Centum Preparation 100 Days plan class 12 Maths

Q.N o.	DAY - 40
231	9. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar,
	prove that c is the geometric mean of a and b .
232	10. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that \vec{c} is a unit vector
	perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b}
	is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^2 = \frac{1}{4} \vec{a} ^2 \vec{b} ^2$.
233	Example 6.19
	Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$.
234	Example 6.21
	For any four vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} , we have
	$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}] \vec{c} - [\vec{a}, \vec{b}, \vec{c}] \vec{d} = [\vec{a}, \vec{c}, \vec{d}] \vec{b} - [\vec{b}, \vec{c}, \vec{d}] \vec{a}$
235	Example 6.23
	If $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{i} - \hat{j} - 4\hat{k}$, $\vec{c} = 3\hat{j} - \hat{k}$ and $\vec{d} = 2\hat{i} + 5\hat{j} + \hat{k}$, verify that
	(i) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}] \vec{c} - [\vec{a}, \vec{b}, \vec{c}] \vec{d}$
	(ii) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{c}, \vec{d}] \vec{b} - [\vec{b}, \vec{c}, \vec{d}] \vec{a}$
236	EXERCISE 6.3
	2. For any vector \vec{a} , prove that $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$
237	6. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar vectors, show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$.
238	7. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$ and
	$\vec{a} \times (\vec{b} \times \vec{c}) = l\vec{a} + m\vec{b} + n\vec{c}$, find the values of l, m, n .
239	8. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and
	$\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$, find the angle between \hat{a} and \hat{c} .