F

Self Practice Paper (SPP)

1.	Solutions having the sa (1) isotonic solutions	ame osmotic pressure are (2) molar solutions	e called (3) hypotonic solutions	(4) ideal solutions				
2.	A colligative property o (1) arrangement of ator (3) number of molecule	f a solution depends on t ms in solute molecule. es of solute in solution.	the(2) total number of molecules of solute and solvent(4) mass of the solute molecules.					
3.	When 0.6 gm of urea of normal boiling point of (1) 373 052 K	lissolved in 100g of wate water = 100°C) : (2) 273 52 K	er, the water will boil at (K_b for water = 0.52 kJ. mol ⁻¹ and (3) 372 48 K (4) 273 052 K					
А	The osmotic pressure ((2) 210.02 It	(5) 572.45 (C (4) 275.552 (C					
	(1) $p = \frac{CR}{T}$	(2) $\frac{\pi}{C} = RT$	(3) $p = \frac{CT}{R}$	(4) $p = \sqrt{C} \cdot \frac{R}{T}$				
5.	The relative lowering o	f vapour pressure is equa	al to the mole fraction of	the solute. This is the statement				
	of: (1) Raoult's law (3) Osmotic pressure la	aw	(2) Boyle's law (4) Graham's law					
6.	Azeotropes are : (1) liquid mixtures which distil unchanged in composition (2) liquids which can mix with each other in all proportions (3) solids which form solid solutions of definite compositions (4) gases which can be separated.							
7.	Swimming for a long time in salt water makes the skin of one's finger tips wrinkled. Which one of the following properties is responsible for this observation ?							
8.	A 2% solution of glucose has the same elevation in the boiling point as that of a 5% solution of a non-volatile solute. The molar mass of the solute is : (1) 180 (2) 450 (2) 72 (4) 18							
	volatile solute. The mol	lar mass of the solute is : (2) 450	(3) 72	(4) 18				
٩	volatile solute. The mo (1) 180	lar mass of the solute is : (2) 450	(3) 72	(4) 18				
9.	volatile solute. The mo (1) 180 A 1.0 molal solution wit (1) FeCl ₃	lar mass of the solute is : (2) 450 th the lowest freezing point (2) HCI	(3) 72 nt is that of : (3) KCI	(4) 18 (4) MgCl ₂ .				
9. 10.	volatile solute. The mo (1) 180 A 1.0 molal solution wit (1) FeCl ₃ From among the follow (1) 0.1 M $Sr(NO_3)_2$	lar mass of the solute is : (2) 450 th the lowest freezing point (2) HCI ing, the aqueous solution (2) 0.1 M KCI	 (3) 72 nt is that of : (3) KCI which has the highest for (3) 0.1 M HNO₃ 	 (4) 18 (4) MgCl₂. reezing point depression is : (4) 0.1 M glucose. 				
9. 10. 11.	volatile solute. The mo (1) 180 A 1.0 molal solution wit (1) FeCl ₃ From among the follow (1) 0.1 M Sr(NO ₃) ₂ In chemical industries, (1) differential extraction (3) chromatography	lar mass of the solute is a (2) 450 th the lowest freezing point (2) HCI ing, the aqueous solution (2) 0.1 M KCI the preferred method of in	 (3) 72 nt is that of : (3) KCI which has the highest field of the second secon	 (4) 18 (4) MgCl₂. reezing point depression is : (4) 0.1 M glucose. 				
9. 10. 11. 12.	volatile solute. The mo (1) 180 A 1.0 molal solution wit (1) FeCl ₃ From among the follow (1) 0.1 M Sr(NO ₃) ₂ In chemical industries, (1) differential extraction (3) chromatography The solubility of a gas solution. This statemen (1) Raoult's law (3) Boyle's law	lar mass of the solute is : (2) 450 th the lowest freezing point (2) HCI ting, the aqueous solution (2) 0.1 M KCI the preferred method of the preferred method of the sin a liquid is driectly point is known as:	 (3) 72 nt is that of : (3) KCI n which has the highest field (3) 0.1 M HNO₃ purification of liquids is : (2) fractional distillation (4) leaching. proportional to the partial (2) Henry's law (4) Charles' and Gay Lut 	 (4) 18 (4) MgCl₂. reezing point depression is : (4) 0.1 M glucose. Il pressure of the gas over the gas				

(1)

14. Which of the following has the lowest freezing point and the highest boiling point?

	0	01
1.5 m magnesiu	m phosphate	(

- (2) 1.0 m sodium chloride
- (3) 1.5 m aluminum nitrate (4) 1.5 m calcium chloride
- A solution of urea was found to be isotonic with a solution of salt XY of molecular weight 74.6. If 0.15 moles of urea are dissolved in a certain volume V mL of the isotonic solution, the amount of salt in the solution will be :
 (1) 22.4g
 (2) 5.6 g
 (3) 11.2 g
 (4) 7.46 g

16.The desalination of sea water involves the phenomenon of :
(1) Sedimentation(2) Distillation(3) Precipitation(4) Reverse osmosis

17. According to this phase diagram, which phases can exist at pressures lower than the triple point pressure ?

(1) gas only(3) liquid only

- (2) solid and gas only
- (4) solid and liquid only
- **18.** For a dilute solution, Raoult's law states that :
 - (1) the lowering of vapour pressure is equal to the mole fraction of the solute.
 - (2) the relative lowering of vapour pressure is equal to the mole fraction of the solute
 - (3) the vapour pressure of solution is equal to the mole fraction of solution.
 - (4) the relative lowering of vapour pressure is proportional to the amount of solute in the solution.

19. A mixture of two liquids which boils without change in composition is called

- (1) Stable mix ture(2) Binary liquid mixture(3) Azeotropic mixture(4) Zerotropic mixture
- **20.** The aqueous solution having osmotic pressure nearest to that of an equimolar solution of $K_4[Fe(CN)_6]$ is (1) K_2SO_4 (2) Na_3PO_4 (3) $Al_2(SO_4)_3$ (4) $C_6H_{12}O_6$
- **21.** The elevation in boling point of a solution containing 13.44 g of $CuCl_2$ in 1 kg of water is : ($K_b = 0.52 \text{ K kg mol}^{-1}$)

(1) 0.05 (2) 0.10 (3) 0.16 (4) 0.21

22. The freezing point of a solution containing 8.1 g of HBr in 100 g of water, assuming the acid to be 90% ionized is [H = 1, Br = 80, K_r for water = 1.86 K kg mol⁻¹] (1) 0.85° C (2) -3.53° C (3) 0° C (4) -0.35° C

23. Which of the following observation indicates colligative properties ?

A 0.5 M NaBr solution has a higher vapour pressure than 0.5 M BaCl₂.
A 0.5 M NaOH solution freezes at a lower temperature than pure water.
III. Pure water freezes at a higher temperature than pure ethanol.
(1) Only I
(2) Only II
(3) Only III
(4) I and II

24. Osmotic pressure of a 2 % w/v solution of glucose is same as 5% w/v solution of a nonvolatile non-

- electrolyte solute. The molar mass of the solute is :(1) 180(2) 450(3) 72(4) 45
- 25. The colligative property used in the determination of molar mass of a polymer is :

	(1) lowering of the vapor(3) depression in the fractional stress of the fraction of the fract	our pressure eezing point	(2) elevation in the boiling point(4) osmotic pressure.						
26.	Mole fraction of $C_{3}H_{5}(C$ (1) 0.46	(2) (2) (3)	of water and 46 g of glyc (3) 0.20	cerine is : (4) 0.40					
27.	Colligative properties have many practical uses, some of them may be : I : Melting of snow by salt II : Desalination of sea water III : Determination of molar mass IV : Determination of melting point and boiling point of solvent Actual practical uses are :								
28.	Select correct statement(s) : (1) When solid $CaCl_2$ is added to liquid water, the boiling temperature rises (2) When solid $CaCl_2$ is added to ice at 0°C, the freezing temperature falls (3) Both (1) and (2) (4) None of the above								
29.	If $pK_a = -\log K_a = 4$, and (1) 1.01	nd K _a = Cx² then Van't Ho (2) 1.02	off factor for weak monot (3) 1.10	oasic acid when C = 0.01 M is : (4) 1.20					
30.	Consider following term	ns (m = molality) :							
	$I: mK_{b};$ II: mK	$X_{b}i$ III : $\frac{\Delta T_{b}}{i}$	$IV: K_{_{\rm b}}$						
	Terms which can be ex (1) III, IV	xpressed in degree (temp (2) I, II	perature) are (3) I, II, IIII	(4) I, III					
31.	Elevation in b.p. of an a in this solution is : (1) 0.982	aqueous urea solution is (2) 0.567	0.52°. ($K_{b} = 0.52^{\circ} \text{ mol}^{-1}$ (3) 0.943	kg) Hence, mole-fraction of urea (4) 0.018					
32.	Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution + 520 mL of 1.2 M second solution. What is the molarity of the final mixture ?(1) 1.20 M(2) 1.50 M(3) 1.344 M(4) 2.70 M								
33.	What is the normal boiling point of the solution represented by the phase diagram ? P,atm P,atm P,atm f f g g g g g g g g								
	(1) A	(2) B	(3) C	(4) D					

- 34. An aqueous solution of a solute AB has b.p. of 101.08°C (AB is 100% ionised at boiling point of the solution) and freezes at -1.80°C. Hence, AB (K_b / K_f = 0.3)
 - (1) is 100% ionised at the f.p. of the solution
 - (2) behaves as non-electrolyte at the f.p. of the solution
 - (3) forms dimer
 - (4) none of the above
- **35.** Density of 1M solution of a non-electrolyte $C_6H_{12}O_6$ is 1.18 g/mL. If $K_f(H_2O)$ is 1.86° mol⁻¹ kg, solution freezes at : (1) - 1.58°C (2) - 1.86°C (3) - 3.16°C (4) 1.86°C
- **36.** Which one of the following aqueous solutions will exhibit highest boiling point ? (1) 0.01 M Na₂SO₄ (2) 0.01 M KNO₃ (3) 0.015 M urea (4) 0.015 M glucose
- 37. What is the normal freezing point of the solution represented by the phase diagram ?

- **38.** Total vapour pressure of mixture of 1 mol of volatile component A ($p_A^{\circ} = 100 \text{ mmHg}$) and 3 mol of volatile component B ($p_B^{\circ} = 60 \text{ mmHg}$) is 75 mm. For such case :
 - (1) there is positive devitation from Raoult's low
 - (2) boiling point has been lowered
 - (3) force of attraction between A and B is smaller than that between A and A or between B and B
 - (4) all the above statements are correct
- **39.** A colligative property of a solution depends on the :
 - (1) arrangement of atoms in solute molecule
 - (3) number of molecules of solute in solution
- **40.** Which has maximum freezing point ? (1) 6g urea solution in 100 g H_2O (3) 6g sodium chloride in 100 g H_2O
- (2) 6g acetic acid solution in 100g H₂O

(2) total number of molecules of solute and solvent

(4) All have equal freezing point

(4) mass of the solute molecules

- **41.** If M_{normal} is the normal molecular mass and α is the degree of ionization of $K_3[Fe(CN)_6]$, then the abnormal molecular mass of the complex in the solution will be : (1) M_{normal} (1 + 2 α)⁻¹ (2) M_{normal} (1 + 3 α)⁻¹ (3) M_{normal} (1 + α)⁻¹ (4) equal to M_{normal}
- **42.** The vapour pressure of a pure liquid A is 40 mmHg at 310 K. The vapour pressure of this liquid in a solution with liquid B is 32 mmHg. Mole fraction of A in the solution, if it obeys Raoult's law is : (1) 0.8 (2) 0.5 (3) 0.2 (4) 0.4
- **43.** Mole fraction of the toluene in the vapour phase which is in equilibrium with a solution of benzene ($p^\circ = 120$ Torr) and toluene ($p^\circ = 80$ Torr) having 2.0 mol of each is (1) 0.50 (2) 0.25 (3) 0.60 (4) 0.40
- 44. An azeotropic solution of two liquids has a boiling point lower than either of them when it :
 (1) shows negative deviation from Raoult's law
 (2) shows positive deviation from Raoult's low
 (3) shows ideal behaviour
 (4) is saturated
- 45. The total concentration of dissolved particles inside red blood cells is approximately 0.30 M and the membrane surrounding the cells is semipermeable. What would the osmotic pressure (in atmosphere) inside the cells become if the cells were removed from the blood plasma and placed in pure water at 298 K ?
 (1) 7 24 atm (2) 1 78 atm (2) 2 24 atm (4) 0 74 atm

	SP	ΡΑ	nsw	/ers									
1.	(1)	2.	(3)	3.	(1)	4.	(2)	5.	(1)	6.	(1)	7.	(1)
8.	(2)	9.	(1)	10.	(1)	11.	(2)	12.	(2)	13.	(1)	14.	(1)
15.	(2)	16.	(4)	17.	(2)	18.	(2)	19.	(3)	20.	(3)	21.	(3)
22.	(2)	23.	(4)	24.	(2)	25.	(4)	26.	(3)	27.	(3)	28.	(3)
29.	(3)	30.	(3)	31.	(4)	32.	(3)	33.	(4)	34.	(2)	35.	(2)
36.	(1)	37.	(1)	38.	(4)	39.	(3)	40.	(1)	41.	(2)	42.	(1)
43.	(4)	44.	(2)	45.	(1)								

SPP Solutions

- 20. It will produce 5 ions.
- **21.** $\Delta T_{b} = iK_{b} m$

 $= 3 \times 0.52 \times \frac{13.44/134.5}{1} = 0.3 \times 0.52 = 0.16$

- 22. $\Delta T_f = (1 \alpha + 2\alpha) \ 1.86 \times \frac{\frac{8.1}{81}}{0.1}$ = 1.9 × 1.86 = 3.53 T_f of water = - 3.53°C
- I → Relative lowering of vapour pressure
 II → Depression in freezing point.
 III → Comparision of melting point of two different compounds.
 ∴ I & II are indicating colligative properties.

24.
$$\pi_{gaseous} = \pi_{He}$$

$$\frac{2}{180} \times \frac{1000}{100} = \frac{5}{M} \times \frac{1000}{100}$$
$$M = \frac{180 \times 5}{2} = 450 \,\mathrm{g}$$

26. Mole of $H_2O = \frac{36}{18} = 2$

Mole of glycerine = $\frac{46}{92}$ = 0.5 total mole = 2 + 0.5 = 2.5

Mole fractions of glycerine = $\frac{n_1}{n_1 + n_2} = \frac{0.5}{2.5}$

- 27. I. Melting of snow by salt : Depression in freezing point
 - II. Desalination of sea water : Reverse osmosis
 - III. Osmosis is used to determine the molar mass.

- 28. When non volatile solute added to solvent. Due to elevation in boiling point, boiling point 1 and due to dispression in freezing point, freezing temperature \downarrow
- 29.

 $HA = H^+ + A^$ i = [1 + (y - 1) x] = 1 + x $pK_a = 4 = -\log K_a$ $K_{a} = 10^{-4} = Cx^{2}$ *.*.. $1 \times 10^{-4} = 0.01 \times x^2 \Rightarrow x = 0.1$: i = 1 + x = 1.130. $\Delta T_{b} = i K_{b}m$ As iK, m can be expressed in degree (Unit of temperature) SO K_b m can be expressed in degree (Unit of temperature) and $\frac{\Delta T_{b}}{i}$ can be expressed in degree (Unit of temperature) and But unit of K_b is mol⁻¹ kg K 31. As $\Delta T_{h} = molality \times K_{h}$ $0.52 = m \times 0.52$ molality = 1 mol kg⁻¹ urea = 1 mol *.*.. moles of water = $\frac{1000}{18}$ = 55.55 mole fraction of urea = $\frac{1}{56.55}$ = **0.018**

32. Total millimoles of solute $= 480 \times 1.5 + 520 \times 1.2 = 720 + 624 = 1344$. Total volume = 480 + 520 = 1000.

Molarity of the final mixture = $\frac{1344}{1000}$ = 1.344 M.

33.

Normal boiling point of the solution is that temperature at which vapour pressure of solution equals to 1 atm.

Given $\Delta T_{b} = 1.08^{\circ}C$, i = 2 at boiling pt. of solution. 34.

and
$$\Delta T_{f} = 1.80^{\circ}C$$
, and $\frac{K_{b}}{k_{f}} =$
so $\frac{\Delta T_{b}}{\Delta T_{f}} = \frac{i_{b}K_{b}m}{i_{f}K_{f}m}$

so i, = 1

i.e., AB behaves as non-electrolyte at the f.p of the solution.

0.3

- **35.** $1 \text{M C}_6 \text{H}_{12} \text{O}_6 \text{ (molar mass} = 180 \text{ g mol}^{-1}\text{)}$ 1000 mL solution has = 180 g solute 1180 g solution has = 180 g solute 1000 g solvent has = 180 g solute Thus, molality = 1 molal
 - $\therefore \quad \Delta T_f = K_f \text{ molality}$
 - = 1.86 × 1 = 1.86°
 - ∴ F.P. = 1.86°C
- **36.** Elevation in boiling point is a colligative property which depends upon the number of solute particles. Greater the number of solute particles in a solution, higher the extent of elevation in boiling point. $Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$
- **37.** From given graph, we can say T₁ is that temp at which solid state and liquid (solution) are in equilibrium.
- 38.

$$P = P_{A}^{\circ}X_{A} + P_{B}^{\circ}X_{B}$$
$$\frac{100}{4} + \frac{60 \times 3}{4}$$

= 70 mm < 75 mm (experimental)

Thus, there is positive deviation (1) is true, mixture is more volatile due to decrease in b.p. Thus, (2) is true also force of attraction is decreased thus (3) is true.

- **39.** Colligative property of a solution depends on no. of particles of solute in solution.
- **40.** Value of van't Hoff factor is least for urea solution, so there will be least depression in freezing point i.e., maximum freezing point.

41.
$$K_{3} [Fe(CN)_{e}] \xrightarrow{3} 3K^{*} + [Fe(CN)_{e}]^{3-}$$
At $t = 0$
After ionization
 $(1 - \alpha)$
 3α
 α ; $i = 1 + 3\alpha$
Since, $i = \frac{M_{normal}}{M_{abnormal}}$

$$\therefore \frac{1 + 3\alpha}{1} = \frac{M_{normal}}{M_{abnormal}}$$
42.
$$p_{A} = X_{A} p^{o}_{A}$$
 $32 = X_{A} 40$

$$\therefore X_{A} = \frac{32}{40} = 0.8.$$
43.
$$P_{T} = X_{A} p^{o}_{A} + X_{B} p^{o}_{B}$$
 $= \left(\frac{2}{4}\right) \times 80 + \left(\frac{2}{4}\right) \times 120 = 100 \text{ Torr}$
Now mole fraction in vapour phase $= \frac{X_{A} P^{0}_{A}}{P_{T}} = \frac{40}{100} = 0.4.$

- **44.** Boiling point get lowered when vapour pr. increases and it happens when there is a positive deviation from Raoult's law.
- **45.** Osmotic pressure = CRT = 0.30 × 0.082 × 298 = 7.34 atm