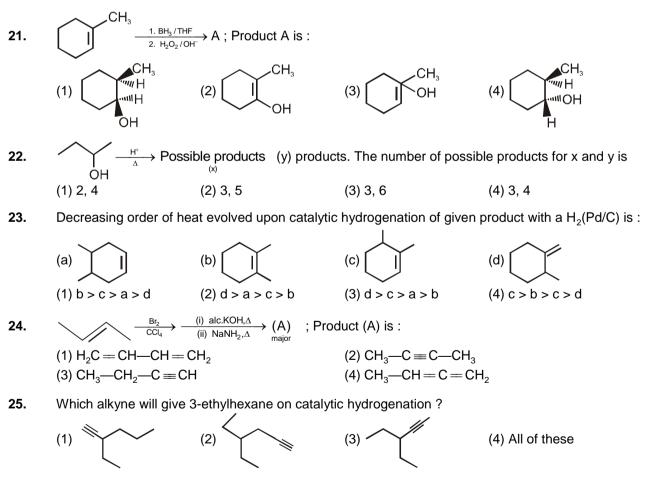
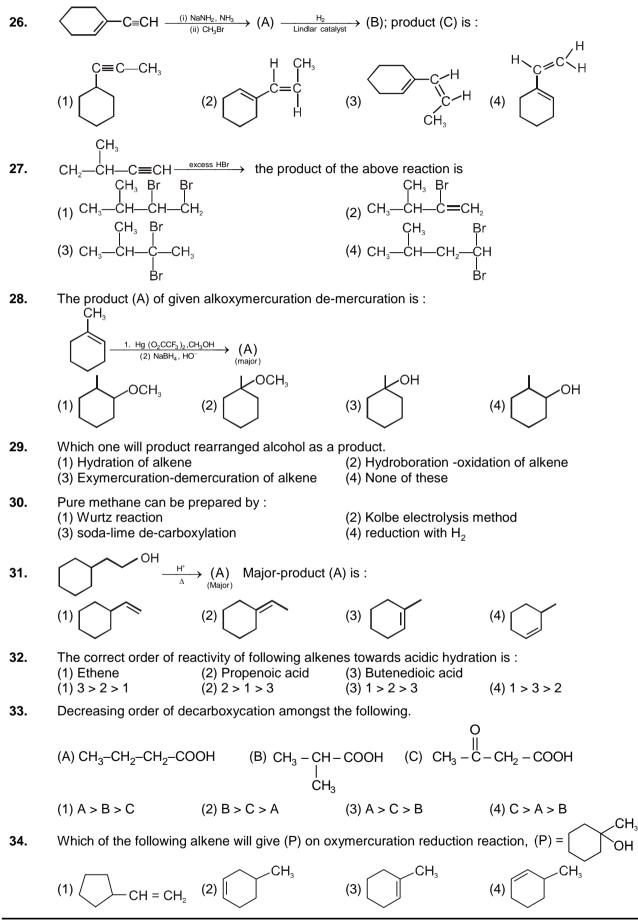
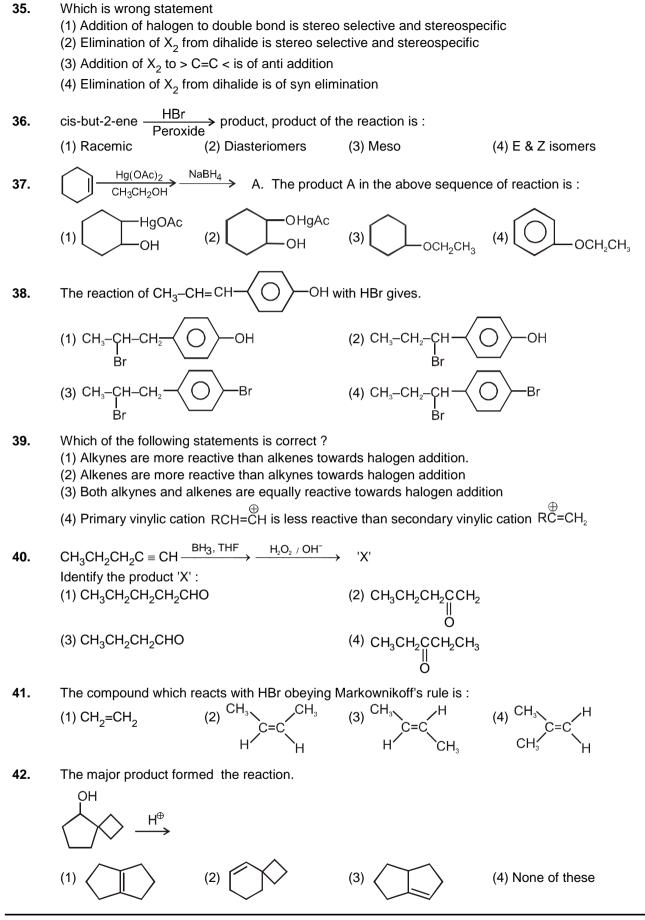

	Self Practi	ce Paper (SP	PP)						
1.	Aqueous solution of the following compound on electrolysis gives ethane (1) Acetic acid (2) Acetamide (3) Potassium acetate (4) Ethyl acetate								
2.	Which of the following (1) Acetylene	does not decolourise bro (2) Propene	omine solution in carbon (3) Ethane	ution in carbon disulphide ane (4) Propyne					
3.	Which one gives only (1) n-pentane	one monosubstitution pro (2) Neopentane	oduct on chlorination (3) Isopentane	(4) n-butane					
4.	By Wurtz reaction, a m (1) Butane (3) Propane	nixture of methyliodide ar	nd ethyliodide gives (2) Ethane (4) A mixture of the above three						
5.	Electrolysis of cold cor (1) Ethane	ncentrated aqueous solu (2) Ethyne	ition of potassium succinate yields (3) Ethene (4) Ethane-1, 2-diol						
6.	Formation of 2-butene (1) Markowikoff's	from 2-bromobutane is a (2) Bayer	according to (3) Saytzeff	(4) Wurtz					
7.	 Acetylenic hydrogens are acidic because (1) Sigma electron density of C–H bond in acetylene is nearer to carbon, which has 50% s-character (2) Acetylene has only one hydrogen on each carbon (3) Acetylene contains least number of hydrogens among the possible hydrocarbons having two carbons (4) Acetylene belongs to the class of alkynes with molecular formula C_nH_{2n-2} 								
8.	The shapes of methar (1) Tetrahedral, planar (3) Pyramidal, planar	and linear	blecules are, respectively (2) Tetrahedral, linear and planar (4) Tetrahedral, pyramidal and planar						
9.	Carbide, which react v (1) CaC ₂	vith water to give propyno (2) SiC	e is (3) Mg ₂ C ₃	(4) Al ₄ C ₃					
10.	$C_{a}C_{2} + H_{2}O \rightarrow A \xrightarrow{H_{2}SO_{4}/H_{3}SO_{4}} \rightarrow B$. Identify A and B in the given reaction (1) C ₂ H ₂ and CH ₃ CHO (2) CH ₄ and HCOOH (3) C ₂ H ₄ and CH ₃ COOH (4) C ₂ H ₂ and CH ₃ COOH								
11.	The number of π -bonds in the product formed by passing acetylene through dilute sulphuric containing mercuric sulphate is (1) Zero (2) One (3) Two (4) Three								
12.	$(CH_3)_2 C = CH \xrightarrow[H_2]{Catalyst} H_2$ Optical isomers CH_3								
	(1) 2	(2) 4	(3) Zero	(4) 3					
13.	The order of increasing reactivity towards HCl of the following compounds will be(1) $CH_2 = CH_2$ (2) $(CH_3)_2C = CH_2$ (3) $CH_3CH = CHCH_3$ (1) $1 < 2 < 3$ (2) $1 < 3 < 2$ (3) $3 < 2 < 1$ (4) $2 < 1 < 3$								
14.	Which one of the follow (1) $CH_3CH = CHCH_2C$	• 	the best for the formation of 2-bromobutane (2) $CH_3CH_2CH = CH_2 \xrightarrow{HBr}$						
	 (3) CH₃CH = CHCH₃ - (1) 1 	^{Br₂} → (2) 2	(4) $CH_3CH_2CH = CH_2$ (3) 3						

- 15. On halogenation, an alkane gives only one monohalogented product. The alkane may be :
 (1) 2 methyl butane
 (2) 2, 2 dimethyl propane
 (3) cyclopentane
 (4) both (2) and (3)
- 16. Which of the following compounds can be best prepared by Wurtz- reaction ?
 (1) Iso- butane
 (2) n- butane
 (3) n pentane
 (4) Iso pentane
- **17.** Calcium carbide + heavy water \longrightarrow ? (1) C₂H₂ (2) CaD₂ (3) Ca(OD)₂ (4) CD₄
- **18.** On catalytic reduction (H_2/Pt) how many alkenes will give n-butane ? (1) 1 (2) 2 (3) 3

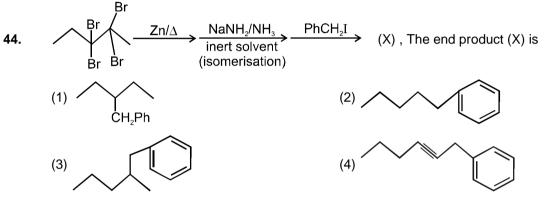





(4) 4

20. In the reaction of hydrogen bromide with an alkene (in the absence of peroxides), the first step of the reaction is the to the alkene.

- (1) fast addition of an electrophilic
- (3) fast addition of a nucleophilic
- (2) slow addition of an electrophile
- (4) slow addition of a nucleophile



43.

$$H_{3}C \xrightarrow{H} CH_{3} \xrightarrow{Br_{2} /h\upsilon} Product (major)$$
Identify the major product.
$$(1) CH_{3} \xrightarrow{-C - CH_{2} - Br} (2) CH_{3} \xrightarrow{-C - CH_{3}} Br$$

$$(3) CH_{3} - CH_{2} - CH_{2} - Br (4) CH_{3} - CH_{-}CH_{3} Br$$

45. 1, 2-dibromoethane when heated with alcoholic potash gives

(1) Ethane (2) Acetylene (3) Ethylene (4) Methane

	SP	P A	nsv	/ers									
1.	(2)	2.	(2)	3.	(1)	4.	(4)	5.	(3)	6.	(3)	7.	(1)
8.	(1)	9.	(3)	10.	(1)	11.	(2)	12.	(3)	13.	(3)	14.	(2)
15.	(4)	16.	(2)	17.	(3)	18.	(3)	19.	(3)	20.	(2)	21.	(4)
22.	(2)	23.	(2)	24.	(2)	25.	(4)	26.	(3)	27.	(3)	28.	(2)
29.	(1)	30.	(3)	31.	(2)	32.	(3)	33.	(4)	34.	(3)	35.	(4)
36.	(1)	37.	(3)	38.	(2)	39.	(2)	40.	(1)	41.	(4)	42.	(1)
43.	(2)	44.	(4)	45.	(2)								

SPP Solutions

1. Paraffins or alkanes are non-polar compounds. Hence soluble in benzene.

2.
$$CH_3-CH=CH_2 + HCI \xrightarrow{\text{Peroxide}} CH_3-CH-CH_3$$

I
CI

Peroxide rule is applicable only to HBr.

3. Peroxide rule is applicable only to HBr and not for HCl, HF and HI.

5.
$$\begin{array}{c} CH_2COOK \\ | \\ CH_2COOK \end{array} + 2H_2O \xrightarrow{\text{Electrolysis}} CH_2 + 2CO_2 + 2KOH + H_2 \\ | \\ CH_2 \\ CH_2 \\ Cathode \end{array}$$

6.
$$CH_3 - CH - CH_2 - CH_3 \rightarrow CH_3 - CH = CH - CH_3 + HBr$$

Br
2-Bromobutane

9.
$$Mg_2C_3 + 4H_2O \rightarrow CH_3C \equiv CH + 2Mg(OH)_2$$

10. Wohler reaction :

$$CaC_2 + 2H_2O \longrightarrow C_2H_2 + Ca(OH)_2$$

$$\begin{array}{c} C_2H_2 & \xrightarrow{dil.H_2SO_4 \ / \ HgSO_4} & [CH_2 = CHOH] \rightarrow CH_3CHO \\ \text{Acetylene} & 60^{\circ} C & \text{Unstable} & \text{Acetaldehyde} \end{array}$$

11.
$$CH = CH + H_2O \xrightarrow{\text{dil}.H_2SO_4} H_{gSO_4} \rightarrow CH_2 = C - OH \rightarrow CH_3 - C - H$$

12.
$$(CH_3)_2 - C = CH \xrightarrow[Hydrogenation]{CH_3} (CH_3)_2 - CH - CH_2$$

14.
$$CH_3 - CH_2 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - CH_2 - CH_3$$

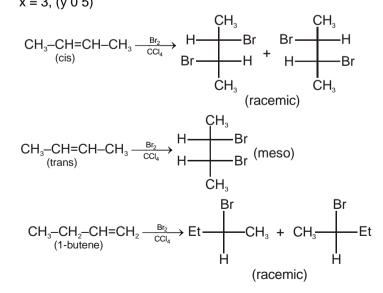
Br
2-Bromo butane

15.
$$CH_3 \xrightarrow{CH_3} H_1$$

 $H_3 \xrightarrow{L} CH_2 \xrightarrow{K_2} CH_3 \xrightarrow{H_2} CH_2 \xrightarrow{H_2} CH_2$

Both compound gives only one monohalogenated product is possible.

$$\bigwedge \xrightarrow{X_2} \bigvee^X$$

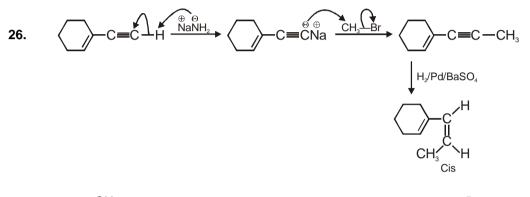

16. $2CH_3-CH_2-CI \xrightarrow{Na}_{Dry \text{ ether}} CH_3-CH_2-CH_2-CH_3$

Open chain alkane product having even number of carbons and symmetrical can be achieved by Wurtz reaction.

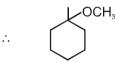
17.
$$CaC_2 + D_2O \longrightarrow Ca(OD)_2 + D-C \equiv C-D$$

18.
$$/ \xrightarrow{+}_{Pt} \xrightarrow{H_2} n\text{-butane}$$

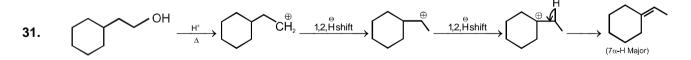
- **20.** Formation of carbocation is the rate determining step.
- 21. Oxymercuration-Demercuration take place.(Addition of –OH takes place according to Markovnikoff's rule)

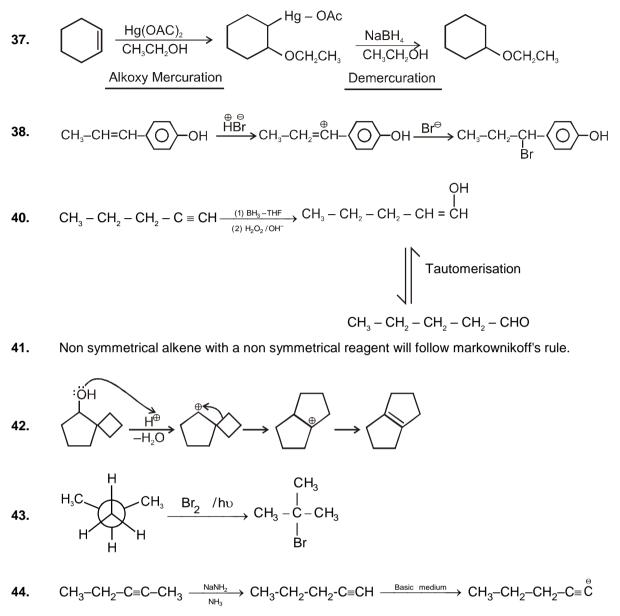


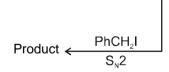
23. Most stable alkene less heat of hydrogenation.


- $a \rightarrow 4 \alpha H$
- $b \rightarrow 10 \alpha H$
- $c \rightarrow 6 \alpha H$
- $d \rightarrow 3\alpha H$

24. Formation of vicinal di-halide followed by two consecutive E₂ reaction. (elimination bimolecular)


25. All alkyne on catalytic hydrogenation give 3-ethylhexane.


28. Addition of CH₃OH, according to Markovnikoff's rule take place.


- **29.** It is electrophilic addition reaction & proceeds carbocation.
- **30.** $CH_3 CO_2H \xrightarrow{\text{NaOH, CaO}} CH_4 + CO_2$

- **32.** More stable carbocation gives faster reaction.
- **34.** Addition of water by oxymercuration reduction without rearrangement.
- **35.** Elimination of X_2 from dihalide is of anti manner not syn.
- **36.** Product will have two chiral carbon, so total product will be $2^n = 2^2 = 4$.

Non terminal alkyne Terminal alkyne

