

10. Consider the following Galvanic cell as shown in figure.

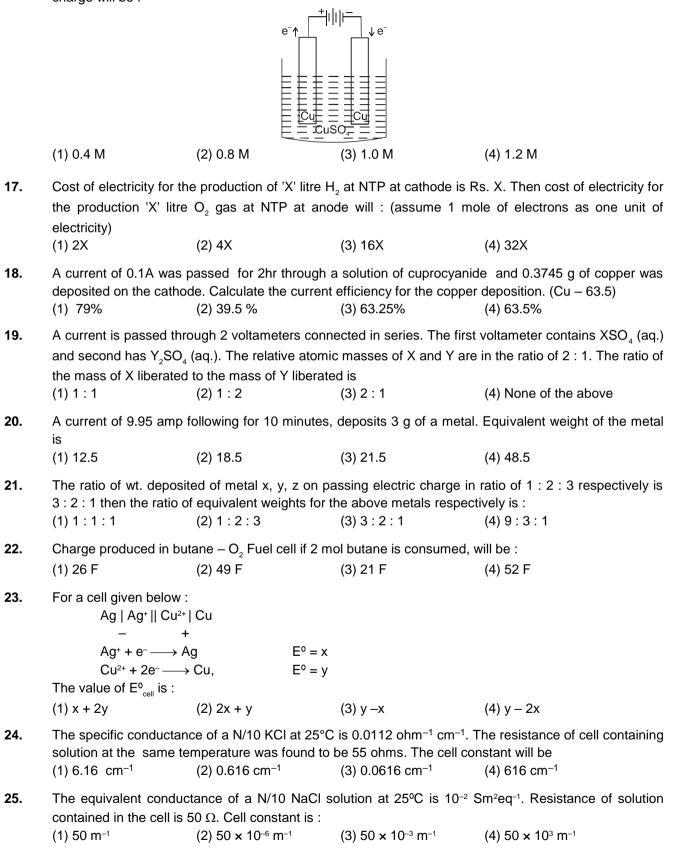
By what will value the cell voltage change when concentration of ions in anodic and cathodic compartments are both increased by factor of 10 at 298 K

- (1) + 0.591 V (2) 0.0591 V (3) 0.1182 V (4) 0 V
- **11.** Pt | Cl₂ (P₁ atm) | HCl (0.1 M) | Cl₂ (P₂ atm) | Pt, cell reaction will be spontaneous if : (1) P₁ = P₂ (2) P₁ > P₂ (3) P₂ > P₁ (4) P₁ = P₂ = 1 atm
- 12. In a cell that utilise the reaction : $Zn (s) + 2H^+ (0.1M) \longrightarrow Zn^{2+} (aq) + H_2 (g)$ addition of 0.1 M H₂SO₄ to cathode compartment will :
 - (1) increase the cell emf and shift equilibrium to the left.
 - (2) lower the cell emf and shift equilibrium to the right.
 - (3) increase the cell emf and shift equilibrium to the right.
 - (4) lower the cell emf and shift equilibrium to the left.
- **13.** For the following cell with hydrogen electrodes at two different pressure p_1 and p_2 ,
 - $\mathsf{Pt} \mid \mathsf{H}_{_{2}}(\mathsf{g}) \mid \mathsf{H}^{_{+}}(\mathsf{aq}) \mid \mathsf{H}_{_{2}}(\mathsf{g}) \mid \mathsf{Pt}$
 - p₁ 1M p₂

emf is given by :

(1)
$$\frac{\text{RT}}{\text{F}}\log_{e}\frac{p_{1}}{p_{2}}$$
 (2) $\frac{\text{RT}}{2\text{F}}\log_{e}\frac{p_{1}}{p_{2}}$ (3) $\frac{\text{RT}}{\text{F}}\log_{e}\frac{p_{2}}{p_{1}}$ (4) $\frac{\text{RT}}{2\text{F}}\log_{e}\frac{p_{2}}{p_{1}}$

14. The chemical reaction, 2AgCl(s) + H₂(g) → 2HCl (aq) + 2Ag (s) taking place in a galvanic cell (under standard condition) is represented by the notation. (1) Pt(s) | H₂(g), 1 bar | 1 M KCl (aq) | AgCl(s) | Ag (s)
(2) Pt(s) | H₂(g), 1 bar | 1 M HCl (aq) | 1 M Ag⁺ (aq) | Ag (s)
(3) Pt(s) | H₂(g), 1 bar | 1 M HCl (aq) | AgCl (s) | Ag (s)


(4) Pt(s) | H₂(g), 1 bar | 1 M HCl (aq) | Ag (s) | AgCl (s)

15. Which of the following reactions is possible at anode :

(1)
$$2 \operatorname{Cr}^{3+} + 7\operatorname{H}_2 O \to \operatorname{Cr}_2 O_7^{2-} + 14\operatorname{H}^+$$
 (2) $\operatorname{F}_2 \to 2\operatorname{F}^-$

(3) $\frac{1}{2}O_2 + 2H^+ \rightarrow H_2O$ (4) displacement reaction

16. In the given figure, the electrolytic cell contains 1 L of an aqueous 1 M Copper (II) sulphate solution. If 0.4 mole of electrons are passed through cell, the concentration of copper ion after passage of the charge will be :

26.	For an NaCl (aq.) solution, which of the following quantities go to zero as NaCl concentration goes to zero? (Assume the solvent's contribution to conductivity has been subtracted off). (1) \wedge_{m} (2) κ (3) $\lambda_{m}(Na^{+})$ (4) $\lambda_{m}(C\ell^{-})$							
27.	Conductance (with un concentration of the	nit Siemens S) is directl	y proportional to area o is inversely proportional	ional to area of the electrode plates and the ely proportional to the separation between the ionality is :				
28.	For a cell reaction invo		ange, the standard emf of the cell is found to be 0.295 V					
29.		tentials of three metals A these metals is in the or (2) A > B > C						
30.	Consider a very weak specific conductivity of $\wedge^{\infty}(H^+) = 350 \text{ Scm}^2/\text{mol}$ $\wedge^{\infty}(A^-) = 100 \text{ Scm}^2/\text{mol}$ (1) 0.45 S/cm	the solution.	10 ⁻¹⁰ . If concentration of (3) 3.5 x 10 ⁻⁶ S/cm	⁴ HA taken is 1M, then find the (4) 0.35 S/cm				
31.	(1) conductance increation(2) conductance increation(3) first conductance in	vith NaOH solution. Whic ases upto equivalence po ases upto equivalence po acreases slowly upto equ acreases slowly upto equ	oint, then it decreases oint, then it increases ivalence point and then i					
32.	If a salt bridge is remo (1) drops to zero gradu (3) increases gradually	•	s, the voltage: (2) does not change (4) Drops to zero rapidly					
33.			ed from 1 atm. to 100 atm, keeping the hydrogen ion he hydrogen half cell is at 25°C will be (3) 0.295 V (4) 0.118 V					
34.	The standard free energy change for the following reaction is - 210 kJ. What is the standard cel potential ?							
	(1) +0.752	→ $2H_2O(\ell) + O_2(g)$ (2) +1.09	(3) +0.420	(4) +0.640				
35.	Total charge required t	for the oxidation of two m	noles Mn_3O_4 into MnO_4^{2-}	in presence of alkaline medium				
	is : (1) 5 F	(2) 10 F	(3) 20 F	(4) None of these				
36.		eq. wt. = 108) displaced (2) 108 g	by that quantity of curre	ent which displaced 5600 mL of (4) None of these				
37.		., _	., _	a current of 1A in 60 seconds? (4) 6.0×10^{20}				

38.	Time required to deposit one millimole of aluminium metal by the passage of 9.65 amperes through aqueous solution of aluminium ion is :								
	(1) 30 s	(2) 10 s	(3) 30,000 s	(4) 10,000 s					
39.	If x specific resistance (in S ⁻¹ cm) of the electrolyte solution and y is the molarity of the solution, then Λ_m (in S cm ² mol ⁻¹) is given by :								
	(1) $\frac{1000x}{y}$	(2) $1000 \frac{x}{y}$	(3) $\frac{1000}{xy}$	(4) $\frac{xy}{1000}$					
40.	The limiting conductivity of NaCl, KCl and KBr are 126.5, 150.0 and 151.5 S cm ² eq ⁻¹ , respectively. The limiting equivalent ionic conductance for Br^- is 78 S cm ² eq ⁻¹ . The limiting equivalent ionic conductance for Na ⁺ ions would be :								
	(1) 128	(2) 125	(3) 49	(4) 50					
41.	The standard emf of a galvanic cell involving cell reaction with n = 2 is found to be 0.295 V at 25°C. The equilibrium constant of the reaction would be : (Given F = 96500 C mol ⁻¹ ; R = 8.314 JK ⁻¹ mol ⁻¹)								
	(1) 2.0 × 10 ¹¹	(2) 4.0 × 10^{12}	(3) 1.0 × 10 ²	(4) 1.0 × 10 ¹⁰					
42.	 A smuggler could not carry gold by depositing iron on the gold surface since (1) Gold is denser (2) Iron rusts (3) Gold has higher reduction potential then iron (4) Gold has lower reduction potential than iron. 								
43.	The correct order of in	creasing oxidizing power	is						
	(1) $F_2 < Cl_2 < Br_2 < l_2$	(2) $F_2 < Br_2 < Cl_2 < l_2$	(3) $Cl_2 < Br_2 < F_2 < I_2$	(4) $I_2 < Br_2 < CI_2 < F_2$					
44.	The hydrogen electrode is dipped in a solution of $pH = 3$ at 25°C. The potential of the cell would be (value of 2.303 RT/F is 0.059 V)								
	(1) 0.177 V	(2) 0.087 V	(3) – 0.177 V	(4) 0.059 V					

45. In electrolysis of NaCl, when platinum electrode is taken then H_2 is liberated at the cathode while with mercury cathode it forms sodium amalgam. This is because

- (1) Hg is more inert than Pt
- (2) More voltage is required to reduce H^+ at Hg than at Pt
- (3) Na is dissolved in Hg while it does not dissolve in Pt
- (4) Conc. of H⁺ ions is larger when Pt electrode is taken

	SP	P A	nsw	/ers									
1.	(1)	2.	(2)	3.	(4)	4.	(2)	5.	(3)	6.	(2)	7.	(2)
8.	(4)	9.	(4)	10.	(3)	11.	(3)	12.	(3)	13.	(2)	14.	(3)
15.	(1)	16.	(3)	17.	(1)	18.	(1)	19.	(1)	20.	(4)	21.	(4)
22.	(4)	23.	(3)	24.	(3)	25.	(1)	26.	(2)	27.	(2)	28.	(4)
29.	(1)	30.	(2)	31.	(3)	32.	(1)	33.	(2)	34.	(2)	35.	(3)
36.	(1)	37.	(1)	38.	(1)	39.	(3)	40.	(4)	41.	(4)	42.	(3)
43.	(4)	44.	(3)	45.	(2)								
1. 2.	E _{cell} =	PPS $\Rightarrow E_{Sn^{4+}/S}^{0}$ $= E_{cathod}^{0}$	_{Sn²⁺} + E ⁽) Fe ²⁺ / Fe ³⁺		⇒ = 0.35.	0.15	— 0.77 =	= - 0.62	V			
3.	2Cu+	$2Cu^{+1} \longrightarrow Cu + Cu^{+2}$ $2Cu^{+1} + 2e \longrightarrow 2Cu$ $Cu - 2e \longrightarrow Cu^{+2}$											

$$2Cu^{+1} \longrightarrow Cu^{+2} + Cu$$

4.
$$CIO_3^- + 2H_2O + 4e \longrightarrow CIO^- + 4OH^-$$
; ΔG_1°
 $CIO^- + H_2O + e \longrightarrow \frac{1}{2}CI_2 + 2OH^-$; ΔG_2°
 $\frac{1}{2}CI_2 + e \longrightarrow CI^-$; ΔG_3°

 $CIO_3^- + 3H_2O + 3e \longrightarrow CI^- + 6OH^-$; ΔG°

$$\therefore \qquad \Delta G^{\circ} = \Delta G_{1}^{\circ} + \Delta G_{2}^{\circ} + \Delta G_{3}^{\circ} - 6FE^{\circ} = -4F \times 0.54 - 1F \times 0.45 - 1F \times 1.07 \therefore \qquad E^{\circ} = + \frac{3.68}{6} = + 0.61 \text{ V}$$

5.
$$\frac{W_1}{E_1} = \frac{W_2}{E_2}; \frac{4}{12} = \frac{W_{Ag}}{108}; W_{Ag} = 36$$

$$\begin{array}{ll} \textbf{6.} & Zn + Ni^{+2} \longrightarrow Zn^{+2} + Ni \\ & E^{\circ} = \ E^{\circ}_{Ni^{+2}/Ni} - \ E^{\circ}_{Zn^{+2}/Zn} \\ & = -0.23 - (-0.76) = +\ 0.53\ V \\ & \text{Positive value shows that the process is spontaneous.} \\ & \text{Rest of all (I) (II) (III) combination have negative } E^{\circ} \ value. \\ & (I) \qquad E^{\circ} = -0.44 - (-0.23) = -0.21\ V \\ & (II) \qquad E^{\circ} = -0.76 - (-0.23) = -0.53\ V \\ & (III) \qquad E^{\circ} = -0.76 - (-0.44) = -0.32\ V \\ \end{array}$$

- 7. $Cu^{2+} + 1e^{-} \rightarrow Cu^{+}$ $E_{1}^{0} = 0.15 \text{ v } \Delta G_{1}^{0} = -n_{1} E_{1}^{0} \text{ F}$ $Cu^{+} + 1e^{-} \rightarrow Cu$ $E_{2}^{0} = 0.50 \text{ v } \Delta G_{2}^{0} = -n_{2} E_{2}^{0} \text{ F}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $\Delta G^{0} = \Delta G^{0}_{1} + \Delta G^{0}_{2}$ $(-1) \text{ n } E^{0} \text{ F} = (-1) n_{1} E_{1}^{0} \text{ F} + (-1) n_{2} E_{2}^{0} \text{ F}$ $E^{0} = \frac{n_{1}E_{1}^{0} + n_{2}E_{2}^{0}}{n} = \frac{0.15 \times 1 + 0.50 \times 1}{2} = 0.325 \text{ V}$
- 8. $\Delta G = -nFE$; if E > 0; $\Delta G < 0 \implies$ Spontaneous reaction. If $E_{cell}^0 > 0$, then the reaction will be spontaneous at standard conditions, not necessarily at all condition or given condition.

9.
$$H^+ + e^- \longrightarrow \frac{1}{2} H_2$$
. $E = 0 - \frac{.0591}{1} \log_{10} \frac{1}{[H^+]} = + 0.0591 \log_{10}[H^+]$.
 $E_1 = 0 \{ pH = 0 \}$.
 $E_2 = + 0.0591 \log_{10}[10^{-7}] = -.0591 \times 7 \{ at \ pH = 7 \} = -0.41 \text{ V}.$

10.
$$E_{cell} = E_{cell}^{0} - \frac{0.0591}{1} \log_{10}[H^{+}] [CI^{-}]$$
 and $E_{cell}^{'} = E_{cell}^{0} - \frac{0.0591}{1} \log_{10} 100[H^{+}] [CI^{-}].$
 $E_{cell}^{'} - E_{cell} = -2 \times 0.0591 = -0.1182.$

11.
$$E_{cell} = E_{cell}^{0} - \frac{0.0591}{2} \log_{10} \frac{P_{Cl_{2 (anode)}}}{P_{Cl_{2 (cathode)}}} = 0 - \frac{0.0591}{2} \log_{10} \frac{P_{1}}{P_{2}}$$

If $P_{1} < P_{2}$, $E_{cell} = + ve$ (spontaneous)

- **13.** The E° of cell will be zero.
- **14.** Cell notation is anode || cathode.
- **15.** Here Cr^{3+} is oxidised to $C_2O_7^{2-}$
- **16.** Number of moles of Cu^{2+} produced from anode = number of moles of Cu^{2+} deposited at cathode.
- **17.** For same charge passed mole of H_2 produced = 2 × moles of O_2 produced.

18. m (theoretical) =
$$\frac{63.5 \times 0.1 \times 7200}{96500}$$
 = 0.4738 g
∴ % efficiency = $\frac{0.3745}{0.4738} \times 100 = 79 \%$

19.
$$\frac{m_X}{m_Y} = \frac{\frac{A_X}{2} \times Q}{\frac{A_Y}{1} \times Q} \implies \frac{m_X}{m_Y} = 1 \qquad \because \qquad A_X = 2A_Y$$

20.
$$\frac{W}{E} = \frac{it}{96500} \implies \frac{3}{E} = \frac{9.95 \times 10 \times 60}{96500} \implies E = 48.5$$

- **21.** Let wt of metal deposited for x, y, z is 3a, 2a, a respectively & let moles of e^- passing for x, y, z be 1, 2 and 3 respectively then the wt of x, y, z deposited is E_x , $2E_y$, $3E_z$ (where E_x , E_y , E_z are equivalent wt. of
- x, y, z) $E_x = 3a$ *.*.. $2E_v = 2a \Rightarrow E_v = a$ $3E_z = a \Rightarrow E_z = \frac{a}{3}$ & ∴ Ex:Ey:Ez = $3a:a:\frac{a}{3}$ 9:3:1 = $C_4H_{10} + \frac{13}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$ 22. 2 mol 13mol O₂ 1 52 mol electron transfer At LHS (oxidation) 2 × (Ag \longrightarrow Ag⁺ + e⁻) $E_{ox}^{0} = -x$ 23. At RHS (reduction) $Cu^{2+} + 2e^{-} \longrightarrow Cu$ $E^{0}_{red} = + y$ $E_{red}^{0} = (y - x)$ $2Ag + Cu^{2+} \longrightarrow Cu + 2Ag^{+},$ $K = \frac{1}{R} \left(\frac{\ell}{a} \right) \Rightarrow 0.0112 = \frac{1}{55} \left(\frac{\ell}{a} \right) \Rightarrow \frac{\ell}{a} = 0.616$ 24. $\lambda_{eq} = \frac{\left(\frac{1}{R} \times G^{*}\right) \times 10^{-3}}{2}$ 25.

∴
$$10^{-2} = \frac{\left(\frac{1}{50} \times G^*\right) \times 10^{-3}}{1/10}$$

∴ G* = 50 m⁻¹

- **26.** $\Lambda_m(NaCl), \ \lambda_m(Na^+), \ \lambda_m(Cl^-)$ keep on increasing as concentration decreases but keeps on decreasing with dilution.
- **27.** $K = \frac{1}{2} = \frac{1}{8} \frac{\ell}{A}$

28. $0 = 0.295 - \frac{0.059}{2} \log K$; $\log K = 10$; $K = 10^{10}$.

The reducing power follows the following order : B > C > A.

30.
$$\alpha$$
 of HA = $\sqrt{10^{-10}} = 10^{-5}$; A_{α} (HA) = A_{α} (H²): A_{α} (Å²) = 450 S cm²/mol
 $= \frac{\alpha - \frac{\Delta \alpha}{\Delta_{\alpha}}}{2}$
 $\Rightarrow \Delta m^{-2} - \alpha^{-2} = 450 \times 10^{-4}$ Scm²/mol.
 $A_{BSO} = \sqrt{n} = \frac{\kappa + 1000}{C}$
 $= \frac{450 \times 10^{-5} \times 1}{1000}$
 $\kappa = 4.5 \times 10^{-5} \text{ Scm}^{-1}$
31. CH₂COOH + NaOH \longrightarrow Na⁺ + CH₂COO⁻ + H₂O Conductance I⁴ increases slowly since no. of ions
increases. After end point it increases sharply due to OH⁻ ions.
32. The e-m.f. of cell decreases gradually and finally to zero due to liquid junction potential arised in cell
after removal of salt bridge.
33. $E_{\alpha,\mu_{1}} = -\frac{0.0591}{0} \log_{10} (\frac{H^{-1}}{\sqrt{PH_{2}}})$
34. n = 2 for given reaction so $\Delta O^{2} = -nE^{0}$
 $\therefore = -210 \times 1000 = -2 \times 96500 \times E^{0}$
 $\Rightarrow E = 1.00 \text{ V}$
35. 1 mole Mn₂O₄ lose $\left(6 - \frac{8}{3}\right) \times 3 = 10$ mole
electron; so total charge required = $2 \times 10 \Rightarrow 20 \text{ F}$
36. Eq. of Aq = Eq. of H₁;
 $\frac{W}{108} = \frac{5500 \times 2}{22400 \times 1}$
 $\therefore W_{Ag} = 64$
37. $O = \text{H}_{1}$
 $= 60$
Number of electron = 60 \times 6.02 \times 10^{23} = 3.74 \times 10^{20}.
38. $A_{1} = \frac{\times 1000}{M^{-1}} = \frac{1}{9} \times \frac{1}{M} \times 1000$;
 $A_{2} = \frac{\times 1000}{M^{-1}} = \frac{1}{9} \times \frac{1}{M} \times 1000$;
 $A_{m} = \frac{(NaB)}{M^{-1}} = \frac{1}{90} \frac{1}{N}$
40. $A_{m}^{n} (NaB) = A_{m}^{n} (NaC) + A_{m}^{n} (NB) - A_{m}^{n} (NC)$
 $A_{m} (NaB) = A_{m}^{n} (NaC) + A_{m}^{n} (NB) - A_{m}^{n} (NC)$