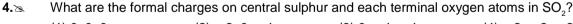
Exercise-1


Marked Questions may have for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

Section (A): Introduction to Bonding and Ionic bond

Jectin	on (A) introduction	i to Bollaing and lo	ilic bolid					
1.∖≥	An ionic bond A ⁺ B ⁻ is most likely to be formed when: (1) The ionization energy of A is high and the electron affinity of B is low (2) The ionization energy of A is low and the electron affinity of B is high (3) The ionization energy of A and the electron affinity of B is low (4) The ionization energy of A and the electron affinity of B is low							
2.>	Which forms a crystal of (1) NaCl molecules	of NaCl ? (2) Na⁺ and Cl⁻ ions	(3) Na and Cl atoms	(4) None of these				
3.≽	Two element have elec (1) predominantely ionic (3) co-ordinate	tronegativity of 1.2 and 3 c	3.0. Bond formed betwee (2) predominantely cova (4) metallic					
4. 🗷	Which of the following s (1) RbF	shows the highest lattice (2) CsF	energy ? (3) NaF	(4) KF				
5.>	Which of the following h	nave low lattice energy? (2) Cs – Cl	(3) Cs – Br	(4) Cs – I				
6.	When two atoms combine to form a stable molecule: (1) energy is released (2) energy is absorbed (3) energy is neither released nor absorbed (4) energy may either released or absorbed							
7.	Which condition favours the bond formation? (1) Maximum attraction and maximum potential energy (2) Minimum attraction and minimum potential energy (3) Minimum potential energy and maximum attraction (4) None of the above							
Section	on (B) : Covalent Bo	ond, Octet Rule and	l Coordinate Bond					
1.	(1) the number of unpair(2) the number of paire(3) the number of unpair	d d-electrons		ng 1st and 2nd period) :				
2.	Which of the following of (1) MgCl ₂	contains both electrovale (2) H ₂ O	nt and covalent bonds ? (3) NH ₄ Cl	(4) none				
3.🗷	The types of bond present (1) only covalent	ent in N ₂ O ₅ are : (2) only ionic	(3) ionic and covalent	(4) covalent & coordinate				
4.>	Example of super octet (1) SF ₆	molecule is : (2) PCI ₅	(3) IF ₇	(4) All of these				

CHEMISTRY FOR NEET **CHEMICAL BONDING** 5. The number of electrons involved in the bond formation in N₂ molecule is : (1)2(2)4(3) 10(4)6The octet rule is not obeyed in: 6. (3) PCI₂ (4) (2) and (3) both (1) CO₂ (2) BCI₂ For the formation of covalent bond the difference in the value of electronegativity should be : 7. (2) More than 1.7 (4) equal to or less than 1.7 (3) 1.7 or more 8. NH, and BF, combine readily because of the formation of : (1) a covalent bond (2) a hydrogen bond (3) a coordinate bond (4) an ionic bond The covalency of nitrogen in HNO3 is: 9.> (1) 0(3)4(4)5(2) 310. Which of the following species are hypervalent? 2. BF₃, 3. SO₄²⁻, 4. CO₃²⁻ 1. CIO₄-, (1) 1, 2, 3(2) 1, 3(3) 3, 4(4) 1, 211. Which of the following is the electron deficient molecule? $(1) C_2 H_6$ (2) SiH, (3) PH₂ (4) BeCl₂(g) Section (C): Lewis Structures, Formal Charge, Resonance 1. If the atomic number of element X is 7 the lewis diagram for the element is: (3) •X: (1) X• (2) • X : (4) : x : Which of the following Lewis diagram is incorrect? 2.3 (1) $Na^{+}[\overset{\cdot}{.}\overset{\cdot$ 3.≿ Which of the following structure is the most preferred structure for SO₂? (2) S (3) S S

- (1) 0, 0, 0
- (2) + 2, 0, -1
- (3) 0, -1, +1
- (4) + 2, + 2, + 2

- 5. Resonating structures have different:
 - (1) atomic arrangements

(2) electronic arrangements

(3) function groups

- (4) alkyl groups
- 6. Which among the following resonance structures of N₃- satisfies the octet rule but is ruled out as a resonance structure?
 - (I) $[: N = N = N :]^{-}$
- (II) $\begin{bmatrix} \vdots \dot{N} N \equiv N \end{bmatrix}$ (III) $\begin{bmatrix} \vdots N \equiv N \dot{N} \vdots \end{bmatrix}$ (IV) $\begin{bmatrix} \vdots \dot{N} = N \end{bmatrix}$

- (1) IV only
- (2) I and IV only
- (3) I only
- (4) II and III only

7.>

7.>	Which one in the follow	ving is not the resonating	g structure of CO ₂ :		
	$(1) O \equiv C = O$	(2) $O = C = O$	$(3) -O - C \equiv O^+$	$(4) + O \equiv C - O^{-}$	
8.	What is correct order of (1) $CIO_4^- > CIO_3^- > CIO_3^- < CIO_2^- < CIO_2$	=	nd. (2) CIO ⁻ < CIO ₂ ⁻ > CIO (4) CIO ₂ ⁻ < CIO ₃ ⁻ < CI	•	
9.	· · · =	stronger than single P-weaker than single P-P			
Secti	on (D) : V.B.T. and	Hybridisation			
1.	VBT is given by : (1) Hitler & london	(2) Pauling & Slater	(3) Hund & Muliken	(4) Huckel & Hund	
2.>	Number and type of both (1) one sigma (σ) and (3) one σ and one and	,	n atoms in CaC_2 are : (2) one σ and two π b (4) one σ bond	onds	
3.	The total number of σ	and π bonds in $C_2(CN)_{\!\scriptscriptstyle 4}$ a	are:		
	(1) 9 σ and 9 π	(2) 9 σ and 18 π	(3) 18 σ and 9π	(4) 18 σ and 18 π	
4.	Acetylene consists of : (1) both sigma and pi b (3) pi bond only		(2) sigma bond only (4) none of these		
5.∖≥	Number of bonds in S0 (1) two σ and two π (3) two σ , two π and or		(2) two σ and one π (4) none of these		
6.	The correct order towa (1) Bond angle does no (3) sp ² < sp < sp ³	ords bond angle is : ot depend on hybridisation	on.(2) sp $<$ sp ² $<$ sp ³ (4) sp ³ $<$ sp ² $<$ sp		
7.>	Which of the following (1) $sp < sp^2 < sp^3$	has been arranged in in (2) sp ³ < sp ² < sp	creasing order of % p-cl (3) sp ² < sp ³ < sp	naracter? (4) sp² < sp < sp³	
8.	Which is not true abou (1) Tetrahedral hybridis (3) Four sigma bonds	·	(2) 109.5° bond angle(4) One lone pair of electrons on carbon		
9.∖≥	Choose the molecules (1) BCl ₃ The correct answer is (1) 1, 2, 4	in which hybridisation o (2) NH ₃ (2) 1, 2, 3	ccurs in the ground state (3) PCl ₃ (3) 2, 3	e? (4) BeF ₂ (4) 3, 4	
10.>೩	In C—C bond C ₂ H ₆ und (1) sp ² both	dergoes heterolytic fission (2) sp³ both	on, the hybridisation of to (3) sp², sp³	wo resulting carbon atoms is a (4) sp, sp ²	

11. The hybridization in PF_a is:

- (1) sp³
- (2) sp²
- (3) dsp3
- (4) d²sp³

12. Which of the following compounds have bond angle as nearly 90°?

- (2) CO₂
- (3) H₂O
- (4) SF_a

13. sp² - hybridisation is shown by:

- (1) BeCl
- (2)) BF
- (3) NH
- (4) XeF

The hybridisation of carbon in diamond, graphite and acetylene is (respectively) -14.

- (1) sp³, sp², sp
- (2) sp3, sp, sp2
- (3) sp², sp³, sp
- (4) sp, sp³, sp²

15. The hybridization of the central atom in ICl₂⁺ is -

- (1) dsp²
- (2) sp
- $(3) sp^{2}$
- $(4) sp^{3}$

16.> Each carbon in carbon suboxide is:

(1) sp² - hybridized

(2) sp³-hybridized

(3) sp-hybridized

(4) sp²-hybridized but linked with one co-ordinate bond

17. In which of the following pairs hybridisation of the central atom is different?

- (1) CIF₃, CIF₃O
- (2) CIF₃O, CIF₃O₂
- (3) [CIF₂O]⁺, [CIF₄O]⁻
- (4) [CIF₄O]-, [XeOF₄]

Among the following pairs in which the two species are not isostructural is: 18.>

- (1) SiF, and SF,
- (2) IO, and XeO,
- (3) BH₄- and NH₄+
- (4) PF₆ and SF₆

Effective overlapping will be shows by: 19.

- (2) ⁽²⁾ + (2)
- (3) ⊕⊙+⊙⊕
- (4) All the above

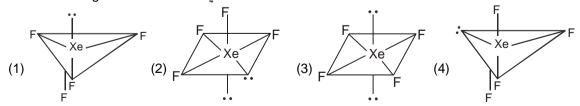
Section (E): VSEPR THEORY

1. Which among the following molecules have sp³d hybridisation with one lone pair of electrons on the central atom?

- (i) SF₄
- (ii) [PCI,]+
- (iii) XeO₂F₂
- (iv) CIOF₃

List I

(1) (i), (ii) and (iii) only (2) (i), (iii) and (iv) only (3) (i) and (iii) only


List II

- (4) (iii) and (iv) only

Match list I with List II and select the correct answer using the codes given below the lists. 2.

	(Com	pound)		(Shape)						
(1)	CS ₂			1. Bent						
(2)	SO_2			2. Linear	•					
(3)	$BF_{\scriptscriptstyle 3}$			3. Trigon	al planer					
(4)	NH_3			4. Tetrah	nedral					
	Ü			5. Trigon	al pyramidal					
	Code	:								
	(1)	(2)	(3)	(4)		(1)	(2)	(3)	(4)	
(1)	2	1	3	5	(2)	1	2	3	5	
(3)	2	1	5	4	(4)	1	2	5	4	

3. Which is the right structure of XeF,?

4.> In which of the following molecules number of lone pairs and bond pairs on central atom are not equal?

- (1) H₂O
- (2) I_3^-
- (3) O₂F₂
- (4) SCI₂

5. Which has the smallest bond angle (X - S - X) in the given molecules?

	(1) OSF ₂	(2) OSCI ₂		(3) OSE	Br ₂	(4) OSI ₂ .
6.	Consider the following i	odides :	PI ₃ 102°		AsI ₃ 100.2°	SbI ₃ 99°
	The bond angle is maxi (1) due to small size of (3) due to less electrone	phosphorus	h is :		to more bp-bp e of these	repulsion in PI ₃
7.>	Which one of the follow (1) CO ₂	ing species is no (2) CIO ₂	ot linear	? (3) I ₃ -		(4) NO ₂ ⁺
8.	The ion which is not tet (1) BF ₄ ⁻	rahedral in shape (2) NH ₄ +	e is :	(3) XeC) ₄	(4) ICI ₄ -
9.	The molecule/ion which (1) PCl ₃	has trigonal pyr (2) SO ₃	amidal s	shape is : (3) CO ₃		(4) NO ₃ -
10.>	Which of the following p (1) Cl ₂ O, H ₂ O	pairs of compoun	d has lir	near strue (3) OF ₂		(4) BeCl ₂ , CO ₂
11.>	CO ₂ is isostructure with (I) HgCl ₂ (II) SnC The correct answer is: (1) I, IV		2	(IV) C ₂ F	-	(4) I, II, III
12.	The pair having similar (1) BF ₃ , NH ₃			(3) BeF		(4) I, II, III (4) BCl ₃ , PCl ₃
13.≿	OF ₂ is (1) Linear molecule and (3) Bent molecule and s			(2) Tetrahedral molecule and sp³ hybridised (4) None of these		
14.	Structure of ICI-4 is: (1) trigonal (3) octahedral				orted trigonal bi are planar	pyramid
15.	The bond angle H – N -	- H in NH ₃ , NH ₄	and NH	l ₂ decrea	ases in the orde	er as :
	(1) $NH_2^- > NH_3 > NH_4^+$	(2) $NH_4^+ > NH_3$	> NH ₂	(3) NH ₃	$> NH_2^- > NH_4^+$	(4) $NH_3 > NH_4^+ > NH_2^-$
16.	Which is having highest (1) PCl ₃	t bond angle: (2) PBr ₃		(3) PF ₃		(4) PI ₃
17.১	109.5°?		wo lone		_	(need not be all bond angles) <
	(1) SF ₂	(2) KrF ₄		(3) ICl ₄	-	(4) All of these
18.	The correct order of bor (1) $H_2S < NH_3 < BF_3 < C$ (3) $H_2S < NH_3 < CH_4 < C$	CH ₄		Ū	< H ₂ S < CH ₄ < < CH ₄ < NH ₃ <	•
19.	In which of the following (1) NF ₃	g molecules are a	all the bo	onds not (3) BF ₃	equal?	(4) AIF ₃

20.১	Which of the following (1) $BF_4^- < BF_3$	is correct order of bond le (2) NO ₂ + < NO ₂ -	ength ? (3) CCl ₄ < CF ₄	(4) +CH ₃ > CH ₄		
Secti	on (F) : Molecular (Orbital Theory (MOT	Γ)			
1.	When two atomic orbit (1) two moleculear orb (3) three molecular orb		(2) one molecular orbit (4) four molecular orbit			
2.	During the formation of density is: (1) non zero in the nod (3) zero in the nodal pl	al plane	atomic orbitals of the sa (2) maximum in the no (4) zero on the surface	-		
3.১	Which one of the follow (1) H ₂ ⁺	ving can not exist on the (2) He ₂ ⁺	basis of molecular orbita (3) C ₂	I theory ? (4) He ₂		
4.>	Which of the following (1) B ₂	has fractional bond orde (2) O ₂ ²⁻	er ? (3) F ₂	(4) H ₂ -		
5.		g set, the values of bond (2) CN, NO ²⁺ , CN ⁻ , F ₂		- (4) O ₂ ²⁻ , O ₂ -, O ₂ +, O ₂		
6.	Among the following sp (1) B ₂	pecies, which has the min $(2) C_2$	nimum bond length?	(4) O ₂ -		
7.>	Number of antibonding (1) 4	electrons in N_2 is: (2) 10	(3) 12	(4) 14		
8.3	Pick out the incorrect s (1) N ₂ has greater diss (3) Bond length in N ₂ + i	ociation energy than N_2^+	-	wer dissociation energy than O_2^+ gth in NO $^+$ is less than in NO.		
9.		pairs have identical value (2) F_2 and Ne_2	es of bond order ? (3) O ₂ and B ₂	(4) C_2 and N_2		
10.🗷	A simplified application (1) 2	of MO theory to the hyp (2) 1.5	othetical 'molecule' OF v (3) 1.0	vould give its bond order as: (4) 0.5		
11.	Which of the following (1) NO-	species is paramagnetic (2) O ₂ ²⁻	? (3) CN-	(4) CO		
12.১	The following molecul Identify the correct ord (I) O_2 ; (II) O_2^- ; (III) O_2^- ; (IIII) O_2^- ; (III) O_2^- ; (III) O_2^- ; (III) O_2^- ; (III)	er. O ₂ ²⁻ ; (IV) O ₂ ⁺	arranged in the order $ (3) I I I I I I V < I $	of their increasing bond orders $ \mbox{(4) II} < \mbox{IIII} < \mbox{IV} $		
13.为	Which the following mo (I) O ₂ ⁺ ; (II) NO; (III) (1) (1) (I), (II) only	•	dentical bond order and s	same magnetic properties? (4) (I I) and (I I I) only		
14.	Negative bond order m (1) molecule is unstabl (3) molecule is neutral		(2) molecule is stable (4) none of them			

Section (G): Fajan's rule

1.	According to Fajan's rule (1) large cation and sma (3) large cation and large		avoured by : (2) small cation and larg (4) small cation and small	
2.>	Which one of the following (1) Pb ²⁺ , Br ⁻	ng conbination of ion will (2) Pb4+, Br-	have highest polarisation (3) Fe ²⁺ , Br ⁻	on ? (4) Fe³+, Br⁻
3.>	Correct order of covaler (1) $BeCl_2 < MgCl_2 < CaC$ (3) $BeCl_2 > MgCl_2 > CaC$		arth metal chloride in (2) $BeCl_2 < CaCl_2 < SrC$ (4) $SrCl_2 > BeCl_2 > CaC$	
4.	Which of the following is (1) $CCl_4 < BeCl_2 < BCl_3$ (3) $LiCl < BeCl_2 < BCl_3$		ovalent character ? (2) LiCl < CCl ₄ < BeCl ₂ (4) LiCl < BeCl ₂ < CCl ₄	· ·
5.	Least melting point is sh (1) PbCl ₂	nown by the compound : (2) SnCl ₄	(3) NaCl	(4) AICI ₃
6.>	Which is most ionic acce (1) AIF ₃	ording to Fajan's rule?: (2) Al ₂ O ₃	(3) AIN	(4) Al ₄ C ₃
7. 🖎	In which of the following (1) NaCl	compound the cation ha	as pseudo inert gas confi (3) CuCl	guration? (4) CaCl ₂
8.	• •	ers to cation.		nore Ionic.
9.	Which of the following p (1) Na and F	air of elements form a co	ompound with maximum (3) Na and Br	ionic character ? (4) Cs and I
10.	Which one of the following (1) B and Cl_2	ng pairs of elements is n (2) K and O ₂	nost likely to form an ioni (3) O_2 and Cl_2	c compound? (4) Al and I ₂
11.	Among Na ⁺ , Mg ²⁺ and A (1) Al ³⁺ > Mg ²⁺ > Na ⁺	I^{3+} , the correct order of ea (2) Na ⁺ > Mg ²⁺ > A I^{3+}	ase of formation of ionic (3) Mg ²⁺ > Al ³⁺ > Na ⁺	compounds is : (4) $AI^{3+} > Na^+ > Mg^{2+}$
Section	on (H) : Polarity of E	Bond / Dipole Mome	ent, Hydrolysis and	back bonding
1.	Which hydrogen is most (1) LiH	t polar ? (2) CsH	(3) HF	(4) HI
2.	The most polar bond is (1) C – H	: (2) N – H	(3) S – H	(4) O – H
3.	Which has maximum dip	pole moment ?		
	(1)	(2) 	(3)	(4) ←→
4.>	Of the following molecul (1) SiF ₄	les, the one, which has p (2) BF_3	ermanent dipole momen (3) PF ₃	nt, is : (4) PF ₅
5.	Which of the following h (1) NF ₃	as the least dipole mome (2) SO ₃	ent ? (3) XeO ₃	(4) NH ₃

6. ≽	Among the following c (1) H ₂ CO ₃	ompounds the one that is (2) SiF ₄	s polar and has central a (3) BF ₃	tom with sp³ hybridisation is : (4) HClO ₂			
7.	•	the given molecules are (2) $NF_3 > BF_3 > NH_3$		(4) NH ₃ > BF ₃ > NF ₃			
8.	The correct order of di (1) $CH_4 < NF_3 < NH_3 <$ (3) $NH_3 < NF_3 < CH_4 <$	H ₂ O	(2) NF ₃ < CH ₄ < NH ₃ < (4) H ₂ O < NH ₃ < NF ₃ <	-			
9.🗷	Carbon tetrachloride h (1) its planar structure (3) similar sizes of car		(2) its regular tetrahed	ral structure inities of carbon and chlorine			
10.>	The molecules which I	has zero dipole moment i (2) PCI ₃	is : (3) XeF ₄	(4) CHCl ₃			
11.	The dipole moment of character in the H–CI (1) 60%		bond distance is 1.26 Å	what is the percentage of ionic (4) 17%			
12.>		can not be completely hy	. ,	, ,			
13.	Which is the true statement about (SiH ₃) ₃ N ? (1) It is trigonal planar. (2) It is trigonal pyramidal. (3) It is stronger lewis base than that of (CH ₃) ₃ N. (4) It has a total of 9 sigma bonds.						
14.8	Which of the following (1) SOCl ₂	would be expected to ha (2) OF ₂	ive a dipole moment of z (3) SeF ₆	tero on the basis of symmetry? (4) CIF ₅			
15.34	(1) Lone pair of eleme(2) Dipole moment is v(3) PF₅ (g) molecule h	are incorrect for dipole notes present on central atometer quantity as non zero dipole mome conegativities of combining	om can give rise to dipolent				
Secti	on (I) : Hydrogen b	onding					
1.🔈	(1) it is a strong acid	is very viscous because : (2) it is tribasion which are bonded by ma	acid (3) it i	s hygroscopic			
2.	Which of the following (1) HF	is least volatile? (2) HCl	(3) HBr	(4) HI			
3. ≽	Which one of the follow (1) H ₂ O Which of the following	wing does not have interr (2) o-nitro phenol	molecular H-bonding ? (3) HF	(4) CH ₃ COOH			
4.>	(1) CH ₄	(2) H ₂ Se	(3) N ₂ H ₄	(4) H ₂ S			
5.	Which compound have (1) NH ₃	e lowest B.P. (2) H ₂ O	(3) H ₂ S	(4) HF			
6.	Hydrogen bonding wo	uld not affect the boiling (2) NH	point of :	(4) H O			

7.>	Which of the following (1) HF	compound has maximur (2) PH ₃	n number of H-bonds per $(3) H_2O$	mole ? (4) OF ₂
8.>	(1) water has higher m(2) hydrogen sulphide(3) water molecular as:	· ·	n bonding	
9.>	Which of the following	compounds would have HF, CH ₃ OH, N ₂ O ₄ , CH	significant intermolecular ${\sf I}_{\!\scriptscriptstyle A}$	hydrogen bonding?
	(1) HF, N ₂ O ₄	(2) HF, CH ₄ , CH ₃ OH	(3) HF, CH ₃ OH	(4) CH ₃ OH, CH ₄
10.≿	H-bonding is maximum (1) C_6H_5OH	n in (2) C ₆ H ₅ COOH	(3) CH ₃ CH ₂ OH	(4) CH ₃ COCH ₃
11.	false.	er temperature than HCI temperature than HI is less than N ₂ +		if statement is true and F if it is (4) TTTT
12.	Which of the following (1) CsF	has minimum melting po (2) HCl	oint (3) HF	(4) LiF
13.3	(I) It has high boiling po(II) There are two types(III) pπ-dπ bonding bet	ement for the sulphuric a oint and viscosity. s of bond lengths in its b ween sulphur and oxyge ame hybridisation that is (2) II, III and IV only	ivalent anion. n is observed. of boron in diborane.	(4) III and IV only
14.	Which of the following (1) HF	is least volatile ? (2) HCl	(3) HBr	(4) HI
Secti	on (J) : Intermolecu	ular forces		
1.	Which of the following (1) H ₂	has the highest boiling p (2) Ne	oint? (3) Xe	(4) CH ₄
2.>	Among the following determing the melting (1) ICI		lipole attraction does no	ot play most important role in (4) CO
3.≥	iodine is a solid. This is (1) The specific heat is	s because : in the order $Cl_2 > Br_2 > l$ es among molecule of ch y is $l_2 > Br_2 > Cl_2$	2	gas, bromine is a Liquid and
4.>	Which of the following (1) metallic bonding	models best describes th	ne bonding within a layer (2) ionic bonding	of the graphite structure ?

(3) non-metallic covalent bonding

(4) van der Waals forces

5. Among the following, van der Waals forces are strongest in :

(1) HBr

(2) LiBr

(3) LiCI

(4) AgBr

6. Which of the following bonds/forces is weakest?

(1) Covalent bond

(2) Ionic bond

(3) Metallic bond

(4) London force

7. Iron is harder than sodium because:

(1) iron atoms are smaller.

(2) iron atoms are more closely packed.

(3) metallic bonds are stronger in sodium.

(4) metallic bonds are stronger in iron.

8.≥ Which of the following is false?

(1) Van der Waals forces are responsible for the formation of molecular crystals.

(2) Branching lowers the boiling points of isomeric organic compounds due to reduction in the van der Waals force of attraction.

(3) In graphite, van der Waals forces act between the carbon layers.

(4) Boiling point of NH₃ is greater than SbH₃.

Exercise-2

1. To which of the following species is the octet rule applicable?

(1) BrF₅

(2) SF₆

(3) IF₂

(4) CO₂

2. In which of the following will have highest hydration?

(1) Rb+

(2) Cs+

(3) Na+

(4) K⁺

3. If a molecule X₂ has a triple bond, then X will have the electronic configuration:

 $(1) 1s^2 2s^2 2p^5$

 $(2) 1s^22s^22p^3$

(3) 1s²2s¹

 $(4) 1s^22s^22p^1$

4.> Which of the following does not contain coordinate bond?

(1) BH₄-

(2) NH₄+

(3) CO₂²-

(4) H₃O+

5. Which of the following is electron deficient compounds?

(1) NaBH₄

(2) $B_{2}H_{6}$

 $(3) A|_{2}CI_{6}$

(4) LiAIH₄

6. The species which is diamagnetic is:

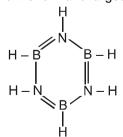
(1) NO

(2) NO₂

(3) CIO₂

(4) N₂O₄

7. N_2O is isoelectronic with CO_2 and N_3^- , which is the structure of N_2O ?

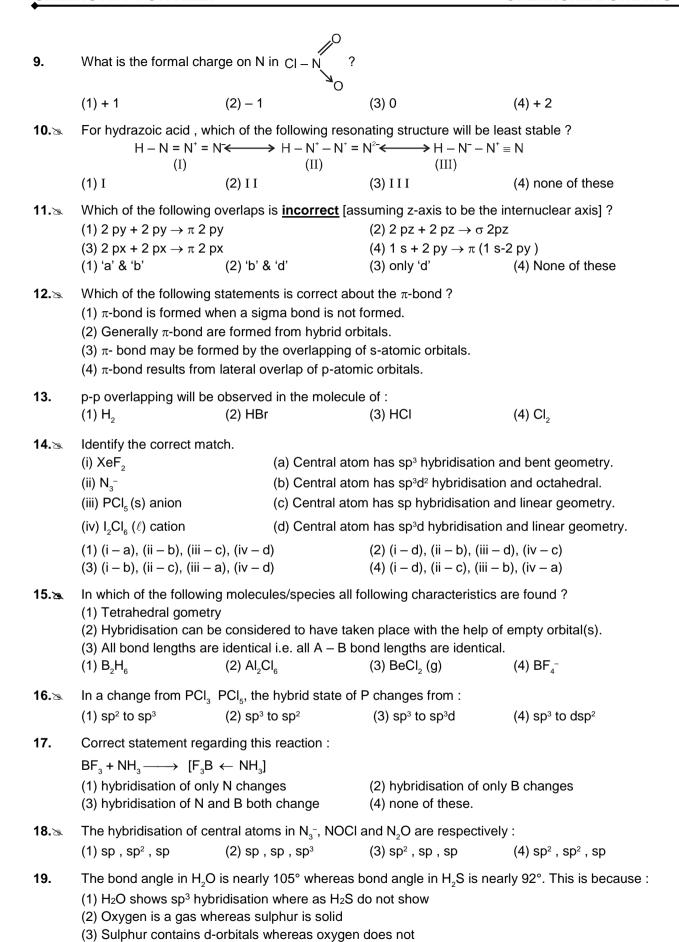

 $(1) \, \dot{N} = \bar{N} = 0$

(2) N-O-N

(3) N O

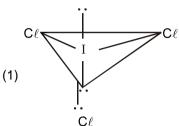
(4) $N \equiv N \rightarrow \ddot{O}$:

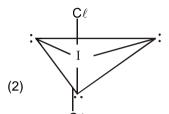
8. What are the formal charges on B and N respectively in the given structure?

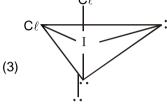


(1) -1, +1,

(2) + 1, -1


(3) - 2, + 2


(4) 0, 0



- (4) The number of lone pairs present on oxygen and sulphur is not equal
- 20. The shape of O₂F₂ is similar to:
 - (1) C₂F₂
- (2) H₂O₂
- (3) H₂F₂
- $(4) C_{2}H_{2}$

21. The structure of $IC\ell_2^+$ would be :

- (4) None of these
- 22. In which of the following compounds B-F bond length is shortest?
 - (1) BF₄
- (2) $BF_3 \leftarrow NH_3$
- (3) BF₂
- (4) $BF_3 \leftarrow N(CH_3)_3$
- Which of the following statement is false for trisilylamine? 23.
 - (1) Three sp² orbitals are used for σ bonding, giving a plane triangular structure.
 - (2) The lone pair of electrons occupy a p-orbital at right angles to the plane triangle and this overlaps with empty p-orbitals on each of the three silicon atoms resulting in π bonding.
 - (3) The N-Si bond length is shorter than the expected N-Si bond length.
 - (4) It is a weaker Lewis base than trimethyl amine.
- 24. The structure of $IO_2F_2^-$ is analogous to :
 - (1) SF₄
- (2) XeO₂F₂
- (3) F₂SeO₂
- (4) (1) and (2) both
- The correct order of increasing X-O-X bond angle is (X=H, F or CI): 25.

 - (1) $H_2O > Cl_2O > F_2O$ (2) $Cl_2O > H_2O > F_2O$ (3) $F_2O > Cl_2O > H_2O$ (4) $F_2O > H_2O > Cl_2O$

- 26. Incorrect order about bond angle is:
 - (1) H₂O > H₂S > H₂Se > H₂Te

(2) $C_2H_2 > C_2H_4 > CH_4 > NH_2$

(3) $SF_6 < NH_3 < H_2O < OF_2$

- (4) $CIO_2 > H_2O > H_2S > SF_6$
- 27. The ONO angle is maximum in:
 - (1) HNO₃
- (2) NO₂+
- (3) HNO₂
- (4) NO₂

- 28. Which of the following statement is incorrect?
 - (1) During N_2^+ formation, one electron is removed from the bonding molecular orbital of N_2 .
 - (2) During O₂+ formation, one electron is removed from the antibonding molecular orbital of O₂.
 - (3) During O₂- formation, one electron is added to the bonding molecular orbitals of O₃.
 - (4) During CN- formation, one electron is added to the bonding molecular orbitals of CN.
- 29. According to Molecular orbital theory which of the following is correct?
 - (1) LUMO level for C_2 molecule is σ_{2p_2} orbital
- (2) In C_2 molecules both the bonds are π bonds
- (3) In C_2^{2-} ion there is one σ and two π bonds
- (4) All the above are correct

- 30. Which of the following species will have the minimum bond energy? (4) N_2^{2-} $(1) N_{2}$ (2) $N_2^ (3) N_2^+$ 31.> Which of the following statements is correct about N₂ molecule? (1) It has a bond order of 3 (2) The number of unpaired electrons present in it is zero and hence it is diamagnetic (3) The order of filling of MOs is $\pi(2px) = \pi(2py)$, $\sigma(2pz)$ (4) All the above three statements are correct 32. Among the following which one will have the largest O - O bond length? $(3) O_3^+[AsF_6]^-$ (4) K₂O₂ (1) KO₂ $(2) O_{2}$ The correct order in which the O-O bond length increases in the following is: 33.3 $(3) O_2 < O_3 < H_2O_2$ $(1) H_2O_2 < O_2 < O_3$ $(2) O_{2} < H_{2}O_{2} < O_{3}$ $(4) O_3 < H_2O_2 < O_3$ 34. Which of the following is a wrong order with respect to the property mentioned against each? (1) $O_2^{2-} > O_2 > O_2^+$ [Paramagnetic moment] $(2) (NO)^{-} > (NO) > (NO)^{+} [bond length]$ (3) $H_2 > H_2^+ > He_2^+$ [bond energy] (4) $NO_2^+ > NO_2^- > NO_2^-$ [bond angle] Which of the following option with respect to increasing bond dissociation energies is correct? 35. (1) NO $< C_2 < O_2^- < He_2^+$ (2) $C_2 < NO < He_2^+ < O_2^-$ (3) $He_2^+ < O_2^- < NO < C_2^-$ (4) $He_2^+ < O_2^- < C_2 < NO$ 36. In which of the following compounds B atoms are in sp² and sp³ hybridisation states? (2) Diborane (3) Borazole (4) All (1) Borax 37. Which of the following statements is true? (1) The dipole moment of NF3 is zero (2) The dipole moment of NF, is less than NH, (3) The dipole moment of NF₃ is more than NH₃ (4) The dipole moment of NH₃ is zero 38. The correct order of the viscosity in the following compounds in liquid state is: CH₂OH CH,OH CHOH CH₃OH(ℓ) ĊH₂OH(ℓ) **(I)** $CH_2OH(\ell)$ (II)(III)(1) | > | > | |(2) |I| > I > I(3) |I| > |I| > I(4) | > | | > | |39. The boiling point of p-nitrophenol is higher than that of o-nitrophenol because : (1) NO₂ group at p-position behaves in a different way from that at o-position (2) intramolecular hydrogen bonding exists in p-nitrophenol (3) there is intermolecular hydrogen bonding in p-nitrophenol (4) p-nitrophenol has a higher molecular weight than o-nitrophenol 40. The decreasing order of the boiling points of the following hybrides is
- 41. The boiling point of ICI is nearly 40°C higher than that of Br₂ although the two substance have the same relative molecular mass. This is because :

(2) (v) > (i) > (ii) > (iii) > (iv)

(4) (iv) > (iii) > (i) > (ii) > (v)

(i) NH₃, (ii) PH₃, (iii) AsH₃ (iv) SbH₃, (v) H₂O

(1) (v) > (iv) > (i) > (iii) > (ii)

(3) (ii) > (iv) > (iii) > (i) > (v)

	(2) I–Cl bond is stronger(3) ICl is polar covalent(4) Ionization energy of	molecule while Br ₂ is no		
42.	The nature of intermolection (1) dipole dipole attraction (3) ion dipole attraction		zene (C ₆ H ₆) molecules is (2) london dispersion fo (4) hydrogen bonding	
43.	The correct order of inci (1) $SiCl_4 > AICl_3 < CaCl_3$ (3) $AICl_3 < CaCl_2 < KCl_3$, < KCl	ter of the following is : (2) KCI < $CaCI_2$ < $AICI_3$ (4) None of these	< SiCl ₄
44.	The type of hybrid orbita (1) sp, sp ² , sp ³ and sp ³ d (3) only sp ³		n in CIO ⁻ , CIO ₂ ⁻ , CIO ₃ ⁻ a (2) sp and sp ³ (4) only sp	nd CIO₄⁻is / are :
45.∖≥	Which of the following m (1) BF ₃	nolecules is trigonal bipy (2) CH ₄	rramidal? (3) PCI ₅	(4) SF ₆
46.≿	cation or anion is	•		ning to oxygen molecule and its $(4) O2+ > O2 > O2- > O22-$
47.	The bond order of HeH (1) 3/2	† is : (2) 1	(3) 1/2	(4) 2
48. 🖎	Which statement is true (1) The boiling point of c (2) Diethyl ether have d (3) Diethyl ether is highl (4) Diethyl ether is Lewi	diethyl ether and $C_2H_5OH_5$ ipole moment. y soluble in water.	∃ is equal.	
49.≿	Density of ice is less that (1) presence of Van der (2) crystal modification (3) open porous cage like (4) different physical state.	Wall interaction. of ice. se structure of ice due to		
50.	NH ₃ has a much higher (1) NH ₃ forms hydrogen (2) NH ₃ has a larger mo (3) NH ₃ undergoes umb (4) NH ₃ contains ionic be	bond. lecular weight. rella inversion.		
51.	Among the following, the (1) Na ₂ O ₂	e paramagnetic compou (2) O ₃	nd is : (3) N ₂ O	(4) KO ₂
52.	The percentage of p-cha(1) 25	aracter in the orbitals for (2) 33	rming P – P bonds in P_4 i (3) 50	s : (4) 75
53.≿	Assuming that Hund's ris: (1) 1 and diamagnetic	ule is violated, the bond	order and magnetic nat (2) 0 and diamagnetic	ure of the diatomic molecule B ₂

(3) 1 and paramagnetic

- (4) 0 and paramagnetic
- 54. Assuming 2s-2p mixing is **NOT** operative, the paramagnetic species among the following is:
 - (1) Be₂
- (2) B₂
- $(3) C_{2}$
- $(4) N_{2}$
- 55. Arrange the following in the increasing order of deviation from normal tetrahedral angle:
 - (1) $P_4 < PH_3 < H_2O$
- (2) $PH_3 < H_2O < P_4$
- (3) $P_4 < H_2O < PH_3$
- $(4) H_2O < PH_2 < P_4$
- 56. Which compound among the following has least ionic character?
 - (1) AICI,
- (2) AII,
- (3) MgI₂
- (4) CsI
- is 1.5 D. The dipole moment of 57. The dipole moment of
 - (1) 0 D
- (2) 1.5 D
- (3) 2.86 D
- (4) 2.25 D
- 58. Which of the following compound has Zero dipole moment -
 - (1) PCI₃
- (2) PCI₂F₃
- (3) PCI₃F₂
- (4) PCIF₄

Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

- 1. The correct order of C-O bond length among CO, CO₃²⁻ and CO₂ is:
- [AIPMT 2007]
- (1) $CO_2 < CO_3^{2-} < CO$ (2) $CO < CO_3^{2-} < CO_2$ (3) $CO_3^{2-} < CO_2 < CO_3^{2-}$

- $(4) CO < CO_3 < CO_3^{2-}$
- In which of the following pairs, the two species are isostructural? 2.

[AIPMT 2007]

- (1) SF₄ and XeF₄
- (2) SO₃²⁻ and NO₃⁻
- (3) BF₃ and NF₃
- (4) BrO₃⁻ and XeO₃
- The angular shape of ozone molecule (O₂) consists of 3.

[AIPMT 2008]

(1) 1 sigma and 2 π bonds

(2) 2 sigma and 1 π bonds

(3) 1 sigma and 1 π bonds

- (4) 2 sigma and 2 π bonds
- The correct order of increasing bond angles in the following triatomic species is 4.>
- [AIPMT 2008]

 $(1) NO_{2}^{-} < NO_{2}^{+} < NO_{2}^{-}$

 $(2) NO_{2}^{-} < NO_{2} < NO_{2}^{+}$

 $(3) NO_2^+ < NO_2 < NO_2^-$

- $(4) NO_2^+ < NO_2^- < NO_2^-$
- 5. Four diatomic species are listed below in different sequences. Which of these presents the correct order of their increasing bond order? [AIPMT 2008]
 - (1) $O_2 < NO < C_2^{2-} < He_2^{+}$

(2) NO $< C_2^{2-} < O_2^{-} < He_2^{+}$

(3) C_2^{2-} < He_2^+ < NO < O_2^-

- (4) $He_2^+ < O_2^- < NO < C_2^{2-}$
- According to MO theory which of the following lists rank the nitrogen species in terms of increasing 6. bond order? [AIPMT 2009]
 - (1) $N_2^- < N_2 < N_2^{2-}$

- (2) $N_2^{2-} < N_2^{-} < N_2$ (3) $N_2 < N_2^{2-} < N_2^{-}$ (4) $N_2^{-} < N_2^{2-} < N_2$
- 7. In the case of alkali metals, the covalent character decreases in the order
- [AIPMT 2009]

(1) MCI > MI > MBr > MF

(2) MF > MCI > MBr > MI

(3) MF > MCI > MI > MBr

- (4) MI > MBr > MCI > MF
- 8.3 In which of the following molecules/ions BF₃, NO₂-, NH₂- and H₂O, the central atom is sp² hybridised ?
 - [AIPMT 2009]

- (1) NO_2 and NH_2
- (2) NH_2^- and H_2O
- (3) NO_2 and H_2O
- (4) BF₃ and NO₂-

9.>	What is the dominant to a gas? (1) Hydorgen bonding (3) Covalent bonds	intermolecular force on l	(2) Dipole-dipole intera (4) London dispersion f	ction	ing liquid CH ₃ OH [AIPMT 2009]					
10.	In which of the following	g pairs of molecules/ions	s, the central atoms have	sp² hybridizati	on ? [AIPMT 2010]					
	(1) NO_2^- and NH_3	(2) BF_3 and NO_2^-	(3) NH_2^- and H_2O	(4) BF_3 and N	IH ₂ -					
11.🗷	Which one of the follow (1) Be ₂ ⁺	ving species does not ex (2) Be ₂	ist under normal conditio (3) B ₂	ns ? (4) Li ₂	[AIPMT 2010]					
12.	The correct order of ine (1) $Cl_2O < ClO_2 < ClO_2$ (3) $Cl_2O < ClO_2^- < ClO_2$	-	the following species are (2) $CIO_2 < CI_2O < CIO_2^-$ (4) $CIO_2^- < CI_2O < CIO_2^-$	-	[AIPMT 2010]					
13.১	Which one of the follow (1) KO ₂	ving compounds is a per (2) BaO ₂	oxide ? (3) MnO ₂	(4) NO ₂	[AIPMT 2010]					
14.	Which one of the follow (1) NH ₃	ving molecular hydrides (2) H ₂ O	acts as a Lewis acid? (3) B ₂ H ₆	(4) CH ₄	[AIPMT 2010]					
15.>	The tendency of BF ₃ , E	The tendency of BF ₃ , BCl ₃ and BBr ₃ to behave as Lewis acid decreases in the sequence :								
	(1) BCl ₃ > BF ₃ > BBr ₃	(2) BBr ₃ > BCl ₃ > BF ₃	(3) BBr ₃ > BF ₃ > BCl ₃	(4) BF ₃ > BCl	[AIPMT 2010] 3 > BBr ₃					
16.>	Among the following w (1) CsI	hich one has the highest (2) CsF	cation to anion size ratio	o? (4) NaF	[AIPMT 2010]					
17.	In which of the followin	g molecules, the central (2) SF ₄	atom does not have sp ³ (3) BF ₄ ⁻	hybridization? (4) NH ₄	[AIPMT 2010]					
18.>	How many bridging ox 2010]	ygen atoms are present	in P ₄ O ₁₀ ?		[AIPMT					
	(1) 6	(2) 4	(3) 2	(4) 5						
19.	Some of the properties correct?	ch one of them is [AIPMT 2010]								
	(1) Dissimilar in hybridi(2) Isostructural with sa(3) Isostructural with di(4) Similar in hybridiation									
20.	Which of the following (1) O_2^+	has the minimum bond $(2) O_2^-$	ength ? (3) O ₂ ²⁻	(4) O ₂	[AIPMT 2011]					
21.>	hybridization of orbitals	$^{\circ}$, NO_{2}^{-} , NO_{3}^{-} , NH_{2}^{-} , NH_{4}^{+}	w that have the geometry r, SCN-? (3) SCN- and NH ₂ -		[AIPMT 2011]					
22.	_	is least likely to behave a	_	(4) OH-	[AIPMT 2011]					
23.	Name the type of the s		ch one oxygen atom of [S (2) Sheet silicate	SiO ₄] ⁴⁻ is shared	d? [AIPMT 2011]					

(3) $C_2^{2-} < He_2^+ < O_2^- < NO$

(3) Pyrosilicate (4) Three dimensional The correct order of increasing bond length of C-H, C-O, C-C and C=C is: [AIPMT 2011] 24. (1) C-H < C=C < C-O < C-C(2) C-C < C=C < C-O < C-H(3) C-O < C-H < C-C < C=C (4) C-H < C-O < C-C < C=C25.> Which of the following structures is the most preferred and hence of lowest energy for SO₃? [AIPMT 2011] The pairs of species of oxygen and their magnetic behaviours are noted below. Which of the following 26. presents the correct description? [AIPMT 2011] (2) O_2^+ , O_2^{2-} – Both paramagnetic $(1) O_2^-, O_2^{2-}$ - Both diamagnetic (4) O_2 , O_2^{2-} – Both paramagnetic $(3) O_2^+, O_2$ - Both paramagnetic 27. Which one of the following pairs is isostructural (i.e. having the same shape and hybridization)? [AIPMT 2012] (3) [NF₃ and BF₃] (1) [BCl₂ and BrCl₂] (2) [NH₂ and NO₋₂] (4) $[BF_4^- \text{ and } NH_4^+]$ 28. Bond order of 1.5 is shown by: [AIPMT 2012] (3) O_{2}^{2} $(1) O_{2}^{+}$ Which of the following statements is not valid for oxoacids of phosphorus? [AIPMT 2012] 29. (1) Orthophosphoric acid is used in the manufacture of triple superphosphate (2) Hypophosphorous acid is a diprotic acid (3) All oxoacids contain tetrahedral four coordinated phosphorus (4) All oxoacids contain atleast one P=O unit and one P-OH group 30. Which of the following species contains three bond pairs and one lone pair around the central atom? [AIPMT 2012] (1) H₂O (4) PCI₂ (2) BF₂ (3) NH₂-31. The pair of species with the same bond order is: [AIPMT 2012] (3) NO, CO (4) N₂, O₂ $(1) O_2^{2-}, B_2$ $(2) O_{2}^{+}, NO^{+}$ 32. During change of O_2 to O_2^- ion, the electron adds on which one of the following orbitals? [AIPMT 2012] (3) σ^* orbital (4) σ orbital (1) π^* orbital (2) π orbital 33. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing [AIPMT 2012] (1) $NO < O_2^- < C_2^{2-} < He_2^+$ (2) $O_2^- < NO < C_2^{2-} < He_2^+$

Which one of the following molecules contains no π bond? 35. [NEET 2013] (4) CO₂ (1) H₂O (2) SO₂ (3) NO₂

(4) $He_2^+ < O_2^- < NO < C_2^{2-}$

36. Which of the following is a polar molecule? [NEET 2013] (1)
$$SF_4$$
 (2) SiF_4 (3) XeF_4 (4) BF_3

49.

37.	Which of the follo (1) O ₂ -	owing is paramagne (2) CN-	tic?	(3) NO+	(4) CO	[NEET 2013]
38.≿	XeF ₂ is isostructu (1) ICl ₂ -	ural with : (2) SbCl ₃		(3) BaCl ₂	(4) TeF ₂	[NEET 2013]
39.	Dipole-induced d (1) Cl ₂ and CCl ₄	lipole interactions ar (2) HCl and	-		owing pairs : atoms (4) H ₂ O and	[NEET 2013] alcohol
40.>	Which of the follo (1) CO ₂	owing molecules had (2) CH ₄		um dipole momer (3) NH ₃	nt ? (4) NF ₃	[AIPMT 2014]
41.	Which one of the (1) N ₃ ⁻	following species h (2) NO ₃ -	-	ngular shape ? (3) NO ₂	(4) CO ₂	[AIPMT 2014]
42.>		forder in the following force (2) $O_2^+ < O_2^-$			$(4) O_2^{2+} < O_2^+$	$\begin{array}{c} \hbox{[AIPMT 2015]} \\ < O_2^- \end{array}$
43.	Which of the follo (1) CIO ₃ -,CO ₃ ²⁻	owing pairs of ions a $(2) SO_3^{2-},NC$		ic and isostructu (3) CIO ₃ ,SO ₃ ²⁻	ral ? (4) CO ₃ -,SC	[AIPMT 2015]
44.	Maximum bond a	angle at nitrogen is particular (2) NO ₂ +		nich of the followi (3) NO_3^-	ng ? (4) NO ₂	[AIPMT 2015]
45.>	Which of the follo	owing species conta (2) (CN) ₂	-	mber of σ -and π - (3) $CH_2(CN)_2$	bonds ? (4) HCO ₃ -	[AIPMT 2015]
46.	Predict the correct order among the following: (1) lone pair – bond pair > bond pair – bond pair > lone pair – lone pair (2) lone pair – lone pair > lone pair – bond pair > bond pair – bond pair (3) lone pair – lone pair > bond pair – bond pair > lone pair – bond pair (4) bond pair – bond pair > lone pair – lone pair > lone pair – lone pair					
47.	(1) The H–C–H b (2) The H–C–H b all greater than 9 (3) Then H–O–H	·	larger than to the H–N–H books is larger than	he H–N–H bond angle in NH_3 in the H–C–H bond	angle is NH_3 and the H – O – H bond dangle in CH_4	[NEET-1 2016] d angle in H ₂ O are
48.	Match the compethe correct option Column (a) XeF ₆	n. [Ch	emical Bone Columr	ding]	d shape given in co	olumn II and mark [NEET-1 2016]

Which one of the following compounds shows the presence of intramolecular hydrogen bond?

	(1) Concentrated ace (3) HCN	tic acid	(2) H ₂ O ₂ (4) Cellulose		[NEET-2 2016]		
50.	The hybridizations of (1) sp ² , sp and sp ³ (3) sp ² , sp ³ and sp	atomic orbitals of nitr	ogen in NO_2^+,NO_3^- and (2) sp, sp ³ and sp (4) sp, sp ² and sp	O^2	e [NEET-2 2016]		
51.	Which of the following (1) CIO_3^-,SO_3^{2-}		ectronic and isostructure (3) ClO ₃ ⁻ ,CO ₃ ²⁻	al ? (4) SO ₃ ²⁻ ,CO	[NEET-2 2016]		
52.	The correct geometry (1) square planar, sp ³ (3) trigonal bipyramid	d^2	XeF ₄ are - (2) Octahydral, s (4) planar triangle		[NEET-2 2016]		
53.	Among the following, (1) I_3^+ has bent geom (3) $p\pi$ -d π bonds are p	etry.	(2) PH ₅ and BiCl ₅	do not exist. have same shape.	[NEET-2 2016]		
54.	Which of the following (1) CO	species is not parar (2) O ₂	nagnetic? (3) B ₂	(4) NO	[NEET 2017]		
55.	In the structure of CIF (1) one	3, the number of lone (2) Three	e pairs of electrons on ce (3) four	etral atom 'Cl' is : (4) two	[NEET 2018]		
56.	Consider the following CN+, CN-, NO Which one of these w (1) NO	and CN	ond order? (3) CN+	(4) CN⁻	[NEET 2018]		
	PART -	II : AIIMS QUI	ESTION (PREVIO	OUS YEARS)			
1.	The number of P–O-respectively: (1) 6, 6	P bonds in the structure (2) 5, 5	cture of phosphorus per	ntaoxide and phospl	norus trioxide are [AIIMS 2005]		
2.	In diborane, the two F	I — B — H angles ar	e nearly :	, ,	[AIIMS 2005]		
3.	(1) 60°, 120° (2) 95°, 120° (3) 95°, 150° (4) 120°, 180° Assertion : H–S–H bond angle in H ₂ S is closer to 90° but H–O–H bond angle in H ₂ O is 104.5°. Reason : <i>Ip - Ip</i> repulsion is stronger in H ₂ S than in H ₂ O. [AlIMS 2007] (1) If both assertion and reason are true and reason is the correct explanation of assertion. (2) If both assertion and reason are true but reason is not the correct explanation of assertion. (3) If Assertion is true but reason is false. (4) If both assertion and reason are false.						
4.	Assertion: The S–S-Reason: S ₈ has V-sh (1) If both assertion a	$-$ S bond angle in S $_8$ rape. In and reason are true are true but reason is false.	molecule is 105°. Indicate the correct of the corr				
5.	Assertion : Fluorine	molecule has bond o	rder one. antibonding molecular o	rbitals is two less tha	[AIIMS 2008] an that is bonding		

(1) If both assertion and reason are true and reason is the correct explanation of assertion.

(3) If Assertion is true but reason is false.

	(4) If both assertion and reason are false.			
6.	The type of hybrid orbitals used by iodine atom (1) sp³ (2) sp²	n in hypoiodous acid mole (3) sp	cule are (4) sp³d	[AIIMS 2010]
7.	The correct order of increasing covalent chara (1) LiCl, NaCl, BeCl ₂ (3) NaCl, LiCl, BeCl ₂	cter is : (2) BeCl ₂ , NaCl, LiCl (4) BeCl ₂ , LiCl, NaCl		[AIIMS 2010]
8.	Assertion: HOF bond angle is higher than HOReason: Oxygen is more electronegative than (1) If both assertion and reason are true and re(2) If both assertion and reason are true but re(3) If Assertion is true but reason is false. (4) If both assertion and reason are false.	n halogens. eason is the correct expla		
9.	Assertion : The HF ₂ ⁻ ions exists in the solid some season : The magnitude of hydrogen bonds between HF and H ₂ O molecules. (1) If both assertion and reason are true and recommon (2) If both assertion and reason are true but recommon (3) If Assertion is true but reason is false. (4) If both assertion and reason are false.	s in between HF - HF n	nolecule is weak	er than that in [AIIMS 2010] n.
10.	Decreasing order of bond angle is : (1) $BeCl_2 > NO_2 > SO_2$ (2) $BeCl_2 > SO_2 > NO$	₂ (3) SO ₂ > BeCl ₂ > NO ₂	(4) SO ₂ > NO ₂ >	[AIIMS 2011] BeCl ₂
11.	The wrong statement about fullerene is: (1) it has 5-membered carbon ring (2) it has 6-membered carbon ring (3) it has sp² hybridization (4) it has 5-membered rings more than 6-mem	abered rings.		[AIIMS 2011]
12.	Assertion : $R_3P = O$ exists $R_3N = O$ does not Reason : P is more electronegative than N. (1) If both assertion and reason are true and re (2) If both assertion and reason are true but re (3) If Assertion is true but reason is false. (4) If both assertion and reason are false.	eason is the correct expla		
13.	N_2 and O_2 are converted into monocations, N_2 . (1) In N_2^+ , N — N bond weakens	and O_2^+ respectively. Wh (2) In O_2^+ , the O – O bo		[AIIMS 2012]
	(3) In O ₂ ⁺ , paramagnetism decreases	(4) N ₂ ⁺ becomes diama	gnetic	
14.	N_2 and O_2 are converted into monoanions N_2 is wrong? (1) In N_2 , N–N bond weakens	and O_2^- respectively. W (2) In O_2^- , O-O bond o		ring statements [AIIMS 2013]
	(3) In O_2^- , O–O bond order decreases	(4) N ₂ becomes paran	nagnetic	
15.	Which one of the following arrangements of m	olecules is correct on the	basis of their dipo	ole moments?
	(1) $BF_3 > NF_3 > NH_3$ (2) $NF_3 > BF_3 > NH_3$	(3) $NH_3 > BF_3 > NF_3$	(4) $NH_3 > NF_3 >$	[AIIMS 2013] > BF ₃

(2) If both assertion and reason are true but reason is not the correct explanation of assertion.

16. In piperidine

, the hybrid state assumed by N is

[AIIMS 2013]

(1) sp

 $(2) sp^{2}$

(3) sp³

(4) dsp²

17. Assertion: Bond angle of H₂S is smaller than H₂O.

[AIIMS 2013]

Reason: Electronegativity of the central atom increases, bond angle decreases.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If Assertion is true but reason is false.
- (4) If both assertion and reason are false.
- **18.** The shapes of SF₄ and XeF₂ respectively are :

[AIIMS 2015]

- (1) trigonal bipyramidal and trigonal bipyramidal (2) see-saw and linear
- (3) T-shape and linear

(4) square planar and trigonal bipyramidal

19. Consider the statements :

[AIIMS 2015]

- I. Bond length in N_2^+ is 0.02Å greater than in N_2
- II. Bond length in NO+ is 0.09Å less than in NO.
- III. O_2^{2-} has shorter bond length than O_2

Which of the following statements are true?

- (1) I and II
- (2) II and III
- (3) I, II and III
- (4) I and III

20.	 Assertion (A) H₂O is the hybride of group-16 which is only liquid at ordinary temperature. [AIIM3 Reason (R) IN ice, each oxygen atom is surrounded by two covalent bonds and two hydrogen be (1) If both assertion and reason are true and reason is the correct explanation of assertion. (2) If both assertion and reason are true but reason is not the correct explanation of assertion. (3) If Assertion is true but reason is false. (4) If both assertion and reason are false. 									
21.	Correct or der of increa	(*) 00 00	[AIIMS 2016]							
	(1) $CO_3^2 < CO_2 < CO$	$(2) CO_2 < CO_3^2 < CO$	(3) $CO < CO_3^{2-} < CO_2$	(4) CO < CO ₂ <	CO3=					
22.	In formation of NO+ fro (1) a σ-orbital	(4) a π*-orbital	[AIIMS 2017]							
23.	-	f the following conversions involve change in both hybridization and shape ? $\c C_2H_6$ (2) NH ₃ $\c NH_4^+$ (3) BF ₃ $\c BF_4^-$ (4) H ₂ O $\c H_3$ O ⁺								
24.	I. PH ₅ and BiCl ₅ donot III. Electrons travel with V. I ₃ + has bent shape.	h speed of light.	II. $p\pi$ - $d\pi$ is present in SIV. SF ₄ and CH ₄ has sain							
	(1) I, III	(2) I, II, V	(3) I, III, V	(4) I, II, IV						
25.	greater than that of H- Reason (R) : In NH ₃ , pairs of electron (1) If both assertion an	O—H. N-atom has one lone pand reason are true and reason are true but reabut reason is false.	H ₂ O, are both sp ³ -hybrid air of electron whereas in eason is the correct expla ason is not the correct ex	H ₂ O, oxygen ato	[AIIMS 2017] om has two low on.					
25.	Which of the following (1) Xe	cantain at least one lone (2) Se	e pair in all of its halide (3) Cl	(4) N	[AIIMS 2018]					
26.	(1) Nodal plane(s) pres (2) Nodal plane is abse	ent in BMO ave higher energy than p			[AIIMS 2018]					
27.	Which molecule pair density (1) I_3^- , BeF ₂	o not have identical struct (2) HCIO, SO ₂	cture (3) BF ₃ , ICl ₃	(4) Br F ₄ , XeF ₄	[AIIMS 2018]					
28	-	one e ⁻ in σ2p bonding M (2) B ₂		(4) Li ₂	[AIIMS 2018]					
29.	For N ₃ which statemer	nt is wrong			[AIIMS 2018]					
	(1) Iso electronic with (3) N–N bond length a	CO ₂	(2) NH₂OH and N₃ ha (4) HN₃ have linear sha							
30.	Which pair of diatomic (1) B_2^- , C_2	species do not have sar (2) O_2^{2-} , F_2^-	me bond order? (3) N_2^+ , O_2^-	(4) B ₂ ²⁻ , C ₂	[AIIMS 2018]					
31.	_	umber of lone pair and ge		() Z /	[AIIMS 2018]					

	(1) 3 – Linear, 2 – Squa (3) 0 – Linear, 3 – Squa		(2) 3 – Square planar, 2 (4) 2 – Linear, 2 – Squa		
32.	Which have correct ord (1) SO ₂ > H ₂ O	der of dipole moment : (2) NF ₃ > NH ₃	(3) BF ₃ < NH ₃	(4) SO ₂ < SO ₃	[AIIMS 2018]
33.	In which of the followin (1) ICl ₂ -, XeF ₂	g shape is same but hyb (2) SO_2 , NO_2^+	ridization is different: (3) SO ₂ , NH ₂	(4) CO ₂ , SO ₂	[AIIMS 2018]
34.	Correct order of bond a (1) SO ₂ < H ₂ S	angle is: $(2) SO2 < H2O$	(3) NH ₃ < H ₂ O	(4) NH ₃ < SO ₂	[AIIMS 2018]
35.	% s-character of N–H $_{1}^{1}$ (1) $N_{2}H_{2}$	oond is maximum in : (2) N ₂ H ₄	(3) NH ₃	(4) NH ₄ ⁺	[AIIMS 2018]
36.	(1) If both assertion and	lius of Se is more than S d reason are true and rea d reason are true but rea out reason is false.	ason is the correct explaits is not the correct ex		
	PART - III : JEE	(MAIN) / AIEEE F	PROBLEMS (PR	EVIOUS YE	ARS)
1.	The number of lone pa	irs on Xe in XeF ₂ , XeF ₄ a (2) 2, 4, 6	and XeF ₆ respectively are (3) 1, 2, 3	(4) 6, 4, 2	E-2002, 3/225]
2.	The hybridisation of the (1) \underline{AlH}_3 changes to \underline{AlH}_3 changes to \underline{NH}_3	•	s in : (2) H ₂ O changes to H ₃ 0 (4) in all cases	_	E-2002, 3/225 <u>]</u>
3.	Bond angle of 109° 28' (1) NH ₃	is found in : (2) H ₂ O	(3) CH ₃ +	[AIEEI (4) NH ₄ +	E-2002, 3/225]
4.	Increasing order of bor (1) $O_2^+ < O_2 < O_2^- < O_2^2$ (3) $O_2^- < O_2^{2-} < O_2^+ < O_2^{2-}$		$^{2-}$ and O_2^+ is: (2) $O_2 < O_2^+ < O_2^- < O_2^2$ (4) $O_2^{2-} < O_2^- < O_2^- < O_2^-$	<u>-</u>	E-2002, 3/225]
5.	(1) Electronic orbits of (2) The C=O bond is w (3) The anion HCOO-h	carbon atom are hybridis eaker than the C–O bond nas two resonating struct	d.	[AIEEI	son for it ? E-2003, 3/225]
6.	Which of the following (1) SO ₂	compounds has the sma (2) H ₂ O	llest bond angle in its mo (3) H ₂ S	olecule ? [AIEEI (4) NH ₃	E-2003, 3/225]
7.	The pair of species have (1) CF ₄ , SF ₄	ving identical shapes for (2) XeF ₂ , CO ₂	molecules of both specie (3) BF ₃ , PCl ₃	es is : [AIEEI (4) PF ₅ , IF ₅ .	E-2003, 3/225]
8.	(1) dipolar character of	ethers.	the same molecular form (2) alcohols having res (4) inter-molecular hydrometric	[AIEEI] onance structure	E-2003, 3/225] es.
9.	Which of the following	pair of molecules will hav	ve permanent dipole mon		embers? E-2003, 3/225]

	(1) $\mathrm{SiF_4}$ and $\mathrm{NO_2}$	(2) NO_2 and CO_2	(3) NO_2 and O_3	(4) SiF ₄	and CO ₂		
10.	The states of hybridizat	ion of boron and oxygen	atoms in boric acid (H ₃ B	•	espectively : [AIEEE-2004, 3/225]		
	(1) sp ² and sp ²	(2) sp ² and sp ³	(3) sp ³ and sp ²	(4) sp ³ a	nd sp ³		
11.		-	ond pair-bond pair of ele	ı	[AIEEE-2004, 3/225]		
	(1) dsp ³	(2) sp ³ d	(3) dsp ²	(4) sp ³ d ²			
12.	The correct order of bor (1) $H_2S < SiH_4 < NH_3 < IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	BF ₃	in H ₂ S, NH ₃ , BF ₃ and Sil- (2) NH ₃ < H ₂ S < SiH ₄ < (4) H ₂ S < NH ₃ < BF ₃ < S	BF ₃	[AIEEE-2004, 3/225]		
13.	(1) XeF ₄	ing has the regular tetral (2) SF_4 , $S = 16$, $Ni = 28$, $Xe = 54$	(3) BF ₄ ⁻	(4) [Ni(C	[AIEEE-2004, 3/225] N) ₄] ²⁻		
14.	Which one of the follow (1) Acetone	ing does not have sp ² hy (2) Acetic acid	bridized carbon? (3) Acetonitrile	(4) Aceta	[AIEEE-2004, 3/225] amide		
15.	The bond order in NO it two species? (1) Bond length in NO+ it (3) Bond length in NO+ it is not become a second control or the seco	is greater than in NO	is 3. Which of the following (2) Bond length in NO is (4) Bond length is unpre	s greater t	[AIEEE-2004, 3/225]		
16.	Which one of the follow (1) He ₂ ⁺	ing species is diamagnet (2) H ₂	tic in nature ? (3) H ₂ +	(4) H ₂	AIEEE-2005, 1½/225]		
17.	The structure of diborar (1) four 2c–2e bonds ar (3) two 2c–2e bonds an	nd four 3c–2e bonds	[AIEEE-2005, 4½/2] (2) two 2c–2e bonds and two 3c–3e bonds (4) four 2c–2e bonds and two 3c–2e bonds				
18.	(1) the same with 2, 0 a(2) the same with 1, 1 a(3) different with 0, 1 and	nd 1 lone pair of electron d 2 lone pairs of electron	: ons on the central atom, rens	respective espectivel espectivel	y. y.		
19.	The number and type o	f bonds between two car	bon atoms in calcium ca		: 8/225), 2011 (4/120)]		
	(1) one sigma, one pi	(2) one sigma, two pi	(3) two sigma, one pi	(4) two s	igma, two pi		
20.	these chlorides is correctly MCl_2 is more volatile	ct ? e than MCl ₄ e in anhydrous ethanol th nan MCl ₄	dation states. Which of an MCI ₄		ving statements abour		
21.	Which of the following n (1) O_2^{2-}	nolecules/ions does not (2) B ₂	contain unpaired electror (3) N ₂ +	ns? (4) O ₂	[AIEEE-2006, 3/165]		

22.	~	hese cationic species, K+, Ca ²⁺ , [AIEEE-2007, 3/120]				
	· ,	(1) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$ (2) $Ca^2 < Mg^{2+} < Be^{2+}$ (3) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$ (4) $Be^{2+} < K^+ < Ca^{2+} < Ca^{2+}$				
23.	_	hydrogen bonds is the st (2) O – H F	rongest ? (3) F – H H	[AIEEE-2007, 3/120] (4) F – H F		
24.	Which of the following (1) O_2^{2-}	species exhibits the diam (2) O ₂ +	nagnetic behaviour? (3) O ₂	[AIEEE-2007, 3/120] (4) NO		
25.	behaviour has changed			increased and the magnetic [AIEEE-2007, 3/120] (4) NO \longrightarrow NO ⁺		
26.	Which one of the follow (1) CN- and CN+	ving pairs of species has (2) O ₂ - and CN-	the same bond order? (3) NO+ and CN+	[AIEEE-2008, 3/105] (4) CN ⁻ and NO ⁺		
27.		energy of B – F in BF $_3$ is nigher B – F bond dissocial		t of C – F in CF_4 is 515 kJ mol ⁻¹ . to that of C – F is : [AIEEE-2009, 4/144]		
	(2) significant pπ-pπ interaction between C(3) lower degree of pπ-		and F in $\mathrm{BF_3}$ whereas B and F in $\mathrm{BF_3}$ than that b	there is no possibility of such		
28.	Using MO theory predi	ct which of the following	species has the shortest	bond length ? [AIEEE-2009, 4/144]		
	(1) O ₂ +	(2) O ₂ -	(3) O ₂ ²⁻	(4) O ₂ ²⁺		
29.	Among the following th	ne maximum covalent cha	aracter is shown by the co	-		
	(1) FeCl ₂	(2) SnCl ₂	(3) AICI ₃	[AIEEE -2011, 4/120] (4) MgCl ₂		
30.	The hybridisation of ord (1) sp, sp ² , sp ³	bitals of N atom in NO_3^- , (2) sp ² , sp, sp ³		ctively: [AIEEE-2011, 4/120] (4) sp², sp³, sp		
31.		of oxygen increases	- ' '	dissolved in water ? [AIEEE-2011, 4/120]		
32.	The structure of IF ₇ is: (1) square pyramid	(2) trigonal bipyramid	(3) octahedral	[AIEEE-2011, 4/120] (4) pentagonal bipyramid		
33.	Which of the following (1) XeF ₄	has maximum number of	f lone pairs associated wi	th Xe ? [AIEEE-2011, 4/120] (4) XeO ₃		
34.	•	mallest bond angle is :		[AIEEE-2012, 4/120]		
	(1) NCl ₃	(2) AsCl ₃	(3) SbCl ₃	(4) PCI ₃		
35.	In which of the followin	g pairs the two species a	re not isostructural?	[AIEEE-2012, 4/120]		

	(1) $\mathrm{CO_3^{2-}}$ and $\mathrm{NO_3^{-}}$	(2) PCl ₄ ⁺ and SiCl ₄	(3) $PF_{_5}$ and $BrF_{_5}$	(4) AIF_6^{3-} and SF_6						
36.	Which of the following (1) lodine	exists as covalent crysta (2) Silicon	als in the solid state? (3) Sulphur	[AIEEE-2013, 4/120] (4) Phosphorus						
37.	Which one of the follow	wing molecules is expect	ed to exhibit diamagnetic							
	(1) C ₂	(2) N ₂	(3) O ₂	(4) S ₂						
38.	In which of the following	ng pairs of molecules/ion	s, both the species are no	t likely to exist ? [JEE-Main 2013, 4/120]						
	(1) H_2^+ , He_2^{2-}	(2) H_2 , He_2^{2}	(3) H ₂ ²⁺ , He ₂	(4) H_2^- , He_2^{2+}						
39.	Stability of the species	$_{3} \operatorname{Li}_{2}, \operatorname{Li}_{2}^{-} \text{ and } \operatorname{Li}_{2}^{+} \text{ increal}$	ases in the order of :	[JEE-Mains 2013, 4/120]						
	(1) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$	(2) $\text{Li}_{2}^{-} < \text{Li}_{2}^{+} < \text{Li}_{2}$	(3) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$	(4) $\text{Li}_{2}^{-} < \text{Li}_{2} < \text{Li}_{2}^{+}$						
40.		for the molecule, CsI_3 , is	S :	[JEE(Main)-2014,						
	4/120]		(0) 11	_						
	(1) it is a covalent mole									
	(3) it contains Cs3+ and	d I⁻ ions.	(4) it contains Cs⁺, I⁻ ar	nd lattice I_2 molecule.						
41.		eraction that is depender	nt on the inverse cube of c	listance between the molecules						
	is: (1) ion-ion interaction		(2) ion-dipole interaction	1.IFF(MAIN)-2015 4/1201						
	(3) London force		(4) hydrogen bond	[022(111) 111) 2010, 47 120]						
42.	Which one has the hig	hest boiling point?		[JEE(MAIN)-2015, 4/120]						
	(1) He	(2) Ne	(3) Kr	(4) Xe						
43.		(2) Silicon (3) Sulphur (4) Phosphorus the following molecules is expected to exhibit diamagnetic behaviour? [JEE-Main 2013, 4/* (2) N₂ (3) O₂ (4) S₂ following pairs of molecules/ions, both the species are not likely to exist? [JEE-Main 2013, 4/* (2) H₂, He₂² (3) H₂², He₂ (4) H₂, He₂² species Li₂, Li₂ and Li₂⁺ increases in the order of: Li₂ (2) Li₂ < Li₂⁺ < Li₂ (3) Li₂ < Li₂ < Li₂⁺ < (4) Li₂ < Li₂⁺ stement for the molecule, CsI₃, is: [JEE(Main)-2014, ent molecule. (2) it contains Cs* and I₃ cutar interaction that is dependent on the inverse cube of distance between the molecular interaction that is dependent on the inverse cube of distance between the molecular interaction (2) ion-dipole interaction (3) Kr (4) Ke the highest boiling point? (2) Ne (3) Kr (4) Xe the following statements about water is FALSE? [JEE(Main)-2015, 4/* act both as an acid and as a base. tensive intramolecular hydrogen bonding in the condensed phase. by heavy water sinks in normal water. idized to oxygen during photosynthesis. In which the N atom is in a state of sp hybridization is: [JEE(Main)-2017, 4/* (2) NO₃ (3) NO₂ (4) NO₂ [JEE(Main)-2017, 4/* (2) NO₃ (3) NO₂ (4) NO₂ [JEE(Main)-2017, 4/* (2) NO₃ (3) B₂ (4) NO	[JEE(Main)-2016, 4/120]							
	(2) There is extensive	intramolecular hydrogen	bonding in the condensed	d phase.						
	(3) Ice formed by heavy water sinks in normal water.									
	(4) Water is oxidized to	o oxygen during photosy	nthesis.							
44.	The species in which 4/120]	[JEE(Main)-2016								
	(1) NO ₂	(2) NO ₃	(3) NO ₂	(4) NO ₂ ⁺						
45.	Which of the following	species is not paramagr	netic?	[JEE(Main)-2017, 4/120]						
	(1) CO	(2) O ₂	(3) B ₂	(4) NO						
46.	Total number of lone p	pair of electrons in $ { m I}_3^- $ ion	n is :	[JEE(Main)-2018, 4/120]						
	(1) 9	(2) 12	(3) 3	(4) 6						

47.	Which of the following	g are Lewis acids?		[JEE(Main)-2018, 4/120]
	(1) PH₃ and SiCl₄	(2) BCl₃ and AlCl₃	(3) PH₃ and BCl₃	(4) AICI ₃ and SiCI ₄
48.	Which of the following KCI, PH ₃ , O ₂ , B ₂ H ₆ , H	g compounds contain(s)	no covalent bond(s) ?	[JEE(Main)-2018, 4/120]
	(1) KCI	(2) KCI, B ₂ H ₆	(3) KCl, B ₂ H ₆ , PH ₃	(4) KCI, H ₂ SO ₄
49.	According to molecula	ar orbital theory, which o	f the following will not be	e a viable molecule ?
				[JEE(Main)-2018, 4/120]
	(1) H ₂	(2) H ₂ ²⁻	(3) He ₂ ²⁺	(4) He ₂ ⁺
50.	According to molecula	ar orbital theory, which o	f the following is true with	n respect to Li ₂ + and Li ₂ -?
				[JEE(Main)-2019, 4/120]
	(1) Li ₂ + is unstable and	d Li ₂ - is stable	(2) Li ₂ + is stable and L	₋i₂⁻ is unstable
	(3) Both are stable		(4) Both are unstable	
51.	In which of the follow		nd order has increased	and paramagnetic character has [JEE(Main)-2019, 4/120]
	$(1) NO \longrightarrow NO^{+}$	$(2) O_2 \longrightarrow O_2^{2-}$	$(3) O_2 \longrightarrow O_2^+$	$(4) N_2 \longrightarrow N_2^+$
52.	The type of hybridisat	tion and number of lone	pair(s) of electrons of Xe	in XeOF ₄ , respectively, are : [JEE(Main)-2019, 4/120]
	(1) sp ³ d ² and 1	(2) sp ³ d ² and 2	(3) sp ³ d and 1	(4) sp ³ d and 2
53.	Two pi and half sigma	a bonds are present in :		[JEE(Main)-2019, 4/120]
	(1) N ₂ +	(2) O ₂	(3) O ₂ +	(4) N ₂
54.	The pair that contains	s two P–H bonds in each	of the oxoacid is:	[JEE(Main)-2019, 4/120]
	(1) H ₄ P ₂ O ₅ and H ₃ PO	3	(2) H ₄ P ₂ O ₅ and H ₄ P ₂ O	O_6
	(3) H ₃ PO ₂ and H ₄ P ₂ O	5	(4) H ₃ PO ₃ and H ₃ PO ₂	2
55 .	The hydride that is NO	OT electron different is:		[JEE(Main)-2019, 4/120]
	(1) GaH₃	(2) SiH ₄	(3) AlH ₃	(4) B ₂ H ₆
56.	The element that sho	ws greater ability to form	pπ- $pπ$ multiple bonds, is	: [JEE(Main)-2019, 4/120]
	(1) Ge	(2) Sn	(3) C	(4) Si

	nc	214		40
A		5 W	/ 6	

			1019	, -									
						EXER	CISE	- 1					
SECT 1.	(2)	2.	(2)	3.	(1)	4.	(3)	5.	(4)	6.	(1)	7.	(3)
SECT 1. 8.	(4) (3)	2. 9.	(3) (3)	3. 10.	(4) (2)	4. 11.	(4) (4)	5.	(4)	6.	(4)	7.	(4)
SECT 1. 8.	(3) (1)	2. 9.	(3) (2)	3.	(1)	4.	(1)	5.	(2)	6.	(1)	7.	(1)
	(1) (4) (4)	2. 9. 16.	(2) (3) (3)	3. 10. 17.	(1) (3) (3)	4. 11. 18.	(1) (1) (1)	5. 12. 19.	(3) (4) (3)	6. 13.	(4) (2)	7. 14.	(1) (1)
SECT 1. 8. 15.	(2) (4) (2)	2. 9. 16.	(1) (1) (4)	3. 10. 17.	(3) (4) (4)	4. 11. 18.	(2) (1) (3)	5. 12. 19.	(1) (2) (2)	6. 13. 20.	(2) (3) (2)	7. 14.	(2) (4)
SECT 1. 8.	(1) (3)	2. 9.	(3) (1)	3. 10.	(4) (2)	4. 11.	(4) (1)	5. 12.	(1) (1)	6. 13.	(2) (3)	7. 14.	(1) (1)
SECT 1. 8.	(2) (4)	2. 9.	(2) (2)	3. 10.	(3) (2)	4. 11.	(3) (2)	5.	(2)	6.	(1)	7.	(3)
SECT 1. 8. 15.	(3) (1) (3)	2. 9.	(4) (2)	3. 10.	(1) (3)	4. 11.	(3) (4)	5. 12.	(2) (4)	6. 13.	(4) (1)	7. 14.	(3) (3)
SECT 1. 8.	(4) (3)	2. 9.	(1) (3)	3. 10.	(2) (2)	4. 11.	(3) (3)	5. 12.	(3) (2)	6. 13.	(1) (3)	7. 14.	(3) (1)
SECT 1. 8.	(3) (4)	2.	(2)	3.	(2)	4.	(3)	5.	(4)	6.	(4)	7.	(4)
						EXER	CISE	- 2					
1. 8. 15. 22. 29. 36. 43. 50.	(4) (1) (4) (3) (4) (1) (2) (1) (2)	2. 9. 16. 23. 30. 37. 44. 51.	(3) (1) (3) (2) (4) (2) (3) (4) (3)	3. 10. 17. 24. 31. 38. 45. 52.	(2) (2) (2) (4) (4) (2) (3) (4)	4. 11. 18. 25. 32. 39. 46. 53.	(3) (3) (1) (2) (4) (3) (4) (1)	5. 12. 19. 26. 33. 40. 47. 54.	(2) (4) (1) (3) (3) (1) (2) (3)	6. 13. 20. 27. 34. 41. 48. 55.	(4) (4) (2) (2) (1) (3) (2) (4)	7. 14. 21. 28. 35. 42. 49. 56.	(4) (4) (4) (3) (4) (2) (3) (2)

						EXER		- 3					
						P	ART-I						
1.	(4)	2.	(4)	3.	(2)	4.	(2)	5.	(4)	6.	(2)	7.	(4)
8.	(4)	9.	(1)	10.	(2)	11.	(2)	12.	(3)	13.	(2)	14.	(3)
15.	(2)	16.	(2)	17.	(2)	18.	(1)	19.	(1)	20.	(1)	21.	(1)
22.	(3)	23.	(3)	24.	(1)	25.	(4)	26.	(3)	27.	(4)	28.	(2)
29.	(2)	30.	(4)	31.	(1)	32.	(1)	33.	(4)	34.	(2)	35.	(1)
36.	(1)	37.	(1)	38.	(1)	39.	(2)	40.	(3)	41.	(2)	42.	(3)
43.	(3)	44.	(2)	45.	(1)	46.	(2)	47.	(3)	48.	(2)	49.	(4)
50 .	(4)	51.	(2)	52 .	(1)	53.	(4)	54.	(1)	55.	(4)	56.	(4)
						PA	RT-II						
1.	(1)	2.	(2)	3.	(2)	4.	(3)	5.	(1)	6.	(1)	7.	(3)
8.	(4)	9.	(1)	10.	(1)	11.	(4)	12.	(3)	13.	(4)	14.	(2)
15.	(4)	16.	(3)	17.	(3)	18.	(2)	19.	(1)	20.	(2)	21.	(4)
22.	(4)	23.	(3)	24.	(2)	25.	(1)	25.	(1)	26.	(2)	27.	(3)
28	(1)	29.	(4)	30.	(1)	31.	(1)	32.	(3)	33.	(3)	34.	(4)
35.	(1)	36.	(2)										
						PA	RT-III						
1.	(1)	2.	(1)	3.	(4)	4.	(4)	5.	(3)	6.	(3)	7.	(2)
8.	(4)	9.	(3)	10.	(1)	11.	(4)	12.	(3)	13.	(3)	14.	(3)
15.	(2)	16.	(2)	17.	(4)	18.	(4)	19.	(2)	20.	(3)	21.	(1)
22.	(1)	23.	(4)	24.	(1)	25.	(4)	26.	(4)	27.	(2)	28.	(4)
29.	(3)	30.	(2)	31.	(2)	32.	(4)	33.	(3)	34.	(3)	35.	(3)
36.	(2)	37.	(1)	38.	(3)	39.	(2)	40.	(2)	41.	(3)	42.	(4)
43.	(2)	44.	(4)	45.	(1)	46.	(1)	47.	(2)	48.	(1)	49.	(2)
50 .	(3)	51.	(1)	52 .	(1)	53.	(1)	54.	(3)	55.	(2)	56.	(3)