Centum Preparation 100 Days plan class 12 Maths

Q.N	DAY - 68
0.	DA1 - 00
424	Example 10.10
	Show that $y = a\cos(\log x) + b\sin(\log x), x > 0$ is a solution
	of the differential equation $x^2y'' + xy' + y = 0$.
425	7. Show that the differential equation representing the family of
	curves $y^2 = 2a\left(x + a^{\frac{2}{3}}\right)$, where a is a positive parameter, is
	$\left(y^2 - 2xy\frac{dy}{dx}\right)^3 = 8\left(y\frac{dy}{dx}\right)^5.$
426	Example 10.12
	Find the particular solution of $(1+x^3)dy - x^2ydx = 0$
	satisfying the condition $y(1) = 2$.
427	Example 10.14
	Solve: $\frac{dy}{dx} = \sqrt{4x + 2y - 1} .$
428	2. The velocity v , of a parachute falling vertically satisfies the
	equation $v \frac{dv}{dx} = g \left(1 - \frac{v^2}{k^2} \right)$, where g and k are constants.
	If v and x are both initially zero, find v in terms of x .

Centum Preparation 100 Days plan class 12 Maths

429 4. Solve the following differential equations:

(ii)
$$ydx + (1+x^2) \tan^{-1} x dy = 0$$

(iv)
$$\frac{dy}{dx} = e^{x+y} + x^3 e^y$$

(vi)
$$(ydx - xdy)\cot\left(\frac{x}{y}\right) = ny^2 dx$$

(viii)
$$x \cos y \, dy = e^x (x \log x + 1) dx$$