Centum Preparation 100 Days plan class 12 Maths

ON	
Q.N o.	DAY - 36
209	Example 6.1 (Cosine formulae)
	With usual notations, in any triangle ABC, prove the
	following by vector method.
	(i) $a^2 = b^2 + c^2 - 2bc \cos A$
210	Example 6.2
	With usual notations, in any triangle ABC, prove the
	following by vector method.
	(i) $a = b \cos C + c \cos B$
211	Example 6.3
	By vector method,
	prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$.
212	Example 6.4
	With usual notations, in any triangle ABC,
	prove by vector method that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
213	Example 6.5
	Prove by vector method that
	$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.$