Centum Preparation 100 Days plan class 12 Maths

Q. No.	DAY - 10
50	Example 2.13
	If $ z = 2$ show that $3 \le z + 3 + 4i \le 7$
51	Example 2.14
	Show that the points 1, $\frac{-1}{2} + i\frac{\sqrt{3}}{2}$, and $\frac{-1}{2} - i\frac{\sqrt{3}}{2}$
	are the vertices of an equilateral triangle.
52	Example 2.15
	Let z_1, z_2 , and z_3 be complex numbers such that
	$ z_1 = z_2 = z_3 = r > 0$ and $z_1 + z_2 + z_3 \neq 0$
	Prove that $\left \frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3} \right = r$.
53	Example 2.16
	Show that the equation $z^2 = \overline{z}$ has four solutions.
54	Example 2.17
	Find the square root of $6-8i$.

Centum Preparation 100 Days plan class 12 Maths

55 **EXERCISE 2.5**

2. For any two complex numbers z_1 and z_2 , such that $|z_1| = |z_2| = 1$ and $z_1 z_2 \neq -1$, then show that $\frac{z_1 + z_2}{1 + z_1 z_2}$ is a real number.