Centum Preparation 100 Days plan class 12 Maths

Q.N o.	DAY - 30
176	EXERCISE 5.2
	1. Find the equation of the parabola in each of the cases given below:
	(ii) passes through $(2, -3)$ and symmetric about y -axis.
	(iv) end points of latus rectum $(4, -8)$ and $(4, 8)$.
177	2. Find the equation of the ellipse in each of the cases given below:
	(ii) foci $(0,\pm 4)$ and end points of major axis are $(0,\pm 5)$.
	(iii) length of latus rectum 8, eccentricity = $\frac{3}{5}$, centre (0, 0)
	and major axis on x -axis.
178	3. Find the equation of the hyperbola in each of the cases given below:
	(ii) Centre (2,1), one of the foci (8,1) and corresponding directrix $x = 4$
	(iii) passing through $(5,-2)$ and length of the transverse axis along
170	x axis and of length 8 units.
179	4. Find the vertex, focus, equation of directrix and
	length of the latus rectum of the following:
	$(iv) x^2 - 2x + 8y + 17 = 0$
	(v) $y^2 - 4y - 8x + 12 = 0$
180	6. Prove that the length of the latus rectum of the hyperbola
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
181	7. Show that the absolute value of difference of the focal distances
	of any point P on the hyperbola is the length of its transverse axis.