Self Practice Paper (SPP)

1. Both the strings, show in figure, are made of same material and have same cross-section. The pulleys are light. The wave speed of a transverse wave in the string AB is v_1 and in CD it is v_2 . The v_1/v_2 is

(1) 1

(2) 2

(3) $\sqrt{2}$

 $\frac{1}{\sqrt{2}}$

2. Three consecutive flash photographs of a travelling wave on a string are reproduced in the figure here. The following observations are made. Mark the one which is correct. (Mass per unit length of the string = 3 g/cm.)

- (1) displacement amplitude of the wave is 0.25 m, wavelength is 1 m, wave speed is 2.5 m/s and the frequency of the driving force is 0.2/s.
- (2) displacement amplitude of the wave is 2.0 m, wavelength is 2 m, wave speed is 0.4 m/s and the frequency of the driving force is 0.7/s.
- (3) displacement amplitude of the wave is 0.25 m, wavelength is 2 m, wave speed is 5 m/s and the frequency of the driving force is 2.5 /s.
- (4) displacement amplitude of the wave is 0.5 m, wavelength is 2 m, wave speed is 2.5 m/s and the frequency of the driving force is 0.2/s.
- A heavy ball is suspended from the ceiling of a motor car through a light string. A transverse pulse travels at a speed of 60 cm/s on the string when the car is at rest and 62 cm/s when the car accelerates on a horizontal road. Then acceleration of the car is: (Take $g = 10 \text{ m/s}_2$.)

(1) 2.7 m/s₂

- (2) 3.7 m/s₂
- (3) 2.4 m/s₂
- (4) 1.4 m/s₂
- 4. A copper wire is held at the two ends by rigid supports. At 30°C the wire is just taut, with negligible tension. The speed of transverse waves in this wire at 10°C is:

 $(\alpha = 1.7 \times 10^{-5})^{\circ}$ C, Y = 1.3 × 10₁₁ N/m₂, d = 9 × 10₃ kg/m₃).

[JEE - 79]

- (1) 80 m/sec
- (2) 90 m/sec
- (3) 100 m/sec
- (4) 70 m/sec
- 5. Two small boats are 10m apart on a lake. Each pops up and down with a period of 4.0 seconds due to wave motion on the surface of water. When one boat is at its highest point, the other boat is at its lowest point. Both boats are always within a single cycle of the waves. The speed of the waves is

(1) 2.5 m/s

- (2) 5.0 m/s
- (3) 14 m/s
- (4) 40 m/s
- **6.** A sinusoidal wave with amplitude y_m is travelling with speed V on a string with linear density ρ. The angular frequency of the wave is ω. The following conclusions are drawn. Mark the one which is correct.
 - (1) doubling the frequency doubles the rate at which energy is carried along the string
 - (2) if the amplitude were doubled, the rate at which energy is carried would be halved
 - (3) if the amplitude were doubled, the rate at which energy is carried would be doubled
 - (4) the rate at which energy is carried is directly proportional to the velocity of the wave.
- 7. Sinusoidal waves 5.00 cm in amplitude are to be transmitted along a string having a linear mass density equal to 4.00×10^{-2} kg/m. If the source can deliver a maximum power of 90 W and the string is under a tension of 100 N, then the highest frequency at which the source can operate is (take $\pi_2 = 10$):

	(1) 45 H	Hz	(2) 50 Hz	(3	3) 30 Hz		(4) 62 Hz			
8.	junction has was $(1) \lambda' >$	n. The reflected velength λ and that	g on a two piece wave is inverted he transmitted we (2) $\lambda' = \lambda$ about the relatio	in shape a ave λ', (3	as compar 3) λ′ < λ					
9.	Equations of a stationary wave and a travelling wave are $y_1 = a \sin kx \cos \omega t$ and $y_2 = a \sin (\omega t - kx)$. The									
	phase difference between two points $x_1=\frac{\pi}{3k}$ and $x_2=\frac{3\pi}{2k}$ are φ_1 and φ_2 respectively for the two waves.									
	ϕ_1									
		io $\overline{\phi_2}$ is:	(0) 5/0	10	2) 0/4		(4) 0/7			
	(1) 1		(2) 5/6	,	3) 3/4		(4) 6/7			
10.	An observer standing at the sea-coast observes 54 waves reaching the coast per minute. If the wavelength of wave is 10m, The velocity. of wave is [REE - 79]									
	(1) 19 r		(2) 29 m/sec		3) 9 m/sec		(4) 39 m/se			
11.	One end of two wires of the same metal and of same length (with radius, r and 2r) are joined together. The wire is used as sonometer wire and the junction is placed in between two bridges. The tension T is applied to the wire. If at a junction a node is formed then the ratio of number of loops formed in the wires will be: [JEE - 85]									
	(1) 1 : 2	<u>/</u>	(2) 2 : 3	(3	3) 3 : 4		(4) 4 : 5			
12.	standin submer	g waves in the viged. The new fu	avity ρ is hung from the property of the sum of the	he object ency in Hz	is immerse z is	ed in water s	so that one h	alf of its vol E - 95]		
13.	(a)	its centre on a l	of rope of length norizontal smooth displacement is g	n platform.						
			(2) $\frac{\omega L}{2\pi}$			$\underline{\omega L}$		$\frac{\omega L}{4\pi^2}$		
	(b)	(1) ωL In the above of			(3) ne pulse a	π and rotation	(4) of the loop.		same	
	(2)	direction then the velocity of the pulse w.r.t. to ground will be :								
		(1) ωL	(2) $\frac{\omega L}{2\pi}$		(3)	$\frac{\omega L}{\pi}$	(4)	$\frac{\omega L}{4\pi^2}$		
	(c)	· ,	uestion if both a		` ,				v.r.t. to	
			(2) $\frac{\omega L}{2\pi}$			$\frac{\omega L}{\pi}$				
		(1) ωL	(2) 2π		(3)	π	(4)	0		
14.	Three waves of equal frequency having amplitudes 10 μm , 4 μm and 7 μm arrive at a given point with a									

14. Three waves of equal frequency having amplitudes 10 μ m, 4 μ m and 7 μ m arrive at a given point with a successive phase difference of $\pi/2$. The amplitude of the resulting wave is μ m in given by

(1)7

(2)6

(3)5

(4) 4

15. A metalled wire with tension T and at temperature 30°C vibrates with its fundamental frequency of 1 kHz. The same wire with the same tension but at 10°C temperature vibrates with a fundamental frequency of 1.001 kHz. The coefficient of linear expansion of the wire is

(1) $2 \times 10^{-4} \, ^{\circ}\text{C}_{-1}$

(2) $1.5 \times 10^{-4} \, ^{\circ}\text{C}_{-1}$

(3) 1 × 10₋₄ $^{\circ}$ C₋₁

(4) $0.5 \times 10^{-4} \, ^{\circ}\text{C}_{-1}$

16. A steel wire of length 1 m and mass 0.1 kg and having a uniform cross-sectional area of 10₋₆ m₂ is rigidly fixed at both ends. The temperature of the wire is lowered by 20°C. If the transverse waves are set up by plucking the string in the middle, the frequency of the fundamental note of vibration is

 $(Y_{steel} = 2 \times 10_{11} \text{ N/m}_2, \alpha_{steel} = 1.21 \times 10_{-5} \text{°C})$

(1) 44 Hz

(2) 88 Hz

(3) 22 Hz

(4) 11 Hz

17. A heavy but uniform rope of length L is suspended from a ceiling. A particle is dropped from the ceiling at the instant when the bottom end is given the jerk. Where will the particle meet the pulse :

(1) at a distance If $\frac{2L}{3}$ from the bottom

(2) at a distance $\frac{1}{3}$ from the bottom

(3) at a distance $\frac{L}{3}$ from the bottom

(4) None of these

18. A certain transverse sinusoidal wave of wavelength 20 cm is moving in the positive x direction. The transverse velocity of the particle at x = 0 as a function of time is shown. The amplitude of the motion is

 $\frac{5}{\pi}$ cm

(2) $\frac{\pi}{2}$ cm

(3) $\frac{\pi}{\pi}$ cm

(4) 2π cm

19. A 20 cm long rubber string obeys Hook's law. Initially when it is stretched to make its total length of 24 cm, the lowest frequency of resonance is υ_0 . It is further stretched to make its total length of 26 cm. The lowest frequency of resonance will now be :

(1) the same as υ_0

(2) greater than uo

(3) lower than uo

(4) None of these

20. The wave–function for a certain standing wave on a string fixed at both ends is $y(x,t) = 0.5 \sin(0.025\pi x) \cos 500 t$ where x and y are in centimeters and t is in seconds. The shortest possible length of the string is:

(1) 126 cm

(2) 160 cm

(3) 40 cm

(4) 80 cm

21. A wave travels on a light string. The equation of the wave is $Y = A \sin(kx - \omega t + 30^\circ)$. It is reflected from a heavy string tied to an end of the light string at x = 0. If 64% of the incident energy is reflected the equation of the reflected wave is

 $(1)Y = 0.8 A \sin (kx - \omega t + 30^{\circ} + 180^{\circ})$

 $(2)Y = 0.8 \text{ A} \sin (kx + \omega t + 30^{\circ} + 180^{\circ})$

 $(3)Y = 0.8 \text{ A sin } (kx + \omega t - 30^{\circ})$

 $(4)Y = 0.8 A \sin (kx + \omega t + 30^{\circ})$

22. A string of length ' ℓ ' is fixed at both ends. It is vibrating in its 3_{rd} overtone with maximum amplitude 'a'.

The amplitude at a distance $\frac{\ell}{3}$ from one end is :

(1) a

(2) 0

(3) $\frac{\sqrt{3} \, a}{2}$

 $\frac{a}{(4)}$

23. A wire having a linear density of 0.05 gm/cm is stretched between two rigid supports with a tension of 4.5 x 10⁷ dynes. It is observed that the wire resonates at a frequency of 420 cycles/sec. The next higher frequency at which the same wire resonates is 490 cycles/sec. The length of wire is approximately.

[JEE - 71]

(1) 314 cm

(2) 254 cm

(3) 214 cm

(4) 354 cm

24. A wire of density 9 gm/cm₃ is stretched between two clamps 1.00 m apart while subjected to an extension of 0.05 cm. The lowest frequency of transverse vibrations in the wire is

(Assume Young's modulus $Y = 9 \times 10_{10} \text{ N/m}_2$)

[JEE - 75]

(1) 35 Hz

(2) 45 Hz

(3) 75 Hz

(4) 90 Hz

- **25.** Two wave pulses travel in opposite directions on a string and approach each other. The shape of the one pulse in inverted with respect to the other.
 - (1) the pulses will collide with each other and vanish after collision
 - (2) the pulses will reflect from each other i.e., the pulse going towards right will finally move towards left and vice versa.
 - (3) the pulses will pass through each other but their shapes will be modified
 - (4) the pulses will pass through each other without any change in their shape

SPP Answers

- **1.** (4) **2.** (3) **3.** (2) **4.** (4) **5.** (2) **6.** (4) **7.** (3)
- 8. (3)9. (4)10. (3)11. (1) 12. (1) 13. (2) (a) (4)14. (3) 15. (3) 16. (4) 17. (2) 18. (3)(b) (3)(c)
- **19.** (2) **20.** (3) **21.** (3) **22.** (3) **23.** (3) **24.** (1) **25.** (4)

SPP Solutions

$$\frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{T/2}{T}} = \frac{1}{\sqrt{2}}$$

2. Clear from the figure

3.
$$60 = \sqrt{\frac{mg}{\mu}} \qquad(1)$$
$$\sqrt{m(g^2 + a^2)^{\frac{1}{2}}}$$

$$62 = \sqrt{\frac{m(g^2 + a^2)^2}{\mu}} \qquad(2)$$

$$\therefore a = 3.7 \frac{m}{\text{sec}^2}$$

4.
$$V = \sqrt{\frac{T}{\mu}} = \frac{YA\alpha\Delta T}{\mu}$$
 Put values

5. Distance between boat =
$$\frac{1}{2}$$
 = 10 m \Rightarrow λ = 20m time penod T = 4 sec .

$$V = \lambda / T = 20 \text{ m} / 4 \text{sec.}$$

$$= 5 \text{m/s.}$$

- **6.** By defination
- 7. As $< P > = 2\pi_2 f_2 A_2 \mu v$ put values
- 8. Second string is denser so speed will decrease hence wavelength also $\lambda_1 < \lambda$

9. At
$$x_1 = \frac{\pi}{3K}$$
 and $x_2 = \frac{3\pi}{2K}$

Nodes are not formed because neither x_1 nor x_2 gives $\sin kx = 0$

$$\therefore \Delta x = x_2 - x_1 = \frac{7\pi}{6K}$$

As this
$$\Delta x$$
 is between λ and $\frac{\lambda}{2}$

$$... \varphi_1 = \pi$$

and
$$\phi_2 = K\Delta x = \frac{7\pi}{6}$$

$$\frac{\phi_1}{\phi_2} = \frac{6}{7}$$

10.
$$v = f \lambda = \frac{54}{60} \times 10 = 9 \text{ m/sec.}$$

11.
$$\mu = \frac{m}{\ell} = \rho A \qquad \qquad \therefore m_1 = \rho \pi r_2$$

$$m_2 = \rho 4 \pi r_2 \qquad \therefore \frac{V_1}{V_2} = \frac{\sqrt{T/\mu_1}}{\sqrt{T/\mu_2}}$$

Let P loops and q loops are formed respectively 1st and 2nd wire.

$$\therefore \frac{p}{2\ell} \bigvee_{1=2} \frac{q}{2\ell} \bigvee_{2} \Rightarrow \frac{p}{q} =$$

12. If
$$T = mg = v\rho g$$

$$f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}} = 300 \qquad \dots (1)$$

Now
$$T' = mg - f_b = vpg - \frac{v}{2} g$$
.

$$T' = vg \left(\frac{2\rho - 1}{2} \right)$$

$$f' = \frac{1}{2\ell} \sqrt{\frac{vg}{\mu} \frac{(2\rho - 1)}{2}}$$

$$\left(\frac{2\pi-1}{2P}\right)^{1/2}$$

$$\frac{f'}{f} = \left(\frac{2\rho - 1}{2\rho}\right)^{2}$$

$$f' = 300 \left(\frac{2\pi - 1}{2P} \right)^{3}$$

13. (a)

$$2T \sin \frac{\pi}{2} = dm.\omega_2 R$$

$$2T \frac{d\theta}{2} = \frac{m}{\ell} Rd\theta.\omega_2 R$$

$$T = \frac{m\omega^2 R^2}{\ell}$$

$$\therefore V = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{1}{\ell}} = \omega R_2$$

$$t = \frac{\omega L}{2\pi}$$

(b)
$$V_{P/R} = \frac{\omega L}{2\pi}$$

$$V_{P/G} - V_{R/G} = \frac{\omega L}{2\pi}$$
 \Rightarrow $V_{P/G} - \frac{\omega L}{2\pi} = \frac{\omega}{2}$

$$V_{P/G} = \left(\frac{WL}{2\pi}\right)_2$$

$$V_{P/G} = \frac{\omega L}{\pi}$$

(c)
$$V_{P/R} = \frac{\omega L}{\pi}$$

$$V_{P/G} - \left(-\frac{wL}{2\pi}\right) = \frac{wL}{2\pi}$$

14.

Resultant Amplitude =
$$\sqrt{3^2 + 4^2}$$
 = 5µm

15.
$$f_1 = \frac{1}{2\ell_1} \sqrt{\frac{T\ell_1}{m}}$$
 $f_2 = \frac{1}{2\ell_2} \sqrt{\frac{T\ell_2}{m}}$ $\therefore \frac{f_1}{f_2} = \sqrt{\frac{\ell_2}{\ell_1}} = \sqrt{\frac{\ell_1(1-20\alpha)}{\ell_1}}$

$$\frac{f_1}{f_2}$$
 $\sqrt{\frac{\ell_2}{\ell_1}}$ $\sqrt{\frac{\ell_1(1-20\alpha)}{\ell_1}}$

$$\frac{f_1}{f_2} = (1 - 10\alpha)$$
 (By Binomial theorem)
$$\alpha = \frac{f_2 - f_1}{10f_2} = 10^{-4} \, ^{0}\text{C}_{-1}$$

16.
$$n = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}} \qquad n = \frac{1}{2\ell} \sqrt{\frac{YA\alpha T}{\mu}}$$
Put values $\therefore n = 11 \text{ Hz}$

17.

For the pulse
$$V = \sqrt{\frac{\mu x g}{\mu}} = \sqrt{xg} = \frac{dx}{dt}$$

$$\frac{dx}{dt} = \sqrt{xg} \Rightarrow \int_{0}^{x} \frac{dx}{\sqrt{x}} = \sqrt{g} \int_{0}^{t} dt$$

$$t = 2\sqrt{\frac{x}{g}}$$

$$t = (1)$$

for the particle $L - x = \frac{1}{2}$ gts $\frac{2(L - x)}{}$

$$t = \sqrt{\frac{2(L-x)}{g}} \qquad ----(2)$$

$$1 = 2 \implies x = \frac{L}{3}$$
 from the bottom

18.
$$V_{\text{max}} = A\omega = 5 \implies A = \frac{2\pi}{4} = 5 \implies A = \frac{10}{\pi} \text{ cm}$$

19. As,
$$T = \frac{\frac{YA}{20}}{4} \Rightarrow v_0 = \frac{\frac{1}{2 \times 24}}{\frac{1}{20} \cdot \frac{4}{\mu}} = \dots (1)$$
and $T' = \frac{\frac{YA}{20}}{6} \Rightarrow v' = \frac{\frac{1}{2 \times 26}}{\frac{1}{20} \cdot \frac{6}{\mu}} = \dots (2)$

$$\frac{\mathbf{v'}}{\mathbf{v_0}} = \frac{24}{26} \sqrt{\frac{6}{4}} \qquad \mathbf{v'} > \mathbf{v_0}$$

20.
$$K = 0.025 \ \pi = \frac{2\pi}{\lambda}$$
 $\lambda = \frac{2cm}{0.025}$

Required length =
$$\frac{\lambda}{2} = \frac{1}{0.025} = 40 \text{ cm}$$

21. As
$$y = A \sin (Kx - \omega t + 30^{\circ})$$
 for incident wave Now for reflected wave : Energy α Amp₂

$$\therefore Y = 0.8 \text{ A} \sin (-Kx - \omega t + 30 + 180)$$

$$Y = 0.8 \text{ A} \sin (-Kx - \omega t + 210)$$

 $Y = -0.8 \text{ A sin } (kx + \omega t - 210)$

 $Y = -0.8 \text{ A} \sin [Kx + \omega t - 30 - 180]$

 $Y = 0.8 \text{ A} \sin [180 - (Kx + \omega t - 30)]$

 $Y = 0.8 A \sin (Kx + \omega t - 30)$

22.
$$\Rightarrow$$
 $2\lambda = \ell$

$$\Rightarrow \lambda = \frac{\ell}{2}$$

As x = 0 is a node

$$= a \sin^{\frac{\lambda}{2}}$$

$$= a \frac{\sqrt{3}}{2}$$

$$=a^{\frac{\sqrt{3}}{2}}$$

23.
$$V = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{4.5 \times 10^7}{0.05}}$$

$$\frac{n}{2\ell} \sqrt{\frac{4.5 \times 10^7}{0.05}} = 420$$

$$\frac{n+1}{2\ell} \sqrt{\frac{4.5 \times 10^7}{0.05}} = 490$$

$$1 \div 2 \implies \frac{n}{n+1} = \frac{6}{7}$$

Put n in (1)

$$\frac{6}{2\ell} 3 \times 10_2 = 420$$

$$\therefore \frac{6}{2\ell} \quad 3 \times 10_2 = 420$$

$$\frac{30000}{30000}$$

$$\ell = \frac{33333}{140}$$

$$\ell = 7 = 214 \text{ cm}$$

24.
$$f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}}$$

$$\frac{1}{2 \cdot 1} \sqrt{\frac{\text{YA}}{\ell} \cdot \Delta \ell}$$

$$= \frac{1}{2} \sqrt{\frac{9 \times 10^{10} \times 5 \times 10^{-14}}{9 \times 10^{3}}}$$

= 35 Hz

25. By difination