Q. No.	DAY - 14
76	EXERCISE 3.1
	1. If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Find the volume of the cuboid.
77	3. If α , β and γ are the roots of the cubic equation
	$x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are (i) 2α , 2β , 2γ (ii) $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ (iii) $-\alpha$, $-\beta$, $-\gamma$
78	4. Solve the equation $3x^3 - 16x^2 + 23x - 6 = 0$ if the product of two roots is 1.
79	6. Solve the equation $x^3 - 9x^2 + 14x + 24 = 0$ if it is given that
	two of its roots are in the ratio 3:2.
80	7. If α, β , and γ are the roots of the polynomial equation
	$ax^3 + bx^2 + cx + d = 0$, find the value of $\sum \frac{\alpha}{\beta \gamma}$
	in terms of the coefficients.

Centum Preparation 100 Days plan class 12 Maths

81

8. If α, β, γ , and δ are the roots of the polynomial equation $2x^4 + 5x^3 - 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots are $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$.