Chemical Bonding

Chemical Bond : The attractive force which holds various constituents such as atoms, ions etc.,

together in different chemical species is called a chemical bond.

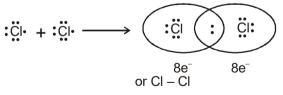
To explain nature of chemical bond, different theories are given

- (i) Octet rule
- (ii) Valence bond theory
- (iii) Valence shell electron pair repulsion theory
- (iv) Molecular orbital theory.

Octet rule :

"Tendency of atoms to have eight electrons in their outermost shell is known as Lewis octet rule". To achieve inert gas configuration atoms lose, gain or share electrons.

(i) It has been observed that atoms of noble gases have little or no tendency to combine with each other or with atoms of other elements.

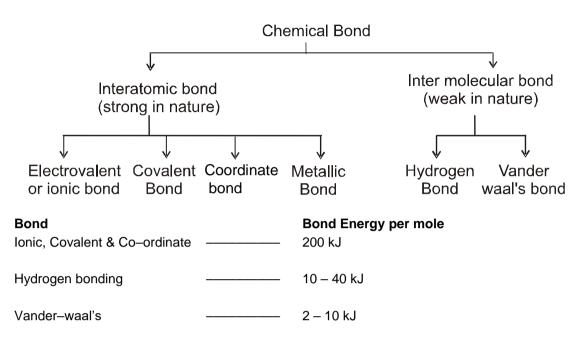

(ii) It means that these atoms must have a stable electronic configuration.

(iii) These elements (noble gases) have 8 electrons (ns² np⁶) except helium which has 2 electrons (1s²) in their outer most shell.

Element	Ne	Ar	Kr	Xe	Rn
Outer most shell					
configuration	2s ² 2p ⁶	3s²3p ⁶	4s ² 4p ⁶	5s ² 5p ⁶	6s ² 6p ⁶

(iv) It is therefore concluded that ns² np⁶ configuration in the outer energy level constitues a structure of maximum stability or minimum energy.

The **Octet rule** can be understood by considering the formation of the chlorine molecule, Cl_2 . The Cl atom with electronic configuration, $[Ne]^{10} 3s^2 3p^5$, is one electron short of the argon configuration. The formation of the Cl_2 molecule can be understood in terms of the sharing of a pair of electrons between the two chlorine atoms, each chlorine atom contributing one electron to the shared pair. In the process both


Covalent bond between two CI atoms

Figure

chlorine atoms attain the outer shell octet of the nearest noble gas (i.e., argon). The dots represent electrons. Such structures are referred to as Lewis dot structures.

CLASSIFICATION OF CHEMICAL BONDS :

On the basis of electronic valency theory and structure, chemical bonds can be classified as follows.

ELECTROVALENT OR IONIC BOND :

The chemical bond formed between two or more atoms as a result of complete transfer of one or more electrons from one atom to another is called ionic or electrovalent bond.

Electrovalent bond is not possible between similar atoms. This type of bonding requires two atoms of different nature. One atom should have the tendancy to loose electrons i.e. electropositive in nature and the other atom should have the tendency to accept electrons i.e. electronegative in nature.

Electropositive atom looses electrons (group IA to IIIA)

Electronegative atom gains electron (group IVA to VII A)

Example :	IA and VII A group elements form strong ionic compound				
	Na +	- Cl	\longrightarrow Na ⁺	+	CI
	2, 8, 1	2, 8, 7	2, 8		2, 8, 8
			(Ne configuration	on)	(Ar configuration)
			(Ne configuration	on)	(Ar configuration)

More the distance between two elements in the periodic table more will be the ionic character of the bond.

Total number of electrons lost or gained is called electrovalency.

Example :

 $Mg + O \longrightarrow MgO$ $Mg^{+2} \longleftarrow Mg \qquad O \longrightarrow O^{-2}$ $2, 8 \qquad 2, 8, 2 \qquad 2, 6 \qquad 2, 8$ $2e^{-7}$ electrovalency of Mg = 2

electrovalency of O = 2

(2)

$$Ca + 2CI \longrightarrow CaCl_{2}$$

$$Ca^{+2} \longleftarrow Ca \qquad CI \longrightarrow CI^{-}$$

$$2, 8, 8 \quad 2, 8, 8, 2 \qquad 2, 8, 7 \quad 2, 8, 8$$

$$One e^{-} \quad CI \longrightarrow CI^{-}$$

$$One e^{-} \quad 2, 8, 7 \quad 2, 8, 8$$
electrovalency of Ca = 2
electrovalency of Cl = 1

(3)

Ca + O
$$\longrightarrow$$
 CaO
Ca⁺² Ca O
2, 8, 8 2, 8, 8, 2 2, 6
electrovalency of Ca = 2
electrovalency of O = 2

- Electrostatic force of attraction between cation and anion is called ionic bond or electrovalent bond. Force of attraction is equal in all direction so ionic bond is non-directional.
- A definite three dimensional structure called crystal lattice is formed.
 Energy released during the formation of one mole crystal lattice is called lattice energy.

e.g.
$$(6.023 \times 10^{23})$$
Na⁺ + (6.023×10^{23}) Cl⁻ \longrightarrow (6.23×10^{23}) NaCl + 94.5 K.cal (Lattice energy).

0⁻² 2, 8

Ionic compounds do not have a molecular formula, they only have empirical formula.

e.g. NaCl is the empirical formula of sodium chloride.

Factors favouring formation of lonic bonds :

Formation of ionic bond depends upon three factors :

(A) Ionisation energy (IE) :

Amount of energy required to remove an electron from the outermost orbit of an isolated gaseous atom to form positve ion or cation is called ionzation energy [energy is absorbed so it is an endothermic process]

$$M + I.E. \longrightarrow M^{+} + e^{-}$$

Less Ionisation energy \Rightarrow Greater tendency to form cation.

$$\begin{array}{ll} \mathsf{Na^{+}} & > & \mathsf{Mg^{+2}} & > & \mathsf{AI^{+3}} \\ \mathsf{Cs^{^{+}}} & \mathsf{Rb^{^{+}}} & \mathsf{K^{^{+}}} & \mathsf{Na^{^{+}}} & \mathsf{Li^{^{+}}} \end{array} \end{array} \right\} \\ \text{Cation formation tendency} }$$

Example :

(B) Electron affinity :

Amount of energy released when an electron is added to an isotated gaseous atom to form negative ion or anion is called electron affinity [energy is released so it is an exothermic process]

$$X + e^- \longrightarrow X^- + EA$$

High electron affinity \Rightarrow Greater tendency to form anions

$$\begin{array}{c} CI > F > Br > I \\ F > O^{-2} > N^{-3} \end{array} \right\}$$
Anion formation tendency

LATTICE ENTHALPY :

The Lattice Enthalpy of an ionic solid is defined as the energy required to completely separate one mole of a solid ionic compound into gaseous constituent ions. For example, the lattice enthalpy of NaCl is 788 kJ mol-1. This means that 788 kJ of energy is required to separate one mole of solid NaCl into one mole of Na⁺¹ (g) and one mole of Cl⁻(g) to an infinite distance.

This process involves both the attractive forces between lons of opposite charges and the repulsive forces between ions of like charge. The solid crystal being three- dimensional; it is not possible to calculate lattice enthalpy directly from the interaction of forces of attraction and repulsion only.

Factors associated with the crystal geometry have to be included. $Na^{+}(g) + Cl^{-}(g) \longrightarrow NaCl(s)$ $\Delta H = \Delta H_{lattice} \Rightarrow -ve (always)$ $Mg^{2+}(g) + 2Cl^{-}(g) \longrightarrow MgCl_{2}(s)$

Factors affecting L.E.

(i) Lattice energy (L.E.) $\alpha \frac{1}{r}$

 $r = r_+ + r_-$

= interionic distance

(ii) L.E. α Z₊, Z_

 $Z_{\downarrow} \Rightarrow$ charge on cation in terms electronic charge

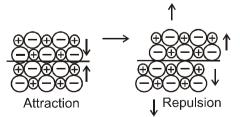
 $Z_{_} \Rightarrow$ charge on anion in terms electronic charge

(iii) Charge density of cation \uparrow L.E. \uparrow

(a) NaCl > KCl	(size)
(b) NaCl < MgO	(size, charge)
(c) NaCl < MgCl ₂	(size, charge)

In size and charge, charge will dominate

 $Na_2O > NaF$ $NaCl < Na_2S$


(d) $Al_2O_3 Na_2O MgO$ $Al_2O_3 > MgO > Na_2O$

Characteristics of ionic compounds :

(i) Physical state

- (a) Electrovalent compounds are generally crystalline, hard & brittle in nature.
- (b) These compounds are generally made from ions which are arranged in a regular way as a lattice structure.
- (c) Thus electrovalent compounds exist as three dimensional solid aggregates.

(d) Normally each ion is surrounded by a number of oppositively charged ions and this number is called co-ordination number

{Same charged ions comes near. So they repell each other}

(ii) Boiling point and melting point :

High boiling point and melting points are due to strong electrostatic force of attraction.

(iii) Electrical conductivity :

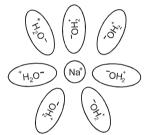
It depends on ionic mobility. In solid state there are no free ions so they are bad conductors of electricity In fused state or aqueous solution free ions are present so they are good conductors of electricity (Conductivity order) Solid state < Fused state < Aqueous solution

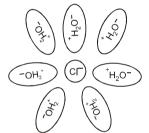
(iv) lonic reactions :

Ionic compounds show ionic reactions & covalent compounds show molecular reactions.
 Ionic reactions are fast reactions.

Example : When NaCl is added to AgNO₃ solution, white ppt of AgCl is formed at once.

$$Ag^{+}NO_{3}^{-}$$
 + $Na^{+}CI \Longrightarrow Na^{+}NO_{3}^{-}$ + $AgCI ↓$

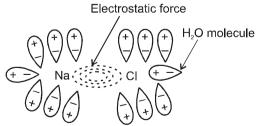

white ppt.


(v) Solubility – lonic compounds are soluble in polar solvent like H_2O , HF etc.

To explain solubility of ionic compound consider an example of NaCl in water.

 H_2O is polar solvent it can represent as $\frac{1}{2}O$

- The Na⁺ ions gets associated with partially negatively charged 'O' of water
- And Cl⁻ ions gets associated with partially positively charged 'H' of water.


Oxygen atom of H_2O gives its electron to Na

H atom of H_2O gain electron from Cl^{Θ}

Thus charge on Na⁺ and Cl⁻ decreases and electrostatic force also decreases which leads to free ion. Here, attraction force between _____ Electrostatic force

- \star H₂O and Na⁺ or CI⁻ (Hydration energy)
- $_{\rm AV}$ > between ions in lattice. (Lattice energy)
- ★ Energy released due to interaction between polar solvent molecule and ions of solute is called solva tion energy. If water used as solvent it is called hydration energy.
- Condition of the solubility of ionic compound in water is (Hydration energy > Lattice energy)

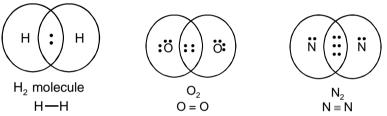
Solvation or Hydration :

Whenever any compound generally ionic or polar covalent is dissolved in an polar solvent or in water then., different ions of the compound will get separated and will get surrounded by polar solvent molecules. This process is known as solvation or hydration. Energy released in this process is known as solvation energy or hydration energy

The ionic compound will be soluble only if solvation energy (H.E.) is more than the lattice energy **Applications of Hydration energy :**

- Size of the hydrated ions: Greater the hydration of the ion greater will be its hydrated radii Li⁺(aq) > Na⁺(aq)
- (b) Mobility of the ion: more is the hydration smaller will be the mobility of the ions $\propto \frac{I}{Hydrated radii}$

 $Li^{+}(aq) < Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq).$


(c) Electrical conductance : is related to mobility so follows the same order

COVALENT BOND :

- ★ A chemical bond formed by sharing of electrons between two elements is called as covalent bond.
 - A—A (Single bond) : When 2 electrons are shared between the two combining elements.

A=A (Double bond): When 4 electrons are shared between the two combining elements.

A=A (*Triple bond*) : When 6 electrons are shared between the two combining elements.

Covalency :

- (i) It is defined as the number of electrons contributed by an atom of the element for sharing with other atom so as to achieve noble gas configuration.
- (ii) It can also be defined as the number of covalent bonds formed by the atom of the element with other atoms.
- (iii) The usual covalency of an element except hydrogen is equal to 8 minus the number of group to which the element belongs.

Lewis structure and covalent bond :

- (i) Structures in which valency electrons are represented by dots are called Lewis structures.
- (ii) All atoms in the formulae will have eight electrons in it's valence shell. H atom is an exception for it can form large number of bonds with the atom present at the center of any crystal structure. Other atoms surround it to complete their octet.
- (iii) Lewis dot formulae shows only the number of valency electrons, the number and kinds of bonds, but does not depict the three dimensional shapes of molecules and polyatomic ions.
- (iv) Lewis formulae are based on the fact that the representative elements achieve a noble gas configuration in most of their compounds i.e. 8 electrons in their outermost shell (except for H_2 ,

Li⁺ and Be²⁺ ions which have only 2 electrons)

Lewis Dot Structures :

The Lewis dot structures can be written for other molecules also, in which the combining atoms may be identical or different.

To write the Lewis dot structure following steps are to be followed :

- (i) The total number of electrons are obtained by adding the valence electrons of combining atoms.
- (ii) For Anions, we need to add one electron for each negative chanrge.
- (iii) For cations, we need to subtract one electron for each positive charge.
- (iv) After then the central atom is decided.

To decide, Central atom, following steps are followed :

- (i) In general the **least electronegative atom** occupies the central position in the molecule/ion. For example in the NF_3 and CO_3^{2-} , nitrogen and carbon are the central atoms whereas fluorine and oxygen occupy the terminal positions.
- (ii) Generally the atom which is/are less in number acts as central atom.
- (iii) Generally central atom is the atom which can form maximum number of bonds(which is generally equal to the number of electrons present in the valence shell of the atom).
- (iv) Atom of highest atomic number or largest atom generally acts as central atom.

Hence fluorine and hydrogen can never act as central atoms.

After accounting for the shared pairs of electrons for single bonds, the remaining electron pairs are either utilized for multiple bonding or remain as the lone pairs. The basic requirement being that each bonded atom gets an octet of electrons.

Lewis representations of a few molecules/ions are given in the following Table

	_			Table-1				
Molecule/ion	H₂	O ₂	O ₃	NF_3	CO ₃ ²⁻	HNO₃	CH₄	НСНО
Lewis Representation	H-H	:Ö=Ö:	:0 ⁰ <u>ö</u> :	::::::::::::::::::::::::::::::::::::::	: <u>O</u> : : <u>Ö</u> -C-Ö:		H HCH H	О Н–С–Н

Each H-atom attains the configuration of helium (a duplet of electrons)

Characteristics of covalent compounds :

(i) Physical state :

- (a) Under normal temperature and pressure, they exist as gases or liquids of low boiling points.
- (b) This is due to the fact that very weak forces of attraction (Vander waal's forces) exist between the molecules due to which molecules are far from each other.
- (c) If their molecular masses are high they exist as soft solids ex. Sulphur, phosphorus and iodine

(ii) Crystal structures :

Various types of structures that are present in a covalent compound are as follows.

(a) **Covalent solid** – In this type of structure every atom is bonded to four other atoms by single covalent bonds resulting in the formation of a giant structure e.g. SiC, AIN and diamond these crystals are very hard and possess high melting point.

Diamond is sp³ hybridized carbon atom and it forms a tetrahedral structure.

Graphite is sp^2 hybridized carbon atomsand it forms hexagonal layers which can slide over each other due to weak Vander waal's forces of attraction.Distance between C–C atom is 1.42 Å distance between layers is 3.6 Å. **Graphite is more stable than diamond due to high value of change in enthalpy.**

(b) Molecular solids : They are formed when one atom combines with another by a covalent bond and then the molecule combines with another similar molecule with the help of Vander waal's force of attraction or hydrogen bond

Example : CH₄(Solid), dry ice, ice

(iii) Melting and boiling points :

(a) With the exception of a few which have giant three dimensional structures such as diamond, carborundum (SiC), Silica (SiO₂), Boron steel (B_4C), others have relatively low melting and

boiling points.

(b) This is due to the presence of weak attractive forces between the molecules.

(iv) Electrical conductivity :

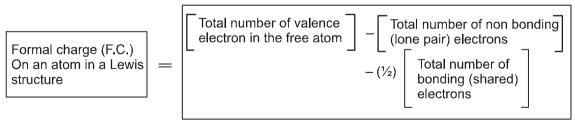
- (a) In general covalent substances are bad conductors of electricity. Since they do not contain charged particles or free electrons.
- (b) Substances which have polar character like HCl in a solution, can conduct electricity.
- (c) Graphite can conduct electricity since electrons can pass from one layer to other.
- (d) Some show conductivity due to self ionisation. example Liq NH₃

$$NH_3 + NH_3 \longrightarrow NH_4^+ + NH_2^- \text{ (Amide ion)}$$
$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$

(v) Chemical reactions :

Covalent substances give molecular reactions. Reaction rate is usually low because it involves two steps (i) breaking of covalent bonds of the reactants (ii) establishing new bonds. While in ionic reactions there is only regrouping of ions.

(vi) Solubility :


- (a) Non polar compounds are soluble in non polar solvents. Non polar solvents are CCl₄, Benzene, CS₂ etc.
- (b) Polar compounds are soluble in polar solvents (i.e. $\Delta EN 0.9$ to 1.8). Polar solvents are H₂O, CHCl₃, Alcohol etc.

(vii) Isomerism :

Covalent bonds are rigid and directional. On account of this there is a possibility of different arrangement of atoms in space. Covalent compounds can thus shows isomerism (structural and spatial)

Formal Charge :

The formal charge of an atom in a molecule or ion is defined as the difference between the number of valence electrons of that atom in an isolated or free state and the number of electrons assigned to that atom in the lewis structure.

Let us consider the ozone molecule (O_3). The Lewis structure of O_3 , may be drawn as :

The atoms have been numbered as 1. 2 and 3. The formal charge on :

The central O atom marked $1 = 6 - 2 - \frac{1}{2}$ (6) = + 1

The terminal O atom marked $2 = 6 - 4 - \frac{1}{2}$ (4) = 0

The terminal O atom marked $3 = 6 - 6 - \frac{1}{2}$ (2) = -1

Hence, we represent O_3 along with the formal charges as follows :

It should be kept in mind that formal charges do not indicate real charge separation within the molecule. Indicating the charges on the atoms in the Lewis structure only helps in keeping track of the valence electrons in the molecule. Formal charges help in the selection of the lowest energy structure from a number of possible Lewis structures for a given species. Generally the lowest energy structure is the one with the smallest formal charges on the atoms.

Note : The formal charge Is a factor based on a pure covalent view of bonding in which electron pairs are shared equally by neighbouring atoms.

Limitations of the Octet Rule :

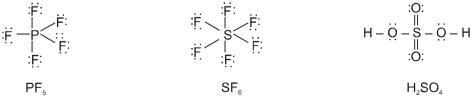
The octet rule, though useful, is not universal. It is quite useful for understanding .the structures of most of the organic compounds and it applies mainly to the second period elements of the periodic table. There are three types of exceptions to the octet rule.

1. The incomplete octet of the central atom

In some compounds, the number of electrons surrounding the central atom Is less than eight. This is especially the case with elements having less than four valence electrons. Examples are LiCl, BeH_2 and BCI_3 . BeF_2 , BF_3 , $AICI_3$

2. Odd-electron molecules

In molecules with an odd number of electrons like nitric oxide, NO and nitrogen dioxide. NO₂, the octet rule is not satisfied for all the atoms.


e.g. NO, CIO₂, CIO₃

 $\dot{N} = \dot{O}$ $\dot{O} = \dot{N} - \dot{O}$

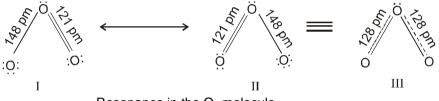
3. The expanded octet, Super octet or Hypervalent molecules

Elements in and beyond the third period of the periodic table have, apart from 3s and 3p orbitals, 3d orbitals also available for bonding. In a number of compounds of these elements there are more than eight valence electrons around the central atom. This is termed as the expanded octet. Obviously the octet rule does not apply in such cases.

Some of the examples of such compounds are: PF_5 , SF_6 , PCI_5 , HNO_3 , SO_3 , SO_2 , H_2SO_4 and a number of coordination compounds.

10 electrons around the P atom 12 electrons around the S atom 12 electrons around the S atom

• Interestingly, sulphur also forms many compounds in which the octet rule is obeyed. In sulphur dichloride, the S atom has an octet of electrons around it.


$$|C| - S - C|$$
: Or $|C| |S| |C|$

4. Other drawbacks of the octet theory

- It is clear that octet rule is based upon the chemical inertness of noble gases. However, some noble gases (for example xenon and krypton) also combine with oxygen and fluorine to form a number of compounds like XeF₂, KrF₂, XeOF₂ etc.,
- (ii) This theory does not account for the shape of molecules.
- (iii) It does not explain the relative stability of the molecules being totally silent about the energy of a molecule

Resonance :

It is often observed that a single Lewis structure is inadequate for the representation of a molecule in conformity with its experimentally determined parameters. For example, the ozone, O_3 molecule can be equally represented by the structures I and II shown below :

Resonance in the O_{3} molecule

Structures I and II represent the two canonical forms.

The structure III is the resonance hybrid

In both structures we have a O - O single bond and a O = O double bond. The normal O - O and O = O bond lengths are 148 pm and 121 pm respectively.

Experimentally determined oxygen-oxygen bond lengths in the O_3 molecule are same (128 pm). Thus the oxygen-oxygen bonds in the O_3 molecule are intermediate between a double and a single bond.

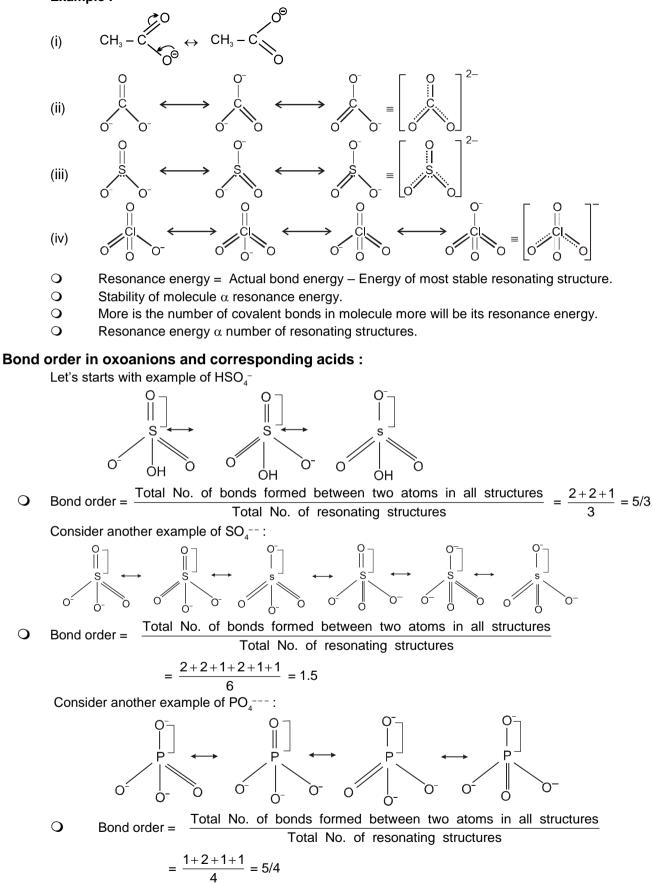
Obviously, this cannot be represented by either of the two Lewis structures shown above.

According to the concept of resonance, whenever a single Lewis structure cannot describe a molecule accurately, a number of structures with similar energy, positions of nuclei, bonding and non-bonding pairs of electrons are taken as the canonical structures of the hybrid which describes the molecule accurately.

Thus for O_3 the two structures shown above constitute the canonical structures or resonance structures and their hybrid i.e., the III structure represents the structure of O_3 , more accurately. This is also called resonance hybrid. Resonance is represented by a double headed arrow.

Definition : Resonance may be defined as the phenomenon in which two or more structures involving in identical position of atom, can be written for a particular compound

Resonance Hybrid : It is the actual structure of all different possible structures that can be written for the molecule without violating the rules of covalence maxima for the atoms.


 $\leftrightarrow \parallel$

Resonance hybrid

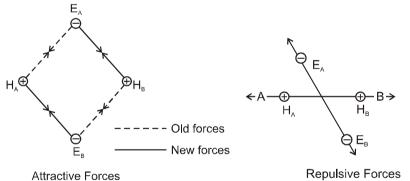
0

Ο

MODERN CONCEPT OF COVALENT BOND (VBT) :

As we know that Lewis approach helps in writing the structure of molecules but it fails to explain the formation of chemical bond. It also does not give any reason for the difference in bond dissociation enthalpies and bond lengths in molecules like H_2 (435.8 kJ mol⁻, 74 pm) and F_2 (150.6 kJ mol⁻, 42 pm); although in both the cases a single covalent bond is formed by the sharing of an electron pair between the respective atoms. It also gives no idea about the shapes of polyatomic molecules. Similarly the VSEPR theory gives the geometry of simple molecules but theoretically, it does not explain them and also it has limited applications. To overcome these limitations the two Important theories based on quantum mechanical principles are introduced. These are valence bond (VB) theory and molecular orbital (MO) theory.

Valence bond theory was introduced by Heitler and London (1927) and developed further by Pauling and others. A discussion of the valence bond theory is based on the knowledge of atomic orbitals, electronic configurations of elements, the overlap criteria of atomic orbitals, the hybridization of atomic orbitals and the principles of variation and superposition. Consider two hydrogen atoms A and B approaching each other having nuclei N_A and N_B and electrons present in them are represented by e_A and e_B . When the two atoms are at large distance from each other, there is no interaction between them. As these two atoms approach each other, new attractive and repulsive forces begin to operate.


Attractive forces arise between :

- (i) nucleus of one atom and its own electron that is $N_{A} e_{A}$ and $N_{B} e_{B}$.
- (ii) nucleus of one atom and electron of other atom i.e., $N_A e_B$. $N_B e_A$.

Similarly repulsive forces arise between :

(i) electrons of two atoms like $e_A - e_B$, (ii) nuclei of two atoms $N_A - N_B$.

Attractive forces tend to bring the two atoms close to each other whereas repulsive forces tend to push them apart (Fig.).

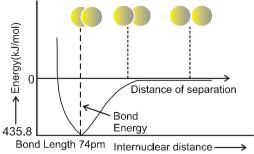
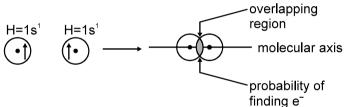


Fig- Forces of attraction and repulsion during the formation of H₂ molecule.

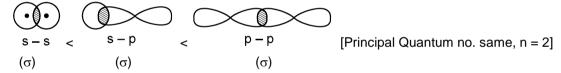
Experimentally it has been found that the magnitude of new attractive force is more than the new repulsive forces. As a result, two atoms approach each other and potential energy decreases. Ultimately a stage is reached where the net force of attraction balances the force of repulsion and system acquires minimum energy. At this stage two hydrogen atoms are said to be bonded together to form a stable molecule having the bond length of 74 pm.

Since the energy gets released when the bond is formed between two hydrogen atoms, the hydrogen molecule is more stable than that of isolated hydrogen atoms. The energy so released is called as bond enthalpy, which is corresponding to minimum in the curve depicted in Fig. Conversely. 435.8 kJ of energy is required to dissociate one mole of H₂ molecule.

 $H_2(g)$ + 435.8 kJ mol $- \rightarrow H(g)$ + H(g)


Fig. The potential energy curve for the formation of H_2 molecule as a function of internuclear distance of the H atoms. The minimum in the curve corresponds to the most stable state of H_2 .

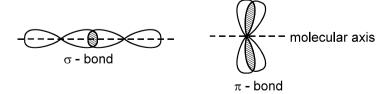
Orbital Overlap Concept


In the formation of hydrogen molecule, there is a minimum energy state when two hydrogen atoms are so near that their atomic orbitals undergo partial interpenetration. This partial merging of atomic orbitals is called overlapping of atomic orbitals which results in the pairing of electrons. The extent of overlap decides the strength of a covalent bond. In general, greater the overlap the stronger is the bond formed between two atoms. Therefore, according to orbital overlap concept, the formation of a covalent bond between two atoms results by pairing of electrons present In the valence shell having opposite spins.

Main points of valency bond theory :

(i) A covalent bond is formed by partial overlapping of two atomic orbitals

(ii) More is the extent of overlapping between the two atomic orbital, stronger will be bond.

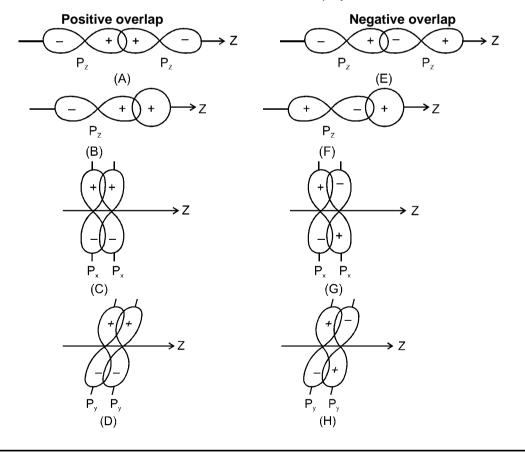

: s orbital are spherical in nature so they are least diffused hence it will provide less area for overlapping.

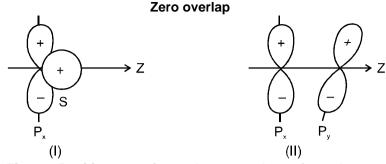
(iii) Orbitals which are undergoing overlapping must be such that

(a) Each orbital should have one electron with opposite spin (for formation of covalent bond)

(b) One orbital have pair of electron and the other orbital have no electron (for formation of co-ordinate bond)

(iv) If the overlapping is along the molecular axis then bond will be sigma (σ) & in the perpendicular direction, it will be $pi(\pi)$ bond.

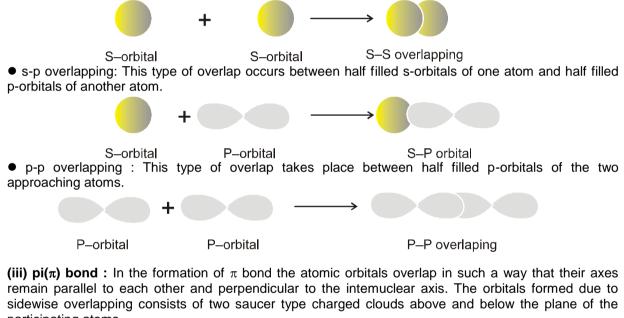

Examples of overlapping of pure atomic orbitals.

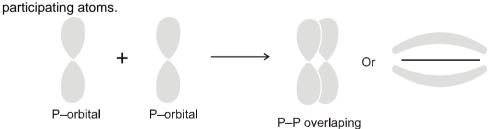


Overlapping of Atomic Orbitals

When two atoms come close to each other there is overlapping of atomic orbitals. This overlap may be positive, negative or zero depending upon the properties of overlapping of atomic orbitals. The various arrangements of s and p orbitals resulting in positive, negative and zero overlap are depicted in the following figure.

The criterion of overlap, as the main factor for the formation of covalent bonds applies uniformly to the homonuclear/heteronuclear diatomic molecules and polyatomic molecules.




Figure : Positive, negative and zero overlaps of s and p atomic orbitals Types of Overlapping and Nature of Covalent Bonds :

The covalent bond may be classified into two types depending upon the types of overlapping : (i) Sigma (σ) bond, and (ii) pi (π) bond

(i) Slgma (σ) bond : This type of covalent bond is formed by the end to end (hand-on) overlap of bonding orbitals along the intemuclear axis. This is called as head on overlap or axial overlap. This can be formed by any one of the following types of combinations of atomic orbitals.

• s-s overlapping : In this case, there is overlap of two half filled s-orbitals along the intemuclear axis as shown below :

Strength of Sigma and pi Bonds :

Basically the strength of a bond depends upon the extent of overlapping- In case of sigma bond, the overlaping of orbitals takes place to a larger extent. Hence, it is stronger as compared to the pi bond where the extent of overlapping occurs to a smaller extent. Further, it is important to note that pi bond . between two atoms is formed in addition to a sigma bond. It is always present in the molecules containing multiple bond (double or triple bonds)

Diffenence in σ and π bonds :

Sigma (o) bond

1. It results from the end to end overlapping	
of two s orbitals or two p-orbitals or	
one s and one p–orbital.	

- 2. Its bonded orbital consists of a single electron cloud symmetrical about internuclear Axis
- 3. Strong

4. Bond energy 80 Kcals

- 5. More stable
- 6. Less reactive
- 7. Can independently axis
- 8. Hybridization depends upon σ bond
- The groups or atoms can undergo bond rotation about single sigma (σ) bonds
- 10. The σ electrons are referred as localised

Pi (π) bond

It result from the sidewise (lateral) overlapping of two p orbitals.

Its bonded orbital consists of two electron clouds one above and the other below the plane of symimetry

- Weak
 - 65 Kcals

Less Stable

More reactive

Always exists alongwith a σ bond

doesn't depend on σ bond

Due to resistance to rotation around the π bond the groups attached to it are not free to rotate.

in π bond the electrons are held less firmly bond thus can be easily dissociated or polarised by an external charge and hence the π e⁻ are referred as mobile electrons.

11. Shape of the molecule is determined π bonding does not affect the shapeby the σ bonds present in the moleculeof the molecule

Valence shell electron pair repulsion (VSEPR) theory :

Lewis concept is unable to explain the shapes of molecules. This theory provides a simple procedure to predict the shapes of covalent molecules. Sidgwick and Powell in 1940, proposed a simple theory based on the repulsive interactions of the electron pairs in the valence shell of the atoms. It was further developed and redefined by Nyholm and Gillespie (1957).

The main postulates of VSEPR theory are as follows:

- (i) The shape of a molecule depends upon the number of valence shell electron pairs [bonded or nonbonded) around the central atom.
- (ii) Pairs of electrons in the valence shell repel one another since their electron clouds are negatively charged.
- (iii) These pairs of electrons tend to occupy such positions in space that minimise repulsion and thus maximise distance between them.
- (iv) The valence shell is taken as a sphere with the electron pairs localising on the spherical surface at maximum distance from one another.
- (v) A multiple bond is treated as if it is a single electron pair and the two or three electron pairs of a multiple bond are treated as a single super pair.
- (vi) Where two or more resonance structures can represent a molecule, the VSEPR model is applicable to any such structure.

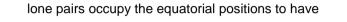
The repulsive interaction of electron pairs decreases in the order :

lone pair (ℓp) - lone pair (ℓp) > lone pair (ℓp) - bond pair (bp) > bond pair (bp) -bond pair (bp)

Shape (molecular geometry) of Some Simple Molecules / ions with central atom / ion having no Lone Pairs of Electrons (E).

Number of electron pairs	Arrangement of electron pairs	Molecular geometry	Example
2	: A Linear	B – A – B Linear	BeCl ₂ ,HgCl ₂
3	Trigonal planar	B B Trigonal planar	BF₃
4	109.5°	B B B Tetrahedral	$\operatorname{CH}_4,\operatorname{NH}_4^+$
5	120°	B 120° B B	PCl₅
6	Trigonal bipyramidal 90° Octahedral	Trigonal bipyramidal	SF₅

Shape (molecular geometry) of Some Simple Molecules/Ions with central atom / ions having One or More Lone Pairs of Electrons (E).


Molecule type	No.of bonding pairs	No.of lone pairs	Arrangement of electron pairs	Shape	Examples
AB ₂ E	2	1	В В В	Bent	SO ₂ ,O ₃
AB₃E	3	1	В В В В В	Trigonal pyramidal	NH_3
AB ₂ E ₂	2	2	A B B	Bent	H₂O
AB₄E	4	1	B B B B B B B B B B B B B B B B B B B	See saw	SF_4
AB ₃ E ₂	3	2	B-A B	T–shape	CIF ₃
AB ₂ E ₃	2	3	B -A B	Linear	l₃¯,ICl₂¯,XeF₂
AB₅E	5	1		Square pyramidal	BrF₅
AB_4E_2	4	2		Square planar	XeF₄

Molecule type	No.of bonding pairs	No.of lone pairs		Shape	Reason for the shape acquired
AB₂E	4	1	::::::::::::::::::::::::::::::::::::::	Bent	It is found to be bent or v-shaped. The reason being the lone pair- bond pair repulsion is much more as compared to the bond pair-bond pair repulsion. So the angle is reduced to 119.5° from 120° .
AB₃E	3	1		Trigonal pyramidal	It is found to be trigonal pyramidal due to the repulsion between lp-bp (which is more than bp–bp repulsion) the angle between bond pairs is reduced to 107 ^o to 109.5 ^o .
AB_2E_2	2	2	H 104.5° H H H H H H	(The shape is distored tetrahedral or angular. The reason is lp-lp repulsion is more than lp-bp repulsion. Thus , the angle is reduced to 104.5° from 109.5°.
AB₄E	4	1 (i	i) F S F F F F	saw so In th aı sł	(i) the lp is present at axial position o there are three lp-bp repulsion at 90° . (ii) the lp is an equatorial position, and here are two lp-bp repulsions. Hence, rrangement(ii) is more stable. The shape hown in (ii) is called as a distorted etrahedron, a folded square or a see-saw.
		(1	ii)	(More stable)	
AB_3E_2	3	2	(i) F F	T–shap	e In (i) the lone pairs are at equatorial position (120°) so there are less lp–bp repulsions as compared to others in which the lp are at axial positions.So structure (i) is most stable. (T – shaped).
		(ii) (ii) (ii)	CI ====F (iii) F	CI CI F	
AB_2E_3	2	3		Linea	I_3^-, ICl_2^-, XeF_2

Shapes of Molecules containing Bond Pair and Lone Pair

• The VSEPR Theory is able to predict geometry of a large number of molecules, especially the compounds of p-block elements accurately. It is also quite successful in determining the geometry quite-accurately even when the energy difference between possible structures is very small.

- **Ex.2** Use the VSEPR model to predict the geometry of the following : (a) XeF_2 (b) CIO_3^-
- Sol. Species Structure

minimum repulsion. Thus it is linear.

To minimize the repulsion between lone pair and double bond,

species acquires trigonal pyramidal.

Hybridisation :

(a)

(b)

- Hypothetical concept Introduced by pauling and slater.
- Atomic orbitals combine to form new set of equivalent orbitals know as hybrid orbitals.
- This phenomenon is known hybridization.

– Process of Intermixing of the atomic orbitals of equal or slightly different energies in the formation of new set of orbitals of equivalent energies and shape is known as hybridization.

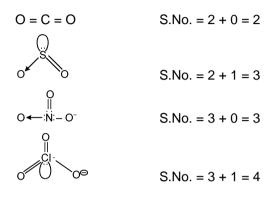
Salient features of hybridisation : The main features of hybridisation are as under :

- **1.** The number of hybrid orbitals is equal to the number of the atomic orbitals that get hybridised.
- 2. The hybridised orbitals are always equivalent in energy and shape.
- 3. The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals.
- **4.** These hybrid orbitals are directed in space in some preferred direction to have minimum repulsion between electron pairs and thus a stable arrangement is obtained. Therefore, the type of hybridisation indicates the geometry of the molecules.

Important conditions for hybridisation :

- (i) The orbitals present in the valence shell of the atom are hybridised.
- (ii) The orbitals undergoing hybridisation should have almost equal energy.
- (iii) Promotion of electron is not essential condition prior to hybridisation.

(iv) It is the orbital that undergo hybridization and not the electrons. For example, for orbitals of nitrogen atom $(2s^2 \ 2p_x^1 \ 2p_y^1 \ 2p_z^1)$ belonging to valency shell when hybridize to form four hybrid orbitals, one of which has two electrons (as before) and other three have one electron each. It is not necessary that only half filled orbitals participate in hybridisation. In some cases, even filled orbitals of valence shell take part in hybridisation.


Determination of hybridisation of an atom in a molecule or ion:

Steric number rule (given by Gillespie) :

Steric No. of an atom = number of atom bonded with that atom + number of lone pair(s) left on that atom.

Note : This rule is not applicable to molecules/ions which have odd e^- (CIO₂, NO, NO₂), free radicals and compounds like B_2H_6 which involve 3 centre 2e⁻ bond (banana bond).

For example :

Table-4					
Steric number	Types of Hybridisation	Geometry	Involving orbitals		
2	sp	Linear	ns, np _x / p _z / p _y		
3	sp ²	Trigonal planar	ns, $np_{x_1}p_z / p_y, p_z / p_{x_1}p_y$		
4	sp ³	Tetrahedral	ns, np _x , p _z , p _y		
5	sp ³ d	Trigonal bipyramidal	ns, np _x , p _z , p _y d _{z²}		
6	sp ³ d ²	Octahedral	ns, np _x , p _z , p _y $d_{z^2} d_{x^2-y^2}$		
7	sp ³ d ³	Pentagonal bipyramidal	ns, np _x , p _z , p _y $d_{z^2} d_{x^2-y^2} d_{xy}$		

sp hybridisation :

O This type of hybridisation involves the mixing of one s and one p orbital resulting in the formation of two equivalent sp hybrid orbitals.

O Each sp hybrid orbitals has 50% s-character and 50% p-character. Such a molecule in which the central atom is sp-hybridised and linked directly to two other central atoms possesses linear geometry. This type of hybridisation is also known as diagonal hybridisation.

O The two sp hybrids point in the opposite direction along the Z-axis with projecting bigger positive lobes and very small negative lobes, which provides more effective overlapping resulting in the formation of stronger bonds.

Example of a molecule having sp hybridisation

BeCl₂: The ground state electronic configuration of Be is $1s^2 2s^2$. In the excited state one of the 2selectrons is promoted to vacant 2p orbital to account for its divalency. One 2s and one 2p-orbitals get hybridised to form two sp hybridised orbitals. These two sp hybrid orbitals are oriented in opposite direction forming an angle of 180°. Each of the sp hybridised orbital overlaps with the 2p-orbital of chlorine axially and form two Be-Cl sigma bonds.

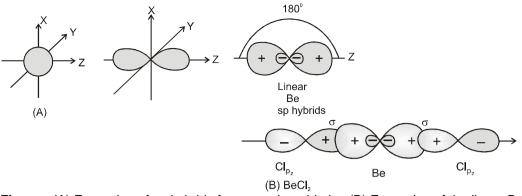
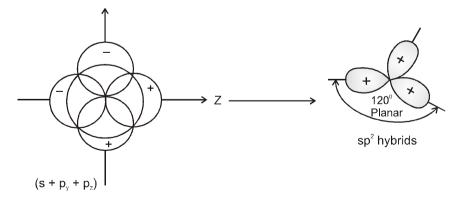


Figure : (A) Formation of sp hybrids from s and p orbitals ; (B) Formation of the linear BeCl₂ molecule.

Examples of sp hybridisation.

Species	Important characteristic
$H - C \equiv N$ $H - C \equiv C - H$ O = C = O $H_2C = C = CH_2$	Linear, highly posionous, weak acid Linear, π bond planes are perpendicular Linear, both π bond are perpendicular to each other Non planar both hydrogen are perpendicular to each other
$N_{3^{-}}^{2}$ (azide ion)	Iso electronic with CO_2 and linear in shape. Both N–N bonds are similar
$\bar{N} = \stackrel{+}{N} = \bar{N}$ HgCl ₂ NO ₂ ⁺ (nitronium ion), N ₂ O Azide ion	$H_{N} = N = \bar{N}$ 1.24Å 1.13 Å


sp² hybridisation :

(i) Mixing of one s and two p orbitals to form 3 equivalent sp² hybridized orbitals.

For example, in BCI_3 molecule, the ground state electronic configuration of central boron atom is $1s^2 2s^2 2p^1$. In the excited state, one of the 2s electrons is promoted to vacant 2p orbital as a result boron has three unpaired electrons.

These three orbitals (one 2s and two 2p) hybridise to form three sp² hybrid orbitals. The three hybrid orbitals so formed are oriented In a trigonal planar arrangement and overlap with 2p orbitals of chlorine to form three B–Cl bonds.

Therefore, in BCl₃, the geometry is trigonal planar with CI-B-CI bond angle of 120°.

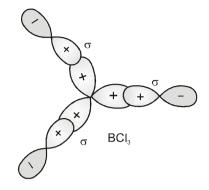
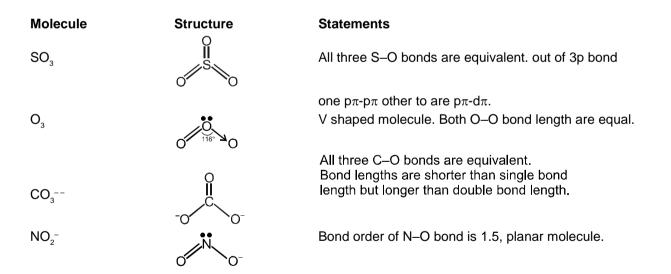
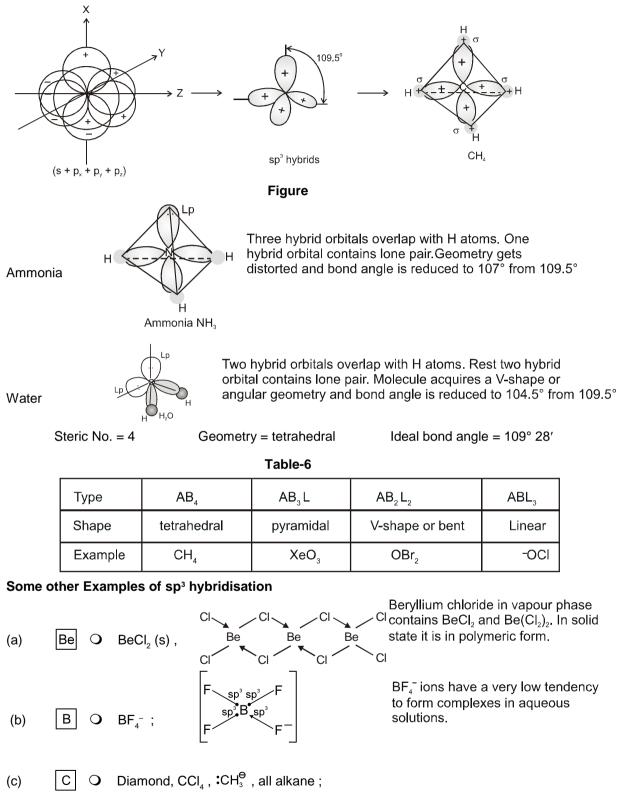
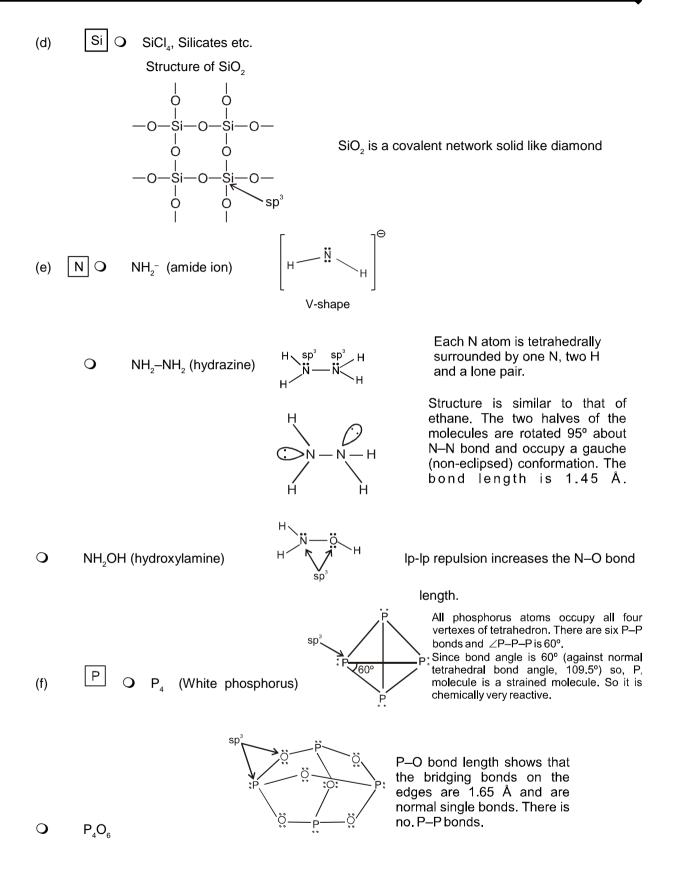



Figure : Formation of sp² hybrids and the BCl₃ molecule

Steric No. = 3	3 Geometry = Trigona Table-5	l planar lo	deal bond angle = 120°
Туре	AB3	AB ₂ L	
Shape	Trigonal	V-shape (bent)	
Example	C_6H_6 , CO_3^{2-} , HCO_3^{-} H_2CO_3 , graphite, BF_3 $B(OH)_3$, SO_3 , NO_3^{-} C_{60} (Fullerene)	NOCI, O ₃ , NO₂ NO₂ [−]	

Where A = central atom, B = side atom, $L = lone pair of e^{-1}$


sp³ hybridisation :


O mixing of one s and three p orbitals to form 4 equivalent sp³ hybridized orbitals.

O 4 sp³ orbitals are directed towards four corner of tetrahedron.

 \bigcirc This type of hybridisation can be explained by taking the example of CH₄ molecule in which there is mixing of one s-orbital and three p-orbitals of the valence shell to form four sp³ hybrid orbital of equivalent energies and shape.

- **O** There is 25% s-character and 75% p-character in each sp³ hybrid orbital. The four sp³ hybrid orbitals so formed are directed towards the four corners of the tetrahedron.
- O The angle between sp³ hybrid orbital is 109.5° as shown in figure.

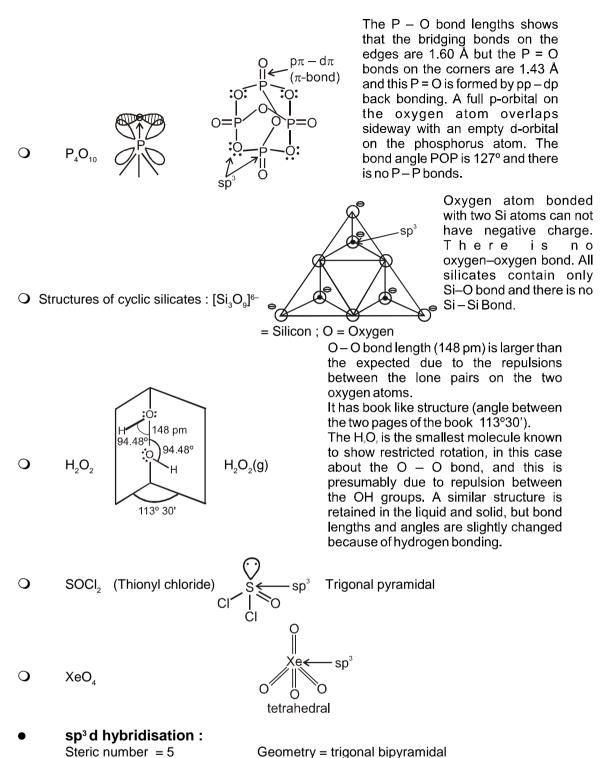
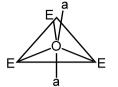
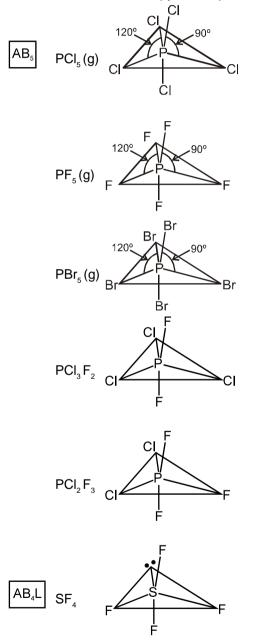



Table-7


Туре	AB ₅	AB ₄ L	AB_3L_2	AB_2L_3			
Shape Trigonal bipyramidal		See-saw	T-shape	Linear			
Example	PCI_{5}, PBr_{5}, PF_{5} etc.	SF_{4} , $XeO_{2}F_{2}$	CIF ₃ , [XeF ₃]⁺	$XeF_{_2}$, $\mathrm{I_3^-}$, $[\mathrm{ICl}_2]^-$			

Important points regarding sp³d -

(i) According to VSEPR theory lone pair will occupy equatorial positions but not axial.

- (ii) More electronegative atoms will prefer to occupy axial positions.
- (iii) Since, double bonds occupy more space. Therefore, they will also prefer equatorial positions.

It is covalent in the gas but in solid state exists as ionic solid consisting of $[PCl_4]^+$ (tetrahedral) and $[PCl_6]^-$ (octahedral). All P–Cl bonds are not of equal lengths. Here axial bonds are longer and weaker than equatorial bonds.

 $PF_{s}(g)$ is trigonal bipyramidal and the electron diffraction shows that some bond angles are 90° and others are 120°, and the axial P–F bond lengths are 1.58 Å while the equatorial P–F lengths are 1.53 Å. But NMR studies suggest that all five atoms are equivalent because of pseudo rotation. PF, remains covalent and is trigonal bipyramidal in the solid state.

 PBr_5 exist as $(PBr_4)^+Br^-$ in solid state.

 $PCI_{3}F_{2}$ is non polar molecule as all three Cl atoms are at equatorial position and both F atoms in axial position.

 $PCI_2 F_3$ is polar molecule as both Cl atoms and one F atom are at equatorial position and both F atoms in axial position.

SF₄ molecule have See-saw shape/structure.

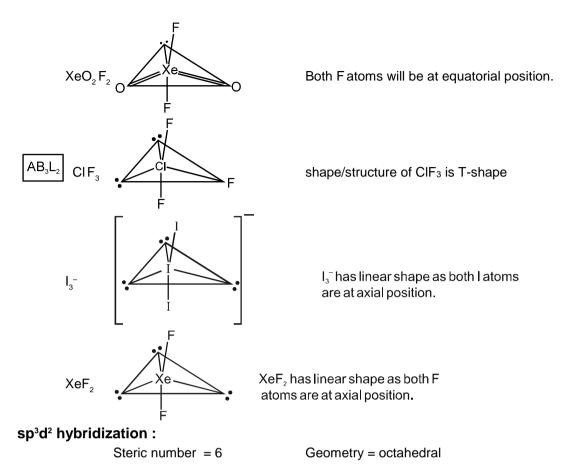
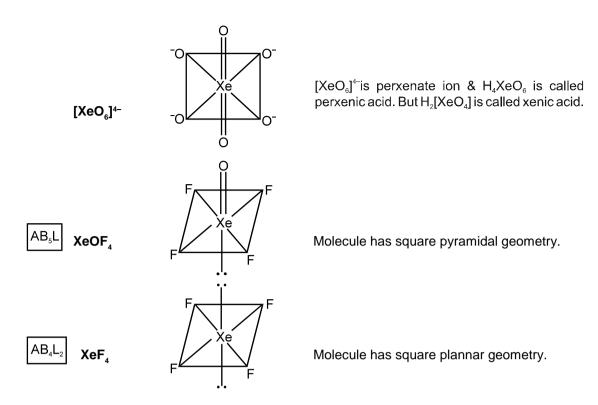


Table-8

Туре	AB ₆	AB ₅ L	AB_4L_2
Shape	Octahedral	Square Pyramidal	Square Planar
Example	SF ₆ , PF ₆ -, [SiF ₆]²-, [AlF ₆]³- , [XeO ₆]⁴-	BrF_5 , IF_5 XeOF ₄	ICl₄ [−] XeF₄

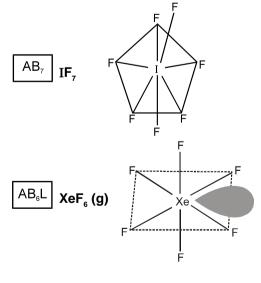
Important : Since, octahedral is a symmetrical figure hence


- (a) positions of a lone pair can be any where
- (b) but if there are two lone pairs (max.) then these must be in the trans position.

SF

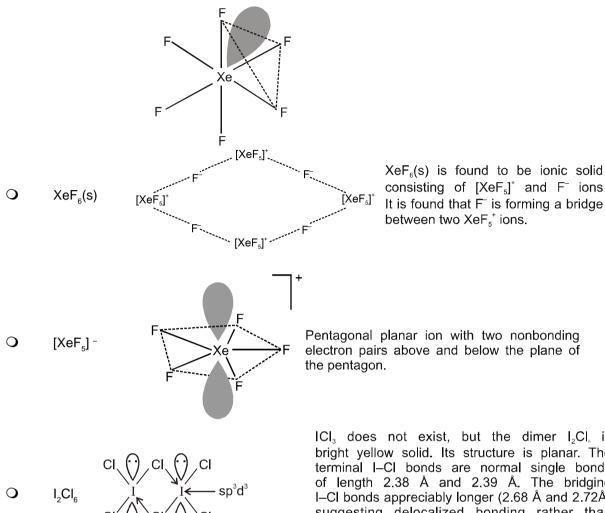
Bond angle = 90°

Due to over-crowding and maximum valency of S, SF_6 is much less active (almost inert) than SF_4 .


sp³ d³ Hybridization :

Steric number = 7

Geometry = Pentagonal bi-pyramidal


Table-9

Туре	AB ₇	AB ₆ L	AB ₅ L ₂
Shape	Pentagonal bi-pyramidal	Distorted octahedral	Pentagonal planar
Example	IF ₇	XeF ₆	XeF_5°

Bond angle = 72° & 90°

Distorted octahedron with a nonbonding electron pair either at the centre of a face or the midpoint of an edge.

 ICI_3 does not exist, but the dimer I_2CI_3 is bright yellow solid. Its structure is planar. The terminal I-CI bonds are normal single bonds of length 2.38 Å and 2.39 Å. The bridging I-CI bonds appreciably longer (2.68 Å and 2.72Å) suggesting delocalized bonding rather than simple halogen bridges formed by coordinate bonds from Cl₂ to I.

Note : The liquid has an appreciable electrical conductance due to self ionization.

 $I_2CI_6 \Longrightarrow [ICI_2]^+$ (bent) + $[ICI_4]^-$ (square planar)

BOND LENGTH AND BOND ANGLE COMPARISION **Bond Length**

- (i) Size of atom (see along the group) \propto bond length HF < HCl < HBr < HI F - F < CI - CI < Br - Br < I - I $CH_4 < SiH_4 < GeH_4 < SnH_4$
- (ii) Multiplicity of bond (nearly same period element) single bond > double bond > triple bond C--C > C = C > C = CF - F > O = O > N = N
- (iii) Electronegativity difference (See along the period) H-C > H-N > H-O > H-F

HOW TO COMPARE BOND ANGLES

Bond angle depends on the following factor

- I. Hybridisaition
- II. No. of lone pair
- III. Size or electronegativity of central atom
- IV. Size or electronegativity of terminal atom
- 1. Hybridisaition :

sp > $sp^2 > sp^3$ > sp³d² 109°28' 90° 180° 120°

2. Number of lone pair : If hybridisation of the central atom is same but number of lone pair is different then more is the number of lone pair less is the bond angle.

e.g.	CH_4	NH_3	H_2O
hybridisaition	sp³	sp ³	sp³
lone pair	ℓ.P. = 0	ℓ.P. = 1	ℓ.P. = 2
B.A.	109°28'	107°	104.5°

3. Size or electronegativity of central atom : When hybridisation is same and no. of lone pair is same but central atom is different then see the electronegativity of central atom. More is the electronegativity more is the bond angle.

NH ₃	PH ₃	AsH ₃	SbH_3
sp ³	no	no	no
ℓ.P. = 1	ℓ.P. = 1	ℓ.P. = 1	ℓ.P. = 1
107°	93°	92°	91°
	sp³ ℓ.P. = 1	sp ³ no <i>l</i> .P. = 1 <i>l</i> .P. = 1	sp ³ no no l.P. = 1 l.P. = 1 l.P. = 1

4. Size or electronegativity of terminal atom :

Hybridisation same, lone pair same, central atom same but terminal atom is different then greater is the size of the terminal atom greater will be the bond angle. Only in case of flourine the electronegativity factor is considered, due to greater electronegativity of the flourine atom the bond angle for it comes out to be smallest(due to smaller bond bond pair repulsions)

e.g.	$PF_{\mathfrak{z}}$	PCl ₃	PBr₃	PI_3
hybridisaition	sp³	sp³	sp³	sp³
lone pair	ℓ.P. = 1	ℓ.P. = 1	ℓ.P. = 1	ℓ.P. = 1
B.A.	98°	100°	101°	102°

Reasion : As the E.N. of x 1, b.p.-b.p. repulsion will less but l.p. compression will work as usual

Drago rule :

Element of 3rd period (p-Block) and lower than 3rd period does not allow hybridisation in molecule when they form compound with less electronegative elements such as hydrogen eg : PH₃, SiH₄, AsH₃, H₂S not have hybridisation

Bent rule :

According to Bent's rule, more electronegative atoms prefer hybrid orbitals having less S character and more electropositive atoms prefer hybrid orbitals having more S character.

eg : In CH₂F₂, F–C–F bond angle less than 109.5° indicating less than 25% S character.

H–C–H bond angle more than 109.5° indicating more than 25% S character.

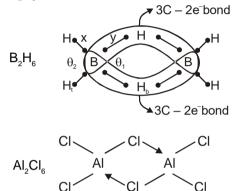
Solved Examples

Which is linear $PH_{4^{+}}$, $H_{3}S^{+}$ or $NO_{2^{+}}$? Ex.3

(A) Phosphonium ion (PH_4^+) (B) Sulphonium (H₃S⁺)

(C) Nitronium ion (NO_2^+) .

(D) None of these Phosphonium ion (PH_{4}^{+}) is tetrahedral, sulphonium ($H_{3}S^{+}$) is pyramidal, but nitronium ion (NO_{2}^{+}) is linear Sol.

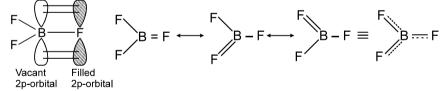

 $: O = \tilde{N} = O$ (sp hybridisation). Ans. (C)

- **Ex.4** The triodide ion (I_3^-) in which the I atoms are arranged in a straight line is stable, but the corresponding F_3^- ion does not exist.
- **Sol.** F_3^- and I_3^- are of same group. Iodine can expand its octet but F cannot and thus, in I_3^- octet rule is not violated, but in F_3^- octet rule is violated.

Electron deficient bonding:

There are many compounds in which some electron deficient bonds are present apart from normal covalent bonds or coordinate bonds which are 2c-2e bonds(two centre two electron bonds). These electron deficient bonds have less number of electrons than the expected such as three centre-two electron bonds(3c-2e) present in diborane B_2H_6 , $AI_2(CH_3)_6$, $BeH_2(s)$, bridging metal carbonyls.

 B_2H_6 (diborane) \Rightarrow It is having (3centre – 2electron) bond / (banana bond) / (electron deficient bond)



 B_2H_6 have 4 2c-2e bonds and 2 3c-2e bonds. Bridging bonds have bigger bond length than terminal bonds. Angle between terminal bonds is more than angle between bridging bonds if all 4 terminal bonds are in one plane then bridging bonds are in perpendicular plane.

Only covalent bond, no electron deficient bond is present.

Back Bonding :

Back bonding generally takes place when out of two bonded atoms one of the atom has vacant orbitals (generally this atom is from second or third period) and the other bonded atom is having some nonbonded electron pair(generally this atom is from the second period). Back bonding increases the bond strength and decreases the bond length. For example, in BF₃ the boron atom completes its octet by accepting two 2p-electrons of fluorine into 2p empty orbital.

Decrease in B – F bond length is due to delocalised $p\pi$ – $p\pi$ bonding between filled p-orbital of F atom and vacant p-orbital of B atom.

The extent of back bonding is much larger if the orbitals involved in the back bonding are of same size, for example the extent of back bonding in boron trihalides is as follows :

$$BF_{3} > BCI_{3} > BBr_{3}$$

There is $p\pi$ - $p\pi$ back bonding in boron trihalide. The extent of back bonding decreases from BF₃ to BI₃ because of increasing size of p-orbitals participating in back bonding that is from 2p(in F) to 4p(in Br).

О

Ο

The extent of back bonding decreases if the atom having vacant orbitals is also having some nonbonded electron pairs on it. So among the atoms of third period the extent of back bonding follows the order :

CHEMISTRY FOR NEET

1 Ο The extent of $p\pi$ - $p\pi$ overlapping ∞ Lewis character

acid

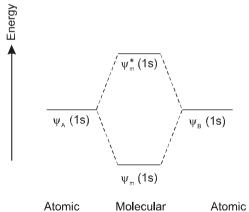
MOLECULAR ORBITAL THEORY (MOT) :

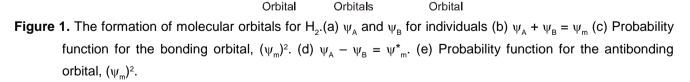
The molecular orbital theory was developed by F. Hund and R.S. Mulliken in 1932. The salient features are:

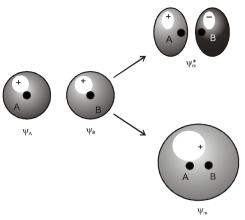
(i) Just as electrons of any atom are present in various atomic orbitals, electrons of the molecule are present in various molecular orbitals.

(ii) Molecular orbitals are formed by the combination of atomic orbitals of comparable energies and proper symmetry.

(iii) An electron in an atomic orbital is influenced by one nucleus, while in a molecular orbital it is influenced by two or more nuclei depending upon the number of the atoms in the molecule. Thus an atomic orbital is monocentric while a molecular orbital is polycentric.


(iv) The number of molecular orbitals formed is equal to the number of combining atomic orbitals. When two atomic orbitals combine, two molecular orbitals called **bonding molecular orbital** and antibonding molecular orbital are formed.


(v) The bonding molecular orbital has lower energy and hence greater stability than the corresponding antibonding molecular orbital.


(vi) Just as the electron probability distribution around a nuclues in an atom is given by an atomic orbital, the electron probability distribution around a group of nuclei in a molecule is given by molecular orbital.

(vii) The molecular orbitals like the atomic orbitals are filled in accordance with the Aufbau principle obeying the Pauli Exclusion principle and the Hund's Rule of Maximum Multiplicity. But the filling order of these molecular orbitals is always experimentally decided, there is no rule like (n + l) rule in case of atomic orbitals.

Formation of Molecular Orbitals : Linear Combination of Atomic Orbitals(LCAO)

Figure 2. Another representation of the formation of molecular orbitals for H_2. The σ and σ^* orbitals

Conditions for the combination of atomic orbitals :

The linear combination of atomic orbitals to form molecular orbitals takes place only if the following conditions are satisfied :

1. The combining atomic orbitals must have the same or nearly the same energy. This means that 1s orbital can combine with another 1s orbital but not with 2s orbital because the energy of 2s orbital is appreciably higher than that of 1s orbital. It, therefore, means that only a limited number of combinations of atomic orbitals are possible.

2. The combining atomic orbitals must have the same symmetry about the molecular axis. By convention z-axis is taken as the molecular axis. It is important to note that atomic orbitals having same or nearly the same energy will not combine if they do not have the same symmetry. For example, $2p_z$ orbital of one atom can combine with $2p_z$ orbital of the other atom but not with the $2p_x$ or $2p_y$ orbitals because of their different symmetries.

3. The combining atomic orbitals must overlap to the maximum extent. Greater the extent of overlap, the greater will be the electron-density between the nuclei of a molecular orbital.

TYPES OF MOLECULAR ORBITALS :

Molecular orbitals of diatomic molecules are designated as σ (sigma), π (pie), δ (delta) etc.

In this nomenclature, the sigma (σ) moleuclar orbitals are symmetrical around the bond-axis while pi (π) molecular orbitals are not symmetrical. For example, the linear combination of 1s orbitals centered on two nuclei produces two molecular orbitals which are symmetrical around the bond-axis. Such molecular orbital's are of the σ type and are designated as σ 1s and σ^* 1s [Fig.(a)]. If internuclear axis is taken to be in the direction, it can be seen that a linear combination of 2p_z - orbitals of two atoms also produces two sigma molecular orbitals designated as σ 2p_z and σ^* 2p_z. [Fig. (b)] Molecular orbitals obtained from 2p_x and 2p_y orbitals are not symmetrical around the bond axis because of the presence of positive lobes plane. Such molecular orbitals, are labelled as π and π^* [Fig. (c)]. A π bonding MO has large electron density above and below the inter nuclear axis. The π^* antibonding MO has a node between the nuclei.

 δ -type of molecular orbitals are obtained by involvement of d-orbitals into bonding.

Difference between π molecular orbitals and the σ orbitals.

(1) For π overlap the lobes of the atomic orbitals are perpendicular to the line joining the nuclei, whilst for σ overlap the lobes point along the line joining the two nuclei.

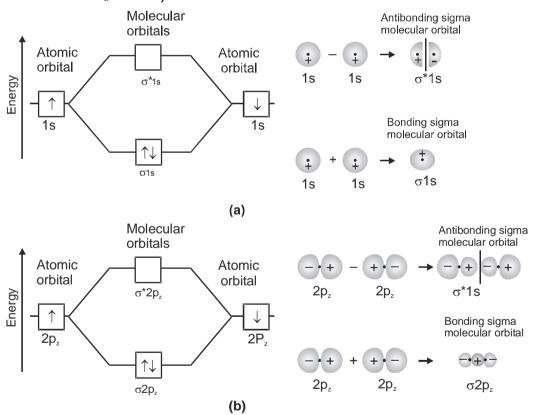
(2) For π molecular orbitals, ψ is zero along the internuclear line and consequently the electron density

 $\psi^{\scriptscriptstyle 2}\,$ is also zero. This is in contrast to σ orbitals.

(3) The symmetry of π molecular orbitals is different from that shown by σ orbitals. If the bonding π MO is rotated about the inter nuclear line a change in the sign of lobe occurs. The π bonding orbitals are therefore ungerade, where as all σ bonding MO's are gerade. Conversely the antibonding π MO's are gerade while all σ antibonding MO's are ungerade.

ENERGY LEVEL DIAGRAM FOR MOLECULAR ORBITALS :

The energy levels of molecular orbitals have been determined experimentally from spectroscopic data for homonuclear diatomic molecules of second row elements of the periodic table. The increasing order of energies of various molecular orbitals for O_2 and F_2 is given below :


 $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_z) < \sigma^* 2p_z.$

The increasing order of energies of various molecular orbitals for Be₂, B₂, C₂, N₂ etc., is :

 $\sigma \ 1s < \sigma^* \ 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$

The important characteristic feature of this order is that the energy of $\sigma 2p_z$ molecular orbital is higher

than that of $\pi 2p_x$ and $\pi 2p_y$ molecular orbitals.

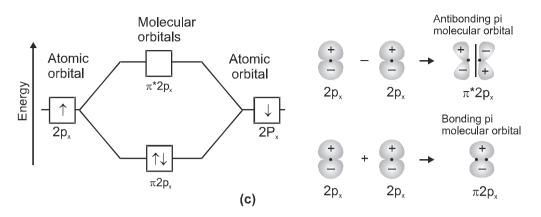


Fig. Bonding and antibonding molecular orbitals formed through combinations of (a) 1s atomic orbitals; (b) $2p_{z}$ atomic orbitals and (c) $2p_{z}$ atomic orbitals.

Electronic configuration and molecular behaviour :

Bond order

Bond order (b.o.) is defined as one half the difference between the number of electrons present

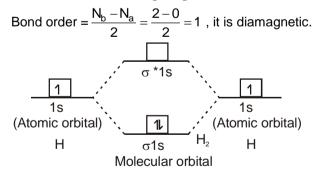
in the bonding and the antibonding orbitals i.e., Bond order (b.o.) = $\frac{1}{2} (N_{b} - N_{a})$

A positive bond order (i.e., $N_b > N_a$) means a stable molecule while a negative (i.e., $N_b < N_a$) or zero (i.e., $N_b = N_a$) bond order means an unstable molecule.

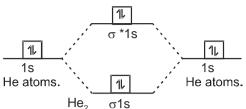
Nature of the bond

Integral bond order values of 1, 2 or 3 correspond to single, double or triple bonds respectively.

Bond-length


The bond order between two atoms in a molecule may be taken as an approximate measure of the bond length. The bond length decreases as bond order increases.

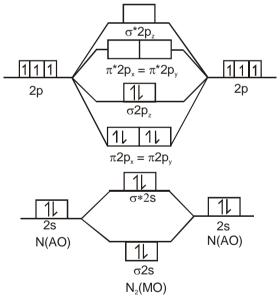
Magnetic nature


If all the molecular orbitals in a molecule are doubly occupied, the substance is diamagnetic (repelled by magnetic field) e.g., N_2 molecule. However if one or more molecular orbitals are singly occupied it is paramagnetic (attracted by magnetic field), e.g., O_2 molecule.

Bonding in some Homonuclear diatomic molecules

1. Hydrogen molecule (H_2) : H_2 : $(\sigma 1s)^2$

2. Helium molecule (He₂) : He₂ : $(\sigma 1s)^2 (\sigma^* 1s)^2$ Bond order of He₂ is $\frac{1}{2}(2-2) = 0$, bond order of zero - in other words, no bond

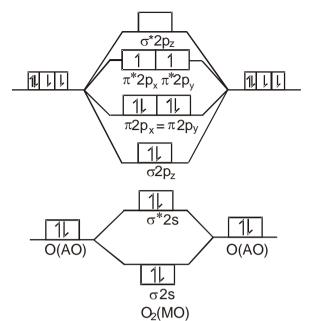

- 3. Lithium molecule (Li₂): $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2$ Its bond order, therefore, is 1/2(4-2) = 1. It means that Li₂ molecule is stable and since it has no unpaired electrons it should be diamagnetic.
- Beryllium (Be₂) : (σ1s)² (σ*1s)² (σ2s)² (σ*2s)²
 Be₂ has the same number of antibonding and bonding electrons and consequently a bond order of zero. Hence, like He₂, Be₂ is not a stable chemical species.
- **5. Boron (B**₂): $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 s)^2 (\sigma^* 2s)^2 (\pi 2p_x^1 = \pi 2p_y^1) (\sigma p_z^0)^0$ The bond order of B₂ is 1/2(6 -4) = 1. B₂ is paramagnetic. B₂ is found only in the gas phase; solid boron is found in several very hard forms with complex bonding, primarily involving B₁₂ icosahedra.

 B_2 is also a good example of the energy level shift caused by the mixing of s and p orbitals.

6. Carbon molecule (C₂): $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 s)^2 (\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2)$ or KK $(\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2)$

The bond order of C_2 is 1/2 (8–4) = 2 and C_2 should be diamagnetic.

7. Nitrogen molecule (N₂) : $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 s)^2 (\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\sigma 2p_z)^2$



M.O. Energy level diagram for N₂ molecule

 $\mathrm{N_2}$ has a triple bond according to both the Lewis and the molecular orbital models.

The bond order of N₂ is 1/2(10 - 4) = 3. It contains one sigma and two π bonds.

8. Oxygen molecule (O₂) : O₂ : $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 s)^2 (\sigma^* 2s)^2 (\sigma^2 p_z)^2 (\pi 2p_z^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y^1)$

M.O. Energy level diagram for O₂molecule

 O_2 is paramagnetic. The bond order of O_2 is $\frac{1}{2}[N_b - N_a] = \frac{1}{2}[10 - 6] = 2$. So in oxygen molecule, atoms are held by a double bond. Moreover, it may be noted that it contains two unpaired electrons in $\pi^* 2p_x$ and $\pi^* 2p_y$ molecular orbitals, therefore, O_2 molecule should be paramagnetic, a prediction that corresponds to experimental observation. Several ionic forms of diatomic oxygen are known, including O_2^{+} , and O_2^{-2-} . The internuclear O - O distance can be conveniently correlated with the bond order predicated by the molecular orbital model, as shown in the following table.

	Bond Order	Internuclear Distance (pm)	Number of unpaired(s) Electrons
O₂⁺ (dioxygenyl)	2.5	112.3	1
O ₂ (dioxygen)	2.0	120.07	2
O_2^- (superoxide)	1.5	128	1
O_2^{2-} (peroxide)	1.0	149	0

Note : Oxygen-oxygen distances in O_2^- and O_2^{2-} are influenced by the cation. This influence is especially strong in the case of O_2^{2-} and is one factor in its unsually long bond distance.

9. Fluorine molecule (\mathbf{F}_2): $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 s)^2 (\sigma^* 2s)^2 (\sigma^2 p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^2 = \pi^* 2p_y^2)$

The molecular orbital picture of F_2 shows a diamagnetic molecule having a single fluorine-fluorine bond, in agreement with experimental data on this very reactive molecule.

10. Neon molecule (Ne₂) : $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^* 2s)^2 (\sigma^* 2s)^2 (\sigma^2 2p_z)^2 (\pi 2p_z^2 = \pi 2p_y^2) (\pi^* 2p_x^2 = \pi^* 2p_y^2) (\sigma^* 2p_z)^2$ All the molecular orbitals are filled, there are equal numbers of bonding and antibonding electrons and

the bond order is therefore zero. The Ne, molecule is a transient species, if it exists at all.

Note: HOMO: Highest Occupied Molecular Orbital.

LUMO : Lowest Unoccupied Molecular Orbital

Solved Examples

CHEMISTRY FOR NEET

- **Ex.5** Though O₂ molecule is paramagnetic yet it is a colourless gas. Why ?
- **Sol.** It is because the energy gap between HOMO and LUMO levels in O_2 molecule is so large that radiations of visible light cannot excite a e⁻ from HOMO to LUMO. In fact O_2 gas shows absorption in UV zone. So it is colourless.
- Ex.6 Correct order of bond energy is: (A) $N_2 > N_2^+ > N_2^- > N_2^{2-}$ (B) $N_2^+ > N_2^- > N_2^{2-} > N_2$ (C) $N_2 > N_2^- = N_2^+ > N_2^{2-}$ (D) $N_2^- > N_2 = N_2^+ > N_2^{2-}$

Sol. (A) Bond order is directly proportional to the bond energy. Bond order of $N_2 = 3$, N_2^+ , $N_2^- = 2.5$ $N_2^{2-} = 2$ But N_2^- has more electrons in antibonding MO's and thus N_2^+ is more stable than N_2^- . So correct order of bond energy will be $N_2 > N_2^+ > N_2^- > N_2^{2-}$

- Ex.7Which of the following species have a bond order of 3 ?
(A) CO(B) CN^- (C) NO^+ (D) O_2^+
- Sol. (A,B,C) Species CO, CN⁻, NO⁺ are isoelectronic with 14 electrons to N₂ which has bond order of 3 (i.e. $\frac{10-4}{2} = 3$), so their bond order will be equal to three.
- **Ex.8**Which of the following are diamagnetic ?
(A) C_2 (B) O_2^{2-} (C) Li_2 (D) N_2^+
- **Sol.** (A,B,C) Species C_2 , O_2^{2-} , Li_2 have all the electrons paired but N_2^* has one unpaired electron in bonding molecular orbital so it is paramagnetic.

COVALENT CHARACTER IN IONIC COMPOUNDS (FAJAN'S RULE) :

When anion and cation approach each other, the valence shell of anion is pulled towards cation nucleus and thus shape of anion is deformed. This phenomenon of deformation of anion by a cation is known as polarisation and the ability of cation to polarize a near by anion is called as polarizing power of cation.

Fajan's pointed out that greater is the polarization of anion in a molecule, more is covalent character in it.

More distortion of anion, more will be polarisation then covalent character increases.

Fajan's gives some rules which govern the covalent character in the ionic compounds, which are as follows:

Cl ₂ CaC	SrCl ₂	BaCl ₂
Polarisation dec	creases Covalen	t character decreases
e of anion α pol	arisation	
N. I.I		
	Br Lil	Br Lil

(iii) Charge on cation : Charge on cation α polarisation.

e.g., NaCl MgCl₂ AlCl₃ Na⁺ Mg²⁺ Al³⁺

(iv) Charge on anion : Charge on anion α polarisation.

e.g., $AIF_{3} = AI_{2}O_{3} = AIN$ F^{-} , O^{2-} , N^{3-}

(v) **Pseudo inert gas configuration of cation :** Cation having pseudo inert gas configuration has more polarizing power than the cation that has inert gas configuration. Thus NaCl having inert gas configuration will be more ionic whereas CuCl having pseudo inert gas configuration will be more covalent in nature.

 $Cu^* =$ $[Ne] 3s^2 p^6 d^{10}$ $Na^* = 1s^2 2s^2 p^6$ $18e^ 8e^-$ Pseudo inert gas configurationInert gas configuration(poor shielding of d-electrons)(more shielding of s and p electrons)

Application & Exceptions of Fajan's Rules :

- (i) Ag_2S is less soluble than Ag_2O in H_2O because Ag_2S is more covalent due to bigger S^{2-} ion.
- (ii) $Fe(OH)_3$ is less soluble than $Fe(OH)_2$ in water because Fe^{3+} is smaller than Fe^{2+} and thus charge is more. Therefore, $Fe(OH)_3$ is more covalent than $Fe(OH)_2$.

(iii) The colour of some compounds can be explained on the basis of polarisation of their bigger negative ions.

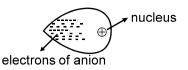
For example :

AgCl is white AgBr, AgI, Ag_2CO_3 are yellow. Similarly, $SnCl_2$ is white but SnI_2 is black. PbCl₂ is white but PbI₂ is yellow.

The bigger anions are more polarised and hence their electrons get excited by partial absorption of visible light.

(iv) Variation of melting point [melting point of covalent compound < melting point of ionic compound]

 $BeCl_2$, $MgCl_2$, $CaCl_2$, $SrCl_2$, $BaCl_2$


lonic charater increases, melting point increases ; since size of cation increases & size of anions is constant.

 CaF_2 , $CaCl_2$, $CaBr_2$, CaI_2

Ex.

Covalent character increase, melting point decrease ; since size of cations constant & size of anions is increases.

- AgCl is colourless whereas AgI is yellow, because of :
- (A) Ag⁺ have 18 electron shell to screen the nuclear charge.
- (B) Ag⁺ shows pseudo inert gas configuration.
- (C) distortion of I^- is more pronounced than CI^- ion.
- (D) existence of d d transition.
- **Sol**. (C) the bigger anions are more polarised and hence their electrons get excited by partial absorption of visible light.

POLARITY OF BONDS :

In reality no bond or a compound is either completely covalent or ionic. Even in case of covalent bond between two hydrogen atoms, there is some ionic character.

When a covalent bond is formed between two similar atoms, for example in H_2 , O_2 , Cl_2 , N_2 or F_2 the shared pair of electrons is equally attracted by the atoms. As a result electron pair is situated exactly between the two identical nuclei. The bond so formed is called nonpolar covalent bond. Contrary to this in case of a heteronuclear molecule like HF, the shared electron pair between the two atoms gets displaced more towards fluorine since the electronegativity of fluorine is far greater than that of hydrogen. The resultant covalent bond is a polar covalent bond.

As a result of polarisation, the molecule possesses the **dipole moment** which can be defined as the product of magnitude of the partial charge (δ^+ or δ^-) developed on any of the covalently bonded atoms and the distance between two atoms.

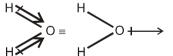
Dipole moment (μ) = Magnitude of charge (q) × distance of separation (d)

Dipole moment is usually expressed in Debye units (D). The conversion factors are

O 1 D = 3.33564×10^{-30} Cm, where C is coulomb and m is meter.

O 1 Debye = 1×10^{-18} e.s.u. cm.

Further dipole moment is a vector quantity and is depicted by a small arrow with tail on the positive centre and head pointing towards the negative centre. For example the dipole moment of HF may be represented as


The shift in electron density is represented by crossed arrow ($\downarrow \rightarrow$) above the Lewis structure to indicate the direction of the shift.

In case of polyatomic molecules the dipole moment not only depend upon the individual dipole moments of bonds known as bond dipoles but also on the spatial arrangement of various bonds in the molecule. In such case, the dipole moment of a molecule is the vector sum of the dipole moments of various bonds. i.e. a molecule will have a dipole moment if the summation of all of the individual moment vector is non-zero.

For example of H₂O molecule, which has a bent structure, the two O—H bonds are oriented at an angle of 104.5°. Net dipole moment of 6.17 × 10⁻³⁰ Cm (1D = 3.33564×10^{-30} Cm) is the resultant of the dipole moments of two O—H bonds.

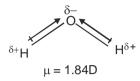
Net Dipole moment, μ = 1.85 D = 1.85 x 3.33564 x 10⁻³⁰ Cm = 6.17 x 10⁻³⁰ Cm.

(A) Diatomic molecules :

(i) Dipole moment is a vector quantity i.e., it has magnitude as well as direction. It is often represented by an arrow with its tail at the positive centre and head pointing towards the negative end

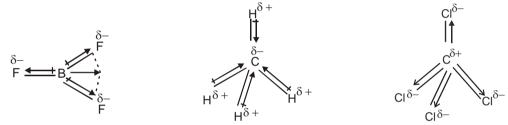
$$(+ \rightarrow -)$$

(ii) As a polar diatomic molecule posses only one polar bond, the dipole moment of that molecule is equal to the dipole moment of the polar bond e.g. in case of HCl, the molecular dipole moment is equal to the dipole moment of H–Cl bond i.e. 1.03 D. Thus.


^{+δ}→Cl

 $\mu = 1.03 D$

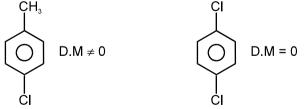
(B) Polyatomic molecules :


(i) As a polyatomic molecule has more than one polar bond, the dipole moment is equal to the resultant dipole moment of all the individual bonds.

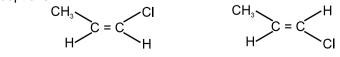
(ii) For example dipole moment of H_2O is 1.84 D which is equal to the resultant dipole moment of two O–H bonds.

(iii) Think about CO_2 molecule though C = O bond is polar due to electronegativity difference but the resultant dipole moment of molecule is zero as the individual dipole moments are of equal moment and opposite sign. This shows that CO_2 is a linear molecule.

(iv) Again in case of symmetrical molecules such as BF_3 , CH_4 and CCI_4 the molecular dipole moment is found to be zero. This is due to the fact that individual dipole moments cancels out on account of symmetry of the molecule.

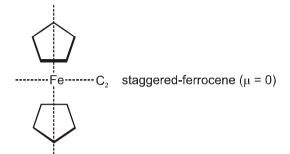


O Some important orders


For example :

HF >	HCI >	HBr >	HI
1.92 D	1.08	0.78	0.38
CH ₃ Cl >	$CH_2CI_2 >$	CHCl ₃ >	CCl_4
1.86	1.6	1.0	0

• Usually for disubstituted Benzene order is o > m > p But it all depends on the substituents



Note : For geometrical isomers usually the dipole moment of cis is more than trans but again there can be exceptions.

- cis form (low dipole moment) trans form (high dipole moment)
- The presence of a centre of symmetry, i, requires that the dipole moment be zero, since any charge on one side of the molecule is canceled by an equal charge on the other side of the molecule.

Thus $[CoF_6]^{3-}$, trans – N_2F_2 and the staggered conformer of ferrocene do not have dipole moments.

Some important points about dipole moment :

- O A polyatomic molecule having polar covalent bonds but zero dipole moment indicates the symmetrical structure of the molecule. e.g. B–F bonds are polar in BF_3 but BF_3 has $\mu = 0$ due to its symmetrical geometry.
- O If molecule have $\mu = 0$, then it should be linear or having symmetrical geometry. e.g. linear - CO₂, CS₂, BeCl₂ (g); symmetrical geometry - BF₃, CH₄, PCl₅, SF₆, IF₇, XeF₄.
- O If molecule has $\mu \neq 0$ then it should be angular or having unsymmetrical geometry. SnCl₂, PbCl₂, SO₂, angular molecular geometry.

 NH_3 , H_2O , NF_3 , SF_4 , H_2S , unsymmetrical molecular geometry.

O % Ionic character =
$$\frac{\mu_{\text{Experimental}}}{\mu_{\text{Theoretical}}} \times 100 = \frac{\mu_{\text{(Observed)}}}{\mu_{(100\% \text{ lonic compound})}} \times 100$$

-Solved Examples

Ex.9	What should be the per (1) 90.9%	rcentage ionic character (2) 0.09%	in CsF when electronega (3) 93.3%	ativity difference is 3.3 (4) 95.7%	
Ans.	(1)				
Ex.10	What is the increasing order of ionic character in H_2 Se, H_2 S, H_2 O				
	(1) $H_2Se < H_2S < H_2O$	(2) $H_2Se > H_2S > H_2O$	(3) $H_2Se < H_2S > H_2O$	(4) None of these	
Ans.	(1)				
Ex.11	Which of the following molecules should not have $\mu = 0$:-				
	(1) H ₂	(2) CO ₂	(3) Cl ₂	(4) SO ₂	
Ans.	(4)				
Ex.12	Which of the following compounds should have higher dipole moment than the remaining three :-				
	(1) HF	(2) H ₂ O	(3) NH ₃	(4) NF ₃	
Ans.	(2)				
Ex.11 Ans. Ex.12	(1) Which of the following (1) H_2 (4) Which of the following (1) HF	molecules should not have (2) CO ₂	ve $\mu = 0 :-$ (3) Cl ₂ higher dipole moment th	(4) SO ₂ nan the remaining three :–	

HYDROGEN BOND :

Nitrogen, oxygen and fluorine are the highly electronegative elements. When they are tied to a hydrogen atom to form covalent bond, the electrons of the covalent bond are shifted towards the more electronegative atom. This partially positively charged hydrogen atom forms a bond with the other more electronegative atom. This bond is called as hydrogen bond and is weaker than covalent bond. For

• Hydrogen bonding is said to be formed when slightly acidic hydrogen attached to a strongly electronegative atom such as F, N and O is held with weak electrostatic forces by the lone pair of electrons of the electronegative atom i.e. the strongly positive H and the strongly electronegative lone pairs tend to line up and hold the molecules together. Other atoms with high electronegativity, such as Cl; can also form hydrogen bonds in strongly polar molecules such as chloroform, CHCl₃.

Conditions required for H-bond :

(i) Molecule should have more electronegative atom (F, O, N) linked to H-atom.

(ii) Size of electronegative atom should be smaller.

(iii) A lone pair should be present on electronegative atom.

Strength of H-bond :

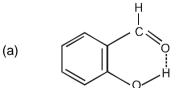
The strength of H-bond is usually very low (5 - 10 kJ/mol) but in some cases this value may be as high as 50 kJ/mol. The strongest H-bonds are formed by F atoms. Deuterium is more electropositive than H, therefore it also form stronger bonds. The strength of the H-bond can be compared by the relative bond energies and the geometry of the various compounds as given below.

 $F^- + HF \longrightarrow [FHF]^-$; $\Delta H = -161 \pm 8 \text{ kJ mol}^{-1}$

 $(CH_3)_2 CO + HF \longrightarrow (CH_3)_2 CO \dots HF$; $\Delta H = -46 \text{ kJ mol}^{-1}$

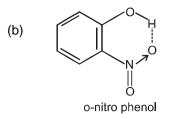
 $H_2O + HOH \longrightarrow H_2O \dots HOH$ (ice) ; $\Delta H = -25 \text{ kJ mol}^{-1}$

HCN + HCN \longrightarrow HCN HCN ; $\Delta H = -12 \text{ kJ mol}^{-1}$

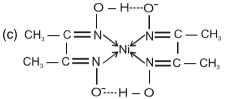

The magnitude of H-bonding depends on the physical state of the compounds. H-bonding is maximum in the solid state and minimum in the gaseous state. Thus hydrogen bonds have strong influence on the structure and properties of the compounds.

O Order of H-bond strength

Types of Hydrogen Bonds :

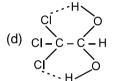

(A) Intramolecular H-Bonding :

This type of H-bonding occurs when polar H and electronegative atom are present in the same molecule i.e., it is formed when hydrogen atom is present in between the two highly electronegative (F, O, N) atoms within the same molecule.



o-hydroxy benzaldehyde

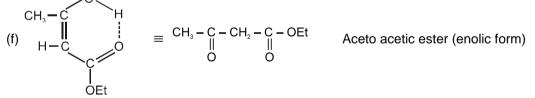
It has lower boiling point (i.e. more volatile) than its para-derivative (where association of molecules takes place using intermolecular H-bonding) because it exists as discrete molecules.



It has lower boiling point (i.e. more volatile) than its para-derivative (where association of molecules takes place using intermolecular H-bonding) because it exists as discrete molecules.

Nickel dimethyl glyoximate (a chelate)

Extra stability of the complex is because of intramolecular hydrogen bonding in addition to the chelating effect.


Chloral hydrate

Chloral hydrate is stable only on account of intramolecular hydrogen bonding.

Persulphate ion (HSO₅-)

 K_1 of peroxomono sulphuric acid (i.e., caros acid) is greater than K_2 . After the loss of one hydrogen, the persulphate ion gets stabilised due to intramolecular hydrogen bonding and thus the removal of second hydrogen becomes difficult.

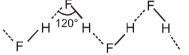
The intramolecular hydrogen bonding attributes the stability of enolic form of aceto acetic ester.

Necessary conditions for the formation of intramolecular hydrogen-bonding :

(a) the ring formed as a result of hydrogen bonding should be planar.

(b) a 5- or 6- membered ring should be formed.

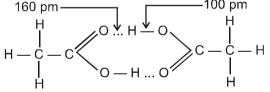
(c) interacting atoms should be placed in such a way that there is minimum strain during the ring closure.


(B) Intermolecular H-Bonding :

Exists between the negative and positive ends of different molecules of the same or different substances i.e., it is formed between two different molecules of the same or different compounds.

(a) In water molecules

Due to polar nature of H_2O there is association of water molecules giving a liquid state of abnormally high boiling point.


- When ice is formed from liquid water, some air gap is formed (in tetrahedral packing of water molecules). The tetrahedral structure around each oxygen atom with two regular bonds to hydrogen and two hydrogen bonds to other molecules requires a very open structure with large spaces between ice molecules. Due to this volume of ice is greater than liquid water and thus ice is lighter than water. We can say that density decreases when ice is formed. Reversely when ice melts, density increases but only upto 4°C, after this intermolecular H-bonding between water molecules breaks hence, volume increases and hence density decreases. Thus, water has maximum density at 4°C.
- (b) The hydrogen bonds in HF link the F atom of one molecule with the H-atom of another molecule, thus forming a zig-zag chain (HF), in both the solid and also in the liquid.

Some hydrogen bonding also occurs in the gas, which consists of a mixture of cyclic $(HF)_6$ polymers, dimeric $(HF)_2$, and monomeric HF.

Very strong hydrogen bonding occurs in the alkali metal hydrogen fluorides of formula $M[HF_2]$; in KHF_2 , for example, an X-ray diffraction study together with a neutrons diffraction study shows that there is a liner symmetrical anion having an over all, F–H–F distance of 2.26 Å, which may be compared with the H–F bond length of 0.92Å in hydrogen fluoride monomer.

- (c) There is also similar H-bonding in alcohol (R—OH) ammonia (NH₃) and phenol (C₆H₅OH) molecules.
- (d) Carboxylic acid dimerises in gaseous state due to H-bonding

(e) Alcohol is said to be highly soluble in water due to crossed intermolecular H-bonding (between H_2O and R—OH molecules).

However isomeric ether is less soluble in water due to less polar nature of ether.

(f) HCO_3^- ions exist as dimer in $KHCO_3^-$

$$O = C$$

$$O = C$$

$$C = O$$

$$C = O$$

In Na⁺HCO₃⁻, the HCO₃⁻ ions are linked in to an infinite chain through intermolecular H-bonding.

.Solved Examples

- **Ex.13** C_2H_2 is not soluble in H_2O but it is highly soluble in acetone.
- Sol.

CH₃、

$$= O: ---- \overset{+\delta}{H} - C \equiv C - H$$
(sp)

In hybridisation as %S character increase, electronegativity increase hence C_2H_2 forms H–bonds with O–atom of acetone and get dissolved. But H_2O molecules are so much associated that it is not possible for C_2H_2 molecules to break that association, hence C_2H_2 is not soluble in H_2O .

- Ex.14 Why SnCl, 2H, O readily loses one molecule of water at 80°C ?
- **Sol.** One water molecule is coordinated to lone pair of electrons on SnCl₂ and the other is hydrogen bonded to coordinated water molecules .
- **Ex.15** Why crystalline sodium peroxide is highly hygroscopic in nature.
- **Sol.** Na₂O₂ forms stable hydrates on account of H-bonding.

$$--O_2^{2-}---(H_2O)_8---O_2^{2-}---(H_2O)_8---$$

Ex.16 Explain that tetramethyl ammonium hydroxide is a stronger base than that of trimethyl ammonium hydroxide.

Sol.
$$CH_3 \xrightarrow[]{} H \cdots O - H$$

 $CH_3 - N \rightarrow H \cdots O - H$
 $CH_3 - N \rightarrow CH_3$
 $CH_3 - N \rightarrow CH_3$
 $CH_3 - N \rightarrow CH_3$
 $CH_3 - N \rightarrow CH_3$

In the trimethyl compound the O–H group is hydrogen bonded to Me₃NH group and this makes it more difficult for the OH group to ionize and hence it is a weak base.

In the tetramethyl compound, hydrogen bonding can not occur, so the OH⁻ group ionizes easily and thus it is a much stronger base.

Intermolecular forces (Van der Waal's Forces) :

Intermolecular attractions hold two or more molecules together. These are weakest chemical forces and can be of following types.

- (a) Dipole-dipole attraction :
- (b) Ion-induced dipole attraction :
- (c) Dipole-induced dipole attraction :
- (d) Instantaneous dipole- Instantaneous induced dipole attraction : (Dispersion force or London forces)

strength of van der Waal's forces a > b > c > d

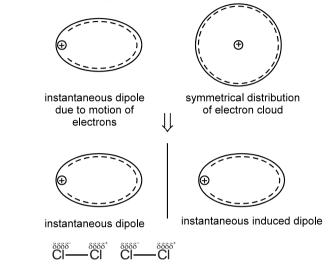
(a) Dipole-dipole attraction :

This is electrostatic attractions between the oppositively charged ends of permanent dipoles. Exists between polar molecules and due to this force gas can be liquified.

(b) Ion-induced dipole attraction :
 Exists between ion and non-polar molecules (e.g., an atom of a noble gas such as Xenon).

(c) Dipole-induced dipole attraction : Exists between polar and non-polar molecules.

+ - + -


Head to tail arrangement of dipoles

Antiparallel arrangement of dipoles

(d) Instantaneous dipole- Instantaneous induced dipole attraction :

Exists among the non-polar molecules like H_2 , O_2 , CI_2 etc. in solid or liquid states. Even in atoms in molecules which have no permanent dipole, instantaneous dipoles will arise as a result of momentary inbalances in electron distribution.

London forces are extremely short range in action and the weakest of all attractive forces. The London forces increase rapidly with molecular weight, or more properly, with the molecular volume and the number of polarizable electrons.

Special Point : attractive forces between an ion and a dipole are known as ion-dipole forces and these are not vander waal forces.

- Ion- dipole forces are stronger then all vander waal forces because the charge of any ion is much greater than the charge of a dipole.
- Ion dipole bonding is also stronger then hydrogen bonding.

Ion-dipole attraction :

e.g.,

Exists between an ion and a polar molecule. Its strength depends on (i) size of ion (ii) charge on the ion (iii) dipole moment of the polar molecule. It is thought to be directional. Ion -dipole forces are important in solutions of ionic compounds in polar solvents where solvated species such as $Na(OH_2)_x^+$ and $F(H_2O)_y^-$ (for solution of NaF in H_2O) are found. Hence this force is responsible for hydration.

Na⁺······
$$O$$
 H^{O^+} H^{O^+}

Note : Fluoro carbon have usually low boiling points because tightly held electrons in the fluorine atoms have a small polarizability.

O Strength of vander waal force ∞ molecular mass.

O van der Waal's force ∞ boiling point.

Intermolecular forces

There are certain forces that condense matter. These forces can be both bonding forces and nonbonding forces which are called intramolecular forces and intermolecular forces respectively.

(i) Intramolecular forces : (Bonds that exist within molecules) :

Example : Ionic bond, Covalent bond

(ii) Intermolecular forces (forces that exist between molecules) : Intermolecular forces are the physical forces or just the interactions which act between the neighbouring bonded molecules. The intermolecular forces are weaker than the intramolecular forces.

van der Waals (1837 – 1923), a Dutch scientist explained that the attractive forces present between the molecules lead to the deviation of real gases from the ideal gas behaviour which we will study later in this chapter. So, to honor the scientist, intermolecular forces are also known as vander Waals forces. These forces of attraction exist between polar as well as non-polar molecules. These are the electrostatic forces of attraction that exist between an area of negative charge on one molecule and an area of positive charge on a second molecule. There are three types of van der Waals forces or interactions.

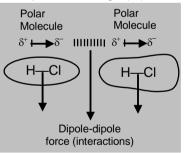
(i) Dispersion forces or london forces

(ii) Dipole-Dipole forces

(iii) Dipole-Induced Dipole forces

Fourth type is a particularly strong type of dipole-dipole interactions called hydrogen bonding.

(i) Dispersion forces or london forces : (Associated with NON POLAR structures) These forces are present in non-polar molecules like H_2 , O_2 and N_2 and also in nonpolar monoatomic molecules such as noble gases like He. Ne. Ar etc., which exist with intermolecular forces and no bonding at all.


London forces are attractive in nature and the interaction energy is inversely proportional to the sixth power of the distance between the two interacting particles.

Interaction energy $\propto \frac{1}{r^6}$ where r is the intermuclear distance between two interacting particles.

Larger the polariesability, stronger are the london forces.

(ii) Dipole-Dipole Forces : (Associated with POLAR structures) : Polar molecules have a partially positive side and a partially negative side or a dipole. dipole-dipole forces operate between the molecules which are through neutral but possess permanent dipole. The separation of partial charges depends upon the electronegativity of the bonded atoms in a molecule. The partial charges are indicated by the Greek letter delta (δ) In these type of forces the partial positive end of the one molecules is attracted towards the negative end of the other molecule.

Example : Dipole-dipole forces are present between the two HCI molecules. Chlorine being more electronegative pulls the shared pair of electrons towards itself. So, it has a partial negative charge (δ^{-}) on it and hydrogen atom has a partial positive charge (δ^{+}).

The interaction energy is dependent upon the distance between the polar molecules.

(a) Stationary polar molecules : Dipole-dipole interaction energy is inversely proportional to the third power of the distance between stationary polar molecules (in solids)

Interaction energy $\propto \frac{1}{r^3}$

(b) Rotating polar molecules : Dipole-dipole interaction energy is inversely proportional to the sixth power of the distance between the rotating polar molecules (like water)

Interaction energy $\propto \frac{1}{r^6}$

Dipole-dipole forces are stronger than the london forces because permanent dipoles are involved but weaker than the ion-ion interaction because partial charges present in the polar molecules are always less than the unit electronic charge (1.6×10^{-19}) present on the ions.

(iii) Dipole-Induced Dipole Forces : (Between a polar and a non-polar molecule) This type of forces operate between a polar molecule which has a permanent dipole and a non-polar molecule whose electron density is symmetrical. A polar molecule may sometimes polarise a non-polar molecule.

Solved Examples

Ex.17 Give the order of boiling point of following Cl₂, HCl

Sol. $Cl_2 - Cl_2$ < HCl - HCl (boiling point) dispersion force dipole-dipole attraction As dipole-dipole attraction is stronger than dispersion force.

- **Ex.18** Arrange the inert gases, according to their increasing order of boiling points
- Sol.He < Ne < Ar < Kr < Xe</th>(boiling point)Because strength of van der Waal's force increases down the group with increase in molecular mass.

METALLIC BOND :

Most metals crystallise in close-packed structures. The ability of metals to conduct electricity and heat must result from strong electrons interactions among 8 to 12 nearest neighbours (which is also called coordination number). Bonding in metals is called metallic bonding. It results from the electrical attractions among positively charged metal ions and mobile, delocalised electrons belonging to the crystal as a whole.

Two models are considered to explain metallic bonding:

(A) Band model (B) Electron-sea model

(A) Band Model

The interaction of two atomic orbitals, say the 3s-orbitals of two sodium atoms, produces two molecular orbitals, one bonding orbital and one antibonding orbital. If N atomic orbitals interact, N molecular orbitals are formed. Atoms interact more strongly with nearby atoms than with those farther away. The energy that separates bonding and antibonding molecular orbitals decreases as the interaction (overlap) between the atomic orbitals decreases. When we consider all the possible interactions among one mole of Na atoms, there is formation of series of very closely spaced molecular orbitals (3σ s and 3σ *s). This consists of a nearly continuous band of orbitals belonging to the crystal as a whole. One mole of Na atoms contributes one mole (6.02×10^{23}) of valence electrons thus, 6.02×10^{23} orbitals in the band are half-filled.

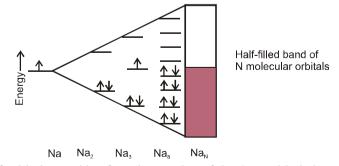


Fig. The band of orbitals resulting from interaction of the 3s - orbitals in a crystal of sodium

The empty 3 p atomic orbitals of Na atoms also interact to form a wide band of $3 \times 6.07 \times 10^{23}$ orbitals. The 3s and 3p atomic orbitals are quite close in energy, so that these bands of molecular orbitals overlap. The two overlapping bands contain $4 \times 6.02 \times 10^{23}$ orbitals. Because each orbital can hold two electrons, the resulting combination of bands is only one-eighth full.

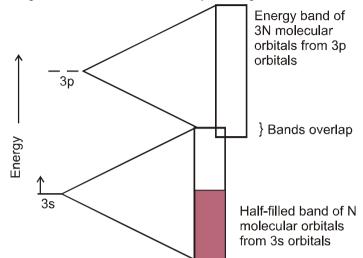


Fig. Overlapping of a half-filled "3s" band with an empty "3p" band of Na_{N} crystal

According to band theory, the highest-energy electrons of metallic crystals occupy either a partially filled band or a filled band that overlaps an empty band. A band within which (or into which) electrons must move to allow electrical conduction is called a conduction band. The electrical conductivity of a metal decreases as temperature increases. The increase in temperature causes thermal agitation of the metal ions. This impedes the flow of electrons when an electric field is applied.

Crystalline non-metals, such as diamond and phosphorus, are insulators, they do not conduct electricity. It is due to the fact that their highest-energy electrons occupy filled bands of molecular orbitals that are separated from the lowest empty bond (conduction band) by an energy difference called the band gap. In an insulator, this band gap is an energy difference that is too large for electrons to jump to get to the conduction band.

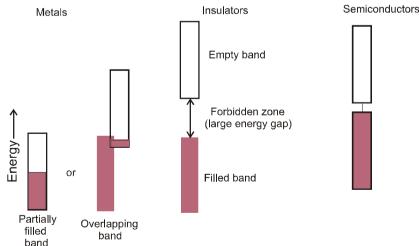
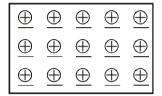


Fig. Distinction among metals, insulators and semiconductors. In each case an unshaded area represents a conduction band.

Elements that are semiconductors have filled bands that are only slightly below, but do not overlap with empty bands. They do not conduct electricity at low temperatures, but a small increase in temperature is sufficient to excite some of the highest-energy electrons into the empty conduction band.


(B) Electron-Sea Model


Metals have ability to conduct electricity, ability to conduct heat, ease of deformation [that is, the ability to be flattened into sheets (malleability) and to be drawn into wires (ductility)] and lustrous appearance.

One over simplified model that can account for some of these properties is the electron-sea model. The metal is pictured as a network of positive ions immersed in a "sea of electrons". In lithium the ions would be Li⁺ and one electron per atom would be contributed to the sea. These free electrons account for the characteristic metallic properties. If the ends of a bar of metal are connected to a source of electric current, electrons from the external source enter the bar at one end. Free electrons pass through the metal and leave the other end at the same rate.

In thermal conductivity no electrons leave or enter the metal but those in the region being heated gain kinetic energy and transfer this to other electrons.

According to the electron-sea model, the case of deformation of metals can be thought of in this way : If one layer of metal ions is forced across another, perhaps by hammering, the internal structure remains unchanged as the sea of electrons rapidly adjusts to the new situation.

	$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$ \textcircled{\begin{tabular}{cccc} \oplus $	
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$	$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$
$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$	No new repulsive forces occurs
	and sheets and wires remain intact.

Initial

I sheets and wires remain intact.

Fig. Effect of Distortion (by hammering) on Metal Sheet (assuming Electron Sea Model) **MISCELLANEOUS SOLVED PROBLEMS (MSPS)**

- 1. Classify the following bonds as ionic, polar covalent or covalent and give your reasons :
 - (a) SiSi bond in $Cl_3SiSiCl_3$ (b) SiCl bond in $Cl_3SiSiCl_3$
 - (c) CaF bond in CaF_2 (d) NH bond in NH_3
- Sol. (a) Covalent, due to identical electronegativity.
 - (b) Covalent, due to less electronegativity difference.
 - (c) Ionic, due to more electronegativity difference.
 - (d) Covalent, due to nearly similar electronegativity.
- **2.** (a) Which one has highest and lowest melting point and why?

NaCl	KCI	RbCl	CsCl

- (b) Why melting points of cesium halide (CsX) decrease in the order given below ? CsF > CsCl > CsBr > CsI.
- Sol. (a) NaCl will have highest lattice energy on account of the smaller Na⁺ while CsCl has lowest lattice energy on account of the larger Cs⁺. Hence NaCl has highest melting point and CsCl has lowest melting point.

(b) As size of anions increase their polarisability increases thus their covalent character increases and melting point decrease.

- **3.** Which of the compounds $MgCO_3$ and $ZnCO_3$ is thermally more stable ? Explain.
- **Sol.** Mg⁺² has less polarising power due to inert gas configuration while Zn⁺² has higher polarising power due to pseudo inert gas configuration. A cation i.e. Zn²⁺ with a greater, polarising power exercise a strong pull on the electron cloud of the neighbouring O-atom of the CO₃²⁻ ion and as such the metal carbonate (ZnCO₃) gets readily decomposed into CO₂ and the oxide of the metal, ZnO. Thus ZnCO₃ is less stable than MgCO₃.
- 4. Why is anhydrous HCI predominantly covalent in the gaseous state but is ionic in aqueous solution?
- **Sol.** It exists as HCI (bond formed by equal sharing of electrons) but in aqueous solution ionises as H⁺ (or H_3O^+) and Cl⁻ due to polarity of HCI.
- 5. Which type of hybridisation is found in H_3O^+ ?
- Sol. According to steric no. rule

Steric number = Number of bond pair(s) + number of lone pair(s) at central atom

$$H \xrightarrow{\bullet \bullet}_{H} H^{+}$$
 So, steric number = 3 + 1 = 4.

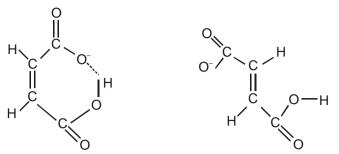
Thus the hybridisation of oxygen in H_3O^+ is sp³.

- 6. Which of the following will be strongest Lewis base ? (A) CH_3CN (B) CH_3NH_2 (C) N_2 (D) None of these
- **Sol.** (B) In $CH_3 NH_2$, hybridisation of N is sp³ while in $CH_3 CN$ hybridisation of N is sp. N_2 is also sp hybridised.

We know that in hybridisation, as s-character increases the electronegativity of atom also increases. Due to this tendency the release of lone pair of electrons becomes some what difficult. In methyl amine the nitrogen is in sp³ hybridisation and therefore the donation of the lone pair of electron will be quite easier; so it is strongest Lewis base.

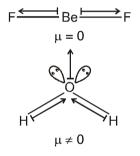
- 7. Which is **incorrect** statement?
 - (A) In $CF_2 = C = CF_2$ molecule all the four fluorine atoms are not in the same plane.

(B) Ka_2 of fumaric acid is more than Ka_2 of maleic acid due to intra molecular hydrogen bonding in maleic acid.


- (C) The O O bond length in $O_2[AsF_4]$ is longer than KO_2 .
- (D) The bond angle order in halogen S halogen is $OSF_2 < OSCI_2 < OSBr_2$
- Ans. (C)

Sol.

(A)
$$\underbrace{F_{z}}_{(s+p_x+p_y)} \underbrace{C}_{(s+p_x)} \underbrace{C}_{(s+p_x)} \underbrace{C}_{(s+p_x+p_y)} \underbrace{F}_{(s+p_x+p_y)} \underbrace{C}_{(s+p_x+p_y)} \underbrace{C}_{(s+p$$


As both carbon atoms are in different planes, all the four fluorine atoms are not in the same plane.

(B) maleic acid fumaric acid

Due to intramolecular hydrogen bonding the maleate ion gets stabilized and thus removal of second hydrogen becomes quite difficult.

- (C) $O_2[AsF_4] = O_2^+$ B.O = 2.5 $KO_2 = O_2^-$ B.O = 1.5 Bond order $\propto \frac{1}{bond length}$; so O_2^+ has smaller bond length than O_2^-
- (D) Greater the size of the halogen atoms greater will be the steric repulsions and thus larger will be the bond angles.
- 8. Why BeF₂ has zero dipole moment whereas H₂O has some dipole moment ?
- **Sol.** BeF_2 has linear molecule and H_2O has bent molecule.

- **9.** Why crystals of hydrated calcium sulphate are soft and easily cleaved where as anhydrous calcium sulphate are very hard and very difficult to cleave ?
- **Sol.** With in the Ca²⁺ / SO₄²⁻ layer the ions are held together by strong electrovalent bonds but these separated Ca²⁺ / SO₄²⁻ layers are linked by relative weak H–bond. The weak H-bonds link SO₄²⁻ ion in the intermediate region.
- **10.** Super oxides are coloured and paramagnetic why ?
- **Sol.** Super oxides contain one unpaired electron in anti bonding molecular orbital and are coloured due to transition of HOMO orbital electron within visible region.
- 11. Of the species O_2^+, O_2^-, O_2^- and O_2^{2-} which would have the maximum bond strength ?
- **Sol.** O_2^+ has higher bond order i.e. 2.5 than $O_2(2)$ and $O_2^-(1.5)$ and bond strength is directly proportional to bond order.
- **12.** A diatomic molecule has a dipole moment of 1.2 D. If its bond distance is equal to 1.0Å then the fraction of an electronic charge on each atom is :
- (A) 25% (B) 37% (C) 52% (D) 42% **Ans.** (A)

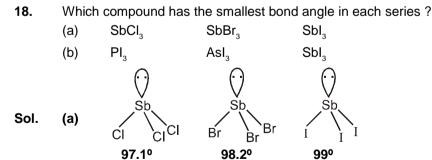
CHEMISTRY FOR NEET

Sol. Assuming complete charge transfer then dipole moment = $(4.8 \times 10^{-10} \text{ esu}) (10^{-8} \text{ cm}) = 4.8 \text{ D}$

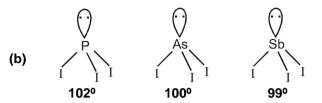
so % ionic character =
$$\frac{1.2}{4.8} \times 100 \% = 25\%$$

- **13.** The dipole moment of KCl is 3.336×10^{-29} Coulomb meter. The interionic distance in KCl is 2.6Å. Find the % ionic character in KCl.
- **Sol.** The theoretical dipole moment in KCI = e x d = $1.602 \times 10^{-19} \times 2.6 \times 10^{-10} = 4.1652 \times 10^{-29}$ C meter % ionic character = $\frac{\text{experimental dipole moment}}{\text{theoretical dipole moment}} \times 100 = (3.336 \times 10^{-29}/4.1652 \times 10^{-29}) \times 100$
- 14. The gaseous potassium chloride molecule has a measured dipole moment of 10.0 D, which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is 2.67 × 10⁻⁸ cm. Calculate the percentage ionic character in KCI molecule.
- Sol. Dipole moment of compound would have been completely ionic

so % ionic character = $\frac{10.0}{12.8}$ × 100% = 78.125 % \simeq 78% Ans.


15. CO forms weak bonds to Lewis acid such as BF₃. In contrast CO forms strong bonds to transition metals. Why explain ?

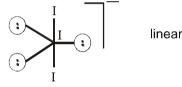
Sol. CO
$$\xrightarrow{\sigma}$$
 BF₃


Transition metal $\stackrel{\pi}{\longleftarrow}$ CO

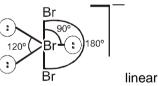
This is called synergic interaction and because of it the bond between CO and transition metal is stronger.

- **16.** $SnCl_4$ has melting point 15°C where as $SnCl_2$ has melting point 535°C. Why?
- **Sol.** According to Fajan's rule, as charge on cation increases its polarising power increases resulting in to the greater polarisation of anion. Thus covalent character increases and melting point decreases.
- 17. Inorganic benzene is more reactive than organic benzene. Why?
- **Sol.** Inorganic benzene $(N_3B_3H_6)$ contains polar covalent B N bonds while benzene (C_6H_6) contains non-polar covalent C–C bonds.

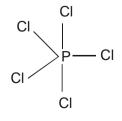
Cl, the most electronegative of the halogens in this series, pulls shared electrons the most strongly away from Sb, reducing electron density near Sb. The consequence is that the lone pair exerts the strongest influence on shape in $SbCl_3$.



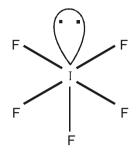
Phosphorus is the most electronegative of the central atoms. Consequently, it exerts the strongest pull on shared electrons, concentrating these electrons near P and increasing bonding pair-bonding pair repulsions–hence, the largest angle in PI_3 . Sb, the least electronegative central atoms, has the opposite effect : Shared electrons are attracted away from Sb, reducing repulsions between the Sb–I bonds. The consequence is that the effect of the lone pair is greatest in SbI₃, which has the smallest angle.


Atomic size arguments can also be used for these species. Larger outer atoms result in larger angles ; larger central atoms result in smallest angles.

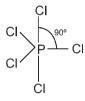
- **19.** Why NO_2^+ and I_3^- are linear species ?
- **Sol.** In NO₂⁺ the N has sp hybridisation ; so it is linear O = N = O


In I_3^- there are 5 electron pairs around central iodine atom (3 lone pairs and 2 bond pairs). The hybridisation of iodine is thus sp³d. To have minimum repulsions between lp-lp and lp-bp it acquires linear shape as shown below.

- **20.** Draw an electron dot structure for $Br_{3^{-}}$. Deduce an approximate value of the bond angle.
- **Sol.** In Br₃⁻ there are 5 electron pairs around central bromine atom (3 lone pairs and 2 bond pairs). The hybridisation of bromine is thus sp³d. To have minimum repulsions between lp-lp and lp-bp it acquires linear shape as shown below.



- **21.** PCI_5 has the shape of a trigonal bipyramidal where as IF_5 has the shape of square pyramidal. Explain.
- **Sol.** In PCI₅ there are 5 electron pairs around central phosphorus atom and all are bond pairs. The hybridisation of phosphorus is thus sp³d. To have minimum repulsions between bp-bp it acquires trigonal bipyramidal shape as shown below.



In IF₅ there are 6 electron pairs around central iodine atom. The hybridisation of iodine is thus sp³d.

6 electron pairs contain 5 bond pairs and one lone pair so it will be square pyramidal to have minimum repulsions between lp-bp and bp-bp.

- **22.** Why axial bonds of PCI_{5} are longer than equatorial bonds ?
- Sol. This is due to greater repulsion on the axial bond pairs by the equatorial bond pairs of electrons.

23. (b) NCl_5 is not possible but PCl_5 is possible. Why?

(c) $\mathsf{F}_{_3}{}^{_-}$ does not exist but $\mathsf{I}_{_3}{}^{_-}$, $\mathsf{Br}_{_3}{}^{_-}$ exist. Why ?

- (d) SCl₆ does not exist but SF₆ exists. Why ?
- **Sol.** (b) This is because of the absence of d-orbitals in nitrogen for sp^3d^2 hybridisation.
 - (c) Because of the absence of d-orbitals in fluorine it can not expand its covalency.
 - (d) Bigger size of chlorine can not be accommodated around sulphur atom because of steric crowding.