Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

- A-1. Sol. By definition of 'statement'.
- A-2. Sol. By definition of 'statement'.
- A-3. Sol. Obvious
- A-4. Sol. A
- A-5. Sol. Componant statements are (i) 100 is divisible by 5 (ii) 100 is divisible by 10 (iii) 100 is divisible by 11
- A-6. Sol. If it is a holiday as well as sunday than also the office can be closed.
- A-7. Sol. Statement (1) All prime numbers are even. Statement (2) All prime numbers are odd. Both false
- A-8_. Sol. Obviously
- A-9_. Sol. Obviously
- A-10. Sol. The given statement can be written as : "If it stays warm for a month, then the Banana trees will bloom"
- **A-11.** Sol. $p \Rightarrow q$ means p is sufficient for q and q is necessary for p.

A-12.

- Sol. Obvious
- **A-14.** Sol. $T \Rightarrow F$ is F
- A-15_ Sol. Obviously

A-16. Sol. (1) $p \land q = T \land T = T$ $(p \land q) \rightarrow S = T \rightarrow T = T$

- (2) $(q \vee r) = T \vee T = T, ~ s = F$
- (q \vee r) $\rightarrow \sim$ s = T \rightarrow F = F (3) (p $\wedge \sim$ q) = T \wedge F = F q \rightarrow s = T \rightarrow T = T (p $\wedge \sim$ q) \wedge (q \rightarrow s) = F \wedge T = F
- **A-17.** Sol. Converse of statement $p \Rightarrow q$ is $q \Rightarrow p$.

A-18.	Sol.	(~ T ∨ F) ^ ⁄	~T	⇒ T	
	. .	(F ⊻ F) ^ F	F ⇒ T		
	.:.	F ^ F	⇒ T	:	F ⇒ T

1	р	q	~q	p ↔ ~q
	Т	Т	F	F
	Т	F	Т	Т
	F	Т	F	Т
	F	F	Т	F

A-20. Sol. "p only if q" is equivalent to "if p then q"

A-21. Sol.

A-19.

Sol.

р	q	~р	p↔q	~(p↔q)	~p↔q
Т	Т	F	Т	F	F
Т	F	F	F	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	F	F

A-22. Sol. $\sim p \rightarrow q$ $(\sim(\sim p) \lor q) \land ((\sim p) \lor \sim q)$ $(p \lor q) \land (\sim p \lor \sim q)$ $(\sim p \rightarrow q) \land (\sim q \rightarrow p)$

A-23.	Ans	(2)
		· · - /

Sol.

р	q	$p \rightarrow q$	$b v (b \to d)$	$(p \land (p \rightarrow q)) \rightarrow q$				
Т	Т	Т	Т	Т				
Т	F	F	F	Т				
F	Т	Т	F	Т				
F	F	Т	F	Т				

Hence tautology

- A-24. Sol. $(p \rightarrow q) \land (q \rightarrow p) \equiv (p \leftrightarrow q)$ $(p \rightarrow \neg p) \land (\neg p \rightarrow p) \equiv (p \leftrightarrow \neg p) \equiv Fallacy/contradiction$
- A-25. Sol. By using truth table
- A-26. Sol. (1)
 - $p \land p = p$ $p \lor (\sim p) = t$ $p \land (\sim p) = f$
 - $p \vee (\sim p) = t$

Section (B) : Negation of compound statements, Contrapositive of conditional statements, Quantifiers

B-1. Sol. Let P : Ramesh is cruel

q : He is strict ∴ p ∨ q : Ramesh is cruel or he is strict ~(p ∨ q) = ~p ∧ ~q ∴ So negation is Ramesh is neither cruel nor strict.

- B-2. Sol. The component statements of the given statement are :
 p : The sand heats up quickly in the sun.
 q : The sand does not cool down fast at night.
 The given statement is (p and q). So its negation is
 ~p or ~q = Either the sand does not heat up quickly in the sun or it cools down fast at night.
- **B-3.** Sol. Let p and q be the statements as given below
 - p : a quadrilateral is a square
 - q : a quadrilateral is a rhombus

the given statement is $p \rightarrow q$ $\therefore \sim (p \rightarrow q) \equiv p \land \sim q$ Therefore the negation of the given statement is a quadrilateral is a square and it is not a rhombus.

- **B-4.** Sol. Negation of $(p \rightarrow q)$ is $(p \land \sim q)$
- B-5. Sol. Let "p : Two lines are parallel" and "q : they have the same slope". Then, the given statement in symbolic form is p ↔ q. Now, ~(p ↔ q) (p ∧ ~q) ∧ (~p ∧ q)

 \Rightarrow ~(p \leftrightarrow q) : Either two lines are parallel and they have different slopes or two lines are not parallel and they have the same slope.

B-6. Sol. Negation of $p \leftrightarrow q$ is $p \leftrightarrow \sim q$

```
B-7. Sol. \sim (p \rightarrow (q \land r)) \equiv p \land \sim (q \land r) (\because \sim (p \rightarrow q) \equiv p \land \sim q)
\equiv p \land (\sim q \lor \sim r)
```

р	q	\sim (~ p \rightarrow q)	$(p \leftrightarrow q)$	~(p∨q)	p∨∼p	~p∨q	p∨~q	$(\sim p \lor q) \land (p \lor \sim q)$	$(p \land \sim q) \lor (\sim p \land q)$
Т	F	F	F	F	Т	F	Т	F	Т
F	Т	F	F	F	Т	Т	F	F	Т
Т	Т	F	Т	F	Т	Т	Т	Т	F
F	F	Т	Т	Т	Т	Т	Т	Т	F

B-8. Sol.

А	В	~ B	A ∨ ~B	$A \rightarrow (A \lor \sim B)$	\sim (A \rightarrow (A \vee \sim B))	$(A \lor B) \rightarrow A$	A∧ ~B	$A \rightarrow (A \land \sim B)$
Т	Т	F	Т	Т	F	Т	F	F
Т	F	Т	Т	Т	F	Т	Т	Т
F	Т	F	F	Т	F	Т	F	Т
F	F	Т	Т	Т	F	Т	F	Т

B-9. Sol.

B-10. Sol. We know $\sim (p \rightarrow q) \equiv p \land \sim q$ Given statement is $p \land q$ $= p \land \sim (\sim q) \equiv \sim (p \rightarrow \sim q)$

- **B-11.** Sol. $(p \land r) \land (\sim r \land \sim q) = p \land (r \land \sim r) \land \sim q = p \land f \land \sim q = f$
- B-12. Sol. You watch television if and only if your mind is free.
- **B-13.** Sol. If something does not have low temperature, then it is not cold.
- B-14. Sol. Let p, q, r be the three statements such that p: x = 5, q: y = -2 and r: x - 2y = 9 Here given statement is (p ∧ q) → r and its contrapositive is ~r → ~(p ∧ q) i.e. ~r → (~p ∨ ~q) i.e. if x - 2y ≠ 9 then x ≠ 5 or y ≠ -2
- B-15. (Ans. (1)
- Sol. $p \equiv$ The side of a square doubles $q \equiv$ Area of square increases four time so the contrapositive of $p \rightarrow q$ is ~ $q \rightarrow ~ P$

```
B-16. Ans. (4)
Sol. Let p : It is raining
q : I will not come
contrapositive of p \rightarrow q
```

is ~ q \rightarrow ~ p

 \Rightarrow If I will come then if is not raining

- **B-17.** Sol. $\neg q \rightarrow \neg p$ (Given statement) \Rightarrow then $p \rightarrow q$
- **B-18.** Sol. Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$
- **B-19** Sol. Contrapositive of $(p \land q) \Rightarrow r$ is $\sim r \Rightarrow \sim (p \land q) = \sim p \lor \sim q$ [De Morgan's law]
- **B-20.** Sol. $\sim (\sim q \rightarrow \sim r) \rightarrow \sim p \equiv (\sim q \land q) \rightarrow \sim p$
- B-21. Sol. At least one natural number is not greater than 0.
- **B-22.** Sol. The negation of "Everyone in Germany speaks German" is there is at least one person in Germany who does not speak German.

Exercise-2

Marked Questions may have for Revision Questions. PART - I : OBJECTIVE QUESTIONS

- **1. Sol.** Product of two irrational numbers may or may not be irrational.
- **2.** Sol. p is false, q is false so $p \rightarrow q$ is true.
- **3.** Sol. Given statement is : Let p : it is a national holiday, q : kids go to picnic with their parents. \therefore Given statement is p \rightarrow q

The converse of $p \rightarrow q$ is $q \rightarrow p$ i.e. "If kids go to picnic with their parents, then it is a national holiday".

- 4. Sol. converse of $p \Rightarrow (q \land \sim r)$ is $(q \land \sim r) \Rightarrow p$ $\equiv \sim (\sim q \lor r) \Rightarrow p$ $\equiv \sim (r \lor \sim q) \Rightarrow p$
- 5. Sol. If p then q means p only if q
- 6. Sol. If p then q \Rightarrow p is sufficient for q
- **7. Sol.** Let p be the statement "Traders do not reduce the prices" and q be the statement "Government takes action against them"

The first statement in symbolic form is $p \rightarrow q$ and the second statement is $\sim (p \land \sim q)$.

In order to check the equivalence of the above statements let us prepare the following truth table.

р	q	~ q	p∧ ~ q	~ (p∧ ~ q)	$p \rightarrow q$
T	Т	F	F	Т	Т
т	F	Т	Т	F	F
F	Т	F	F	Т	т
F	F	Т	F	Т	Т

Clearly, ~ q \rightarrow ~p and ~(p \land ~q) have same truth values for all the values of p and q. Hence, the two statements are equivalent.

Aliter : We have,

 \sim (p $\land \sim$ q) \equiv (\sim p \lor q) \equiv (p \rightarrow q)

Hence the two statements are equivalent.

- 8. Sol. $p \land (\sim p \lor q) = (p \land \sim p) \lor (p \land q)$ $f \lor (p \land q) = p \land q$
- **9. Sol.** (p ∧ q) ∨ ~p = (p ∨ ~ q) ∧ (q ∨ ~p) = t ∧ (q ∨ ~p) = q ∨ ~p = ~p ∨ q

10. Sol.

р	q	~p	~q	~q ^ p	pv~p	(~q ∧ p)v(pv~p)
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

р	q	r	p↔q	q→r	(q→r)∧r	[(p↔q)∧((q→r)∧r)]	[(p↔q)∧((q→r)∧r)]→r
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	т
Т	F	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	F	Т
F	Т	F	F	F	F	F	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	F	F	Т

11. Sol.

Sol.

12.

р	q	~q	p ∨ ~q	~(p _∨ ~q)	p∨q	~(p ∨ q)	~(p∨ ~q)∨ ~(p∨ q)
Т	Т	F	Т	F	Т	F	F
Т	F	Т	Т	F	Т	F	F
F	Т	F	F	Т	Т	F	Т
F	F	Т	Т	F	F	Т	Т

13. Sol. $p \Rightarrow (q \lor r) \equiv (p \Rightarrow q) \lor (p \Rightarrow r)$

14. Sol.
$$\sim [p \lor (\sim p \lor q)] = (\sim p) \land [\sim (\sim p \lor q)] = (\sim p) \land (p \land \sim q) = (\sim p \land p) \land (\sim q) = f \land ($$

15. Sol. Given Statement is $(\Delta ABC \text{ is right angled at } B) \Rightarrow (AB_2 + BC_2 = AC_2)$ Its negation is $(In \Delta ABC, AB_2 + BC_2 = AC_2) \Rightarrow \Delta ABC$ is not right angled at B.

- **16.** Sol. $\sim(p \lor q) \equiv \sim p \to q$
- 17. Sol. $\sim (\sim p \rightarrow q) \equiv \sim (\sim(\sim p) \lor q)$ $\equiv \sim (p \lor q)$ clearly option (3) is correct $\sim (p \lor q) \land (p \lor (\sim p))$ $\equiv \sim (p \lor q) \land T$ $\equiv \sim (p \lor q)$

18. Sol. Statement $p \rightarrow q$ and its contrapositive $\sim q \rightarrow \sim p$ are logically equivalent and give same meaning.

- 19. Sol. Statement P is False Statement Q is True.
 V1 ≡ F
 V2 ≡ T
- **20.** Sol. Contrapositive of statement $p \Rightarrow q$ is $\neg q \Rightarrow \neg p$
- **21.** Sol. Contrapositive of $(p \rightarrow q)$ is $(\neg q \rightarrow \neg p)$
- **22. Sol.** By using concept of quantifiers

PART - II : MISCELLANEOUS QUESTIONS

A-1. Sol.	Ans. Stateme	(1) ent - 1 :								
	А	В	~B	A ↔B	$A \leftrightarrow \sim B$	$\sim (A \leftrightarrow B)$				
	т	F	т	F	т	F				
	F	т	F	F	т	F				
	т	т	F	т	F	т				
	F	F	т	т	F	т				
	Stateme $A \lor (\sim A$ $A \lor (\sim A$ $= (A \lor \sim$ $= t \lor B$ = t Stateme	so state ent -2 A ^ ~B)) V B) A) V B ent (2) is	ment - 1 true.	is true						
A-2. Sol.	Ans. (2) S1 : $(p \rightarrow q) \leftrightarrow (p \lor \neg q) \equiv (\neg p \lor q) \leftrightarrow (\neg p \lor q) \equiv tautology so S1 is true$ S2 : $\neg(\neg p \land q) \land (p \lor q) \leftrightarrow p$ $\equiv (p \lor \neg q) \land p) \lor ((p \lor \neg q) \land q) \leftrightarrow p \equiv p \lor q \leftrightarrow p$ true when p is true & q is false S2 is incorrect									
A-3. Sol.	Ans. ~ (pvq)	(2) = ~ p ^ ~	∙ q = Sao in india	chin Ten So state	dulakar ement-1	is not a g is correct	ood cricketer and Mukesh Ambani is not a rich person and statement 2 is false.			
A-4. Sol.	Ans. Truth ta	(2) ble for th	ne logica	l statem	ents in s	tatement	-1			
	p T F F Also ~ (∴ staten	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
A-5. Sol.	Ans. Stateme	(1) ent-2 is c	orrect de	efinition	of inclus	ive OR a	nd also the correct reason of statement-1			

Section (B) : MATCH THE COLUMN

 $= (p \land q) \lor (\sim p \lor \sim q)$ $= (p \land q) \lor [\sim (p \land q)] = t$ also $(\sim p \land q) \lor t = t$ $p \quad q \quad p \land q \quad (p \land q) \to p$ ΤT Т Т ΤF F Т F T F Т (D) F F F Т

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

- C-1. Sol. By definition of 'statement'.
- C-2. Sol. Polygon cannot be both concave and convex
- C-3. Sol. x cannot be both rational and irrational

```
C-4_ Sol. (1)
```

р	q	$p \Rightarrow q$	\sim (p \Rightarrow q)	~р	~q	~p v ~q	\sim (p \Rightarrow q) $⇔$ (~pv~q)
Т	Т	Т	F	F	F	F	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	F	Т	F
F	F	Т	F	Т	Т	Т	F

so statement is not a fallacy blfy, d[ku fojksf/kf])r ugha gS&

(2) $(p \land q) \land (\neg p \lor q) = ((p \land q) \land \neg p) \lor ((p \land q) \land q) = ((p \land \neg p) \lor \neg q) \lor (p \land (\neg q \land q))$ = $(f \land q) \lor (p \land f) = f \lor f = f$ (3) $p \land \neg p = f$ (4) $(p \land q) \land (\neg p \land q) = (p \land \neg p) \land (\neg q \land q) = f \land f = f$

C-5_ Sol. Obviously

Exercise-3

Marked Questions may have for Revision Questions. PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. Sol. Given statement $r = p \Leftrightarrow q$ Statement - 1 : $r_1 = (pq)$ is not equilvalent to $p \Leftrightarrow q$

Statement - 2 :

р	q	~q	p↔~q	~(p↔~q)	p↔q
Т	Т	F	F	Т	Т
Т	F	Т	Т	н	F
F	Т	F	Т	F	F
F	F	Т	F	Т	Т

Hence statement - 1 is false and statement -2 is true

2.

р	q	p∨q	p∧q	p→q	p⇔q	(q→p)	p→(q→p)	p→(p↔q)	p→(p→q)	p→(p∨q)	p→p∧q
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	F	F	F	Т	Т	F	F	Т	F
F	Т	Т	F	Т	F	F	Т	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т

Sol.

3. Sol. Statement-1 :

р	q	p↔~q	~(p↔~q)	p↔q
Т	Т	F	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	Т	Т
Ctotomo	mt 2 . Ea			

Statement-2 : False.

4.

Ans.

(2) Sol. P : At least one rational number $x \in S$ such that x > 0Negation : all rational numbers $x \in S$ are $x \le 0$

5. Sol. Negation of
$$(P \land \neg R) \leftrightarrow Q$$
 is $((P \land \neg R) \leftrightarrow Q) \sim ((P \land \neg R) \leftrightarrow Q)$
It may also be written as $\sim (Q \leftrightarrow (P \land \neg R))$

6. Sol.

A	В	$A \lor B$	$A \wedge B$	$A \land (A \lor B)$	$A \lor (A \land B)$	$A \to B$	$A \land (A \rightarrow B)$	$A \land (A \to B) \to B$	$B \to [A \land (A \to B)]$
Т	F	Т	F	Т	Т	F	F	Т	Т
F	Т	Т	F	F	F	Т	F	т	F
т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F	F	F	F	F	F	Т	F	Т	Т

7. Let p: I become a teacher Sol. q: I will open a school Negation of $p \rightarrow q$ is ~ $(p \rightarrow q) = p^{\wedge} \sim q$ i.e. I will become a teacher and I will not open a school.

8. Sol. Statement-II : $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ $\equiv (p \rightarrow q) \leftrightarrow (p \rightarrow q)$ which is always true so statement -II is true $(p \land \neg q) \land (\neg p \land q)$ Statement-I : $= p \land \sim q \land \sim p \land q$ $= p \land \sim p \land \sim q \land q$ $= f \wedge f$ = f so statement -l is true Alternate Statement-II: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ ~ q \rightarrow ~ p is contrapositive

> of p \rightarrow q hence (p \rightarrow q) \leftrightarrow (p \rightarrow q) will be a tautology statement -II (p~q) (~ p q) $P^{\wedge} \sim q \qquad \sim p^{\wedge} q \qquad (p^{\wedge} \sim q)^{\wedge} (\sim p^{\wedge} q)$ q р

		F	F	F
Т	F	Т	F	F
F	Т	F	Т	F
F	F	F	F	F
	-		-	

9. Sol. Method-1 : ~(p ↔ ~q)

-							
р	q	~q	p ∼q	~(p ~q)	~ p	~p ~q	рq
Т	Т	F	F	Т	F	F	Т
Т	F	Т	Т	F	F	Т	F
F	Т	F	Т	F	Т	Т	F
F	F	Т	F	Т	Т	F	Т

Method-2: logically equivalent of \sim (p $\leftrightarrow \sim$ q) dk rkfd/d laxr is p \leftrightarrow q g/

- 10. **Sol.** $\sim s \lor (\sim r \land s) = (\sim s \lor \sim r) \land (\sim s \lor s)$ $= \sim (s \wedge r) \wedge t$ $= \sim (s \wedge r)$ So negation is s r. 11. Ans. (2) [(p ~q) v q] v (~p ^q) Sol. $= (p \land q) \land (\sim q \lor q) \lor (\sim p \land q)$ = $(p \land q) \land [t \lor (\sim p \land q)]$ $= (p \land q) \land t$ $= p \wedge q$ 12. Ans. (1) Sol. $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$
 - $\begin{array}{l} (p \rightarrow q) \rightarrow ((p \lor q) \rightarrow q) \\ (p \rightarrow q) \rightarrow ((\sim p \land \sim q) \lor q) \\ (p \rightarrow q) \rightarrow ((\sim p \lor q) \land (\sim q \lor q)) \\ (p \rightarrow q) \rightarrow (p \rightarrow q) \text{ which is tautology} \quad (tautology) \end{array}$

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

1.	Sol.	$(4) 4+3 \ge 2 4+3 \le 9$						
2.	Sol.	(3) \Rightarrow can be true or false						
3.	Sol.	(3) If both passport and voter ID is present, you can visit America.						
4.	Sol. F F	p → q ⇒ True						
5.	Sol.	(4) It is not necessary condition						
6.	Sol.	$p \rightarrow q$: q is necessary for p p is sufficient for q						
7.	Sol.	De - Moivre's law						
8.	Sol.	By Algebra (~p v q) ^ (~p ~q) = ~p ^ ~q						
9.	Sol.	"There exist" should be used for complete negation.						
10.	Sol.	"And" connect different component statement						
11.	Sol.	$(\sim q \land p) \lor t = t$						
12.	Sol. (~p) ∧ (~p ∧p	$(\sim p) \land \sim (\sim p \lor q)$ (p \lambda \color q) p) \lambda (\color q) = f \lambda (\color q) = f						
13.	Sol.	~ (~p → q) ≡ ~p ^ ~ q						
14.	Sol. T F T F	p q ~pvq F F T T T T F T						
15.	Sol.	~(p ^ q) = ~p v ~ q						
16.	Sol.	~ (q v q) = ~ p ^ ~q						
17.	Sol.	Truth table						
18.	Sol.	And = $^{\wedge}$						
19.	Sol.	If then $\Rightarrow \sim p \rightarrow \sim q$						
20.	Sol.	For $p \rightarrow q \equiv F$, $\Rightarrow p \equiv true$; $q = false$						
21.	Sol.	Contrapositive convey same meaning						

22.	Sol.	(3) T T F F	A T F T	B T F T T	A → B		T F F	A(A → B) T T T T	$[A (A \rightarrow B)] \rightarrow B$
23.	Sol.	(p ^ ~c	r) ↔ Q :	= Q ↔ (p	o∧~q)		•		
24.	Sol. T F F	p T F T F	q T T F T	q → p T T T T	p → q	→ P T T T F	p v q T T T T	p → (p v q)	
25.	Sol.	(~p ^ ~	-q) v (~p	o ^ q) ≡ ~	p (By Al	gebra			
26.	Sol. T F F	р Т F T F	q F T F T	~q F T T F	p ↔ ~	q T F F T	~(p ↔	~ q)	
27.	Sol. F T T T	p F T F	q F T F	r F T T F	p ^ q F T F F	(q∧r) F T F F	(p ^ q)	(q ^ r)	
28.	Sol.	By trut	h table						
29.	Sol.	Negati	on of "If	p then q	" is p ^ -	-q			
30.	Sol. ~q : he	~p : R e is not p	ohan is i boor	not smar	t				

PART - II : PRACTICE QUESTIONS

1. Sol. Both statements p and q are true

so $p \Rightarrow q \text{ and } q \Rightarrow p$

∴ p⇔q

Α	В	$A \rightarrow B$	$A \land (A \rightarrow B)$	$[A \land (A \to B)] \to B$
Т	F	F	F	Т
F	Т	Т	F	Т
Т	Т	Т	Т	Т
F	F	Т	F	F

2. Sol.

p)	q	q→p	p→(q→p)	p∧q	p→(p∧q)	p↔q	p→(p↔q)	p→q	p→(p→q)
Т	-	Т	Т	Т	Т	Т	Т	Т	Т	Т
F	:	F	Т	Т	F	Т	Т	Т	Т	Т
Т	-	F	Т	Т	F	F	F	F	F	F
F	:	Т	F	Т	F	Т	F	Т	Т	Т

3. Sol.

4. Sol. $((A \cap B) \cup C)' = (A \cap B)' \cap C' = (A' \cap C') \cup (B' \cap C')$

5. Sol. converse of $p \rightarrow q$ is $q \rightarrow p$

- By using definition of negation 6. Sol.
- 7. Given that $(p \leftrightarrow q) \land r$ is true Sol.
 - \Rightarrow (p \leftrightarrow q) is true and r is true
 - \Rightarrow p and q are both true or both false

Therefore, the truth values of p, q and r are respectively T, T or F, F and T.

As $p \rightarrow \neg q$ is given to be false, p is true and $\neg q$ is false

 \Rightarrow p is true and ~q is false \Rightarrow p is true and q is true.

-			
2			
	-		

			Т	F	F		Т	Т
Sol.			F	Т	F		Т	Т
р	q	$p \rightarrow q$		∼ p →~ q		$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$		
Т	Т	Т		Т		Т		
Т	F	F		F		Т		
F	Т	Т		Т		Т		
F	F	Т		Т		Т		

- 9. Sol. S₁ : f(x) is not continuous in [a, b] ~ S_1 : f(x) is continuous in [a, b] given statement (~ $S_1 \wedge S_2$) $\rightarrow S_3$
- 10. Sol. By using truth table
- ${\sim}({\sim}p \wedge q) \ \wedge \ (p \wedge q) \ \equiv [{\sim} \ ({\sim} \ p) \vee (-q)] \wedge (p \vee q)$ 11. Sol. $\mathbf{n} \equiv [\mathbf{p} \lor (\mathbf{\sim} \mathbf{q}) \land (\mathbf{p} \lor \mathbf{q}]$ $\equiv = p \lor [(\sim q) \land q]$ $\equiv p \lor f \equiv p$
- Sol. By using concept of quantifiers 12.