Centum Preparation 100 Days plan class 12 Maths

Q. No.	DAY - 3
11	EXERCISE 1.1
	12. Find the matrix A for which $A \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 14 & 7 \\ 7 & 7 \end{bmatrix}$
12	13. Given $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$,
	find a matrix X such that $AXB = C$.
13	Example 1.18
	Find the rank of the matrix $\begin{bmatrix} 2 & -2 & 4 & 3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7 \end{bmatrix}$ by reducing it to an echelon form.
14	Example 1.19
	Show that the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 2 & 0 & -1 \\ 5 & 2 & 1 \end{bmatrix}$ is non-singular and reduce
	it to the identity matrix by elementary row transformations.
15	Example 1.21
	Find the inverse of $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ by Gauss-Jordan method.