree of polymorphism in ar
		•	in all members of the popul	ation
		eded for DNA repl	lication	
	(3) codes for enzymes ne		lication	

52.	Which of the following (1) lactose and galacto (3) galactose	is required as inducer(s) ose	for the expression of La (2) glucose (4) lactose	c operon?	(NEET-1-2016)
53.	A complex of ribosome (1) Okazaki fragment	es attached to a single st (2) Polysome	rand of RNA is known as (3) Polymer	:: (4) Polypeptid	(NEET-1-2016) e
54.	Which of the followin present? (1) DNA -DNA hybridiz (3) Zinc finger analysis		y of the techniques of (2) Polymerase chain (4) Restriction enzyme	reaction	ting available at (NEET-1-2016)
55.	Which one of the follow (1) UAG	wing is the starte codon? (2) AUG	(3) UGA	(4) UAA	(NEET-1-2016)
56.	Taylor conducted the e	experiments to prove sen (2) <i>Vinca rosea</i>	niconservative mode of c (3) <i>Vicia faba</i>		lication on (NEET-2-2016) melanogaster
57.		uctural gene is A true bre (2) Muton		(4) Operon	(NEET-2-2016)
58.	·	polymerase catalyzes tra			(NEET-2-2016)
59.		(2) Template strand in RNA that codes for a at the length of the RNA	•		base at position
	(1) 1	(2) 11	(3) 33	(4) 333	(,
60.	DNA fragments are: (1) Positively charged (2) Negatively charged (3) Neutral (4) Either positively or	l negatively charged depe	ending on their size		(NEET-2017)
61.	During DNA replication (1) The leading strand (2) The lagging strand (3) The leading strand (4) The lagging strand	(NEET-2017)			
62.	Spliceosomes are not		(2) Animala	(1) Postaria	(NEET-2017)
63.	(1) PlantsThe final proof for DN/(1) Griffith(3) Avery, Mcleod and	(2) Fungi A as the genetic material McCarty	(3) Animalscame from the experime(2) Hershey and Chas(4) Hargobind Khorana	е	(NEET-2017)

PRINCIPLES OF INHERITANCE & VARIATION

64	seque (1) A	TATCGC ence of th GGUAUC CCUAUC	he trans CGCAU	-		ding strand of a gene. (2) UCCAUAGCGUA (4) UGGTUTCGCAT	What will be the corresponding (NEET-2018)	-
65		the follo	-	•	an operon <i>excej</i> promoter	ot (3) an enhancer	(NEET-2018) (4) structural genes	
	. ,							
66		t the <i>cor</i> ibozyme				(2) G. Mendel – Trans	(NEET-2018)	
	. ,	H. Morga			n	(4) F ₂ x Recessive pa		
67		-					-	
67		t the <i>col</i> cc Jeffre		itch:		– Streptococcus pne	(NEET-2018)	
	. ,		•	d Jacqu	es Monod	 Lac operon 		
	. ,	atthew M		•		– Pisum sativum		
	(4) Al	fred Her	shey and	d Martha	a Chase	– TMV		
68	(1) Fr (2) Tr (3) Sp	ansducti	tahl coin on was nes take	ed the te discover e part in	erm "linkage". ed by S. Altman translation. oped by a British		(NEET-2018)	
69	The e	experime	ntal proc	of for sei	miconservative r	eplication of DNA was fir	st shown in a (NEET-2018)	
	(1) Fu	ungus		(2) Vi	rus	(3) Plant	(4) Bacterium	
70.	Match	h the follo	owing ge	enes of t	he Lac operon v	vith their respective produ	ucts (NEET-1-2019)	
	(a) i g	gene		(i) β - g	galactosidase			
	(b) z	gene		(ii) Pe	ermease			
	(c) a	gene		(iii) R	epressor			
	(d) y	gene		(iv) Ti	ransacetylase			
	Selec	t the cor	rect opti	on.				
		(a)	(b)	(c)	(d)			
	(1)	(iii)	(iv)	(i)	(ii)			
	(2)	(i)	(iii)	(ii)	(iv)			
	(3)	(iii)	(i)	(ii)	(iv)			
	(4)	(iii)	(i)	(iv)	(ii)			
71.	mRN 5' AA (1) De (2) In	A? CAGCG	GUGCU ^f GGU fr f G at 5 ^t	AUU 3' om 7 th , 8	3 th and 9 th positio		the reading frame of following (NEET-1-2019)	3

(4) Insertion of A and G at 4^{th} and 5^{th} position respectively


 (1) Novel DNAsequences (2) Genes expressed as RNA (3) Polypeptide expression (4) DNA polymorphism 73. What will be the sequence of mRNA produced by the following stretch of DNA? (NEET-2-2019) 3' ATGCATGCATGATG 5' TEMPLATE STRAND 5' TACGATGCATGAC 5' CODING STRAND (1) 3' AUGCAUGCAUGCAUG 5' (2) 5' UACGUACGUACGUAC 3' (3) 3' UACGUACGUACGUAC 5' (4) 5' AUGCAUGCAUGCAUG 3' 74. From the following, identify the correct combination of salient features of Genetic Code (NEET-2-2019) (1) Universal, Non-ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes - (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) RNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot' is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) do _ RNA (2) ss _ DNA (3) ss _ RNA (4) ds _ DNA 79. What initiation and termination factors are involved in transcription in EUkaryotes? (NEET-2-2019) (1) do _ respectively (2) a and p, respectively (3) β and γ, respectively (4) a and α, respectively (3) β and γ, respectively	72.	Expressed Sequence	Tags (ESfs) refers to :		(NEET-1-2019)
73. What will be the sequence of mRNA produced by the following stretch of DNA? (NEET-2-2019) 3' ATGCATGCATGCATG 5' TEMPLATE STRAND 5' TACGTACGTACGTAC 3' CODING STRAND (1) 3' AUGCAUGCAUGCAUG 5' (2) 5' UACGUACGUACGUAC 3' (3) 3' UACGUACGUACGUAC 5' (4) 5' AUGCAUGCAUGCAUG 3' 74. From the following, identify the correct combination of salient features of Genetic Code (NEET-2-2019) (1) Universal, Non-ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) IRNA, 5 S rNA and anRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds = RNA (2) ss = DNA (3) ss = RNA (4) ds = DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) ds = RNA <		(1) Novel DNAsequen	ces	(2) Genes expressed a	as RNA	
3' ATGCATGCATG GATG 5' TEMPLATE STRAND 5' TACGTACGTACGTAC 3' CODING STRAND (1) 3' AUGCAUGCAUGCAUG 5' (2) 5' UACGUACGUAGCAUG 3' (3) 3' UACGUACGUACGUAC 5' (4) 5' AUGCAUGCAUGCAUG 3' 74. From the following, identify the correct combination of salient features of Genetic Code (NEET-2-2019) (1) Universal, Non-ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79.		(3) Polypeptide expres	ssion	(4) DNA polymorphism	1	
 (1) 3' AUGCAUGCAUGCAUG 5' (2) 5' UACGUACGUAC 3' (3) 3' UACGUACGUAC 5' (4) 5' AUGCAUGCAUGCAUG 3' 74. From the following, identify the correct combination of salient features of Genetic Code (NEET-2-2019) (1) Universal, Non-ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes - (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, InRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds - RNA (2) ss - DNA (3) ss - RNA (4) ds - DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (3) β and γ, respectively (4) α and σ, respectively (1) πanscription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, DNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2022) 	73.	3' ATGCATGCATGCA	TG 5' TEMPLATE STRA	ND	of DNA? (NEET-2-2019))
 (3) 3' UACGUACGUAC 5' (4) 5' AUGCAUGCAUGCAUG 3' 74. From the following, identify the correct combination of salient features of Genetic Code (NEET-2-2019) (1) Universal, Ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) a and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (3) β and γ, respectively (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA, DNA and amino acids (2) DNA, tRNA, DNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2022) 					CGUAC 3'	
(1) Universal, Non-ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) s s – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ , respectively (2) α and β , respectively (3) β and γ , respectively (4) α and σ , respectively (3) β and γ , respectively (2) α and β , respectively (3) β and γ , respectively (4) α and σ ,				. ,		
(1) Universal, Non-ambiguous, Overlapping (2) Degenerate, Overlapping, Commaless (3) Universal, Ambiguous, Degenerate (4) Degenerate, Non-overlapping, Non ambiguous 75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) s s – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ , respectively (2) α and β , respectively (3) β and γ , respectively (4) α and σ , respectively (3) β and γ , respectively (2) α and β , respectively (3) β and γ , respectively (4) α and σ ,	74.	From the following, ide	entify the correct combina	ation of salient features o	f Genetic Code (NEET-2	-2019)
75. Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage? (NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (1) ds – RNA (2) S s – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (2) α and β, respectively (3) β and γ, respectively (3) α and σ, respectively (1) σ rand ρ, respectively (2) Translation (3) Transduction (4) Translocation (AIIMS QUESTION (PREVIOUS YEARS) 1. Proteins are synthesised by the process </th <th></th> <th>_</th> <th>-</th> <th></th> <th>-</th> <th>,</th>		_	-		-	,
(NEET-2-2019) (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ , respectively (2) α and β , respectively (3) β and γ , respectively (4) α and σ , respectively (1) σ and ρ , respectively (2) α and β , respectively (3) β and γ , respectively (4) α and σ , respectively (1) Transcription (2) Translation (3) Transduction (4) Translocation Correct sequence of code transfer during polypeptide formation is (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA </th <th></th> <th></th> <th></th> <th>., .</th> <th></th> <th>ous</th>				., .		ous
 (1) Beadle and Tautum (2) Messelson and Stahl (3) Hershey and Chase (4) Jacob and Monod 76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds - RNA (2) ss - DNA (3) ss - RNA (4) ds - DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002) 	75.	Which scientist experi	mentally proved that DNA	A is the sole genetic mate)
76. In the process of transcription in Eukaryotes, the RNA polymerase I transcribes – (NEET-2-2019) (1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (2) α and β, respectively (1) σ and ρ, respectively (2) α and σ, respectively (3) Transduction (4) Translocation (AlIMS OUESTION (PREVIOUS YEARS) 1. PART - II : AlIIMS QUESTION (PREVIOUS YEARS) 1. Proteins are synthesised by the process (AlIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AlIMS-1999) (1) DNA, mRNA, tRNA and amino acids <		(1) Beadle and Tautun	n	(2) Messelson and Sta	•	•
(1) mRNA with additional processing, capping and tailing (2) tRNA, 5 S rRNA and snRNAs (3) rRNAs - 28 S, 18 S and 5.8 S (4) Precursor of mRNA, hnRNA 77. "Ramachandran plot" is used to confirm the structure of (NEET-2-2019) (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA (2) Proteins (3) Triacylglycerides 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds - RNA (2) ss - DNA (3) ss - RNA (4) ds - DNA (2) ss - DNA (3) ss - RNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (1) Transcription (2) Translation (3) Transduction (1) Transcription (2) Translation (3) Transduction (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, rDNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002)				(4) Jacob and Monod		
 (1) RNA (2) Proteins (3) Triacylglycerides (4) DNA 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (3) Froteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002) 	70.	(1) mRNA with addition (2) tRNA, 5 S rRNA ar (3) rRNAs - 28 S, 18 S	nal processing, capping and snRNAs and 5.8 S			3)
 78. In RNAi, the genes are silenced using: (NEET-2-2019) (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (3) β and γ, respectively (1) σ and σ, respectively PART - II : AIIMS QUESTION (PREVIOUS YEARS) 1. Proteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002) 	77.	"Ramachandran plot"	is used to confirm the stru	ucture of	(NEET-2-2019))
 (1) ds – RNA (2) ss – DNA (3) ss – RNA (4) ds – DNA 79. What initiation and termination factors are involved in transcription in Eukaryotes? (NEET-2-2019) (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively (3) β and γ, respectively (4) α and σ, respectively (5) β and γ, respectively (4) α and σ, respectively (7) α and β, respectively (8) β and γ, respectively (9) α and β, respectively (1) σ and γ, respectively (1) α and γ, respectively (1) α and γ, respectively (1) Transcription (2) Translation (3) Transduction (4) Translocation (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. (AIIMS-2002) 		(1) RNA	(2) Proteins	(3) Triacylglycerides	(4) DNA	
 (1) σ and ρ, respectively (2) α and β, respectively (3) β and γ, respectively (4) α and σ, respectively PART - II : AIIMS QUESTION (PREVIOUS YEARS) Proteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. A point mutation comprising substitution of purine with pyrimidine is 	78.	-	-	(3) ss – RNA	•)
 (3) β and γ, respectively (4) α and σ, respectively PART - II : AIIMS QUESTION (PREVIOUS YEARS) 1. Proteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002) 	79.	What initiation and terr	mination factors are invol	ved in transcription in Eu	Ikaryotes? (NEET-2-201	9)
PART - II : AIIMS QUESTION (PREVIOUS YEARS) 1. Proteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002)		(1) σ and ρ , respective	ely	(2) α and β , respective	ły	
1. Proteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002)		(3) β and γ , respective	ly	(4) α and σ , respective	łly	
1. Proteins are synthesised by the process (AIIMS-1999) (1) Transcription (2) Translation (3) Transduction (4) Translocation 2. Correct sequence of code transfer during polypeptide formation is (AIIMS-1999) (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002)		PART -	II : AIIMS QUEST	ION (PREVIOUS	YEARS)	
 (1) Transcription (2) Translation (3) Transduction (4) Translocation Correct sequence of code transfer during polypeptide formation is (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA and tRNA. A point mutation comprising substitution of purity with pyrimidine is (AIIMS-2002) 	4	Drotaina ara avethasia	ad by the process	•	, / A IIMG	S 1000)
 (1) DNA, mRNA, tRNA and amino acids (2) DNA, tRNA, rDNA and mRNA (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002)	1.	-		(3) Transduction	•	5-1999)
 (3) mRNA, tRNA, DNA and amino acids (4) rRNA, DNA, mRNA and tRNA. 3. A point mutation comprising substitution of purine with pyrimidine is (AIIMS-2002) 	2.	Correct sequence of c	ode transfer during polyp	eptide formation is	(AIIMS	S-1999)
	3.	A point mutation comp (1) Transition	orising substitution of puri (2) Transversion	ne with pyrimidine is (3) Deletion	(AIIMS (4) Translocation.	S-2002)

4.	Frame shift mutation of (1) Base is deleted or a (3) Base is deleted		(2) Base is added (4) Anticodons are n	ot present.	(AIIMS-2002)
5.	Which is important for (1) CAAT Box (3) DNA polymerase	ranscription	(2) Promoter (4) DNA methylase		(AIIMS-2002)
6.					(AIIMS-2003)
7.	Which one represents (1) $3'_{5'}$	the correct manner of D (2) $3^{5'}$	NA replication (3) ^{5'} / _{3'} / _{5'}	(4) ⁵ / ₃	(AIIMS-2003)
8.	Which one of the follow (1) UGU	ving codons codes for th (2) UGA	e same information as (3) UAG	UGC (4) UGG	(AIIMS-2003)
9.	cDNA is copied from m (1) Restriction enzyme (3) DNA polymerase	RNA molecule with the	help of (2) Reverse transcrip (4) Adenosine deam		(AIIMS-2005)
10.	it was made to replicate (1) Each strand half rac	DNA will be radioactive	•	•	
11.	(1) Association of 50 S(2) Formation of formyl(3) Association of 30S	tion in prokaryotes, a G subunit of ribosome wit -met-RNA m-RNA with formyl-met uit of ribosome with mRI	h initiation complex tRNA	in	(AIIMS-2007)
12.	The telomeres of euka (1) Cytosine rich repea (3) Adenine rich repeat		nsists of short sequence (2) Thymine rich rep (4) Guanine rich rep	eats	(AIIMS-2007)
13.	Match the following (a) tRNA (b) mRNA (c) rRNA (d) Peptidyl transferse (1) $a - 4$, $b - 2$, $c - 3$, d (3) $a - 1$, $b - 2$, $c - 3$, d		nformation g region	, d –2	(AIIMS-2007)

14.	The total number of nitr (1) 3⋅5 million	ogenous bases in huma (2) 35 million	n genome is estimated to (3) 35 thousand	b be about (4) 3⋅1 billion	(AIIMS-2008)
15.	Which one of the follo coded by it? (1) UUA-valine	wing pairs is correctly r (2) AUG-cysteine	matched with regard to (3) CCC-alanine	the codon and (4) AAA-lysine	the amino acid (AIIMS-2008)
16.	 Which one of the follow (1) 5'-GAATTC-3' 3'-CTTAAG-5' (2) 5'- CCAATG - 3' 3' - GAATCC - 5' (3) 5' - CATTAG - 3' 3'-GATAAC - 5' (4) 5' - GATACC - 3' 3' - CCTAAG - 5' 	ing represents palindron	nic sequence in DNA?		(AIIMS-2012)
17.	Human Genome Proje biology called as (1) biotechnology	ct (HGP) is closely ass (2) bioinformatics	sociated with the rapid	development of (4) bioscience	a new area in (AIIMS-2013)
18.	DNA and RNA compris (1) sugar, phosphate, b (3) base, phosphate	e of	(2) sugar, phosphate (4) sugar, base.		(AIIMS-2014)
19.	Select the correct optio Direction of RNA synthesis (1) 5'-3' (2) 3'-5' (3) 5'-3' (4) 3'-5'	n: Direction of reading of the template DNA strar 3'-5' 5'-3' 5'-3' 3'-5'	nd		(AIIMS-2014)
20.	• •	ses in a sample of DNA osine is present in this D (2) 20%	extracted from eukaryoti NA? (3) 30%	c cells is adenine (4) 40%	e. (AIIMS-2015)
21.	Which one of the follow (1) UAA, UAG and UGA (3) UUC,UUU, CCU,CA	A	alled as nonsense codor (2) GUA, GUU GCA, G (4) UUA, UUU, CUU, C	CG and GAA	(AIIMS-2016) UG
22.	Select the wrong pair (1) RNA polymerase I – (2) RNA polymerase I – (3) RNA polymerase II (4) RNA polymerase III	– hnRNA	IA		(AIIMS-2018-I)

23.	In the Diagram given figure of	(AIIMS-2018-I)			
	p i p o				
	 (1) i – Repressor, z – β-galacto (2) i – Inhibitor, z – Repressor, (3) i – Inducer, z – β-galactosio (4) i – β-galactosidase, z – Repression 	y– Transacetyl dase, y– Perme	ase, a– Permease ase, a– Repressor		
24.	Which of the following is codo	ns codes for pro			(AIIMS-2018-I)
	(1) CCC, CCU, CCG (3) CUG, CUU, CUA		(2) UCC, UGU, CCU (4) CGC, CGG, CCA		
05		II I I (d			
25.	Match column-I to the column-		e option naving correct	matching –	(AIIMS-2018-II)
	Column-I A Bacteriophage λ	i 5386 nu	ucleotides		
	B E. coli	ii 3.3 × 10			
	C Human genome	iii 4.6 × 10			
	D	iv 48502 k	pp		
	(1) A - (iv), B - (iii), C- (ii), D - (3) A - (iv), B - (iii), C- (i), D - (()	(2) A - (iii), B - (ii), ((4) A - (iv), B - (i), (
26.	Which of the following correctl (1) GGG, GGC, GGA (2) AA		odons for glycine? (3) AUG, AUA, AUC	(4) CCC, CC	(AIIMS-2018-II) CG, CGA
27.	 Which of the following stateme (1) Splicing is not required (2) Single RNA polymerase co (3) This process required more (4) None 	ontrols all DNA p	·	eria.	(AIIMS-2018-III)
28.	Which among the following is (1) It involves all the three type (2) It involves 3 types of RNA (3) It involves single type of RI (4) It involves RNA processing	es of RNAs (m-F polymerases NA polymerase	•)	(AIIMS-2018-III)
29.	Codons of alanine (1) CUC, CUA, CUG (3) GUG, GUC, GUA		(2) GGG, GGU, GG (4) GCU, GCC, GC		(AIIMS-2018-IV)
30.	Which of the following can syn (1) r-RNA (2) t-F	• •	s of RNA (3) m-RNA	(4) DNA	(AIIMS-2018-IV)

		neu	vers										
								4					
SECT	ION - A					EXER	CISE -	- 1					
1. 8. 15. 22. 29.	(3) (2) (1) (4) (4)	2. 9. 16. 23.	(4) (3) (1) (3)	3. 10. 17. 24.	(1) (4) (2) (3)	4. 11. 18. 25.	(3) (4) (1) (1)	5. 12. 19. 26.	(3) (2) (1) (4)	6. 13. 20. 27.	(2) (1) (1) (3)	7. 14. 21. 28.	(3) (3) (1) (1)
SECT	ION - B												
	(3) (3) (3) (1) (4) (3) TION - C	2. 9. 16. 23. 30. 37. 44.	 (1) (3) (4) (1) (1) (2) (1) 	3. 10. 17. 24. 31. 38. 45.	 (3) (1) (4) (2) (2) (2) (1) 	4. 11. 18. 25. 32. 39. 46.	 (2) (1) (3) (2) (1) (2) (1) 	5. 12. 19. 26. 33. 40.	(2) (3) (1) (1) (2) (2)	6. 13. 20. 27. 34. 41.	 (2) (3) (1) (4) (2) (4) 	7. 14. 21. 28. 35. 42.	 (1) (3) (3) (2) (3)
1. 8.	(4) (2)	2. 9.	(4) (2)	3. 10.	(2) (3)	4. 11.	(3) (3)	5. 12.	(1) (4)	6. 13.	(2) (4)	7.	(2)
_	<u>\</u>		_/		· · /	ellaneo			()		()		
1. 8. 15. 22. 29. 36.	(1) (1) (2) (2) (1) (3)	2. 9. 16. 23. 30. 37.	(2) (4) (4) (2) (4) (2)	3. 10. 17. 24. 31. 38.	(3) (3) (1) (3) (1) (2)	4. 11. 18. 25. 32. 39.	(1) (4) (3) (4) (3) (2)	5. 12. 19. 26. 33. 40.	(2) (2) (3) (3) (4)	6. 13. 20. 27. 34. 41.	(2) (3) (3) (2) (4) (4)	7. 14. 21. 28. 35. 42.	(4) (4) (3) (2) (2)
							CISE -						
1. 8. 15.	(2) (2) (2)	2. 9. 16.	(3) (3) (3)	3. 10. 17.	(4) (2) (1)	4. 11.	(1) (4)	5. 12.	(1) (3)	6. 13.	(2) (1)	7. 14.	(4) (1)
							CISE -	3					
	(-)			-			RT-I	_	(-)	-	(-)	_	(-)
1. 8. 15. 22. 29. 36. 43. 50. 57. 64. 71. 78.	 (2) (2) (3) (1) (2) (1) (2) (3) (1) (1) (1) 	2. 9. 16. 23. 30. 37. 44. 51. 58. 65. 72. 79.	(1) (4) (3) (4) (2) (1) (2) (1) (2) (3) (2) (1/bot	3. 10. 17. 24. 31. 38. 45. 59. 66. 73. nus)	 (4) (2) (3) (2) (1) (3) (1) (4) (3) (1) (2) 	4. 11. 25. 32. 39. 46. 53. 60. 67. 74.	(1) (4) (3) (2) (1) (3) (2) (2) (2) (2) (4)	5. 12. 19. 26. 33. 40. 47. 54. 61. 68. 75.	 (2) (4) (3) (1) (1) (3) (4) (4) (3) 	6. 13. 20. 27. 34. 41. 48. 55. 62. 69. 76.	 (2) (1) (4) (2) (4) (1) (2) (2) (4) (4) (3) 	7. 14. 21. 35. 42. 49. 56. 63. 70. 77.	 (3) (2) (4) (2) (1) (4) (2) (3) (2) (4) (2)
1.	(2)	2.	(1)	3.	(2)	4.	(1)	5.	(2)	6.	(1)	7.	(4)
8. 15. 22. 29.	(2) (1) (4) (1) (4)	9. 16. 23. 30.	(1) (2) (1) (1) (4)	3. 10. 17. 24.	(2) (3) (2) (1)	4. 11. 18. 25.	(1) (3) (1) (1)	5. 12. 19. 26.	(2) (4) (1) (1)	0. 13. 20. 27.	(1) (2) (2)	14. 21. 28.	(4) (4) (1) (3)

12.				s in blue birds in F_1 ger	neration and then cross between	
	blue in F_1 generation v (1) 3 blue : 1 white			(2) 1 blue · 1 block · 1	white	
	(1) 3 blue : 1 white (3) 9 blue : 3 back : 3	white		(2) 1 blue : 1 black : 1(4) 1 black : 1 white : 2		
13.	In monohybrid cross with F_2 - generation	what is the	e ratio of homo	zygous dominant and he	omozyguos recessive individuals	
	(1) 1 : 2 : 1	(2) 2 : 1	/1:2	(3) 3:1/1:3	(4) 1 : 1	
14.	A normal man marries the following statemer (1) 50% dayghters nor (2) All the daughters a (3) 50% daughters ma (4) All the daughters a	nt is correc rmal & 509 are normal ay haemop	ct about their of % son are haen & 50% sons ar philic & 50% soi	fsprings nophilic re haemophilic ns are normal.	them were haemophilic which of	
15.	Which of the following	has mono	osomic conditio	n		
	(1) Klinefelter syndron	ne		(2) Down's syndrome		
	(3) Turner syndrome			(4) Cry-du-chat syndro	ome	
16.	Match the column					
	Column I		Column II			
	(a) Grasshopper		(i) Palmer crea	ase in hand		
	(b) Turner's syndrome	;	(ii) Mental reta	rdation & accumulation	of phenylpyruvic acid	
	(c) Phenylketonuria		(iii) Barr body	absent		
	(d) Sickle cell anaemia	a	(iv) XX ^Q – XC) ්		
	(e) Down's syndrome Select the correct opti	on	(v) Pleiotropic	gene		
	(1) a – iv, b – iii, c – ii,		·i	(2) a – iii, b – iv, c – ii,	d – v, e – i	
	(3) a – iii, b – ii, c − v,	d – i, e – i	iv (4) a – iv, b – iii, c – ii, d – i, e – v			
17.		-	•	d by three alleles I ^A , I ^B espective by these allele	and i or lº . How many possible s in humans.	
	(1) 4, 6	(2) 3, 4		(3) 9, 3	(4) 6, 4	
18.	If one parent has blo blood group	od group	A and the othe	er parent has blood gro	up B. The offspring have which	
	(1) AB	(2) O		(3) BO	(4) A, B, AB, O	
19.	produced bearing pink ratio of pink and red fl	k- flowered owered pla	d plants on self ants will be.	ing of F_1 generation F_2 g	owered plant (rr) F_1 generation generation obtained. In which the	
	(1) 1 : 2	(2) 1 : 1		(3) 2:1	(4) 3 :1	
20.	In dihybrid cross of person seeded plants in F_2 ge	-	-	heterozygous for both	yellow round and green wrinkled	
	(1) $\frac{1}{16}$	(2) $\frac{1}{4}$		(3) $\frac{1}{8}$	(4) $\frac{3}{16}$	
	16	4		8	16	

21.	Most cell organelle duplication occur during whic (1) G_1 (2) G_2	ch phase of cell cycle (3) S-phase	(4) M-phase
22.	Find out the incorrect statement about RNA mole (1) It shows high rate of mutation than DNA (3) Some reactions are catalyzed by RNA	ecule (2) It is genetic materia (4) RNA follows charga	
23.	Exon segments are reunited after splicing by (1) DNA ligase (2) RNA primase	(3) RNA polymerase	(4) RNA ligase
24.	During elongation of polypeptide chain sigma fac (1) Functionless (3) Released for re-use	ctor is (2) Retained for specifi (4) Required during clo	
25.	Deletion or insertion of base pairs produces f inserted base pairs is	rame shift mutation un (3) Two	less the number of deleted or (4) Three
26.	Which type of DNA is found in bacteria. (1) Straight DNA (3) Membrane bound DNA	(2) Helical DNA(4) Circular free DNA	
27.	DNA segment ,3'TAC ATG GGT CCG 5' transcr (a) AUG (b) UAC (c) CCG and (D) GGU are requ (1) abdc (2) badc		
28.	A variety of pea plant with round yellow seeds a having wrinkled green seeds and white flowers (in the F_2 generation would be:	(<i>rryycc</i>). The frequency	of plants with genotype <i>RrYyCc</i>
29.	(1) 1/2 (2) 1/8	(3) 27/64	(4) 9/64
23.	 Transcriptional unit consists of (1) Template strand, α- factor & ρ-factor (2) Promoter, structural gene, Terminator (3) Regulator gene, promoter gene, operator gere (4) DNA template, RNA polymerase, Nitrogenous 	-	
30.	Triplet codon concept can be proved by (1) Wobble hypothesis (3) Transversion	(2) Transition(4) Frame shift mutatio	n
31.	If the length of E. coli DNA is 1.36 mm. the no. o (1) 48502 bp (2) 6.6× 10 ⁶ bp	f Base pairs in E.coli ma (3) 4 × 10º bp	ay be (4) 3.3 ×10 ⁶ bp
32.	Which of the following also confers additional sta	•	
33.	 (1) Adenine (2) Guanine The RNA is more reactive and also known to be (1) 3' - OH group at every nucleotide (3) 2' - C = O group at every nucleotide 	(3) Thyminecatalytic due to presend(2) 3' - CCA group at e(4) 2'- OH group at eve	very nucleotide
34.	If E.coli labelled by N ¹⁵ allowed to grow for 60 m the proportion of light and hybrid densities DNA (1) 12 \cdot 5% N ¹⁴ N ¹⁴ , 87 \cdot 5% N ¹⁵ N ¹⁴ (3) 50% N ¹⁴ N ¹⁴ , 50% N ¹⁵ N ¹⁴		N ¹⁵ N ¹⁴
35.	 Which of the following difference between S-stratis not correct (1) S-Strain is virulent while R- strain is non virule (2) R-strain bears mucous (polysacharide) coat v (3) S- strain bears smooth surface while R-strain (4) None of the above 	ent while S-strain does not	ptococcus pneumoniae bacteria

36.	The negative charge of	DNA is due to		
	(1) Nitrogen bases	(2) Pentose sugar	(3) Phosphate group	(4) All of the above
37.	(2) Bidrectional, semidia(3) Unidirectional, disco	Bidirectional, discontinuo scontinuous, conservativ	e	
38.	Who proposed central ((1) Crick	dogma? (2) Watson and Crick	(3) Klug	(4) Beadle and Tatum
39.	(1) Strong Hydrogen bo	the two strands of DNA o nds bet ⁿ Nitrogenous ba ster bonds between nucle quirement	ses	s entire length due to
40.	The length of DNA with (1) 156⋅8A⁰	46 base pairs is (2) 156·4Aº	(3) 156Aº	(4) 149·6Aº
41.	In DNA genetic informa (1) Nitrogenous bases	•	(3) phosphoric acid	(4) all of them
42.	The distance between 2 (1) 3.4 Å	2 strands of DNA is (2) 34 Å	(3) 20Å	(4) 10 Å
43.	A segment of DNA that (1) palindromic DNA (3) complementary DN/	reads the same in forwa	rd and backward is calle (2) plasminic DNA (4) copy DNA	d
44.	m-RNA directs the build (1) Exons	ling of proteins through a (2) Codons	a sequenc of (3) anticodons	(4) Introns
45.	Addition of adenylate re (1) Splicing	esidues (200-300) at 3'-e (2) Capping	nd in a template of hnRN (3) Tailing	IA is called (4) Termination

	SP	P A	nsv	/ers									
1.	(4)	2.	(3)	3.	(3)	4.	(3)	5.	(3)	6.	(1)	7.	(3)
8.	(1)	9.	(4)	10.	(3)	11.	(3)	12.	(4)	13.	(4)	14.	(2)
15.	(3)	16.	(1)	17.	(4)	18.	(4)	19.	(3)	20.	(2)	21.	(1)
22.	(4)	23.	(4)	24.	(1)	25.	(4)	26.	(4)	27.	(2)	28.	(2)
29.	(2)	30.	(4)	31.	(3)	32.	(3)	33.	(4)	34.	(2)	35.	(2)
36.	(3)	37.	(4)	38.	(1)	39.	(3)	40.	(2)	41.	(1)	42.	(3)
43.	(1)	44.	(1)	45.	(3)								