Centum Preparation 100 Days plan class 12 Maths

Q.N o.	DAY - 50
308	5. Find the tangent and normal to the following curves at the given
	points on the curve.
	(ii) $y = x^4 + 2e^x$ at $(0,2)$ (iv) $x = \cos t, y = 2\sin^2 t$ at $t = \frac{\pi}{3}$
309	6. Find the equations of the tangents to the curve $y = 1 + x^3$ for
	which the tangent is orthogonal with the line $x+12y=12$.
310	8. Find the equation of tangent and normal to the curve given by
	$x = 7\cos t$ and $y = 2\sin t, t \in \mathbb{R}$ at any point on the curve.
311	10. Show that the two curves $x^2 - y^2 = r^2$ and $xy = c^2$ where c, r
	are constants, cut orthogonally.
312	Example 7.36
	Evaluate the limit $\lim_{x\to 0} \left(\frac{\sin x}{x^2}\right)$.
313	Example 7.37
	If $\lim_{\theta \to 0} \left(\frac{1 - \cos m\theta}{1 - \cos n\theta} \right) = 1$, then prove that $m = \pm n$.
314	Example 7.38
	Evaluate: $\lim_{x\to 1^-} \left(\frac{\log(1-x)}{\cot(\pi x)} \right)$.