MATHEMATICS

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Time : 1 Hr.

Max. Marks : 120

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

	The value of $\log_{(\sqrt{2}-1)} P$ where P = $2 + \frac{1}{2 + \frac{1}{2 + \dots \infty}}$ is										
1.	The value of $\log_{(\sqrt{2-1})}$ (1) 1	P where P = $2 + \frac{2}{2+.}$ (2) -1	(3) is	(4) –2							
2.	Which of the following is positive ?										
	(1) log₅in1 tan 1	(2) log _{cos1} (1 + tan3)	(3) ^{log} (log ₁₀ 5)(3)	(4) $\log_{(2-\sqrt{3})}(2+\sqrt{3})$							
3.	Range of y = sin ₆ x + co (1) $\left[\frac{1}{4}, 1\right]$	$ \text{DS}_{6} \mathbf{X} \text{ is} \begin{bmatrix} 1 \\ 2 $	$(3) \begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$								
	(1) [4]]	(2) 2	(3) [4]]	(4) [1, 2]							
4.	If $x + \frac{1}{x} = 2$ then $x^4 + \frac{1}{x} = 2$	$\frac{1}{x^4}$ is equal to									
	(1) 24	(2) 28	(3) 2	(4) 1							
5.	Number of positive int	egers satisfying equation	x-3 +2 = 5								
5.	(1) 2	(2) 1	(3) 3	(4) None							
6.	tan(100₀) + tan(125₀) + (1) –1	- tan(100₀) tan(125₀) = (2) 2	(3) –2	(4) 1							
7.	Number of integral val	ues of x satisfying log₄(2)	√2 + 5x + 27) − log ₂ (2x−1)	$0 \ge 0$							
	(1) 9	(2) 8	(3) 7	(4) 6							
8.	The value of expression (1) less than 1	on (log102) 3+ (log108) (log (2) 1	1₀5) + (log₁₀5) ₃ is (3) more than 1	(4) can't comment							
9.	Number of solutions of	f tan(2x) = tan(x) in (0, 3r	τ) is :								
	(1) 3	(2) 2	(3) 6	(4) 4							
9.	Number of solutions of	f tan(2x) = tan(x) in (0, 3r	τ) is :								
	(1) 3	(2) 2	(3) 6	(4) 4							

MATHEMATICS

			, 2 (, 1) (+ 2)	
10.	If t is real and positive r (1) t∈(1, 2)	number, find the solution (2) $t \in (2, 4)$	of . $\left t - \frac{2}{t} \right < 1 < \left(t + \frac{2}{t} \right)$ (3) $t \in [1, 2)$	(4) t > 4
11.	Sum of solutions of equ		10	7
	(1) $\frac{25}{4}$	(2) $\frac{9}{4}$	(3) $\frac{19}{4}$	(4) $\frac{7}{4}$
12.	Number of integers not (1) 9	satisfying x–2 + x+5 ≥ (2) 10	: 12 (3) 12	(4) 13
	complete solution of $\frac{3}{3}$	$\frac{x+2}{x+4}$		
13.	complete solution of 1	$\begin{bmatrix} -\frac{3}{2} \end{bmatrix}$	$\begin{bmatrix} -3 \\ -3 \end{bmatrix}$	$\begin{bmatrix} -3 \\ -3 \end{bmatrix}$
	(1) (-4, 1]	$ \begin{bmatrix} -\frac{3}{2}, 1 \end{bmatrix} $	$\begin{bmatrix} -\frac{3}{2}, 1 \end{bmatrix}$	(4) $(-\infty, -4) \cup \begin{bmatrix} -\frac{3}{2}, \infty \end{bmatrix}$
14.		nite solution of x–2 + x– (2) 5/2		(4) 1
15.	If solution of x+4 + x - (1) –16	+ 2 = 2x +6 is (-∞,-a] (2) 8	$\cup \left[b,\infty ight)$ find 3a + 2b (3) 16	(4) –8
	If $\log_5 x + \log_x 5 = \frac{10}{3}$, fi			
16.	If log₅x + log₅5 = ³ , fi (1) two irrational solutio (3) Two integral solution	ns	(2) One irrational, one i (4) Only one solution e	
17.	Find x if $log_{(x+1)} (1-x)=2$ (1) x = 0	(2) x = -3	(3) x = 0, −3	(4) No solution
18.	Complete solution of 4_2 (1) (1, ∞)	_{x-1} > 16 _{x/2} (2) (3, ∞)	(3) (-∞, 3)	(4) (-∞, 1)
19.	If a $\cos\theta$ + b $\sin\theta$ = 4, a (1) 25	and $asin\theta - bcos\theta = 3$ the (2) 17	en a ₂ + b ₂ has the value (3) 7	= (4) None
20.	If $\theta \in (0, \pi)$ such that ta	$\ln\theta + \tan 2\theta + \tan 3\theta = (\tan \theta)$	ηθ) (tan2θ) (tan3θ), then	θ =
	(1) $\frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}$	$\frac{\pi}{2},\frac{2\pi}{2}$	(3) $\frac{\pi}{3}, \frac{5\pi}{6}$	
	. ,	. ,		(4) π/3
21.	General value of 0 whic	ch satisfies both the equa	ation $\sin\theta = \frac{1}{2}$ and $\cos\theta$	$=\frac{-\sqrt{3}}{2}$
	π	<u>π</u>	$\frac{5\pi}{5\pi}$	5π
	(1) $n\pi + (-1)_n \frac{\pi}{6}$	(2) $2n\pi \pm \frac{\pi}{3}$	(3) $2n\pi + \frac{5\pi}{6}$	(4) 2nπ ± 6
22.	Solve : $sin2x + 5sinx + \pi$	$1 + 5\cos x = 0$	π	
	(1) n π + $\frac{\pi}{4}$	(2) n $\pi - \frac{\pi}{4}$	(3) $2n\pi + \frac{\pi}{4}$	(4) 2nπ
		1		
23.	Solve the inequality, sin $(5\pi, \pi)$	$x < 2$ (7 π) (π 5π	$(\pi 5\pi)$
	(1) $\left(2n\pi-\frac{3\pi}{6},2n\pi+\frac{\pi}{6}\right)$	(2) $\left(2n\pi - \frac{\pi}{6}, 2n\pi + \pi\right)$	$6 \int_{(3)} \left(2n\pi + \frac{\pi}{6}, 2n\pi + \frac{\pi}{6} \right)$	$\frac{1}{2} \begin{pmatrix} 2n\pi - \frac{\pi}{6}, & 2n\pi + \frac{5\pi}{6} \end{pmatrix}$ (4)
24.	Find cos70° cos50° cos	s30° cos10°		

24. Find cos70° cos50° cos30° cos10°

MATHEMATICS

	<u> 1 </u>	$(2)\frac{3}{8}$	3	5
25.	(1) $\overline{16}$ Find the minimum and (1) 22, 25	(2) 8 maximum value of y = 3 (2) -22 , 25	(3) 16 + 15sinx + 20 cosx (3) -22, 28	(4) 8 (4) -25, 28
26.		satisfying (x–3)₃ (x+1) (x–		
27.	(1) 3 Evaluate : (log50) (log2 (1) 1	(2) 1 200) + (log2) ₂ (2) 2	(3) 2 (3) 3	(4) 4 (4) 4
28.	If $\log 2 = a$ and $\log 3 = b$	then log1000 4 + log10027	is	
	(1) $\frac{2}{3}a + \frac{3}{2}b$	(2) $\frac{3}{2}a + \frac{2}{3}b$	(3) $\frac{3}{4}a + \frac{4}{3}b$	(4) $\frac{2}{3}a + \frac{2}{3}b$
29.	Sum of all solutions of			
	$\frac{10}{101}$	$\frac{101}{10}$	99	100
	(1) 101	(2) 10	(3) 100	(4) 99
30.	Solve for x: $\sqrt{8-x} \ge x$	-2		
	(1) [–1,4]	(2) [2,4]	(3) (-∞,4]	(4)[3,4]

Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10	
Ans.											
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.											
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.											

MATHEMATICS

1	The domain of function (1) x∈(8, 10)	n f(x) = log₄[log₅{log₃(18x (2) x∈(6, 9)	– x² –77)}] is (3) x∈(5, 10)	(4) x∈(5, 9)
2.	Number of real solutior	h of the equation $ x-3 ^3$	$x^{2-10x+3} = 1$	
	(1) 4	(2) 3	(3) 2	(4) 1
3.		ere α is an integer and eatest integral value of N		$\boldsymbol{\alpha}$ are are twin prime, satisfying
	(1) 624	(2) 625	(3) 728	(4) 729
	$\frac{3\pi}{}$	$2\cot \alpha + \frac{1}{\sin^2 \alpha}$ is equal to		
4.	If $4 < \alpha < \pi$, then $\sqrt{1}$ (1) 1 + cot α	$\sin^2 \alpha$ is equal to (2) – 1 – cot α	ο (3) 1 – cot α	(4) – 1 + cot α
5.	The number of all poss (1) 0	sible triplets (a₁, a₂, a₃) su (2) 1	ch that a1 + a2 cos 2x + (3) 2	a₃ sin₂x = 0 for all x is (4) infinite
6.		are such that cos A + cc cos C = cos 3A + cos 3B (2) 11		λ is : (4) 13
7*.	The values of x satisfyi	ing the equation $(x-1)^{\log x}$	$g_{3x^{2}-2\log_{x}9} = (x-1)^{7}$ is/are	
	(1) 1	(2) 1	(3) 2	(4) 81
8*. Comp	If $P_n = \cos_n \theta + \sin_n \theta$ an (1) $P_n - P_{n-2} = -\sin_2 \theta$ (3) $P_4 = 1 - 2\sin_2 \theta \cos_2 \theta$ rehension # (Q.9 to 10) Consider $ x - 3 - \log_1 \theta$	2 θ	-	s/are true. - sin₂θ cos₂θ Qn-4
9.	Integral values of M su (1) 999	ch that above equation h (2) 1000	as only 2 real distinct so (3) 10 ⁴	lutions are (4) 9999
10.	Least integral value of (1) 10 ⁴	M such that above equat (2) 1000	ion has 4 distinct solutio (3) 1001	ns is (4) 9999
				(2-x)
			$\log_{0.3}\left(\frac{1}{2}\right)$	$\frac{0}{7}$ $(\log_2 5 - 1)$ > 0 and
11.	$2_{x-3} - 31 > 0$ is :	satisfying simultaneously	the inequalities	✓ ≥ 0 and
	(1) a unit set(3) an infinite set		(2) an empty set (4) a set consisting of e	exactly two elements.
12*.	$(x-a)(x-2a)(x-a_2) < 0$	onstant. If there are just < 0 then which of the opti (2) 'a' is odd	on(s) is/are correct?	fying the inequality (4) 'a' lies in the interval (3,11)
Comp	rehension # (Q.13 to 14	L)		
	Let $x = \sqrt[3]{2 + \sqrt{5}} +$			
13.	x₃ + 3x is equal to (1) 1	(2) 2	(3) 3	(4) 4

MATHEMATICS

- **14.** x is not equal to
 - (1) a rational number (2) an integer

(3) a composite number (4) a natural number

15*.Consider $f(x) = |10 - x| + |9 - x| + |8 - x| \dots |1 - x| + |x|$
(1) f(x) is minimum at x = 5
(3) minimum value of f(x) = 30(2) f(x) is minimum at x = 55
(4) minimum value of f(x) = 20

MATHEMATICS

		nsv	vers										
						PÆ	ART-I						
1.	(2)	2.	(2)	3.	(1)	4.	(3)	5.	(2)	6.	(4)	7.	(4)
8.	(2)	9.	(2)	9.	(2)	10.	(1)	11.	(3)	12.	(3)	13.	(3)
14.	(4)	15.	(2)	16.	(2)	17.	(4)	18.	(1)	19.	(1)	20.	(4)
21.	(3)	22.	(2)	23.	(2)	24.	(3)	25.	(3)	26.	(2)	27.	(4)
28.	(1)	29.	(2)	30.	(3)								
						PA	RT-II						
1	(1)	2.	(2)	3.	(3)	4.	(2)	5.	(4)	6.	(3)	7.	(3,4)
8.	(1,2,3	3,4)	9.	(2)	10.	(3)	11.	(1)	12.	(2, 4)	13.	(4)	
14.	(3)	15.	(1,3)										