Self Practice Paper (SPP)

1.	The sodium salt of me compound?	ethyl orange has 7% so	odium. What is the min	imum molecular weight of the				
	(1) 420	(2) 375	(3) 328.57	(4) 294.46				
2.	112.0 mL of NO $_2$ at ST and the number of mole (1) 0.10 mL and 3.01 x (3) 0.20 mL and 6.02 x	P was liquefied, the dense ecules in the liquid NO_2 . 10^{22} 10^{23}	sity of the liquid being 1.15 g mL ⁻¹ . Calculate the volume (2) 0.20 mL and 3.01 × 10^{21} (4) 0.40 mL and 6.02 × 10^{21}					
3.	Common salt obtained molecules of NaCl pres (1) 10 ²¹	from sea - water contain 10.0 g of the comr (2) 10 ²²	ains 96% NaCl by mas non salt is : (At. wt. Na = (3) 10 ²³	s. The approximate number of 23) (4) 10 ²⁴				
4.	X and Y are two eleme X_3Y_4 weighs 92.8 g, the (1) 16.0 and 56.0	nts which form X ₂ Y ₃ and atomic weights of X and (2) 8.0 and 28.0	$X_{3}Y_{4}$. If 0.20 mol of X_{2} Y are respectively (3) 56.0 and 16.0	(4) 28.0 and 8.0				
5.	A 10.0 g sample of a n This calcium carbonate calcium oxide is 1.62 g. (1) 15.2%	nixture of calcium chlorid e is heated to convert a The percentage by mas (2) 32.1%	de and sodium chloride i all the calcium to calciun s of calcium chloride in t (3) 21.8%	s treated with Na ₂ CO ₃ solution. m oxide and the final mass of he original mixture is : (4) 11.07%				
6.	$2KI + I_2 + 22 HNO_3 \rightarrow 3$ If 3 mole of KI & 2 mole (1) 739.2 Lt	$2\text{HIO}_3 + 2\text{KIO}_3 + 22\text{NO}_2$ es I ₂ are reacted with exc (2) 1075.2 Lt	+ 10H ₂ O ess of HNO ₃ . Volume of (3) 44.8 Lt	NO ₂ gas evolved at NTP is $(4) 67.2 Lt$				
7.	Minimum amount of Ag ₂ CO ₃ (s) required to produce sufficient oxygen for the complete combustion of C ₂ H ₂ which produces 11.2 ltr of CO ₂ at S.T.P after combustion is: [Ag = 108] Ag ₂ CO ₃ (s) \rightarrow 2Ag (s) + CO ₂ (g) + 1/2O ₂ (g) C ₂ H ₂ + 5/2O ₂ \rightarrow 2CO ₂ + H ₂ O							
8.	 Consider the following s 1. If all the reactar behind. 2. 2 moles of H₂(g 3. equal wt. of car The above statements (1) T T T 	statements : nts are not taken in their g) and 3 moles of O ₂ (g) p bon and oxygen are take 1, 2, 3 respectively are (⁻ (2) F T F	stoichiometric ratio, then roduce 2 moles of water en to produce CO_2 then ($\Gamma = True, F = False$) (3) F F F	at least one reactant will be left D_2 is limiting reagent. (4) T F T				
9.	In the reaction 4A + 2 Starting from 2 moles o (1) 0.5	$B + 3C \longrightarrow A_4 B_2 C_3$ f A, 1.2 moles of B & 1.4 (2) 0.6	what will be the number 4 moles of C : (3) 0.48	er of moles of product formed. (4) 4.64				

F

10.	Which of the following equations is a balanced one :								
	(1) $5BiO_3^{-} + 22H^+ + Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_2O + MnO_4^{-}$								
	(2) $5BiO_{3}^{-} + 14H^{+} + 2Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_{2}O + 2MnO_{4}^{-}$								
	(3) $2BiO_{3}^{-} + 4H^{+} + Mn^{2+} \longrightarrow 2Bi^{3+} + 2H_{2}O + MnO_{4}^{-}$								
	(4) $6BiO_3^- + 12H^+ + 3N_3^-$	$\ln^{2+} \longrightarrow 6Bi^{3+} + 6H_2$	$D + 3MnO_4^{-}$						
11.	During the disproporti formed in alkaline med	onation of lodine to iod	ide and iodate ions, the	ratio of iodate and iodide ions					
	(1) 1 : 5	(2) 5 : 1	(3) 3 : 1	(4) 1 : 3					
12.	How much NaNO ₃ musper mL ?	st be weighed out to mal	ke 50 ml of an aqueous s	solution containing 70 mg of Na⁺					
	(1) 12.394 g	(2) 1.29 g	(3) 10.934 g	(4) 12.934 g					
13.	The strength of 10- 2 M (Molecular weight of N	/I Na ₂ CO ₃ solution in teri a ₂ CO ₃ = 106 g mol ^{_1})	ms of molality will be (de	ensity of solution = 1.10 g mL ^{-1}).					
	(1) 9.00 × 10 ⁻³	(2) 1.5 × 10 ⁻²	(3) 5.1 × 10⁻³	(4) 11.2 × 10⁻³					
14.	The temperature at wh (1) 273 K	ich molarity of pure wate (2) 298 K	er is equal to its molality is (3) 277 K	s : (4) None					
15.	What is the molarity of (1) 4.18 M	H_2SO_4 solution that has (2) 8.14 M	a density 1.84 g/cc at 35 (3) 18.4 M	⁰C and contains 98% by weight- (4) 18 M					
16.	5.85 g of NaCl is disso (1) 6.02 × 10 ¹⁹	lved in 1 L of pure water (2) 1.2 × 10 ²²	. The number of ions in 1 (3) 1.2 × 10 ²⁰	mL of this solution is (4) 6.02×10^{20}					
17.	Suppose you want an	acidic solution to carry	out a chemical reaction	with 2 moles of NaOH. Which					
	sample of acid is the b	est choice for you.							
	(1) 1 M H_2SO_4 (50 Rs	per It.)	(2) 1 M H_2SO_4 (56 Rs per lt.)						
		n.)		n.)					
18.	The correct expressior solute is :	n relating molality (m), mo	olarity (M), density of solu	ution (D) and molar mass (M ₂) of					
	(1) m = $\frac{M}{d + MM_2} \times 1$	000	(2) m = $\frac{M}{1000 d - MM}$	- × 1000					
	(3) m = $\frac{d + MM_2}{M} \times 1$	000	(4) m = $\frac{1000 d - MM_2}{M}$	² × 1000					
19.	A compound is comp compound is 162, what	osed of 74% C, 8.7% H	H and 17.3% N by mas	s. If the molecular mass of the					
	(1) $C_5 H_7 N$	(2) $C_{10}H_{16}N_2$	(3) $C_8 H_{14} N_3$	(4) $C_{10}H_{14}N_2$					

- Calculate the volume of O_2 needed for combustion of 1 kg of carbon at STP. C + $O_2 \xrightarrow{\Delta} CO_2$. 20. (3) 933.33 L O₂. (1) 1866.67 L O₂. (2) 3733.33 L O₂. (4) 4666.67 L O₂.
- 21. Li metal is one of the few substances that reacts directly with molecular nitrogen. The balanced equation for reaction is :

$$6\text{Li}(s) + \text{N}_2(g) \longrightarrow 2\text{Li}_3\text{N}(s)$$

How many grams of the product, lithium nitride, can be prepared from 3.5g of lithium metal and 8.4 g of molecular nitrogen ? (1) 21.00 g of Li₃ N.

(2) 2.91 g of Li₃ N. (3) 5.83 g of Li₃ N. (4) 10.50 g of Li₃ N. 22. Potassium super oxide, KO₂, is used in rebreathing gas masks to generate O₂. If a reaction vessel contains 0.15 mol KO₂ and 0.10 mol H₂O, what is the limiting reactant ? How many moles of oxygen can be produced?

 $2KO_2 + 2H_2O \longrightarrow 2KOH + H_2O_2 + O_2$

- (1) H_2O limiting reagent, 0.05 mol of O_2 . (2) KO₂ limiting reagent, 0.05 mol of O₂.
- (3) H₂O limiting reagent, 0.075 mol of O₂. (4) KO₂ limiting reagent, 0.075 mol of O₂.
- 23. A 1 g sample of KCIO₃ was heated under such conditions that a part of it decomposed according to the equation.

(i)
$$2\text{KCIO}_3 \longrightarrow 2\text{KCI} + 3\text{O}_2$$

and the remaining underwent change according to the equation

(ii) $4\text{KClO}_3 \longrightarrow 3\text{KClO}_4 + \text{KCl}$

If the amount of O₂ evolved was 146.8 mL at NTP, calculate the percentage by weight of KCIO₄ in the residue.

(2) 49.8 %. (3) 62.5 %. (4) 87.1 %. (1) 29.3 %.

24. Equal weights of mercury and I, are allowed to react completely to form a mixture of mercurous and mercuric iodide leaving none of the reactants. Calculate the ratio of the weights of Hg₂I₂ and HgI₂ formed.

- (2) 0.732 : 1 (3) 1 : 0.523 (4) 0.523 : 1 (1) 1 : 0.653
- 25. 64 g of a mixture of NaCl and KCl were treated with concentrated sulphuric acid. The total mass of metal sulphates obtained was found to be 76 g. What are the mass percents of NaCl in the mixture. The reactions are,

 $2 \text{ NaCl} + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2 \text{ HCl} \quad ; \quad 2 \text{ KCl} + \text{H}_2\text{SO}_4 \longrightarrow \text{K}_2\text{SO}_4 + 2 \text{ HCl}$ (1) 42.89 % NaCl (2) 84.9 % NaCl (3) 31.5 % NaCl (4) 63.1 % NaCl

- A piece of aluminium weighing 2.7 g is heated with 75.0 ml of H₂SO₄ (sp. gr. 1.2 containing 25% H₂SO₄ 26. by mass). After the metal is carefully dissolved the solution is diluted to 400ml. What is the molarity of the free H_2SO_4 in the resulting solution? (4) 0.198 M (1) 1.056 M (2) 0.560 M (3) 0.312 M
- 100 ml of 0.15 M solution of $Al_2(SO_4)_2$, the density of the solution is 1.5 g/ml. Report the no. of Al^{3+} ions 27. in this weight. (1) 1.8 × 10²⁵ ions (2) 6 × 10²² ions (3) 1.8 × 10²³ ions (4) 1.8 × 10²² ions
- 5 g sample of $CuSO_4$. 5H₂O was dissolved in water. BaCl₂ solution was mixed in excess to this 28. solution. The precipitate (BaSO₄) obtained was washed and dried, it weighed 4.66 g. What is the % of SO_4^{2-} by weight in the sample.

(3) 51%

(1) 76.8% (2) 38.4% Calcium phosphide (Ca₃ P₂) formed by reacting calcium orthophosphate (Ca₃ (PO₄)₂) with magnesium 29. was hydrolysed by water. The evolved phosphine (PH,) was burnt in air to yield phosphorus pentoxide (P2 O5). How many grams of magnesium metaphosphate would be obtained, if 19.2 g of magnesium were used for reducing calcium phosphate.

$$\begin{array}{ccc} Ca_{3}(PO_{4})_{2} + Mg & \longrightarrow Ca_{3}P_{2} + MgO \\ Ca_{3}P_{2} + H_{2}O & \longrightarrow Ca(OH)_{2} + PH_{3} \\ PH_{3} + O_{2} & \longrightarrow P_{2}O_{5} + H_{2}O \\ MgO + P_{2}O_{5} & \longrightarrow Mg(PO_{3})_{2} \\ & \text{magnesium metaphosphate} \end{array}$$

(4) 19.2%

CHEMISTRY FOR NEET

30.	(1) 145.8 gramAt room temperature,volume of ethanol cont(1) 418.95 ml.	(2) 32 gram the density of water is 7 ains the same number o (2) 736.33 ml.	(3) 50.4 gram I.0 g/mI and the density f molecules as are prese (3) 566.82 mI.	(4) 18.2 gram of ethanol is 0.789 g/ml. What nt in 175 ml of water ? (4) 911.84 ml.					
31.	Number of gm of oxyge	en in 32.2 g Na₂SO₄. 10ł	H₂O is :						
	(1) 20.8	(2) 22.4	(3) 2.24	(4) 2.08					
32.	Calculate the empirica of acetylene if this com (1) C_6H_6	l formula of a compoun pound contains 85.7% c (2) CH	d "A" which is obtained f arbon and 14.3% hydrog (3) C ₃ H ₆	from the catalytic hydrogenation en (by wt.). (4) CH ₂					
33.	12 lit. of H ₂ and 11.2 lit	. of Cl ₂ are mixed and ex	ploded. The composition	n by volume of mixture is :					
	(1) 24 lit. of HCI (g)		(2) 0.8 litre Cl ₂ and 20.	8 lit. HCl (g)					
	(3) 0.8 lit. H ₂ and 22.4	lit. HCl (g)	(4) 22.4 lit. HCI (g)						
34.	A sample of calcium carbonate $(CaCO_3)$ has the following percentage composition : Ca = 40%, C = 12% O = 48%. If the law of constant proportions is true, then the weight of calcium in 4g of a sample of calcium carbonate obtained from another source will be : (1) 0.016 g (2) 0.16 g (3) 1.6 g (4) 16 g								
35.	The atomic mass of an (1) 66.75	element is 27. if valency (2) 6.675	v is 3, the vapour density (3) 667.5	of the volatile chloride will be: (4) 81					
36.	Copper metal reacts w	ith nitric acid. Assume th	at the reaction						
	3Cu(s) + 8HN0	$D_3(aq) \longrightarrow 3Cu(NO_3)$	$_{2}$ (aq) + 2NO(g) + 4H ₂ O(d	2)					
	If 18.75 g Cu(NO ₃) ₂ is formed also, according	eventually obtained, the	n how many grams of ni ion ?	tric oxide, NO, would have also					
	(1) 2 g.	(2) 4 g.	(3) 6 g.	(4) 8 g.					
37.	Which of the following (1) 12g of carbon comb (2) When 12 g of carbo (3) A sample of air in unaltered. (4) The weight of a pie	is the best example of la pines with 32g of oxygen on is heated in a vacuum ncreases in volume wh ce of platinum is the sam	w of conservation of mas to form 44g of CO ₂ there is no change in ma en heated at constant p ne before and after heatir	ss : ass pressure but its mass remains ng in air					
38.	The molecular weight	of a compound is 180. If	its empirical formula is C	H ₂ O then the molecular formula					
	of compound is : (1) $C_2H_4O_2$	(2) C ₃ H ₆ O ₃	(3) C ₆ H ₁₂ O ₆	(4) C ₁₂ H ₂₄ O ₁₂					
39.	4 moles each of SO ₂ a 25% of O ₂ is used up.	and O ₂ gases are allowed The total number of mole	d to react to form SO ₃ in as of all the gases at equ	a closed vessel. At equilibrium, ilibrium is :					
	(1) 6.5	(2) 7.0	(3) 8.0	(4) 2.0					
40.	1.12 mL of a gas is pro iodide. The molecular i (1) 16.0	oduced at STP by the ac mass of alcohol is : (2) 41.2	ction of 4.12 mg of alcoh (3) 82.4	ol ROH with methyl magnesium (4) 156.0					

CHEMISTRY FOR NEET

41. The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having 1000 g of solvent.
(1) 1000 g
(2) 1098.6 g
(3) 980.4 g
(4) 1019.6 g

42. Generally commercial hydrochloric acid is prepared by heating NaCl with concentrated H₂SO₄. How much H₂SO₄ solution containing 93.0% H₂SO₄ by mass is required for the production of 1000 kg of concentrated hydrochloric acid containing 43% HCl by weight .
(1) 590.0 kg solution of H₂SO₄.
(2) 310.3 kg solution of H₂SO₄.
(3) 620.7 kg solution of H₂SO₄.
(4) 708.2 kg solution of H₂SO₄.

43. XeF₆ fluorinates I₂ to IF₇ and liberates Xenon(g). 3.5 mmol of XeF₆ can yield a maximum of _____ mmol of IF₇. (1) 3 (2) 7 (3) 1 (4) 6

44. Balance the following equation and choose the quantity which is the sum of the coefficients of all species:

	\ldots CS ₂ + \ldots CI ₂	$\longrightarrow CCl_4 + \dots$	S ₂ Cl ₂
(1) 3	(2) 7	(3) 1	(4) 6

45. Average atomic mass of magnesium is 24.31 a.m.u. This magnesium is composed of 79 mole % of ²⁴Mg and remaining 21 mole % of ²⁵Mg and ²⁶Mg. Calculate mole % of ²⁶Mg.

(1) 3 (2) 10 (3) 1	(4) 6
--------------------	-------

	SF	P A	nsv	/ers									
1.	(3)	2.	(2)	3.	(3)	4.	(3)	5.	(2)	6.	(1)	7.	(2)
8.	(1)	9.	(3)	10.	(2)	11.	(1)	12.	(4)	13.	(1)	14.	(3)
15.	(3)	16.	(3)	17.	(1)	18.	(2)	19.	(4)	20.	(1)	21.	(3)
22.	(1)	23.	(2)	24.	(4)	25.	(1)	26.	(4)	27.	(4)	28.	(2)
29.	(4)	30.	(3)	31.	(2)	32.	(4)	33.	(3)	34.	(3)	35.	(1)
36.	(1)	37.	(1)	38.	(3)	39.	(2)	40.	(3)	41.	(4)	42.	(3)
43.	(1)	44.	(4)	45.	(2)								
	SF	PP S	olut	ions	5 =								
1.	% of	Na = $\frac{m}{m}$	ass of s olecula	sodium r mass	× 100	⇒	7 =	$\frac{23}{M} \times 100$)				
	M = -	<u>23×100</u> 7	= 328.	6									
2.	Mole	of NO ₂ =	112	= 5 × 10) -3								
	Mass	s of NO ₂	= 5 × 10	[–] 3 × 46 =	0.23 gr	n							
	Volur	me of NO	$D_2 = \frac{Ma}{Der}$	$\frac{ass}{asity} = \frac{0}{1}$	0.23 1.15 = 0	.2 ml							
	Num	ber of m	olecule =	= 5 × 10∹	³ × 6.02	3 × 10 ²³	= 3.1 × 1	10 ²¹ .					
3.	Mass	s of NaC	l = 10 × 0	0.96 = 9.	6 g								
	mole	s of NaC	$1 = \frac{9.6}{58.5}$	-									
	no. o	f molecu	lles = $\frac{9}{58}$	$\frac{.6}{3.5} \times 6.0$)23 × 10) ²³ <u>~</u> 10 ²³	3						
4.	$\frac{32}{2x+}$	$\frac{2}{-3y} = 0$.2										
	$\frac{92}{3r+}$	$\frac{.8}{.4v} = 0$.4										
	Henc	y ce: x = 56	6 & y = 1	6.									
5.	CaCl	₂ + Na ₂ C	O ₃ —	\rightarrow CaC(D ₃ + 2 N	laCl							
	CaCO	$D_3 \xrightarrow{\Delta}$	→ CaO +	CO ⁵									
	Mole	of CaCl	$_{2} = \left(\frac{1.62}{56}\right)$	$\left(\frac{2}{2}\right)$ mole of	of CaCC	D ₃ = mole	e of CaO	$P = \left(\frac{1.62}{56}\right)$	$\left(\frac{2}{2}\right)$				
	Mass	s of CaC	$I_2 = Mola$	ar mass	of CaCl	2			/				
			$=\left(\frac{1.62}{56}\right)$) × 111	g.								
	% of	CaCl ₂ =	$\frac{3.21}{10}$ ×	100 = 32	.1 %.								

6. KI is limiting reagent 3 mole of KI will give 33 mole of NO₂ according to stoichiometry. ÷. Ag_2CO_3 (s) $\rightarrow 2Ag$ (s) + CO_2 (g) + $1/2O_2$ (g) 7. $C_2H_2 + 5/2O_2 \rightarrow 2CO_2 + H_2O_2$ By Stoichiometry of reaction Moles of CO₂ formed = $\frac{11.2}{22.4} = \frac{1}{2}$ Moles of O₂ required = $\frac{5}{4} \times \frac{1}{2} = \frac{5}{8}$ Moles of Ag₂CO₃ required = 2 × $\frac{5}{8} = \frac{5}{4}$ Mass of Ag₂CO₃ required = $\frac{5}{4} \times 276 = 345$ g 8. (1) It is a fact. (3) C + O₂ \longrightarrow CO₂ W W 32 12 Here C is limiting reagent. $\begin{array}{ccc} 3C & \longrightarrow & A_4B_2C_3 \\ 1.44 & 0 \end{array}$ 9. 4A + 2B Initial mole 2 1.2 0.48 final mole 0 C is limiting reagent. \therefore moles of A₄B₂C₃ is 0.48. Reduction $BiO_3^- + Mn^{2*} \rightarrow Bi^{3*} + MnO_4^-$ Oxidation 10. (i) $2e + 6H^+ + BiO_3^- \longrightarrow Bi^{3+} + 3H_2O$ (ii) $4H_2O + Mn^{2+} \longrightarrow MnO_4^{-} + 8H^+ + 5e$ (i) $\times 5 + (ii) \times 2$, we get 14 H⁺ + 5 BiO₃⁻ + 5Mn²⁺ $\longrightarrow 5Bi^{3+} + 2MnO_4^- + 7 H_2O_4^-$ Hence, (2) is the correct balanced reaction. 11. $3I_2 + OH^- \longrightarrow IO_3^- + 5I^-$ (balance reaction) So, ratio is 1:5. 12. Explanation : M. wt. of $NaNO_3 = 85$ 70 mg of Na⁺ are present in 1 mL 50 ml of solution contains 50 \times 70 = 3500 mg = 3.5 g Na⁺ ion 23 g of Na⁺ are present in 85 g of NaNO₃

Н

Ν

8.7

17.3

	3.5 g o	f Na⁺ are pr	esent in $\frac{85}{23}$	• × 3.5 = 12.934 g	of NaNO ₃	
13.	Explanation : m	$n = \frac{n}{(1000 \times 10^{-1})}$	$\frac{M \times 1000}{d - M \times M}$	$\overline{(.Wt.)}$ where 'm' is	molality, M is mola	rity.
		=	$\frac{10^{-2}}{(1000 \times 1.1)}$	×1000 -10 ⁻² ×106)		
		=	$\frac{10}{1100-1.6}$	$=\frac{10}{1099.4}=9.00$	< 10 ^{−3}	
14.	At 4ºC i.e. 277 ∴ 1 kg water = ∴ Molality & m	K density of ⇒ 1000 mI w olarity rema	f water = 1 g ater = 1 lit. ins same.	g/ml	[Ta	ake 1099.4 = 1100]
15.	Molarity = $\frac{(\%)}{Mo}$	w/w)×den. lar mass oj	$\frac{sity \times 10}{f \ solute} =$	$\frac{98 \times 1.84 \times 10}{98} = 2$	18.4 M	
16.	Mole of NaCl =	$\frac{5.85}{58.5} = 0.1$				
	Molarity = $\frac{0.1}{1}$	= 0.1 M				
	Moles in 1 ml o Number of ions	of solution = s in 1 ml = 2	$MV = 0.1 \times 10^{-4} \times 6.0$	10 ⁻³ = 10 ⁻⁴ mole. 023 × 10 ²³ = 1.204	× 10 ²⁰ .	
17.	For reaction with $1M H_2SO_4 = 1 I$ 1M HCI \therefore cheapest will	th 2 moles N it. volume r 2 lit. v I be 1 M H ₂ S	NaOH equired ⁄olume requ SO₄ 1 lit.	ired		
18.	Molarity = M Let volume of b ∴ mass of solv	oe 1 ltr. vent = 1000 v	$d - M \times M_2$			
	Molality = m =	$\frac{M}{1000 d-M}$	<u>—</u> × 1000	,		
19.		Demonst			- 1	
	Element	Percent	r.a.m.	NO. OF ATOMS	atomic ratio	
	С	74	12	74/12 = 6.16	6.16/1.23 = 5	

The ratio of atoms = C : H : N = 5 : 7 : 1 Empirical formula = C_5H_7N Empirical formula mass = 5 C + 7H + N = 5 × 12 + 7 × 1 + 14 = 81 Molecular mass = 162 (given)

1

14

8.7/1 = 8.7

17.3/14 = 1.23

8.7/1.123 = 7

1.23/1.23 = 1

	No. of empirica	$=\frac{162}{81}$ =	= 2						
	Molecular formula = (Empirical formula) × 2 = $(C_5 H_7 N)$ × 2 = $C_{10}H_{14}N_2$								
20.	$C + O_2 \xrightarrow{\Delta} 12g C$ $\therefore \qquad 1000 g$	CO_2 = 1 mol O_2 = 22. $C = \frac{22.4}{12} \times 100$	4 L O ₂ 00 or	1866.67 L	0 ₂ .				
21.	Initial mole	$\frac{6Li}{7} = \frac{1}{2}$	$\frac{N_2}{28} = 0.3$	$\longrightarrow 2L$.i ₃ N				
	final mole	0	$0.3 - \frac{1}{12}$	$\frac{1}{2}$	$\times \frac{1}{3} = \frac{1}{6}$				
	mass of Li ₃ N	$=\frac{1}{6}\times 35=5.8$	33 g.						
22.	Initial mole final mole	$2KO_2$ + 0.15 (0.15 - 0.1) ∴ moles of O_2	$2H_2O \longrightarrow 0.1$ 0 = 0.05	2KOH + 0 0.1	H ₂ O ₂ 0 0.05	+	O ₂ 0 0.05		
23.	final mole $(0.15 - 0.1)$ 0 0.1 0.05 \therefore moles of $O_2 = 0.05$ KCIO ₃ \rightarrow KCI + O ₂ Applying POAC for O atoms in the eqn.(i), moles of O in KCIO ₃ = moles of O in O ₂ $3 \times \text{moles of KCIO_3} = 2 \times \text{moles of O}_2$ $3 \times \frac{wt.of \ KCIO_3}{mol.wt.of \ KCIO_3} = 2 \times \frac{volume \ at \ NTP(mL)}{22400}$ Wt. of KCIO ₃ = $\frac{2 \times 146.8 \times 122.5}{3 \times 22400}$ $= 0.5358 \ g.$ In the second reaction : The amount of KCIO ₃ left = 1 - 0.5358 = 0.4642 \ g. We have, KCIO ₃ \rightarrow KCIO ₄ + KCI $0.4642 \ g.$ Applying POAC for O atoms, moles of O in KCIO ₃ = moles of KCIO ₄ $3 \times \frac{wt. \ of \ KCIO_3}{mol. \ wt.of \ KCIO_3} = 4 \times \frac{wt. \ of \ KCIO_4}{mol. \ wt.of \ KCIO_4}$ Wt. of KCIO ₄ = $\frac{3 \times 0.4642 \times 138.5}{422 \times 138.5} = 0.3937 \ g.$ (ii)								

Wt. of residue = 1 - wt. of Oxygen

 $\frac{64-x}{74.5}$

$$= 1 - \frac{146.8}{24400} \times 32 \text{ g} = 0.7902 \text{ g}.$$

$$\therefore \% \text{ of KCIO}_{4} \text{ in the residue} = \frac{0.3937}{0.7902} \times 100 = 49.8 \%.$$
24. Let mass of Hg is w g

$$2Hg + I_{2} \longrightarrow Hg_{2}I_{2}$$
Initial mole 2a a
fianl mole 0 0 a

$$Hg + I_{2} \longrightarrow Hg_{2}I_{2}$$
Initial mole b b
fianl mole 0 0 b

$$\therefore \text{ mole of } Hg = 2a + b = \frac{w}{200.6} \qquad (1)$$

$$\therefore \text{ mole of } I_{2} = a + b = \frac{w}{254} \qquad (2)$$
eqution (1) - (2)

$$a = \frac{w}{200.6} - \frac{w}{254} = \frac{(2)}{200.6} \times (2)$$
eqution (1) - (2)

$$a = \frac{w}{254} - \left(\frac{w}{200.6} - \frac{w}{254}\right) = \frac{w}{127} - \frac{w}{200.6}$$

$$\therefore \qquad \frac{Mass \text{ of } Hg_{2}I_{2}}{Mass \text{ of } Hg_{1}_{2}} = \frac{a \times 655.2}{b \times 454.6} = \left(\frac{w}{200.6} - \frac{w}{254}\right) \cdot 655.2 = \frac{0.523}{1} \cdot \frac{1}{2}$$
25. Consider that mass of NaCl = xg

$$\therefore \qquad \text{Moles of NaCl will be } = \frac{x}{58.5} \text{ and Moles of KCl will be } = \frac{64-x}{74.5}$$
By using POAC for Na and K

$$\because \qquad \text{Moles of NaCl x 1 = Moles of Na_{2}SO_{4} \times 2}$$
or
$$\qquad \text{Moles of Ka_{2}SO_{4} = Moles of Ka_{2}SO_{4} \times 2}$$
or
$$\qquad \text{Moles of Ka_{2}SO_{4} = Moles of KCl \times \frac{1}{2}$$

$$Total weight of Na_{2}SO_{4} = Moles of KCl \times \frac{1}{2}$$

$$Total weight of Na_{2}SO_{4} = Moles of KCl \times \frac{1}{2}$$

$$Total weight of Na_{2}SO_{4} = 1.1678 \times 76$$

$$\Rightarrow \qquad 1.2137 \times 74.74 - 1.1678 \times 76$$

$$\Rightarrow \qquad x = 27.45 \text{ g}$$

$$\% \text{ mass of NaCl = \frac{27.45}{64} \times 100 = 42.89\%$$

% mass of KCl = 100 - 42.89 = 57.11%.

26. Molarity of H₂SO₄ =
$$\frac{\text{sp. gravity} \times \frac{%}{2} \text{ w/w} \times 10}{\text{Molecular mass}}$$

= $\frac{1.2 \times 25 \times 10}{98} = \frac{12 \times 25}{98} = 3.06 \text{ M}$
3H₂SO₄ + 2AI → Al₂(SO₄)₃ + 3H₂
 $\frac{2.7}{27} = 0.1$
Mole of H₂SO₄ used = $\frac{3}{2} \times 0.1 = 0.15$
Initial mole of H₂SO₄ = 0.75 × 3.06 = 0.2295
Mole of H₂SO₄ remaining = 0.2295 - 0.15
Molarity of final H₂SO₄ = $\frac{0.0795}{0.4} = 0.198 \text{ M}.$
27. Moles of Al₂(SO₄)₃ = M × V = 0.15 × 0.1 = 0.015
Mass of Al₂(SO₄)₃ = M × V = 0.15 × 0.1 = 0.015
Moles of Al₂(SO₄)₃ = Mole × Molar mass = 0.015 × 342 = 5.13 g.
Moles of Al³⁺ ions = 0.03 × 6.023 × 10²³ = 1.81 × 10²² ions.
28. CuSO₄.5H₂O(aq) + BaCl₂(aq) → BaSO₄(s) + CaCl₂ (aq)
Mass of BaSO₄ = 4.66 g
Mole of BaSO₄ = $\frac{4.66}{233} = \frac{2}{100}$
∴ Mole of SO₄²⁻ = $\frac{2}{100}$ (ionic mass of SO₄²⁻) = 1.92 g
% SO₄²⁻ = $\frac{1.92}{5} \times 100 = 38.4\%$.
29. Balance chemical equations are :
Ca₃(PO₄)₂ + 8Mg → Ca₃P₂ + 8MgO
Ca₃P₂ + 6H₂O → 3Ca(OH)₂ + 2PH₃
2PH₃ + 4O₂ → P₂O₅ + 3H₂O
MgO + P₂O₅ → Mg(PO₃)₂
moles of magnesium used = 0.8 moles
moles of MQO formed = 0.2 moles
moles of PH₃ formed = 0.2 moles
moles of PH₃ formed = 0.1 moles
moles of PH₃ formed = 0.1 moles
moles of PJ₃ formed = 0.1 moles

moles of $Mg(PO_3)_2 = 0.1$ moles mass of $Mg(PO_3)_2 = 18.2$ gram **Ans. 18 gram**

30. Let the volume of ethanol containing the same number of molecules as are present in 175 ml of H₂O be V ml. As given ,

moles of C_2H_5OH in V ml = moles of H_2O in 175 ml

Now,
$$\frac{wt.of C_2H_5OH}{mol.wt.of C_2H_5OH} = \frac{wt.of H_2O}{mol.wt.of H_2O}$$

or,
$$\frac{0.789 \times V}{46} = \frac{1.0 \times 175}{18}$$

 $\therefore \qquad V = 566.82 \text{ ml.}$

31. No. of moles of Na₂SO₄.10H₂O = $\frac{32.2}{322}$ = 0.1 mole. Number of g of O₂ = 0.1 × 7 × 32 = 22.4 g.

simplest ratio ratio $\frac{85.7}{2} = 7.1$ С 85.7 7.1 7.1 12 = 1 1 32. 14.3 = 2 $\frac{14.3}{14.3} = 14.3$ 14.3 2 Н 7.1 1

Hence E.F is CH₂.

33.

 $\begin{array}{rrrr} \mathsf{H}_2 & + & \mathsf{Cl}_2 \longrightarrow & \mathsf{2HCI} \\ 12 \ \mathsf{lit} & & \mathsf{11.2} \ \mathsf{lit} \\ \mathsf{0.8} \ \mathsf{lit} & & \mathsf{L.R} \end{array}$

So, HCI will be double i.e. 22.4 Lit. So, 0.8 lit. H₂ and 22.4 lit. HCI (g) (mixture).

34. $\frac{4 \times 40}{100}$ (40% Ca given) = 1.6 g

35. It may be AICl₃

$$V.D = \frac{M.Wt_{AICl_3}}{2}$$
$$V.D = \frac{133.5}{2} = 66.75$$

36. $3Cu(s) + 8HNO_3(aq) \longrightarrow 3Cu(NO_3)_2(aq) + 2NO(g) + 4H_2O(\ell)$

Mole of Cu
$$(NO_3)_2 = \frac{18.75}{187.5} = 0.1$$

Mole of NO = [Mole of Cu(NO₃)₂]
$$\times \frac{2}{3} = \frac{0.2}{3} \times 30 = 2$$
 g.

38. Molecular formula = empirical formula \times n n = $\frac{\text{Molecular mass}}{\text{Empirical mass}}$ Molecular mass = 180 Empirical mass = 1 \times 12 + 2 \times 1 + 16 \times 1

$$= 12 + 2 + 16 + 30$$

$$n = \frac{180}{30} = 6$$

∴ Molecular formula = $(CH_2O)_6 = C_6H_{12}O_6$
39. $2SO_2 + O_2 \longrightarrow 2SO_3$
Initial moles 4 4 0
Moles of eqm. $4 - 2 = 4 - \frac{25}{100} \times 4 = 2$ moles

$$= 2 \text{ moles} = 3$$

∴ Total no. of moles of all gases at eqm.

$$= 2 + 3 + 2 = 7.$$

41. m = 0.2 mole / kg
weight of solvent = 1000 gram
weight of solute = 0.2 × 98 = 19.6 gram
Total weight of solution = 1000 + 19.6 = 1019.6 ml.
42. Mass of HCl = 1000 × $\left(\frac{43}{100}\right) = 430$ kg.
2NaCl + H₂SO₄ → Na₂SO₄ + 2HCl
Mole of HCl = 000 × $\left(\frac{43}{100}\right) = 430$ kg.
2NaCl + H₂SO₄ → Na₂SO₄ + 2HCl
Mole of HCl = 000 × $\left(\frac{43}{36.5 \times 2}\right) = 577.26 \times 10^3$ g
Mass of H₂SO₄ = $\frac{98 \times 430 \times 10^3}{36.5 \times 2} = 577.26 \times 10^3$ g
Mass of 93% H₂SO₄ = $577.26 \times \frac{100}{93} = 620.71$ kg.
43. XeF₆ + I₂ → IF₇ + Xe
POAC on 'F':
6 (m.mole of XeF₈) = 7 (m.mole of IF₇)
 $\frac{3.5 \times 6}{7} = 3$ m.moles of IF₇
44. CS₂ + 3Cl₂ → CCl₄ + S₂Cl₂
1 + 3 + 1 + 1 = 6

45. Let mole % of ²⁶Mg be x. ∴ $\frac{(21-x) \ 25+x \ (26)+79 \ (24)}{100} = 24.31$ x = 10% Answer is 10