Centum Preparation 100 Days plan class 12 Maths

Q.N o.	DAY - 78
485	EXERCISE 12.1
	2. On \mathbb{Z} , define \otimes by $(m \otimes n) = m^n + n^m : \forall m, n \in \mathbb{Z}$.
	Is \otimes binary on \mathbb{Z} ?
486	5. (i) Define an operation * on \mathbb{Q} as follows: $a * b = \left(\frac{a+b}{2}\right)$; $a,b \in \mathbb{Q}$.
	Examine the closure, commutative, and associative properties satisfied by $*$ on \mathbb{Q} .
	(ii) Define an operation $*$ on \mathbb{Q} as follows: $a*b = \left(\frac{a+b}{2}\right)$; $a,b \in \mathbb{Q}$.
	Examine the existence of identity and the existence of inverse
	for the operation $*$ on \mathbb{Q} .
487	6. Fill in the following table so that the binary operation *
	on $A = \{a, b, c\}$ is commutative.
	* a b c
	a b
	b c b a
	c a c
488	$(1 \ 0 \ 1 \ 0)$ $(0 \ 1 \ 0 \ 1)$ $(1 \ 1 \ 0 \ 1)$
	8. Let $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$
	$(1 \ 0 \ 0 \ 1) \qquad (1 \ 0 \ 0 \ 1) \qquad (1 \ 1 \ 1 \ 1)$
	be any three boolean matrices of the same type.
	Find (i) $A \vee B$ (ii) $A \wedge B$ (iii) $(A \vee B) \wedge C$ (iv) $(A \wedge B) \vee C$.

Centum Preparation 100 Days plan class 12 Maths

489

9. (i) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication.

Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M.

(ii) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication.

Determine whether M is closed under *. If so, examine the existence of identity, existence of inverse properties for the operation * on M.