Self Practice Paper (SPP)

1.	If the electronic configuration of an element is Is ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² , then the electrons involved in bonding will be.									
	(1) 3p ⁶	(2) 3p ⁶ 4s ²	(3) 3p ⁶ 3d ²	(4) 3d ² 4s ²						
2.		en two same atoms cann								
	(1) Ionic (2) Covalent		(3) Metallic Bond	(4) None of these						
3.		axis, which of the followi _z orbital of B	 o of 2 atomic orbitals of atoms A and B. If the bond is ing overlaps is acceptable ? (2) p_x orbital of A and p_y orbital of B (4) p_x orbital of A and s orbital of B 							
4.	NH, and BF, combine	readily because of the fo	rmation of :							
	(1) a covalent bond	(2) a hydrogen bond	(3) a coordinate bond	(4) an ionic bond						
5.	Maximum bond energy is in :									
	(1) F ₂	(2) N ₂	(3) O ₂	(4) equal in all						
6.	The structure of XeF_2 involves hybridization of the type :									
	(1) sp^3 (2) sp^3d^3 (3) sp^3d (4) sp^3d^2									
7.	The bond angle and hybridization in ether (CH_3OCH_3) is :									
	(1)106° 51', sp³	(2) 104°31', sp³	(3) 109°28' sp ³	(4) >109°28' sp ³						
8.	Which of the following have maximum boilling point									
	(1) CH ₄	(2) CF ₄	(3) CCI ₄	(4) CD ₄						
9.	In which of the following molecule / ion all the bonds are not equal ?									
	(1) XeF ₄	(2) BeF ₄ ⁻	(3) C ₂ H ₄	(4) SiF ₄						
10.	The correct order of in	creasing X – O – X bond	angle is (X = H, F or Cl)	:						
	(1) $H_2O > CI_2O > F_2O$	(2) $Cl_2O > H_2O > F_2O$	(3) $F_2O > CI_2O > H_2O$	(4) $F_2 O > H_2 O > Cl_2 O$						
11.	Which of the following is paramagnetic ?									
	(1) O_2^- (2) CN^-		(3) CO	(4) NO+						
12.	Which of the following	Which of the following is non-polar :								
	(1) NF ₃	(2) BF ₃	(3) PF ₃	(4) SF ₄						
13.	Strongest hydrogen bo	•								
	(1) O – H S	(2) S – H O	(3) F – H F	(4) F – H O						

F

CHEMISTRY FOR NEET

14.	Resonance structure of a molecule should not have								
	(1) Identical bond position	(2) Identical arrangements of atoms							
	(3) Nearly the same energy content	(4) The same number of paired electrons							
15.	The paramagnetic property of oxygen is well explained by :								
	(1) Molecular orbital theory	(2) Resonance theory							
	(3) Valence bond theory	(4) VSEPR theory							
16.	The boiling point of a compound is raised by -								
	(1) intermolecular hydrogen bonding	(2) High volatility							
	(3) Intramolecular hydrogen bonding	(4) Non-polarity							
17.	BCl ₃ in non polar because :								
	(1) B – CI bond is non-polar	(2) Its dipole moment is zero							
	(3) B – CI bond is polar	(4) B & CI have equal electronegativity							
18.	The hybrid states of central atom in diaborane,	diamond and graphite are respectively :							
	(1) sp^2 , sp^3 , sp^2 (2) sp^3 , sp^3 , sp^2	(3) sp^3 , sp^3 , sp^3 (4) sp , sp^2 , sp^3							
19.	Which of the set of species have same hybridiz	ation state but different shapes:							
		(3) NH_4^+ , H_3O^+ , OF_2 (4) SO_4^{-2} , PO_4^{-3} , CIO_4^{-3}							
20.	The bonds present in N_2O_5 are :								
	(1) Only ionic	(2) Covalent & coordinate							
	(3) Only covalent	(4) Covalent & ionic							
21.	The correct statement for the reaction-								
	$NH_3 + H^+ \longrightarrow NH_4^+$								
	(1) Hybridisation state is changed	(2) Bond angle increases							
	(3) NH_3 act as a Lewis acid (4) Regular geometry is changed								
22.	The correct order of decreasing polarisabality o	f ions is :							
	(1) Cl ⁻ > Br ⁻ > l ⁻ > F ⁻ (2) F ⁻ > l ⁻ > Br ⁻ > Cl ⁻	(3) F ⁻ > Cl ⁻ > Br ⁻ > l ⁻ (4) l ⁻ > Br ⁻ > Cl ⁻ > F ⁻							
23.	CCl ₄ is more covalent than LiCl because :								
	(1) There is more polarization of CI in CCI_4	(2) There is more polarization of CI in LiCI							
	(3) CCI_4 has more weight	(4) None of the above							
24.	An ionic compound A ⁺ B ⁻ is most likely to be for								
	(1) Ionization energy of A is low	(2) Electron affinity of B is high							
	(3) Electron affinity of B is low	(4) Both (1) and (2)							
25.	Among the following which compounds will sho								
	(1) KF (2) NaF	(3) CsF (4) RbF							
26.	The correct sequence of increasing covalent character is represented by -								
	(1) $BeCl_2 < NaCl < LiCL$	(2) NaCl < LiCl < BeCl ₂							
	(3) BeCl ₂ < LiCl < NaCl	(4) LiCl < NaCl < BeCl ₂							

CHEMISTRY FOR NEET

27.		the following species is : (2) $Cl_2O < ClO_2 < ClO_2^-$ (4) $Cl_2O < ClO_2^- < ClO_2$						
28.	Which of the follwing species contains three bond pai (1) NH_2^- (2) PCI_3 (3) F		ir around the central atom ? (4) BF ₃					
29.	-	vhich one of the foll ⁵ 2p _z orbital : 2p _x / π 2p _y orbital	lowing orbitals ?					
30.		upon (2) size of the ion only (4) charge and size of the ion						
31.	Which one of the following compounds has covalent a (1) $F_3B.NH_3$ (2) $C_5H_5N.SF_4$ (3) E	as well as coordina BH ₃ .CO	te bond ? (4) all					
32.	Consider the following statements ; $S_1 : N_2H_4$ is pyramidal about each N atom $S_2 : NH_2OH$ is pyramidal about the N atom and bent about the O atom $S_3 : CH_3COCI$ is trigonal about the carbon atom (attached to O and CI) and out of these select the correct one. (1) S_1 and S_2 only (2) S_1 and S_3 only (3) S_2 and S_3 only (4) S_1 , S_2 and S_3							
33.		air geometry for the under lined element ? 2) $\underline{N}H_3 + H^+ \longrightarrow \underline{N}H_4^+$ 4) $H_2\underline{O} + H^+ \longrightarrow H_3\underline{O}^+$						
34.	Which of the following statements are correct ? (I) O structure is not allowed because octet around 'O' can not be expanded. (II) H_2O_2 is ionic compound (III) In B_2 molecule, the highest occupied molecular orbital is σ molecular orbital. (IV) The lp–bp repulsion is stronger than bp–bp repulsion. (1) (I) and (III) (2) (II) and (III) (3) (I) and (IV) (4) (III) and (IV)							
35.	 S-1: Simple ionic compounds show isomerism and isomorphism due to the directional nature of the electrovalent bond. S-2: Covalent bond formed by hybrid orbitals are more stronger than those of formed by pure atomic orbitals. S-3: CO₃²⁻ anion has (i) bonds of unequal length (ii) sp²hybridisation of carbon atom with same OCO bond angles. S-4: The number of lone pair(s) of electrons present on Xe in XeO₂F₂, XeOF₄, XeO₃ and XeO₄ are 1, 1, 1 and 0 respectively. (1) FFFF (2) TTTT (3) FTFT (4) FTTT 							
36.	Which species whould be least likely to act as a Lewis	s base ?	Page 89					

CHEMISTRY FOR NEET

	(1) CN⁻	(2) PCI ₃	(3) I+	(4) SCl ₂			
37.	Select the correct ord (1) $HCIO_4 < HCIO_3 < HCIO_3 < HCIO_2 < H$	-	Is given below : (2) $HCIO_4 < HCIO_3 < HCIO_2 < HCIO$ (4) none of these				
38.	Which of the following (1) NaNO ₃	is not an ionic compour (2) CaCO ₃	nd ? (3) CaBr ₂	(4) P_4S_3			
39.	Which of the following s-orbital (1) (1) (1)	(2) $(2) \begin{pmatrix} p - orbital \\ p - orbital \\ p - orbital \\ p - p - p - p - p - p - p - p - p - p$	(3) +	(4)			
40.	Which does not form (1) CO_2	linear structure ? (2) NO ₂	(3) C ₂ H ₂	(4) BeCl ₂			
41.	In which of the followi (1) $NF_{_3}$	ng molecule are all the b (2) CIF ₃	onds not equal ? (3) BF ₃	(4) AIF ₃			
42.	Match the lists – I and II and write the correct m List – I (species) A. H_3O^+ B. $H_2C=NH$ C. CIO_2^- D. NH_4^+ E. PCI_5 (1) A-2, B-1, C-3, D-5, E-4 (3) A-5, B-1, C-2, D-3, E-4		hatching List – II (Geometry) 1. Planar 2. Angular 3. Tetrahedral 4. trigonal bipyramidal 5. Pyramidal (2) A-1, B-5, C-2, D-3, E-4 (4) A-3, B-1, C-4, D-5, E-2				
43.	Match List I and List – II and pick out correct matrix List – I (compound) A. CIF_3 B. PCI_3 C. IF_5 D. CCI_4 E. XeF_4 (1) A-5, B-4, C-3, D-2, E-1 (3) A-4, B-3, C-5, D-2, E-1		hatching codes from the given choices. List – II (structure) 1. square planar 2. tetrahedral 3. Trigonal bipyramidal 4. square pyramidal 5. T-shaped (2) A-5, B-3, C-4, D-2, E-1 (4) A-3, B-4, C-1, D-5, E-2				
44.		t order of their increasing O_2^-		2			
45.	The correct order of ir (1) $NO_2^+ < NO_2 < NO_2^-$ (3) $NO_2^- < NO_2^+ < NO_2^-$	2	the following triatomic species is (2) $NO_2^+ < NO_2^- < NO_2$ (4) $NO_2^- < NO_2 < NO_2^+$				

S	PP A	nsw	vers									
(4)	2.	(1)	3.	(4)	4.	(3)	5.	(2)	6.	(3)	7.	(4)
(3)	9.	(3)	10.	(2)	11.	(1)	12.	(2)	13.	(4)	14.	(1)
(1)	16.	(1)	17.	(2)	18.	(2)	19.	(3)	20.	(2)	21.	(2)
(4)	23.	(1)	24.	(4)	25.	(2)	26.	(2)	27.	(4)	28.	(2)
(3)	30. 07	(4)	31.	(4)	32.	(4)	33.	(1)	34.	(3)	35.	(3)
(3) (2)	37. 44.	(3) (2)	38. 45.	(4) (4)	39.	(3)	40.	(2)	41.	(2)	42.	(3)
	PP S											
(1) F	F ┃ B ↓ F	 :N - H	— H	(2)			(3) _H	H −B←C H	0			
S ₁ :	$NH_2 - NH_2$	$H_2 \text{ or } N_2 H$	H₄ (hydra	izine)								
					Each N bout each			•		•	e N, two	H ar
н_ н_	sp³ sp³ Ň──Ň<	_н `н	H		н							
S ₂ :	NH₂OH (hydroxy	lamine)		- 0 н							
				90								

$$S_3$$
: H_3C Cl
trigonal planar

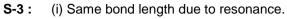
33. (1) $\underline{B}F_3(sp^2) + F^- \longrightarrow \underline{B}F_4^-$ (sp³). (3) $2 \underline{S}O_2(sp^2) + O_2 \longrightarrow 2 \underline{S}O_3(sp^2)$

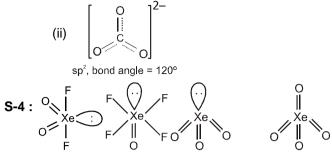
$$(2) \underline{\mathrm{NH}}_{3} (\mathrm{sp}^{3}) + \mathrm{H}^{*} \longrightarrow \underline{\mathrm{NH}}_{4}^{*} (\mathrm{sp}^{3})$$

$$(4) \mathrm{H}_{2}\underline{\mathrm{O}} (\mathrm{sp}^{3}) + \mathrm{H}^{*} \longrightarrow \mathrm{H}_{3}\underline{\mathrm{O}}^{*} (\mathrm{sp}^{3})$$

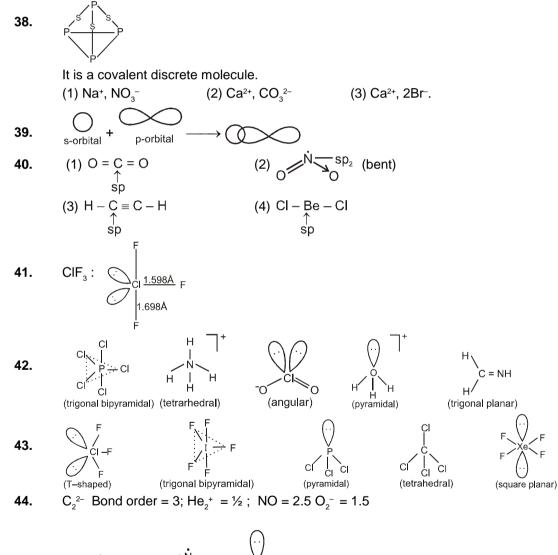
34. (I) The electronic structure which is allowed is or or as central oxygen has complete octet whereas

- in o^{i} the central atom has 10 electrons.
- (II) H_2O_2 is covalent compound.


(III) $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p_x^1 = \pi 2p_y^1) (\sigma p_z^0)^0$


The highest occupied molecular orbital is π molecular orbital.

(IV) The repulsive interaction of electron pairs decreases in the order :


lone pair (ℓp) - lone pair (ℓp) > lone pair (ℓp) - bond pair (bp) > bond pair (bp) - bond pair (bp)

35. S-1 : Ionic compounds do not show isomerism due to the non-directional nature of ionic bonds.
 S-2 : Hybrid orbitals are directional and has large area for overlapping. So they form stronger covalent bonds.

- 36. I* will have tendency to gain the electron. So it will act as Lewis acid rather than Lewis base.
- **37.** As stability of conjugate bases by more dispersion of negative charge increases, the acidity of conjugate acids increases. Hence the correct order of stability of conjugate base is $CIO_4^- > CIO_3^- > CIO_2^- > CIO_2^- > CIO_2^- > HCIO_4 > HCIO_3 > HCIO_2 > HCIO_2 > HCIO_2$

45.
$$0 = \overset{1}{\underset{180^{\circ}}{N}} = 0$$
 $\overset{0}{\underset{134^{\circ}}{N}} \overset{1}{\underset{0}{N}} \overset{0}{\underset{117^{\circ}}{N}} \overset{1}{\underset{177^{\circ}}{N}} \overset{0}{\underset{117^{\circ}}{N}} \overset{1}{\underset{177^{\circ}}{N}} \overset{0}{\underset{117^{\circ}}{N}} \overset{1}{\underset{177^{\circ}}{N}} \overset{0}{\underset{117^{\circ}}{N}} \overset{1}{\underset{177^{\circ}}{N}} \overset{0}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1177^{\circ}}{N}} \overset{0}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1177^{\circ}}{N}} \overset{0}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1177^{\circ}}{N}} \overset{0}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1177^{\circ}}{N}} \overset{0}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1177^{\circ}}{N}} \overset{0}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1177^{\circ}}{N}} \overset{1}{\underset{1$