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9. Assertion : In simple harmonic motion displacement and acceleration always have a constant ratio.

]dj splacement J
| acceleration I

Reason : 7 =2n J

10. Assertion : We can call circular motion also as simple harmonic motion.
Reason : Angular velocity in uniform circular mdtion and angular frequency in simple harmonic
motion have the same meanings.

Objective Questions
Single Correct Option

1. A particle of mass 2 kg moves in simple harmonic motion and its potential
energy U varies with position x as shown. The period of oscillation of the

L)

particle is
(a) 2?“5 (b) 22 S
(c) % S (d) ~45£ S

2. In the figure shown, a spring mass system is placed on a horizontal smooth
surface in between two vertical rigid walls | and W,. One end of spring is
fixed with wall ] and other end is attached with mass m which is free to
move. Initially, spring is tension free and having natural length /,. Mass m
is compressed through a distance a and released. Taking the collision
between wall W, and mass m as elastic and K as spring constant, the
average force exerted by mass m on wall W, in one oscillation of block is

2ak 2ma ak 2aK

(a) =5 (b) = (c) = (d)

m

3. Two simple harmonic motions are represented by the following equations v=40sin ®! and

y; =10 (sin @f + ccos wr). If their displacement amplitudes are equal, then the value of ¢ (in
appropriate units) is

(a) V13 (b) V15 (c) V17 (d) 4

4. A particle executes simple harmonic motion with frequency 2.5 Hz and amplitude 2 m, The speed
of the particle 0.3 s after crossing, the equilibrium position is

(a) zero (b) 2 m/s (c) 4w m/s (d) mm/s

5. A particle oscillates simple harmonically with a period of 16 s. Two second after crossing the
equilibrium position its velocity becomes 1 m/s. The amplitude is

@ Zm (b) @m 2 () W2
4 4 e n

6. A seconds pendulum is suspended from the ceiling of a trolley moving horizontally with an

acceleration of 4 m/s °. Its period of oscillation is
(a) 1.90s (b) 1.70 s (¢) 2.30s (d) 1.40s
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A particle is performing a linear simple harmonic motion. If the instantaneous acceleration an
velocity of the particle are @ and v respectively, identify the graph which correctly represents the
relation between a and v

24 1
(a) & (b)
0 > 0 e
1 24
(c) (d) \
o 22 0 =2

In a vertical U-tube a column of mercury oscillates simple harmonically. If the tube contains *kg of
mercury and 1 cm of mercury column weighs 20 g, then the period of oscillation is

(a) 1s (b) 25 (c) N2 (d) Insufficient data

. A solid cube of side a and density p, floats on the surface of a liquid of density p. If the cube is

slightly pushed downward, then it oscillates simple harmonically with a period of

(a) 2 J?—“-E (b) 21 F’—E (©) 21 |—2 (d) 2 -
P &g Po & ( p]g (1+p]g

| ——

Po

A particle of mass m is attached with three springs 4, B and C of equal force

constants k as shown in figure. The particle is pushed slightly against the spring
C and released, the time period of oscillation will be

'm ,m
(H} 27 ; _ (h) 2n 5};
’m ’m
(c) 2n ﬁ (d) 2n §

A uniform stick of length / is mounted so as to rotate about a horizontal axis perpendicular to the
stick and at a distance 4 from the centre of mass. The time period of small oscillations has a
minimum value when d//is

—_—

Po

1 1 1 1

(@) —= (b) = () = (d) —=

) iz ' J6
Three arrangements of spring-mass system are shown in figures
(4), (B) and (C). If T}, T, and T; represent the respective periods kK k L
of oscillation, then correct relation is
[ﬂ} Tl > 1 2 >T 3
(b) I3 >T, >T, l " L
) I, >T, >T, m m

(d) I, >T; >T, - -

(A) (B) (C)
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Three arrangements are shown in figure.

(A) (B) (C)

(A) A spring of mass m and stiffness &
(B) A block of mass m attached to massless spring of stiffness k

(C) A block of mass ? attached to a spring of mass %” and stiffness A

If T, T, and T, represent the period of oscillation in the three cases respectively, then identify the

correct relation
(a}?‘,{Tz-c:Tg (b) 7, <7, <T, (c}?‘,}ﬂ}?‘z (d) T3 <7, <T,

A block of mass M is kept on a smooth surface and touches the two
springs as shown in the figure but not attached to the springs. Initially
springs are in their natural length. Now, the block is shifted (/,/2) from
the given position in such a way that it compresses a spring and released.
The time-period of oscillation of mass will be

n (M M
s o b) 21t . —
@ V% R 7
3t M M
DVE N 7

A particle moving on x-axis has potential energy U =2 —20x + 5x* Joule along x-axis. The particle

is released at x =— 3. The maximum value of x will be (x is in metre)
(a) 5m (b) 3m (c) 7Tm (d) 8 m

A block of mass m, when attached to a uniform ideal spring with force constant k and free length L
executes SHM. The spring is then cut in two pieces, one with free length » L and other with free
length (1 - n) L. The block is also divided in the same fraction. The smaller part of the block
attached to longer part of the spring executes SHM with frequency f,. The bigger part of the block
attached to smaller part of the spring executes SHM with frequency f5. The ratio f,/f, is

n l+n () n

() | L 1_; (©) n |+ n

A body performs simple harmonic oscillations along the straight line = | ]
ABCDE with C as the midpoint of AE. Its kinetic energies at B and D are A B C D E
each one fourth of its maximum value. If AE =2R, the distance between

B andJ._ﬂ is
3 R
(a) ——R (b) — (c) V3R (d) V2R
2 V2
In the given figure, two elastic rods P and Q are rigidly joined to end supports. A small mass m is

moving with velocity v between the rods. All collisions are assumed to be elastic and the surface is
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given to be smooth. The time period of small mass m will be; (4 =area of cross section,
Y = Young's modulus, L = length of each rod)

2L ’mL 2L ’ZmL 2L mL 2L
— 42N | — — 4+ 2N — — -+ _— d) —
(@) v Ten AY (b) v Ten AY () Vv o AY () v

A block of mass 100 g attached to a spring of stiffness 100 N/m is
lying on a frictionless floor as shown. The block is moved to
compress the spring by 10 cm and released. If the collision with the
wall is elastic the time period of motion 1s

(a) 0.2s (b) 0.166 s (c) 0.155s (d) 0.133 s

A particle executes SHM of period 1.2 s and amplitude 8 cm. Find the time it takes to trawiE cm
from the positive extremity of its oscillation. [cos ™' (5/8) =0.9 rad]
(a) 0.28 s (b) 0.32s (c) 0.17 s (d) 042 s

A wire frame in the shape of an equilateral triangle is hinged at one vertex so that it can swing freely
in a vertical plane, with the plane of the triangle always remaining vertical. The side of the frame is

1/4/3 m. The time period in seconds of small oscillations of the frame will be (g =10 m/s”)
(a) m/+2 (b) m/~3 (c) n/v6 (d) m/5

A particle moves along the x-axis according to x = A [I +sin @¢]. What distance does is travel in

time interval fromt=0tor=25n/®m?
(a) 4 A (b) 6 4 (c) 54 (d) 34

A small bob attached to a light inextensible thread of length / has a periodic 40
3::4I
!

time 7 when allowed to vibrate as a simple pendulum. The thread is now
suspended from a fixed end O of a vertical rigid rod of length 3//4. If now the
pendulum performs periodic oscillations in this arrangement, the periodic time
will be

(a) 3T /4 (b) 4T'/5

(c) 2T/3 (d) 5T/6

A stone is swinging in a horizontal circle of diameter 0.8 m at 30 rev/min. A distant light causes a
shadow of the stone on a nearly wall. The amplitude and period of the SHM for the shadow of the

stone are
(a) 0.4 m, 4s (b) 0.2 m, 2s (c) 0.4 m, 2s (d) 0.8 m, 2s

Part of SHM is graphed in the figure. Here y is displacement from mean position. The correct
equation describing the SHM is

ylcm)
24 A
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(a) y=4cos (0.6¢) (b) y= 251[1[?!“%]
(c) y= Emn[g—¥t) (d) y=2cus[ﬂ.ﬁf+g]

26. A particle performs SHM with a period T and amplitude a. The mean velocity of particle over the
time interval during which it travels a distance a/2 from the extreme position is
(a) 6a/T (b) 2a/T (c) 3alT (d) a/2T

27. A man of mass 60 kg is standing on a platform executing SHM in the vertical plane. The displacement
from the mean position varies as y=0.5sin (2nff). The value of f, for which the man will feel
weightlessness at the highest point, is ( y in metre)

12
(a) g/4n (b) 4mg (c) % (d) 2r |2

28. A particle performs SHM on a straight line with time period T and amplitude A. The average speed
of the particle between two successive instants, when potential energy and kinetic energy become

same 18 7
442 24
(@) ? (b) —A @)= (d) —2 %

29. The time taken by a particle perfnrming SHM to pass from point 4 to B where its velocities are
same is 2 s. After another 2 s it returns to B. The ratio of distance OB to its amplitude (where O
is the mean position) is

(a) 1:42 (b) (V2 -1):1 ) 1:2 (d) 1:242
30. A particle is executing SHM according to the equation x = A4 cos w!. Average speed of the particle

n
during the interval 0 <t < — EE

A
‘r’““ (b) % @) 222 (d) i‘ﬂ 2-+3)

(a)

Passage : (0 31 and Q 32)

A 2 kg block hangs without vibrating at the bottom end of a spring with a force constant of
400 N/m. The top end of the spring is attached to the ceiling of an elevator car. The car is rising with

an upward acceleration of S m/s® when the acceleration suddenly ceases at time ¢ =0 and the car
moves upward with constant speed (g =10 m/s?)

31. What is the angular frequency of oscillation of the block after the acceleration ceases?

(a) 1042 rad/s (b) 20 rad/s (c) 202 rad/s (d) 32 rad/s
32. The amplitude of the oscillation is
(a) 7.5 cm (b) 5cm (¢) 2.5¢cm (d) | cm

More than One Correct Options

1. A simple pendulum with a bob of mass m is suspended from the roof of a car moving with horizontal
acceleration a
(a) The string makes an angle of tan ' (a/g) with the vertical
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a

(b) The string makes an angle of sin” (—] with the vertical
b4

(c) The tension in the string is mya® +g>
(d) The tension in the string is m /g* —a’

R
2. A particle starts from a point P at a distance of 4/2 from the mean position Al2
O and travels towards left as shown in the figure. If the time period of - -
SHM, executed about O is T and amplitude A then the equation of the —

motion of particle 1s

2
(a) x=Asin [z?nr+-g) (b) x= A sin [—TEI+S?E]
(c)x—Acns[z—ur+E] (d)x*-Acns(?Er-lrE]
B T 6 a T 3

3. A spring has natural length 40 cm and spring constant 500 N/m. A block of mass 1 kg is a?ached at
one end of the spring and other end of the spring is attached to a ceiling. The block is reledsed from
the position, where the spring has length 45 cm
(a) the block will perferm SHM of amplitude 5 cm

(b) the block will have maximum velocity 30/5 c/s
(¢) the block will have maximum acceleration 15 m/s’
(d) the minimum elastic potential energy of the spring will be zero

4. The system shown in the figure can move on a smooth surface. They are initially compressed by 6

cm and then released
k = 800N/m

e B

(a) The system performs, SHM with time period % 5

(b) The block of mass 3 kg perform SHM with amplitude 4 cm
(¢) The block of mass 6 kg will have maximum momentum of 2.40 kg nv/s

(d) The time periods of two blocks are in the ratio of 1:42

5. The displacement-time graph of a particle executing SHM is shown in 4
figure. Which of the following statements is/are true? T .
(a) The velocity is maximum at ( =T7/2 d \ :
(b) The acceleration is maximum at / =T OFaNT2 BTAT —t
(c) The force is zero at r =37'/4

(d) The kinetic energy equals the total oscillation energy at t =7/2

6. For a particle executing SHM, x=displacement from mean position, v=velocity and
a = acceleration at any instant, then
(a) v-x graph is a circle (b) v-x graph is an ellipse
(¢) a-x graph is a straight line (d) a-x graph is a circle

7. The acceleration of a particle is a = — 100x + 50. It is released from.x =2.Here ¢ and x are in Sl units

(a) the particle will perform SHM of amplitude 2 m
(b) the particle will perform SHM of amplitude 1.5 m
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(c) the particle will perform SHM of time period 0.63 s
(d) the particle will have a maximum velocity of 15 m/s

8. Two particles are performing SHM in same phase. It means that
(a) the two particles must have same distance from the mean position simultaneously
(b) two particles may have same distance from the mean position simultaneously
(¢) the two particles must have maximum speed simBiltaneously
(d) the two particles may have maximum speed simultaneously

9. A particle moves along j-axis according to the equation
y(in cm) =3 sin 100n7 + 8sin”* 50ms — 6

(a) the particle performs SHM

(b) the amplitude of the particle’s oscillation 1s 5 cm
(c) the mean position of the particle i1s at y=—2cm
(d) the particle does not perform SHM

Match the Columns
1. For the x-¢ equation of a particle in SHM along x-axis, match the following two columns.
x=2+2cos wt

Column I | Column II

(a) Mean position Hp} x=0

(b) Extreme position (q) x=2

(¢) Maximum potential (r) x=4
energy at

(d) Zero potential energy at :{3} Can’t tell

Sy = -

2. Potential energy of a particle at mean position is 4 J and at extreme position 1s 20 J. Given that
amplitude of oscillation is 4. Match the following two columns.

—

Column | '_: ‘Column I1

(a) Potential energy at x =% (p) 18

(b) Kinetic energy at x = -:? (q) 16)
(¢) Kinelic energy atx = (r) 81

A |

= (s) None

(d) Kinetic energy at x = 5

3. Acceleration-time graph of a particle in SHM is as shown in figure. Match the following two

columns.
It

A AN
VARVAR
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Cnlnle Column 11

(a) Displacement of particle at r, i{p] ZEeTO

(b) Displacement of particle at 1, (q) positive
(c) Velocity of particle at 1, (r) negative
(d) Velocity of Ea_ﬂi_cl_g atty '(s) maximum

-
|

——— m——

4. Mass of a particle is 2 kg. Its %splacemenl-time equation in SHM is
x =2sin (4n1) (SI Units)

Match the following two columns for 1 second time interval.

Column 1 . Column II
(a) Speed becomes 30 nvs (p) two times
(b) Velocity becomes + 10 m/s '(q) four times
(c) Kinetic energy becomes 400 J (r) one time

|
(d) Acceleration becomes — 100 m/s” ’[s) None

5. x-tequation of a particle in SHM is, 3
x=4+6sin mt
Match the following tables corresponding to time taken in moving from

Colomnl | Column 11

(a) x=10miox=4m |(p) %secnnd

(b) x=10mtox=Tm |(q) :!}-sacund

(¢) x=Tmtox=1m [(r) | second
(d_}_:r= I0mtox=-2m }{s} None

Subjective Questions

1. A1 kg block is executing simple harmonic motion of amplitude 0.1 m on a smooth horizontal
surface under the restoring force of a spring of spring constant 100 N/m. A block of mass 3 kg is
gently placed on it at the instant it passes through the mean position. Assuming that the two blocks
move together. Find the frequency and the amplitude of the motion.

2. Two particles are in SHM along same line. Time period of each is 7'and amplitude is 4. After how
much time will they collide if at time ¢ =0.

(a) first particle is at x, = +E and moving towards positive x-axis and second particle is at

A . : :
x, =——=and moving towards negative x-axis,

V2

(b) rest information are same as mentioned in part (a) except that particle first is also moving
towards negative x-axis.

3. A particle that hangs from a spring oscillates with an angular frequency of 2 rad/s. The spring
particle system is suspended from the ceiling of an elevator car and hangs motionless (relative to the
elevator car) as the car descends at a constant speed of 1.5 m/s. The car then stops suddenly.

(a) With what amplitude does the particle oscillate ?
(b) What is the equation of motion for the particle ?

(Choose upward as the positive direction)
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4.

10.

A 2 kg mass is attached to a spring of force constant 600 N/m and rests on a smooth horizontal

surface. A second mass of |1 kg slides along the surface toward the first at 6 m/s.

(a) Find the amplitude of oscillation if the masses make a perfectly inelastic collision and remain
together on the spring. What is the period of oscillation ?

(b) Find the amplitude and period of oscillation if the collision is perfectly elastic.

(c) For each case, write down the position x as a.flanction of time ¢ for the mass attached to the
spring, assuming that the collision occurs at time 7 =0. What is the impulse given to the 2 kg
mass in each case ?

. A block of mass 4 kg hangs from a spring of force constant & = 400 N/m. The block is pulled down

15 cm below equilibrium and released. How long does it take the block to go from 12 cm below
equilibrium (on the way up) to 9 cm above equilibrium?

A plank with a body of mass m placed on it starts moving straight up according to the law

yv=a(l —cos wt), where y is the displacement from the initial position, ® =11rad/s. Find :

(a) The time dependence of the force that the body exerts on the plank.

(b) The minimum amplitude of oscillation of the plank at which the body starts falling behind the
plank.

. A particle of mass m free to move in the x-y plane is subjected to a force whose components are

F, =—kxand F, =— ky, where k is a constant. The particle is released when ¢ = 0 at the point (2, 3).
Prove that the subsequent motion is simple harmonic along the straight line 2 y —3x =0.

Determine the natural frequency of vibration of the 100 N disk. Assume the disk does not slip on the
inclined surface.

. The disk has a weight of 100 N and rolls without slipping on the horizontal surface as it oscillates

about its equilibrium position. If the disk is displaced, by rolling it counterclockwise 0.4 rad,
determine the equation which describes its oscillatorv motion when it is released.

A solid uniform cylinder of mass m performs small oscillations due to the action of two springs of
stiffness k each (figure). Find the period of these oscillations in the absence of sliding.




11.

12.

13.

14,

CHAPTER 11 Simple Harmonic Motion 205

One end of an ideal spring is fixed to a wall at origin O and axis of spring is parallel to x-axis. A
block of mass m =1kg is attached to free end of the spring and it is performing SHM. Equation of
position of the block in co-ordinate system shown in figure

is x=10+3sin (10¢). Here, ¢ is in second and x in cm.

Another block of mass M =3 kg, moving towards the

origin with velocity 30 cods collides with the block -—
performing SHM at t =0 and gets stuck to it. Calculate : x

(a) new amplitude of oscillations,

(b) new equation for position of the combined body,
(¢) loss of energy during collision. Neglect friction.
A block of mass m is attached to one end of a light inextensible string passing over a smooth light
pulley B and under another smooth light pulley 4 as shown in the figure. The other end of the string

is fixed to a ceiling. A and B are held by springs of spring constants k, and k,. Find angular
frequency of small oscillations of the system.

In the shown arrangement, both the springs are in their natural
lengths. The coefficient of friction between m, and m; 1s . There
is no friction between m, and the surface. If the blocks are
displaced slightly, they together perform simple harmonic
motion. Obtain

(a) Frequency of such oscillations.

(b) The condition if the frictional force on block m, is to act in the direction of its displacement
from mean position.

(c) If the condition obtained in (b) is met, what can be maximum amplitude of their oscillations?

Two blocks A and B of masses m; =3 kg and m, =6 kg respectively are connected with each other by

a spring of force constant & =200 N/m as shown in figure. Blocks are pulled away from each other by

xy =3 cm and then released. When spring is in its natural length

and blocks are moving towards each other, another block C of

mass m = 3 kg moving with velocity v, =0.4 m/s (towards right)

collides with 4 and gets stuck to it. Neglecting friction, calculate

(a) velocities v; and v, of the blocks 4 and B respectively just before collision and their angular
frequency.

(b) velocity of centre of mass of the system, after collision,

(¢) amplitude of oscillations of combined body,

(d) loss of energy during collision.
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A rod of length / and mass m, pivoted at one end, is held by a spring
at 1ts mid-point and a spring at far end. The springs have spring
constant k. Find the frequency of small oscillations about the
equilibrium position.

In the arrangement shown in figure, pulleys are light and springs are ideal. k,, k», k, and k, are
force constants of the springs. Calculate period of small vertical oscillations of block of mass m.

A light pulley is suspended at the lower end of a spring of constant &, as shown

in figure. An inextensible string passes over the pulley. At one end of string a
mass m is suspended, the other end of the string is attached to another spring of
constant k5. The other ends of both the springs are attached to rigid supports, as
shown. Neglecting masses of springs and any friction, find the time period of
small oscillations of mass m about equilibrium position.

Figure shows a solid uniform cylinder of radius R and mass M, which
is free to rotate about a fixed horizontal axis O and passes through
centre of the cylinder. One end of an ideal spring of force constant £ is
fixed and the other end is higned to the cylinder at 4. Distance OA is

equal to g An inextensible thread is wrapped round the cylinder and

passes over a smooth, small pulley. A block of equal mass M and
having cross sectional area A4 is suspended from free end of the thread.
The block is partially immersed in a non-viscous liquid of density p.
If in equilibrium, spring is horizontal and line OA is vertical, calculate
frequency of small oscillations of the system.

Find the natural frequency of the system shown in figure. The pulleys are
smooth and massless.
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Introductory Exercise 11.1

1 3 n
1. 6.0N/m 2, —, = 3. 10.0gm, —rad
2 y Sl
4. (a) 15.0cm {b} 0.726s (c) 1.38Hz (d) 1.69J (e) 1.30 m/s 5.14x 109 s

6. (a) 1.39J (b) 1.1s 7. (a) 0.28s (b) 0.4%
Introductory Exercise 11.2

.
1 2R / == and inclined to the vertical at an angle 8 = tan™ [L] away from the centre
242 8
18 (" ] }
!
2. (a) 2n (b) 2 (¢) Infinite (d) 2n
- J (g% + a*)’* 3
3. The clock will lose 10.37s 4. [\{;] T
Introductory Exercise 11.3
1. T=2n JE 2.0314s 3. -0 _ 4 L times
k JKM + m) 2

Introductory Exercise 11.4
3R

1. T=2ny2—2R 2 14x10°gem?
8

Introductory Exercise 11.9
1. (a) 7.0ecm (B)6.1cecm (c) 5.0em (d) 1.0em

37 units (c) (100x)2V37 units.

For JEE Main

Subjective Questions
1. (a)28N/m (b)0.84s 2.0.78s 3. 0.101 m/s, 1.264 m/s?, 0.632 N

4. 045,0.102m 5. 0.58 m/s, - 0.45 m/s 2, 0.60 m/s?, zero 6. % 7.6= [ % rad]cr}s ((40ms ')t ]

8. (a) m sec (b) ﬁ sec (c) ﬁ sec 9. 7.2 m 10. (a) equal (b) equal

11. (2) 0.08 m (b)1.57 rad/s (c)1.97 N/s (d) zero (e)0.197 m/s?

- _ X _g[—m 4 SR oy
13. (a)U=E;/4.K SED f4 (b)x= T 15. A=d gy 16. {a) . J: (b) — T (c) T
17. (a)10cm (b)2.5J (c]%ae-:: (d)20cm (e)4.5J) (H05J 18. y=(0.1 m) sin[{ds'I}t + E]

19. (a)1lrad/s (b) Unean = 10J, Kean = 16J, Ugsrreme = 26J, Kopreme =0 (€) 4m (d) x=6mandx=-2m
20. 3T /4 22.T =zu1i§_m 23. 45 24.T = EEE 25. 185 26.0.816 28. 0.38 Hz
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2
29. Parabola, y=A [1 - % 30. 2A 31. %E 32. (a)-2.41cm (b)0.27 cm

Objective Questions
1. (a) 2. (a) 3. (d) 4. (c) 5. (d) 6. (b) 7. (a) 8. (b) 9, (a) 10. (d)
11. (d) 12.(b) 13.(c) 14.(c) 15.(a) 16.(p) 17.(c) 18.(d) 19.(c) 20. (b)
21.(b) 22.(c) 23.(a) 24.(a) 25.(a) 26.(c) 27.(b) 28.(d) 29.(c) 30.(a)
31. (a) 32. (b)
For JEE Advanced
Assertion and Reason
1. (d) 2. (b) 3. (c) 4. (a) 5. (d) 6. (d) 7. (d) 8. (a) 9, (a) 10. (d)
Objective Questions

1.(d 2.(ad 3.(M 4@ 5(® 6.(a 7.(c) 8.() 9 () 10.(b)
11. (b) 12.(c) 13.(b) 14.(c) 15.(c) 16.(a) 17.(c) 18.(a) 19.(d) 20. (c)
21.(d) 22.(c) 23.(a) 28.(c) 25.(b) 26.(c) 27.(c) 28.(b) 29.(a) 30.(d)
31. (a) 32.(c)

More than One Correct Options

1. (a.c) 2. (b.d) 3. (b,c.d) 4. (a,b,c) 5. (b.c) 6. (b,c) 7. (b,c.d)
8. (b.c) 9. (a,b.c)

Match the Columns

1. (a)— q (b)— pr (c)— p,r (d) — s
(@)—=r (b)— s (c)— Qg (d)— s
(@)y— r (b)— p ()= r (d)— r,s
(a)— s ()= g (€)— s (d)— q
(a)— q (b)— p c)—=p (d)—=r

Subjective Questions
1. 0.8Hz 005m 2. (a) i_: T (b) i_; T 3.(@A=0.75m (b)x=-0.75sin2t

o B oW

4, (a)14.1cm,0.445 (b)23cm,0.365 (c)x =+ (14.1 cm) sin(1042 t), x = + (23 cm) sin(1043 1), 4 N-s, 8 N-s
5. -2% s=0.157s 6. (@N=m(g+ an°coswt) (b)81lcm 8.056Hz 9.8=04cos(16.161)

bk
4m(k + k)

10. r:% ’EE”J 11. (a)3cm (b)x=10-3sin5t (¢)0.135) 12.\’

Eﬂvnwm.—g ky my miy — Mok

14. (a) 0.2 m/s, 0.1 m/s, 10 rad/s (b) 0.1 m/s (towards right) (c¢) 4.8cm (d) 0.03J
15 1 1_5_5: 15.T=4nJm[%+i+é+%] 1?.T=2“\!m{4k‘?+ k) 18, f— 1 [k+ 4Apg

"2nV4m ks ki ks 2nV  6M

19. 1 [2K
xYM
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{EPRY Introduction

In day to day work an engineer comes across certain materials e.g., steel girders, angle irons, circular
bars, cement etc., which are used in his projects. While selecting a suitable material for his project, an
engineer is always interested to know its strength. The strgngth of a material may be defined as an ability
to resist its failure and behaviour under the action of external forces. It has been observed that, under the
action of these forces, the material is first deformed and then its failure takes place. As a matter of fact the
properties of material under the action of external forces are very essential, for an engineer, to enable
him, in designing him all types of structures and machines.

Whenever a load is attached to a thin hanging wire it elongates and the load moves downwards
(sometimes through a negligible distance). The amount by which the wire elongates depends upon the
amount of load and the nature of wire material. Cohesive force, between the molecules of the hanging
wire offer resistance against the deformation, and the force of resistance increases with the deformation.
The process of deformation stops when the force of resistance is equal to the external force (i.e., the load
attached). Sometimes the force of resistance offered by the molecules is less than the external force. In
such a case, the deformation continues until failure takes place.

Thus, we may conclude that if some external force is applied to a body it has two effects on it,
namely :

(i) deformation of the body,

(i1) internal resistance (restoring) forces are developed.

{F¥®] Elasticity

As we have already discussed that whenever a single force (or a system of forces) acts on a body it
undergoes some deformation and the molecules offer some resistance to the deformation. When the
external force is removed, the force of resistance also vanishes and the body returns back to its original
shape. But it is only possible if the deformation is within a certain limit. Such a limit is called clastic
limit. This property of materials of returning back to their original position is called the elasticity.

A body is said to be perfectly elastic if it returns back completely to its original shape and size after
removing the external force (s). Ifa body remains in the deformed state and does not even partially regain
its original shape after the removal of the deforming forces, it is called a perfectly inelastic or plastic
body. Quite often, when the extemnal forces are removed, the body partially regains the original shape.
Such bodies are partially elastic. If the force acting on the body is increased and the deformation exceeds
the elastic limit, the body loses to some extent, its property of elasticity. In this case the body will not
return to its original shape and size even after removal of the external force. Some deformation is left
permanently.

|EPE] Stress and Strain

Stress

When an external force is applied to a body then at each cross-section of the body an internal
restoring force is developed which tends to restore the body to its original state. The internal restoring
force per unit area of cross-section of the deformed body is called stress. It is usually denoted by ¢

(sigma).
T . = £
hus Stress (o) Krea
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Depending upon the way the deforming forces are applied to a body, there are three types of stress:
longitudinal stress, shearing stress and volume stress.

Longitudinal and Shearing Stress

The body of figure is in static gquilibrium under an arbitrary set of external forces. In Fig. 12.1(b),
we see the same body with an imagi sectional cut at CC’, Since each of the two individual parts of the

\C F e i

b

vl
- f’%ﬁ" Fs
—Fn | A
Fﬁ : _F —ﬁ .'l‘ Fﬂ-
ce ce
(@) (0) © 3

Fig. 12.1

body is also in static equilibrium, both internal forces and internal torques are developed at the cross
section. Those on the right portion are due to the left portion and vice-versa. On the left portion, the

=y = . .
normal and tangential components of the internal forces are F, and F, respectively, and the net internal

torque is T. From Newton’s third law, the right portion is subjected at this same cross-section to force

— — —
components — F, and — F, and the torque — 7. We define the normal stress or longitudinal stress over
the area as,

ﬂ" - EE.
A
and the tangential stress or shearing stress over the area as,
P
A i | _
Here, A is the cross-section area of the body at CC’. The  F : .
longitudinal stress can be of two types. The two parts of the body on ;
two sides of a cross section may pull each other. The longitudinal - 5 5 -
stress is then called the tensile stress. This is the case when a rod or a = Fn -Fn r
wire is stretched by equal and opposite forces. In case of tensile stress A
in a wire or a rod, the force F,, is just the tension. Fn=F
Fig. 12.2
-3 —
If the rod is pushed at the two ends with equal and opposite forces, 2 =
it will be under compression. Taking any cross-section of the rod the = =
two parts on the two sides push each other. The longitudinal stress in F ~Fn . Fo F
this case is called the compressive stress. = - = =
- =
=F

F

|

Fig. 12.3
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Volume Stress

When a body is acted upon by forces in such a manner that,
(1) the force at any point is normal to the surface.
(i1) the magnitude of the force on any small area is proportional to the

area. X
The force per unit area is then called the volume stress, i.e.,
e
5S4

which is same as the pressure. This is the case when a body is immersed in a
liquid.
Strain

When the size or shape of a body is changed under an external force, the body is said to be strained.
The change occurred in the unit size of the body is called strain. Usually it is denoted by €. Thus,

Ax

E=—
X
Here, Ax is the change (may be in length, volume etc.) and x the original value of the quantity in
which change has occurred. For example, when the length of a suspended wire increases under an
applied load, the value of strain is,
Al

€
[

and it is called longitudinal strain.
Similarly, if the change has occurred in the volume of a body, it is called volumetric strain and is

given by,
_av

=

Shearing Strain

This type of strain is produced when a shearing stress is present.

Consider a body of square cross section ABCD. Four forces of equal magnitude F are applied as
shown in figure. Net resultant force and net torque is zero. Hence, the body is in translational as well as
rotational equilibrium. Because of the forces the shape of the cross section changes from a square to a
parallelogram.

E p—
A —_ B A A B B’

------

F l I F ': I‘r
X ‘I ;
i # ¢
D «— C H

F
Fig. 12.5

We define the shearing strain as the displacement of a layer divided by its distance from the fixed
layer. Thus, shearing strain,
y g s Ax

X

T T R T s
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{FP¥] Hooke's Law and the Modulus of Elasticity

According to Hooke’s law,
“For small deformation, the stress in a body is proportional to the corresponding strain.” i.e.,

i stress o< strain
or stress = (E) (strain)
Here, E = zttrr:ss is a constant called the modulus of elasticity. Depending upon the nature of force
in

applied on the body, the modulus of elasticity is classified in following three types:
Young'’s Modulus of Elasticity (Y)

When a wire is acted upon by two equal and opposite forces in the direction of its

Al
length, the length of the body is changed. The change in length per unit length (—]

Ui g 4

/

is called the longitudinal strain and the restoring force (which is equal to the applied
force in equilibrium) per unit area of cross section of the wire is called the .

longitudinal stress. il
For small change in the length of the wire, the ratio of the longitudinal stress to

the corresponding strain is called the Young’s modulus of elasticity (Y') of the wire. .
Thus, Fig. 12.6

N ~|Ea ™

or SR el
AAl

Let there be a wire of length / and radius 7. Its one end is clamped to a rigid support and a mass M is
attached at the other end. Then,

F=Mg and A=m"

Substituting in above equation, we have

Y= Mgl
(nr?)Al

Bulk Modulus of Elasticity (B)

When a uniform pressure (normal force) is applied all over the surface
of a body, the volume of the body changes. The change in volume per unit
volume of the body is called the ‘volume strain’ and the normal force
acting per unit area of the surface (pressure) is called the normal stress or
volume stress. For small strains, the ratio of the volume stress to the volume
strain is called the 'bulk modulus’ of the material of the body. It is denoted
by B. Then,




214 Mechanics-11I

-F
Bt
- AVIV

Here, negative sign implies that when the pressure increases volume decreases and vice-versa.

Compressibility !

T

The reciprocal of the bulk modulus of the matenal df a body 1s called the ‘compressibility’ of that

material. Thus,
Compressibility =—;'
Modulus of Rigidity (n)

When a body is acted upon by an external force tangential to a F
surface of the body, the opposite surface being kept fixed, it suffers a K K’ L ..L

change in shape, its volume remaining unchanged. Then the body is ,

said to be sheared.

The ratio of the displacement of a layer in the direction of the /
tangential force and the distance of the layer from the fixed surface is / J
called the shearing strain and the tangential force acting per unit area of 8/ 8.

the surface is called the “shearing stress”.

For small strain the ratio of the shearing stress to the shearing strain R m

1s called the “modulus of rigidity” of the material of the body. It is Fig. 12.8
denoted by 1.
FlA
Thus. =
w = KKIKN
Here, =tan 8 =0
_ FIA
=T
A6

|EEX] The Stress-Strain Curve

A plot of normal stress (either tensile or compressive)
versus normal strain for a typical solid is shown in figure. The
strain 1s directly proportional to the applied stress for values of
stress upto Op. In this linear region, the material returns to its
original size when the stress is removed. Point P is known as the
proportional limit of the solid. For stresses between o, and O,
where point E is called the elastic limit, the material also returns
to its original size.

However, notice that stress and strain are not proportional in
this region. For deformations beyond the elastic limit, the
material does not return to its original size when the stress is

(Fracture point)
/. E (Elastic limit)
- P (Proportional limit)

23

The stress-strain curve for a typical solid
Fig. 12.9
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removed, it is permanently distorted. Finally, further stretching beyond the elastic limit leads to the
eventual fracture of the solid. The proportionality constant for linear region or the slope of stress-strain
curve in this curve is called the Young’s modulus of elasticity Y.

Sample Example 12.1 Determine the elongation of the steel bar 1 mlong and1.5 em® cross-sectional
area when subjected to a pull of t ¥ 10* N. (Take ¥ =2.0x10"" N/m?)

FlA
Solution Rl i
Alll
Rt
AY
4
. 1.0
Substituting the values, Al = . l‘ilﬂ )(1.0) —=0.5X 107 m
(1.5x107*)2.0x10")
or Al=0.5 mm 3 Ans.
A
Sample Example 12.2 A bar of mass m and length | is hanging from point A as G
shown in figure. Find the increase in its length due to its own weight. The Young's |
modulus of elasticity of the wire is Y and area of cross-section of the wire is A. |
[
B
Fig. 12.10
Solution Consider a small section dx of the bar at a distance x from B. The weight of “
the bar for a length x is,
o (i
=" ) o
Elongation in section dx will be {
W mg
di=|— |dx=| — |x d
( AY ] ( 1AY ] v B
N : . : . . Fig. 12.11
Total elongation in the bar can be obtained by integrating this expression for
y=0tox=1[
Al=["" di= (ﬂ]j‘x dx
x=0 IAY )70
I
or Afsa—E Ans.
2AY
Sample Example 12.3 A4 brass bar, having cross A B C D
sectional area 10 cm” is subjected to axiul forces as o= S ki, Aade

=i} -

shown in figure. Find the total elongation of the bar. 60 cm 100 cm 120 cm
(Take Y =8 x10% t/cm®). Fig. 12.12
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Solution Given, 4 =10cm?, ¥ =8x10? t/cm?

Let, Al=total elongation of the bar. For the sake of simplicity the force of 3¢ acting at B
may be split into two forces of 5t and 2¢ as shown in figure. Similarly, the force of If acting at C may be
split into two forces of 27 and I+.

A B B X C D

5t=— — 51 2{=— — 21 1= — 11

Fig. 12.13
Using the equation, Al= Al_]’ (F\l, + F51, + F3l;) with usual notations

Al= : [5x60+2x100+1x120]

T 10% 8 x102
~0.0775em Ans.

Introductory Exercise I

1. Two wires A and B of same dimensions are stretched by same amount of force. Young’s modulus of A is
twice that of B. Which wire will get more elongation?

2. Arod 100 cm long and of 2 cm x 2 cm cross-section is subjected to a pull of 1000 kg force. If the modulus
of elasticity of the material is 2.0 x 10° kg/cm?, determine the elongation of the rod.

3. A cast iron column has internal diameter of 200 mm. What should be the minimum external diameter so
that it may carry a load of 1.6 MN without the stress exceeding 90 N/mm??

|F¥X] Potential Energy in a Stretched Wire

When a wire is stretched, work is done against the inter atomic forces. This work is stored in the wire

in the form of elastic potential energy. Suppose on applying a force F on a wire of length /, the increase in
length is Al. The area of cross-section of the wire is A. The potential energy stored in the wire should be,

l
U =- k(AD?
5 (Al)
_H
/
1 Y4

gt e 2
U"z [ (ah

Elastic potential energy per unit volume of the wire is,
U

volume

Here, k

=

1 Y4 -
or u—ET(M} or u—-l-[EI-J[}’gJ
Al VAW l
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or u=%{ﬂrain}(}’ X strain)

or u= % (strain) X (stress)
¥

'EEX] Thermal Stresses and Strains

Whenever there is some increase or decrease in the temperature of the
body, it causes the body to expand or contract. If the body is allowed to A i La kA i B
expand or contract freely, with the rise or fall of the temperature, no
stresses are induced in the body. But if the deformation of the body is
prevented, some stresses are induced in the body. Such stresses are called }
thermal stresses or temperature stresses. The corresponding strains are
called thermal strains or temperature strains.

Consider a rod 4B fixed at two supports as shown in figure. Fig- 12,19
Let [l = length of rod
A = area of cross-section of the rod
Y = Young's modulus of elasticity of the rod
and o. = thermal coefficient of linear expansion of the rod

Let the temperature of the rod is increased by an amount 1. The length of the rod would had increased
by an amount A/, if it were not fixed at two supports. Here

Al = loct

But since the rod is fixed at the supports a compressive strain will be produced in the rod. Because at
the increased temperature, the natural length of the rod is / + Al, while being fixed at two supports its

actual length is /. Hence, thermal strain

e Al " loct Y
[ l
or E=0u
Therefore, thermal stress o=1Ye (stress = Y X strain)
or o = You
or force on the supports,
F=c4d=YAot

This force F is in the direction shown below :

FF Ff_[
e -

Fig. 12.15
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Extra Points [Eigs |

* Modulus of elasticity E (whetheritis Y, B orn) is given by
_ sfress
~ straify
Following conclusions can be made from the above expression :

(i) E = stress (for same strain), /.e., if we want the equal amount of strain in two different materials, the
one which needs more stress is having more E.

(i) E =< (for same stress), i.e., if the same amount of stress is applied on two different materials,

strain
the one having the less strain is having more E. Rather we can say that, the one which offers more
resistance to the external forces is having greater value of E. So, we can see that modulus of
elasticity of steel is more than that of rubber or

Esiooi > Enpsar

(i) E = stress for unit strain [E;- =1 or Ax =x) , I.e., suppose the length of a wire is 2 m, then the

Young's modulus of elasticity (Y) is the stress applied on the wire to stretch the wire by the same
amount of 2 m.

= The material which has smaller value of Y'is more ductile, /.e., it offers less resistance in framing it into
a wire. Similarly, the material having the smaller value of B is more malleable. Thus, for making wire
we choose a material having less value of Y.

« A solid will have all the three modulii of elasticity Y, Band n. But in case of a liquid or a gas only Bcan
be defined as a liquid or a gas can not be framed into a wire or no shear force can be applied on them.
* For a liquid or a gas,
g- [ - dP

aviv
S0, instead of P we are more interested in change in pressure dP.
* In case of a gas,
B=XP
in the process PV* = constant
For example, for x =1, or PV = constant (isothermal process) B = P.

i.e., isothermal bulk modulus of a gas (denoted by B;) is equal to the pressure of the gas at that
instant of time or

BT =
Similarly, forx =y = % or PV' = constant (adiabatic process) B = yP.
Ly

i.e., adiabatic bulk modulus of a gas (denoted by B.) is equal to ytimes the pressure of the gas at that
instant of time or

B, =yP
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For a gas B P

whether it is an isothermal process or an adiabatic
process. Physically this can be understood as under:

Suppose we have two containers A and B. Some gas is
filled in both the containers. Bufthe pressure in A is more
than the pressure in B, i.e.,

A>FK
So, bulk modulus of A should be more than the bluk
modulus of B, or

B, > B, Fig. 12.16
and this is quiet obvious, because it is more difficult to
compress the gas in chamber A, i.e., it provides more resistance to the external forces. And as we
have said in point number 1(ii) the modulus of elasticity is greater for a substance which offers more
resistance to external forces.

If a spring is stretched or compressed by an amount A/, the restoring force produced in it is, &

Fs=k Al (1)
Here, k = force constant of spring
Similarly, if a wire is stretched by an amount A /, the restoring force produced in it is,
F=[Y—A-]M (1)
{
Comparing Egs. (i) and (ii), we can see that force constant of a wire is,
k = YA ..(iii)

/

I.e., a wire is just like a spring of force constant ? ;

S0, all formulae which we use in case of a spring can «2‘; 2k -é- 2k
be applied to a wire also. -
From Eq. (iii), we may also conclude that force
constant of a spring is inversely proportional to the
length of the spring / or,
1 Fig. 12,17

K o -
!

i.e., if a spring is cut into two equal pieces its force constant is doubled.

When a pressure (dP) is applied on a substance its density is changed. The change in density can
be calculated as under :

mass

P= volume (p:=density)
1
or p e v (mass = constant)
p V' V+aV
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[V
or f=
=P gv + ID'V]
i
“Plv (%IE}V] BRp = n::-"TV
V-
et k) |
P --——“1_ dP
B
From this expression we can see that p’ increases as pressure is increased (dP is positive) and
vice-versa.

= Poisson’s ratio : When a longitudinal force is applied on a wire, its length increases but its radius
decreases. Thus two strains are produced by a single force :

(i) Longitudinal strain = # and

(ii) Lateral strain = %‘T

The ratio of these two strains is called the Poisson’s ratio.
Thus, the Poisson's ratio
g Lateral strain __ AR/IR
Longitudinal strain Alll

Foliowing points are worthnothing in case of Poisson's ratio :
(i) Negative sign in o indicates that radius of the wire decreases as the length increases.

(i) Theoretical value of o lies between — 1and + %

(iii) Practical value of o lies between 0 and + -%

« Relation between Y, B, nand o: Following are some relations between the four

(a) B Y (b) n= . {c}n:ﬂﬂ_zﬂ {d}%=

=31

1
B —+
3(1-20) 2(1+ o) 2n + 68 B
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Solved Examples
For JEE Main ‘R

Example 1 A steel wire of length 4 m and diameter 5 mm is stretched by 5 kg-wt. Find the increase in
its length, if the Young's modulus of steel is 2.4 X 10'? dyne/cm*.

Solution Here, /=4m=400cm, 2r=5mm
or r=2.5mm=0.25cm
£ =5 kg-wt = 5000 g-wt = 5000 x 980 dyne
Al=9, Y =2.4x%10" dyme/cm?

F o1 @
As Y= X
e Al
Fi (5000 x 980) x 400
or Ale—s—s= 2 12
nrY (22/7)x(0.25)° x2.4x10
=0.0041cm Ans.

Example 2  The bulk modulus of water is 2.3 x10° N/m 2

(a) Find its compressibility.
(b) How much pressure in atmospheres is needed to compress a sample of water by 0.1% ?

Solution Here, B=23x10° N/m?

- lf‘:;zll‘; ~227x10* atm
(a) Compressibility = % e L e 44x10™ atm™' Ans.
(b) Here, -‘i—y =—-0.1%=-0.001
Required increase in pressure,
&P=Bx(-i—y}=2.z?xlﬂ4 x0.001=22.7 atm Ans.

Example 3 A steel wire 4.0 m in length is stretched through 2.0 mm. The cross-sectional area of the
wire is 2.0 mm?. If Young's modulus of steel is 2.0 x10'' N/m*. Find :

(a) the energy density of wire,

(b) the elastic potential energy stored in the wire.
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Solution Here, /=40m, A/=2x10""m, 4=20x10°m?* ¥ =20x10" N/m’
(a) The energy density of stretched wire

l (g 1 .3
=;-xsu'essxstraln=ix}’x(stram}“

h [{2:3‘:10"}]2

1

=-x%2.0x10" x

=0.25%10° =2.5%10* J/m’ Ans.
(b) Elastic potential energy = energy density x volume

=2.5x10% x(2.0x10°)x4.0]

=20x107* =0.20J Ans.

Example 4 Find the greatest length of steel wire that can hang vertically without breaking. Breaking
stress of steel =8.0 x10° N /m-. Density of steel =8.0 x 10° kg/m>. Take g =10 m/s~.

Solution Let/ be the length of the wire that can hang vertically without breaking. Then the stretching
force on it is equal to its own weight. If therefore, 4 is the area of cross-section and p the density, then

Maximum stress (G, ) = weight (SITESH = fgee ]
A area
_(Alp)g
or o v
j=2n
Pg
!
Substituting the values I= B0 IP =10" m Ans.
(8.0x107)(10)

Example 5 (a) A wire 4mlong and0.3 mm in diameter is stretched by a force of 100 N. If extension
in the wire is 0.3 mm, calculate the potential energy stored in the wire.
(h) Find the work done in stretching a wire of cross-section 1 mm? and len gth2 mthrough(.] mm

Young's modulus for the material of wire is 2.0 X 10" N/m?.

Solution (a) Energy stored U =% (stress)(strain)(volume)
or U=% %)[&T{}{AI}
=% F.Al
=% (100)(0.3 x107)
=0.015] Ans.
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(b) Work done = Potential energy stored
I
=—k(Al)*
5 (Al
1(YA Y4
5 =-2-[T)(fmz (as k = f)

Substituting the values, we have

_1(20x10")10°)
2 (2)
=5.0x107"J Ans.

w (0.1x107)*

Example 6 A rubbercord has a cross-sectional areal mm* and total unstretched length10.0 cm. It is

stretched to12.0 ecmand then released to project a missile of mass 5.0 g. Taking Young's modulus Y for
rubber as 5.0 x10° N/m*. Calculate the velocity of projection. 3

Solution Equivalent force constant of rubber cord.

_ YA _ (5.0x10%)(1.0x107%)
! (0.1)

=5.0x10° N/m

k

-

Now, from conservation of mechanical energy, elastic potential energy of cord
= kinetic energy of missile

%k(ﬂf}l =-;-mv2

5.0x10° R
- e (12.0-10.0)x107
5.0x10™

=20 m/s Ans.
Note Following assumptions have been made in this Problem :

(i) k has been assumed constant, even though it depends on the length (1).
(ii) The whole of the elastic potential energy is converting into kinetic energy of missile.

- Example 7 What is the density of lead under a pressure of 2.0 x 10° N/m?, if the bulk modulus of lead
is®0x10° N/m” and initially the density of lead is 11.4 g/cm® ?

P
dP

I

B

Solution The changed density, p’ =
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Substituting the value, we have

o' = 11.4
2.0x10°%
I- 9
8.0x10
or p'=ll.ﬁ g/cm” Ans.

For JEE Advanced

Example 1 A light rod of length 2.00 m is suspended from the ceiling horizontally by means of two

vertical wires of equal length tied to its ends. One of the wires is made of steel and is of cross-section
-, . ! - 2 . L

10~ m? and the other is of brass of cross-section 2 x10™> m*. Find out the position along the rod at

which a weight may be hung to produce,

(a) equal stresses in both wires
(b) equal strains on both wires.

Young's modulus for steel is2x10"" N/m* and for brass is10"' N/m®.

Solution (a) Given,

Stress in steel =stress in brass T ————"
Ts = I'p Steel Brass
Ag A
T A AT T
s — Ly 5 o T g8
Iy Ap A-..-:.TI':_-_'_““ C
-3
o 3=l () =X Zox
2x107° 2 .
Fig. 12.18
As the system 1s in equilibrium, taking moments about D, we have
TS X = TE {2 “"‘I}
Ts 2 - X e
= .1
T, x (11)
From Egs. (1) and (i1), we get x=133m Ans.
. Sstress
(b) Strain = ——
Y
Given, strain in steel =strain in brass
T/ Ag TylAg
Yo Yy

Ts AgYs _{1;-:10'3)(231:10"1#1
Tg AgYpy  (2x107)(10")

From Eqgs. (i1) and (1i1), we have

...(111)

x=1.0m ARs.
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Example 2 A steel rod of length 6.0 m and diameter 20 mm is fixed between two rigid supporis.
Determine the stress in the rod, when the temperature increases by 80° C if

E J

— >

6.0m
Fig. 12.19

(a) the ends do not yield
(b) the ends yield by | mm.
Take Y =2.0x10° kg/cmz and o, =12 x107° per°C.

Solution Given, length of the rod /=6 m =600cm

Diameter of the rod d =20mm =2c¢m
Increase in temperature 1 =80°C &
Young’s modulus ¥ =2.0x10° kg/cm?
and thermal coefficient of linear expansion

a=12x107° per°C
When the ends do not yield
Let, o, =stress in the rod
Using the relation 6 = oty

o, =(12x107°)(80)2%10%)

=1920 kg/cm> Ans.

When the ends yield by | mm
Increase in length due to increase in temperature

Al=lou
of this | mm or 0.1 ¢m is allowed to expand. Therefore, net compression in the rod
Al ., =(loe—0.1)

E-———-—M“‘“ -[m-y]
I /

stress O , =T’£=Y(w-g'—l]

or compressive strain in the rod,

/

Substituting the values,

0.1
G, =2%10°|12x10"° xﬁﬂ--——]
A [ 600

=1587 kg/cm”* Ans.
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Example 3 A4 steel rod of cross-sectional area 16 cm”

and two brass rods each of cross-sectional area 10 cm*

together support a load of 5000 kg as shown in figure.
Find the stress in the rods. Take Y for steel

=2.0x10°% kg/cm? and for brass =1.0x10° kg/cm®.

x
Solution Given area of steel rod

As =16cm’
Area of two brass rods Ag =2x10=20cm*
Load, F =5000 kg
Y for steel Y =2.0%10° kg/cm?
Y for brass Yz =1.0x10° kg/cm?
Length of steel rod /; =30cm
Length of brass rod /; =20cm
Let O ¢ =siress in steel
and O p =stress in brass

Decrease in length of steel rod = decrease in length of brass rod
Oy Op

or —=Xile =—=XI
Vo % Ya
Yo |
or ﬁs =—SK1}{G3
Yp U
2.0x10° 20
1.0x10" 30
o] 4:! (1)
== w1
s=3Y8
Now, using the relation,
F=05A5 +0,A,
or 5000=0¢ x16+0, X20 ...(11)

Solving Egs. (i) and (i1), we get
6, =120.9 kg/cm?

and 6, =161.2 kg/em’ Ans.
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Example 4 A4 sphere of radius 0.1 m and mass 87 kg is attached to the lower end of a steel wire of

length 5.0 mand diameter10™ m. The wire is suspended from 5.22 m high ceiling of a room. When the

sphere is made to swing as a simple pendulum, it just grazes the floor at its lowest point. Calculate the
velocity of the sphere at the lowest position. Young s modulus of steel is 1.994 X 10'" Nim*.

Solution Let A/ be the extension’of wire when the sphere is at mean B
position. Then, we have

I+ Al+2r=522
or Al=522—1-2r 623 m
=5.22-5-2x0.1
=0.02 m A
Let T be the tension in the wire at mean position during oscillations, A

then
Fig. 12.2
 T/A . 15%

AU

_ YAAl  Ymr®Al
T - d
Substituting the values, we have

T

_(1.994x10" ) x % (0.5%10 *)* x0.02
- 5

4

=626.43 N
The equation of motion at mean position is,

T—mg= ...(1)

Here, R=522-r=522-0.1=5.12m
and m=8n kg =25.13 kg
Substituting the proper values in Eq. (i), we have

(25.13)v°
5.12

Solving this equation, we get v=8.8m/s Ans.

(626.43) - (25.13 x9.8) =

Example 5 A thin ring of radius R is made of a material of density p and Young 's modulus Y. If

the ring is rotated about its centre in its own plane with angular velocity w, find the small increase
in its radius.

Solution Consideran element PQ of length d/. Let T be the tension and A the area of cross-section of the
wire.

Mass of element dm = volume x density

= A(dlp
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The component of T, towards the centre provides the necessary

centripetal force

2T sin (g]= (dm)Rw* ..(0)
.8 0 (d/R)
F ll 1 —_—-—= — ;_,‘.
Oor small angies SN 573 5
Substituting in Eq. (i), we have
dl _ Fig. 12.22
B A(dDpRw?
or T = Apw’R’
Let AR be the increase in radius,
Longithdionl e as SALRR) AR
|  2nR R
Now, s, DA
AR/R
A\ IR _ (4po*R*)R
AY AY
2nl
or AR = PmYR Ans.

Example 8 A member ABCD is subjected to point loads F,, F,, F; and F, as shown in figure.

Calculate the force F, for equilibrium if F\, =4500 kg, F;, =45000 kg and F, =13000 kg. Determine
the total elongation of the member, assuming modulus of elasticity to be 2.1x10° kglem”.

25 cm?
6.25 cm® B | ¢
A | i 0o
Fi <] 2 Fae -+ Fa
! 1
1 12.5 cm?
= ~te »ie -
120 cm 60 cm 90 cm
Fig. 12.23
Solution Given

Areaof part AB, A, =6.25cm’
Areaof part BC, A, =25cm’
Area of part CD, A, =12.5cm”
Length of part 4B, [ =120cm
Length of part BC, [, =60cm
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Length of part CD, [, =90cm
Young’s modulus of elasticity ¥ =2.1x10° kg/cm?

Magnitude of the force F, for Equilibrium

The magnitude of force F, may be found by equating the forces acting towards right to those acting
towards left, %

F, +13000 = 4500 + 45000
F, =36500 kg Ans.

Total Elongation of the Member

For the sake of simplicity, the force of 36500 kg (acting at B) may be split up into two forces of
4500 kg and 32000 kg. The force of 45000 kg acting at C may be split into two forces of 32000 kg and
13000 kg. Now, it will be seen that the part AB of the member is subjected to a tension of 4500 kg, part
BC is subjected to a compression of 32000 kg and part CD is subjected to a tension of 13,000 kg. Using

the relation, a

Fl F.l

ﬁle 5 1 T = with usual notations

Y \ A A, Ay

| (4’50{] x120 32000x60 13000 x ':}0)

Al= -— o cm

2.1x10° 6.25 25 12.5
=0.049 cm

or Al=0.49 mm Ans.



E XERCISES

For JEE Main

Subjective Questions

L

A cylindrical steel wire of 3 m length is to stretch no more than 0.2 cm when a tensile force 0of 400 N
is applied to each end of the wire. What minimum diameter is required for the wire ?

Y et =2.1%10" N/m?

. The elastic limit of a steel cable is 30 x 10* N/m? and the cross-section area is 4 cm>. Find the

maximum upward acceleration that can be given to a 900 kg elevator supported by the cable if
the stress is not to exceed one-third of the elastic limit.

- . F ¥ 2 . . . -
. Ifthe elastic limit of copperis 1.5 x10*N/m*, determine the minimum diameter a copper wire can

have under a load of 10.0 kg, if its elastic limit is not to be exceeded.

Find the increment in the length of a steel wire of length 5 m and radius 6 mm under its own weight.
Density of steel =8000 kg/m? and Young's modulus of steel =2 x10'" N/m?. What is the energy

stored in the wire ? (Take g =9.8m/s?)
Two wires shown in figure are made of the same material which has a breaking stress of
8 x 10" N/m?. The area of cross-section of the upper wire is 0.006 cm? and that of the lower

wire is 0.003 cm?. The mass m, =10kg, m, =20 kg and the hanger is light. Find the maximum

load that can be put on the hanger without breaking a wire. Which wire will break first if the
load is increased ? (Take g =10m/s?)
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A steel wire and a copper wire of equal length and equal cross-sectional area are joined end to end
and the combination is subjected to a tension. Find the ratio of :

copper | stesl

(a) the stresses developed in the two wires,
(b) the strains developed. (Y ofteel =2 x 10" N/m? and ¥ of copper=1.3x10'"' N/m?)

Calculate the approximate change in density of water in a lake at a depth of 400 m below the
surface. The density of water at the surface is 1030 kg/m” and bulk modulus of water is

2x10° N/m?>.

A wire of length 3 m, diameter 0.4 mm and Young’s modulus 8 x 10" N/m~ is suspended from a
point and supports a heavy cylinder of volume 10~ m* at its lower end. Find the decrease in length
when the metal cylinder is immersed in a liquid of density 800 kg/m .

In taking a solid ball of rubber from the surface to the bottom of a lake of 180 m depth. reduction in
the volume of the ball is 0.1%. The density of water of the lake is 1 x 10" kg/m". Dﬂtengine the
value of the bulk modulus of elasticity of rubber. (g =9.8m/s”)

A sphere of radius 10 cm and mass 25 kg is attached to the lower end of a steel wire of length 5 m
and diameter 4 mm which is suspended from the ceiling of a room. The point of support is 521 cm
above the floor. When the sphere is set swinging as a simple pendulum, its lowest point just grazes
the floor. Calculate the velocity of the ball at its lowest position. (¥ =2x10"" N/m?)

A uniform ring of radius R and made up of a wire of cross-sectional radius r is rotated about its axis

with a frequency v. If density of the wire is p and Young’s modulus is Y. Find the fractional change
in radius of the ring.

A 6 kg weight is fastened to the end of a steel wire of unstretched length 60 cm. It is whirled in a
vertical circle and has an angular velocity of 2 rev/s at the bottom of the circle. The arca of
cross-section of the wire is 0.05 cm . Calculate the elongation of the wire when the weight is at the
lowest point of the path. Young’s modulus of steel =2 x10'" N/m~.

A homogeneous block with a mass m hangs on three vertical wires of equal length arranged
symmetrically. Find the tension of the wires if the middle wire is of steel and the other two are of
copper. All the wires have the same cross-section. Consider the modulus of elasticity of steel to be

double than that of copper.

m

A uniform copper bar of density p, length L, cross-sectional area S and Young's modulus Y is
moving horizontally on a frictionless surface with constant acceleration a,. Find :

(a) the stress at the centre of the wire,

(b) total elongation of the wire.
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15. A 5 mlong cylindrical steel wire with radius2 X 10™ m is suspended vertically from a rigid support
and carries a bob of mass 100 kg at the other end. If the bob gets snapped, calculate the change in
temperature of the wire ignoring radiation losses. (Take g =10m/s?)

(For the steel wire : Young’s modulus =2.1x 10" N/m*; Density = 7860kg/m?; Specific heat

=4201]/kg-°C). $ 1
Objective Questions
Single Correct Option
1. The bulk modulus for an incompressible liquid is
(a) zero (b) unity (c) infinity (d) between 0 and |

2. The Young's modulus of a wire of length (L) and radius (#) 1s Y. If the length is reduced to % and

radius % then its Young’s modulus will be

(a) g— (b) ¥ (c) 2Y (d) 4Y

3. The maximum load that a wire can sustain is W. If the wire is cut to half its value, the maximum load
it can sustain 1s

w W
(a) W ®)'5 ©) 7 (d) 2w

4. Identify the case when an elastic metal rod does not undergo elongation
(a) it i1s pulled with a constant acceleration on a smooth horizontal surface
(b) it is pulled with constant velocity on a rough horizontal surface
(c) 1t1s allowed to fall freely
(d) All of the above

5. Vessel of1 x 10~ m? volume contains an oil. If a pressure of 1.2 x10° N/m? is applied on it, then

volume decreases by 0.3 x 10> m”. The bulk modulus of oil is
(@) 6x10'° N/m*  (b) 4x10° N/m” (¢) 2x107 N/m? (d) 1x10° N/m*?

6. Abobofmass 10kg is attached to a wire 0.3 m long. Its breaking stress is 4.8 x 107 N/m2. The area

of cross-section of the wire is 10™° m *. What is the maximum angular velocity with which it can be

rotated in a horizontal circle?
(a) 8 rad/s (b) 4 rad/s (¢) 2 rad/s (d) 1 rad/s

7. A uniform steel rod of cross-sectional area A and length L is suspended so that it hangs vertically.
The stress at the middle point of the rod is

1
(a) EP'EL (b) ing (c) pglL (d) None of these
8. The bulk modulus of water is 2.0 x 10° N/m?. The pressure required to increase the density of water
by 0.1% is
(a) 2.0x10° N/m”? (b) 20x10°N/m?

(¢) 2.0x10°N/m?> (d) 2.0x10"N/m?
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The potential energy U of diatomic molecules as a function of separation r is shown in figure.
Identify the correct statement.

(a) The atoms are in equilibrium if r = 0A
(b) The force is repulsive only if r lies between 4 and B
(c) The force is attractive if » lies between 4 and B
(d) The atoms are in equilibrium if »=0B
The length of a steel wire is /; when the stretching force is 7} and /; when the stretching force is 7.
The natural length of the wire is

LT, + LT, (b) LT, +4T; LT, = 4T,

W - LT, -
(c) (@ 22 8
I +T; I +75 I =T, nh =1

A mass m is suspended from a wire. Change in length of the wire is AL Now the same wire is
stretched to double its length and the same mass is suspended from the wire. The change in length in
this case will become (it is assumed that elongation in the wire is within the proportional limit)
(a) Al (b) 2Al (c) 4Al (d) 8Al

A uniform metal rod fixed at its ends of 2 mm > cross-section is cooled from 40°C to 20°C. The
coefficient of the linear expansion of the rod is 12x107° per degree celsius and its Young's

modulus of elasticity is 10'' N/m?. The energy stored per unit volume of the rod is
(a) 2880 J/m”* (b) 1500 )/m”>
(c) 5760J/m” (d) 1440 J/m”’

A rod of length 1000 mm and coefficient of linear expansiono. =10 ~ per degree celsius is placed in
horizontal smooth surface symmetrically between fixed walls separated by 1001 mm. The Young's
modulus of rod is 10'' N/m 2. If the temperature is increased by 20°C, then the stress developed in
the rod 1s (in N/m?)

(a) 10° (b) 10®

(c) 10’ (d) 10°

A uniform elastic plank moves due to a constant force F, distributed uniformly over the end face

whose area is S. The Young’s modulus of the plank is ¥. The strain produced in the direction of
force is

Fo Fy
@ Jsy ® Sy
(c) 2o (d) V2F,

SY | SY
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For JEE Advanced

Assertion and Reason

Directions : Choose the correct option.

(a) Ifboth Assertion and Reason are true and the-Reason is correct explanation of the Assertion.
(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
(¢) If Assertion is true, but the Reason is false.

() If Assertion is false but the Reason is true.

1. Assertion: Steel is more elastic than rubber.
Reason : For same strain, steel requires more stress to be produced in it.

2. Assertion : If pressure is increased, bulk modulus of gases will increase.
Reason : With increase in pressure, temperature of gas also increases.

3. Assertion: Fromtherelation} = T we can say that, if length of a wire is doubled, its Young's

modulus of elasticity will also becomes twa times.
Reason : Modulus of elasticity is a material property.

4. Assertion: Bulk modulus of elasticity can be defined for all three states of matter, solid liquid
and gas.
Reason : Young’s modulus is not defined for liquids and gases.

5. Assertion: Every wire is like a spring, whose spring constant, K o< %

where [ is length of wire.

YA
Reason : It follows from the relation K = =

6. Assertion : Ratio of stress and strain is always constant for a substance.
Reason : This ratio is called modulus of elasticity.

7. Assertion: Ratio of isothermal bulk modulus and adiabatic bulk modulus for a monoatomic gas

.-
at a given pressure 1§ s

Cp

Reason : This ratio is equal toy = =
>

More than One Correct Options

1. A metal wire of length L, area of cross-section 4 and Young's modulus ¥ is stretched by a vaniable
force F such that F is always slightly greater than the elastic forces of resistance in the wire. When

the elongation of the wire is {

YAI*
2L

YAI®
L

(a) the work done by F is

(b) the work done by F 1s
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YAI®

(c) the elastic potential energy stored in the wire is

YAl

(d) the elastic potential energy stored in the wire is

2. Two wires A4 and B of same length are made of same material. The figure represents the load F

versus extension Ax graph for the two wires. Then : d B

(a) The cross sectional area of 4 is greater than that of B A
(b) The elasticity of B is greater than that of 4

(c) The cross-sectional area of B is greater than that of A e
(d) The elasticity of 4 is greater than that of B @ ax

3. A body of mass M is attached to the lower end of a metal wire, whose upper end is fixed. The
elongation of the wire is /.
(a) Loss in gravitational potential energy of M is Mgl

(b) The elastic potential cnergy stored in the wire is Mg/ &

: o
(c) The elastic potential energy stored in the wire is 5 Mgl

(d) Heat produced is -}; Mgl

Match the Columns

1. Match the following two columns. (dimension wise)

Column 1 Column 11
(a) Stress '(p) coefficient of friction
(b) Strain (q) relative density
(¢) Modulus of elasticity (r) energy density

{(d) Force constant of a wire (s) None

2. A wire of length /, area of cross section A and Young’s modulus of elasticity Y is stretched by a
longitudinal force F. The change in length is A/ Match the following two columns.

Note In column I, corresponding to every option, other factors remain constant.

Column | - Coloamn 11

(a) F is increased (p) Al will increase
(b) /is increased (q) stress will increase
(c) A is increased (r) Al will decrease

(d) Y is increascd (s8) stress will decrease
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Answers IR/

Introductory Exercise 12.1
1. Wire B 2. 0.0125 cm 3. 250.2 mm &
For JEE Main
Subjective Questions
1. 1.91 mm 2. 34.64 m/s® 3. Diameter, d =0.912 mm 4. Al=49% 10%m, U=543x 1072 J

5. Load = 14 kg, lower string 6. (a) 1 (b) Ratio= 1531 7. 20 kg/m® 8. Al = 2.34x 103m

2 2 =3
o, B=176x 10°N/m? 10.v=3123m/s 11, 3% ‘;PR 12. Al=38%x10%m

13. .-T€ 15=21c 14 {a}—é-!_pa ® : PaOL 15. 4.568x 1073°C

Objective Questions

1. {c) 2. (b) 3. (a) 4. (c) 5. (b) 6. (b) 7. (a) 8. (b) 9. (d) 10. (c)
11. (c) 12, (a) 13. (b) 14. (a)

For JEE Advanced

Assertion and Reason
1. (2) 2. (c) 3. (d) 4. (b) 5. (a) 6. (d) 7. (c)

More than One Correct Dptions
1. (a.c) 2. (c) 3. (a.c.d)

Match the Columns
1. (a)—-r (by=pg (c)—=r (d)— s
2. (a)— pg (b)— p (c)—rs (d)—=r
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FEE! Definition of a Fluid

Fluid mechanics deals with the behaviour of fluids at rest and in motion. A fluid is a substance that
deforms continuously under the application of a shear (tangential) stress no matter how small the shear
stress may be. i !

Thus, fluids comprise the liquid and gas (or vapor) phases of the physical forms in which matter
exists. The distinction between a fluid and the solid state of matter is clear if you compare fluid and
solid behaviour. A solid deforms when a shear stress is applied but it does not continue to increase with
time. However if a shear stress is applied to a fluid, the deformation continues to increase as long as the
stress 1s applied. We may alternatively define a fluid as a substance that cannot sustain a shear stress
when at rest.

_.
-"-
1
S
>~
. -
= -
- = -
-
-"-
=
-
-
-
#:-._
- = -
-
- =
1.*‘
.."-1.
-

-—-:ur—-r-!n-m—-—u—- -
(a) Solid (b) Fluid

Fig. 13.1 Behaviour of a solid and a fluid, under the action of a constant shear force

In the present chapter we shall deal with liquids. An ideal liquid is incompressible and nonviscous in
nature. An incompressible liquid means the density of the liquid is constant, it is independent of the
variations in pressure. A nonviscous liquid means that, parts of the liquid in contact do not exert any
tangential force on each other. Thus, there is no friction between the adjacent layers of a liquid. The force
by one part of the liquid on the other part is perpendicular to the surface of contact,

. EEE] Density of a Liquid

Density (p) of any sustance is defined as the mass per unit volume or
mass

volume

m

or &

V

p::

Relative Density (RD)

In case of a liquid, sometimes an another term relative density (RD) is defined. It is the ratio of
density of the substance to the density of water at 4°C. Hence,

_ _ Density of substance
Density of water at 4°C

RD is a pure ratio. So, it has no units. It is also sometimes referred as specific gravity. Density of
water at 4°C in CGS is |1 g/em®, Therefore, numerically the RD and density of substance (in CGS) are
equal. In SI units the density of water at 4°C is 1000 kg/m .




CHAPTER 13  Fluid Mechanics 239

Sample Example 13.1 Relative density of an oil is 0.8. Find the absolute density of oil in CGS and SI
Unils.

Solution Density of oil (in CGS) = (RD) g/cm”’
%  =08g/em’
=800 kg/m"* Ans.

Density of a mixture of two or more liquids

Here, we have two cases.
Case 1 : Suppose two liquids of densities p, and p, having masses m; and m, are mixed together.

Then the density of the mixture will be
_ Totalmass _ (my +m,)

P= Total volume (7, +75)
_ (m; +m;) 3
o
P1 P2
__2p\P2
Py +P2

Case2: Iftwo liquids of densitiesp, andp, having volumes ¥, and ¥, are mixed, then the density
of the mixture is,

If my =m,, then p

o Total mass  m; +m,
Total volume V| +V,
_PV +pabs
Vi +V,

_Pi*Ps
2

If, V, =V,. then p

Effect of Temperature on Density
As the temperature of a liquid is increased, the mass remains the same while the volume is increased

and hence, the density of the liquid decreases [as p oc %J . Thus,

p" Vv Vv ¥
p V' V+dV V+VyA
r D
p 1+vyAY
Here, ¥ = thermal coefficient of volume expansion
and AB = rise in temperature
, £
p E—

1+ vyAB
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Effect of pressure on Density

As pressure is increased, volume decreases and hence density will increase. Thus,

P e v
b Vv Xy
p V' V+dV V—[d—P)V
B
p’ 1
or P aP
B
Here, dP = change in pressure
and B =bulk modulus of elasticity of the liquid
' P
Theref = e
erefore, p e P
B

‘EEE] Pressure in a Fluid

When a fluid (either liquid or gas) is at rest, it exerts a force perpendicular to any surface in contact
with it, such as a container wall or a body immersed in the fluid.

While the fluid as a whole is at rest, the molecules that makes up the fluid
are in motion, the force exerted by the fluid is due to molecules colliding with
their surroundings. aF, | |, _OF

If we think of an imaginary surface within the fluid, the fluid on the two
sides of the surface exerts equal and opposite forces on the surface, otherwise
the surface would accelerate and the fluid would not remain at rest.

Consider a small surface of area dA4 centered on a point on the fluid, the
normal force exerted by the fluid on each side is dF | . The pressure P is defined at that point as the normal
force per unit area, i.e.,

/

/

Fig. 13.2

- aFy
dA

If the pressure is the same at all points of a finite plane surface with area A4, then
F

P=,_'L...

A
where F, is the normal force on one side of the surface. The SI unit of pressure is pascal, where

| pascal=1Pa=1.0 N/m?

One unit used principally in meterology is the Bar which is equal to 10° Pa.
1 Bar =10° Pa
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Atmospheric Pressure (P,)
It is pressure of the earth’s atmosphere. This changes with weather and elevation. Normal
atmospheric pressure at sea level (an average value) is1.013 x10° Pa. Thus,

‘nlatm=1.ﬁ]3x]05 Pa

Note Fluid pressure acls perpendicular to any surface in the fluid no matter how that surface is oriented.
Hence, pressure has no intrinsic direction of its own, its a scalar. By contrast, force is a vector with a

definite direction.

Absolute Pressure and Gauge Pressure

The excess pressure above atmospheric pressure is usually called gauge pressure and the total
pressure is called absolute pressure. Thus,

Gauge pressure = absolute pressure — atmospheric pressure
Absolute pressure is always greater than or equal to zero. While gauge pressure can be negativgglso.

Variation in Pressure with depth

If the weight of the fluid can be neglected, the pressure in
a fluid is the same throughout its volume. But often the fluid’s
weight is not negligible and under such condition pressure
increases with increasing depth below the surface.

Let us now derive a general relation between the pressure
P at any point in a fluid at rest and the elevation y of that
point. We will assume that the density p and the acceleration
due to gravity g are the same throughout the fluid. If the fluid s PA
s in equilibrium, every volume element 1s 1n equilibrium.

Consider a thin element of fluid with height dy. The
bottom and top surfaces each have area 4, and they are at
elevations y and y+ dyabove some reference level where y=0. The weight of the fluid element is

dW = (volume) (density) (g) = (A4 dv)(p)(g)
or dW =pgAdy

What are the other forces in y-direction on this fluid element? Call the pressure at the bottom surface
P, the total y component of upward force is PA. The pressure at the top surface is P + dP and the total
v-component of downward force on the top surface is (P + dP)A. The fluid element is in equilibrium, so
the total y-component of force including the weight and the forces at the bottom and top surfaces must be
Zero.

Fig. 13.3

EF_I, =0
PA—(P+dP)A—pgAdy=0
or Eiﬂ—— (1)
a ==Pg

This equation shows that when p incicases, P decreases, i.e., as we move upward in the fluid,
pressure decreases.

If P, and P, be the pressures at elevations y, and y, and if p and g are constant, then integrating
Eq. (1), we get
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J: dP =-pg Ifd_}f

or P, =P ==pg(y, — ») ...(11)

[t’s often convenient to express Eq. (ii) in termgkof the depth
below the surface of a fluid. Take point | at depth 4 below the surface
of fluid and let P represents pressure at this point. Take point 2 at the
surface of the fluid, where the pressure is P (subscript zero for zero
depth). The depth of point | below the surface 1s,

h=y, — n

and Eq. (11) becomes
Po—P=-pg(y; — y»)=—pgh
P =P, +pgh (i)

Thus, pressure increases linearly with depth, if p and g are uniform. A graph between P and 4 is
shown below.

P
4

Pﬂ F:Fﬂ-ﬁlgh

> h Pas= Pg= Py +pgh
Fig. 13.5 Fig. 13.6

Further, the pressure is the same at any two points at the same level in the fluid. The shape of the
container does not matter.

Pascal’s Law

Pascal’s law or the principle of transmission of fluid-pressure is a principle in fluid
mechanics that states that pressure exerted anywhere in a confined incompressible fluid is transmitted
equally in all directions throughout the fluid.

The simplest instance of this is stepping on a balloon; the balloon bulges out on all sides under the
foot and not just on one side. This is precisely what Pascal’s Law is all about — the air which is the fluid in
this case, was confined by the balloon, and you applied pressure with your foot causing it to get displaced
uniformly. I3

A well known application of Pascal's law is the (— car
hydraulic lift used to support or lift heavy objects. It is ™ ] A
schematically illustrated in figure.

A piston with small cross section area A, exerts a force
F, on the surface of a liquid such as oil. The applied

r—
}

Fig. 13.7
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F - . L) Ll -
pressure P =-j'- is transmitted through the connecting pipe to a larger piston of area 4,. The applied
!

pressure is the same in both cylinders, so

Fs F 9
Pp=—i%-2 ngd'.FI
4, 4 4,

Now, since A4, > A,, therefore, F, > F,. Thus, hydraulic lift is a force multiplying device with a
multiplication factor equal to the ratio of the areas of the two pistons. Dentist’s chairs, car lifts and jacks,
many elevators and hydraulic brakes all use this principle.

Sample Example 13.2 Figure shows a hydraulic press with the
larger piston of diameter 35 cm at a height of 1.5 m relative to the
smaller piston of diameter 10 cm. The mass on the smaller piston is
20 kg. What is the force exerted on the load by the larger piston?

The density of oil in the press is 750 kg/m”. (Take g =9.8 m/s”)

Solution Pressure on the smaller piston = kot N/m?

Tt x(5x107%)2
F

Pressure on the larger piston = — N/m*
nx(17.5%107°)°
The difference between the two pressures = hpg
where h=15m and p=750 kg/m”’
20%9.8 F
Thus, T > =1.5%750x9.8
Tx(3xI07) mx(17.5x107)
which gives, F=13x10"N Ans.
Note Atmospheric pressure is common to both pistons and has been ignored.
e /mportant points in Pressure
1. At same point on a fluid pressure is same in all directions. In the figure,
F=F=P=F, I’Pq
Py —» o -— P,
N
Fig. 13.9

2. Forces acting on a fluid in equilibrium have to be perpendicular to its surface.
Because it cannot sustain the shear stress.

3. In the same liquid pressure will be same at all points at the same level.
For example, in the figure:

P =P
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Further, P;=P,
Po + P19 = Py + paghs
or oy =pohy  Of  hoeo
P .%
4. Barometer: It is a device used to measure atmospheric Fig. 13.10
pressure.
In principle, any liquid can be used to fill the barometer, but Vacuum
mercury is the substance of choice because its great density 17 (P=0)

makes possible an instrument of reasonable size.

P =P,
Here, P, = atmospheric pressure ()
and P, =0+ pgh=pgh
Here, p = density of mercury
Po =pgh
Thus, the mercury barometer reads the atmospheric pressure (F,)
directly from the height of the mercury column. Fig. 13.11

For example if the height of mercury in a barometer is 760 mm,
then atmospheric pressure will be,

P, =pgh =(13.6 x 10°)(9.8)(0.760) =1.01x10° N/n?

5. Manometer : Itis a device used to measure the pressure ofagasinsidea— -
container. e
The U-shaped tube often contains mercury. i

Pi=P,
Here, P, =pressure of the gasin the container (P)

and P, = atmospheric pressure (F,) + pgh
A2 P=F; + hpg
This can also be written as
P - P, =gauge pressure = hpg
Here, p is the density of the liquid used in U-tube.
Thus by measuring h we can find absolute (or
gauge) pressure in the vessel.

6. Free body diagram of a liquid: The free
body diagram of the liquid (showing the vertical
forces only) is shown in Fig. (b). For the
equilibrium of liquid.

Net downward force = net upward force
X PoA + W = (P + pgh)A
or W =pghA

Fig. 13.13

= = a

— —
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Sample Example 13.3 4 glass full of water upto a height of 10 cm has a bottom of area10 cm®, top of

area 30 cm?® and volume 1 litre.

(a) Find the force exerted by the water on the bottom.
(b) Find the resultant force exerteg by the sides of the glass on the water.
(c) If the glass is covered by a jar'and the air inside the jar is completely pumped out, what will be

the answers to parits (a) and (b).
(d) If a glass of different shape is used provided the height, the bottom area and the volume are

unchanged, will the answers to parts (a) and (b) change.
Take g =10 m/ 5%, density of water = 10 kg/ m* and atmospheric pressure =1.01x10> N/ m?.

Solution (a) Force exerted by the water on the bottom
F, =(P, +pgh)4, (1)
Here, P, = atmospheric pressure = 1.01X 10° N/m?

p =density of water =10° kg/m’ -
g=10m/s% h=10cm=0.1m
and A,=areaufhasc=lﬂcmz=10h3 m?

Substituting in Eq. (1), we get
F, =(1.01%10° +10° x10x0.1) x10™

or F, =102 N (downwards) Ans.

(b) Force exerted by atmosphere on water:
F, =(Fy)4,

Here, A, =areaof top=30cm’ =3x10" m
F,=(1.01x10°)(3x107)

=303 N (downwards)
Force exerted by bottom on the water

Fy=-F
or F; =102 N (upwards)
weight of water W = (volume)(density)(g) = (107)(10%)(10)
=10 N (downwards)
Let F be the force exerted by side walls on the water (upwards). Then, from equilibrium of water

2

Net upward force = net downward force

or F+F3 =Fz +W
. F=F, +W-F,=303+10-102
or F =211N (upwards) Ans.

(c) If the air inside the jar is completely pumped out,
F, =(pgh)A, (as Py =0)
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= (107 )(10)(0.1)(107)

=1 N (downwards) Ans.
In this case, F,=0
and F; =1 N (upwards)
F=F,+W-F,
=0+10-1
=9 N (upwards) Ans.

(d) No, the answer will remain the same. Because the answers depend upon P, p, g. h, 4, and 4,.

Sampie Example 13.4 Two vessels have the same base area but different shapes. The first vessel
takes twice the volume of water that the second vessel requires to fill up to a particular common height.
Is the force exerted by water on the base of the vessel the same in the two cases? If so. why do the
vessels filled with water to that same height give different readings on a weighing scale?

Solution Pressure (and therefore force) on the two equal base areas are identical. But force is exerted
by water on the sides of the vessels also, which has a non-zero vertical component when the sides of the
vessel are not perfectly normal to the base. This net vertical component of force by water on the sides of
the vessel is greater for the first vessel than the second. Hence, the vessels weigh different when force on
the base is the same in the two cases.

Introductory Exercise fENE

1. Two vessels A and B have same base area. Equal volumes of a liquid are poured in the two vessels to
different heights h, and fgz (> h,). In which vessel, the force on the base of vessel will be more.

2. A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg. The area of cross
section of the piston carrying the load is 425 cm®. What maximum pressure would the smaller piston
have to bear?

3. A U tube contains water and methylated spirit seprated by mercury. The mercury columns in the two
arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the
relative density of sprit?

4. In the above question if 15.0 cm of water and spirit each are further, poured into the respective arms of
the tube, what is the difference in the levels of mercury in the two arms?

(Relative density of mercury = 13.6) JT
I’!ﬂ C

5. A manometer reads the pressure of a
gas in an enclosure as shown in figure
(a). When some of the gas is removed
by a pump, the manometer reads as in
(b). The liquid used in the manometers
is mercury and the atmospheric
pressure is 76 cm of mercury.

(i) Give the absolute and gauge
pressure of the gas in the enclosure (@) (0)
for cases (a) and (b) in units of cm Fig. 13.14
of mercury.

(ii) How would the levels change in case (b) if 13.6 cm of water are poured into the right limb of the
manometer?

Imnm

Hg
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m Pressure Difference in Accelerating Fluids

Consider a liquid kept at rest in a beaker as shown in figure (a). In this case we know that pressure do
not change in horizontal direction (x-direction), it decreases upwards along y-direction. So, we can write
the equations, "

P
==

0 and % -pg AL

4

(a) (b)
Fig. 13.15

But, suppose the beaker is accelerated and it has components of accelerationa, and @, in x and v
directions respectively, then the pressure decreases along both x and v directions. The above equation n
that case reduces to,

ap__
i pa,
dP

and —==p(g+a,) ...(11)
cb, 7

These equations can be derived as under :
Consider a beaker filled with some liquid of density p e
accelerating upwards with an acceleration a , along positive
y-direction. Let us draw the free body diagram of a small

(P+dP)A
element of fluid of area 4 and length dy as shown in figure. g%
Equation of motion for this fluid element 1s, ta,

PA—W —(P +dP)A =(mass)a,) =
or W —(dP)A =(4p dy)(a,) g
or —(Apg dv)—(dP)A=(Apdy)a,) Fig. 13.16

dP

or —=—plg+a,)

dy
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Similarly, if the beaker moves along positive
x-direction with acceleration a, the equation of
motion for the fluid element shown in figure is,

PA—(P +dP)A =(mass)(a,)

(P + dP)A
or —(dP)A = (Ap dx)a, i N
or ?&-:*pax e --- &y
Fig. 13.17

Free Surface of a Liquid Accelerated in Horizontal Direction

Consider a liquid placed in a beaker which is accelerating horizontally
with an acceleration ‘a’. Let 4 and B be two points in the liquid at a
separation x in the same horizontal line. As we have seen in this case

Y

dx Saapig
or dP =—pa dx
Integrating this with proper limits, we get = X
Fyi=¥yp =par sl Fig. 13.18
Further, P, =P, +pgh
and Py =P, +pgh,

Substituting, in Eq. (iii), we get
pgh —hy)=pax
h —h

=—=tan B
x

tan B =

oy | T2

Alternate Method

Consider a fluid particle of mass m at point P on the surface of
liquid. From the accelerating frame of reference, two forces are acting
on it,

(i) pseudo force (ma)

(i1) weight (mg)

As we said earlier also, net force in equilibrium should be
perpendicular to the surface.

ma
tan @ = — Fig. 13.19
mg
a
or tan @ =—

£
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Sample Example 13.5 A liguid of density p is in a bucket that spins with angular o
velocity @ as shown in figure. Show that the pressure at a radial distance r from the
axis is

.i P =P 0 +
where P, is the atmospheric prass‘_nre;
Fig. 13.20

Solution Consider a fluid particle P of mass m at coordinates (x, y). From a non-inertial rotating frame
of reference two forces are acting on it,

yl
&
NEE N
— X .-i'ﬂ o X
mg  Fnet
P(x.y)
Fig. 13.21
(i) pseudo force (mxw?)
(i1) weight (mg)
in the directions shown in figure.
Net force on it should be perpendicular to the free surface (in equilibrium). Hence,
e 2 2
tan 6 = o or Y g
mg g dx g
2
¥ x x(
dy=| —.dx
_x’e?
y 22
This is the equation of the free surface of the liquid, which is a parabola. \‘2/
2.2 oy
®
Atx=r, y:rzg =—"p (1)
Fig. 13.22
P(r)=P +pgy
2.2
or P(r)=P, + 22" Hence proved.

2
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|FEX] Archimedes’ Principle

If a heavy object is immersed in water, it seems to weigh less than when it is in air. This is because
the water exerts an upward force called buoyant force. It is equal to the weight of the fluid displaced by
the body. X

A body wholly or partially submerged in a fluid is buoyed up by a force equal to the weight of
the displaced fluid.
This result is known as Archimedes’ principle.
Thus, the magnitude of buoyant force (F') is given by,
F=Vp, g
Here, ¥, =immersed volume of solid p, =density of liquid
and g = acceleration due to gravity

Proof

Consider an arbitrarily shaped body of volume V placed in a container
filled with a fluid of density p, . The body is shown completely immersed, but
complete immersion is not essential to the proof. To begin with, imagine the
situation before the body was immersed. The region now occupied by the
body was filled with fluid, whose weight was Vp , g. Because the fluid as a
whole was in hydrostatic equilibrium, the net upwards force (due to difference
in pressure at different depths) on the fluid in that region was equal to the Fig. 13.23
weight of the fluid occuping that region.

Now, consider what happens when the body has displaced the fluid. The pressure at every point on the
surface of the body is unchanged from the value at the same location when the body was not present. This is
because the pressure at any point depends only on the depth of that point below the fluid surface. Hence, the
net force exerted by the surrounding fluid on the body is exactly the same as that exerted on the region
before the body was present. But we know the latter to be Vp, g, the weight of the displaced fluid. Hence,
this must also be the buoyant force exerted on the body. Archimedes’ principle 1s thus, proved.

Law of Floatation

Consider an object of volume ¥ and densityp , floating in a liquid of
density p, . Let¥; be the volume of object immersed in the liquici.

For equilibrium of object,

Weight = Upthrust 7 |
Vpog=Vp, 8 Fig. 13.24

-t ..(0)

This is the fraction of volume immersed in liquid.
Ps

Percentage of volume immersed in liquid = ?* x100=——x100
P
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Three possibilities may now arise.
(i) Ifpg <p, , only fraction of body will be immersed in the liquid. This fraction will be given by
the above equation.
(i) Ifp, =p, ,the whole of the rigid body will be immersed in the liquid. Hence, the body remains
floating in the liquid whereer it is left.
(iii) Ifp, >p, , the body will sink.

Apparent Weight of a Body inside a Liquid

[f a body is completely immersed in a liquid its effective weight gets decreased. The decrease in its
weight is equal to the upthrust on the body. Hence,

Wapp = Wacruat — Upthrust

or Wepp =VPs8 VP, 8

Here, V' = total volume of the body

p ¢ =density of body &

and p,; =density of liquid

Thus, Wapp =V2(Ps —P.)

If the liquid in which body is immersed, is water, then

Weight in air

= Relative density of body (R.D.
Decrease in weight Y Y ( ;

This can be shown as under :
Weight in air _ Weight inair _ MPsg
Decrease in weight Upthrust WP 4
Ps

P,
| =RD Hence proved.

—
—

Buoyant Force in Accelerating Fluids
Suppose a body is dipped inside a liquid of density p, placed in an elevator moving with an

. e | . »
acceleration a. The buoyant force F in this case becomes,

F=WW,;8x

Here, g.x=|g -1

For example, if the lift is moving upwards with an acceleration g, the value of g .+ is g + @ and if it is
moving downwards with acceleration g, the g 1s g — a.1In a freely falling lift g ¢ is zero (as a = g) and
hence, net buoyant force is zero. This is why, in a freely falling vessel filled with some liquid, the air
bubbles do not rise up (which otherwise move up due to buoyant force). The above result can be derived
as follows.

Suppose a body is dipped inside a liquid of density p, in an elevator moving up with an acceleration
a. As was done earlier also, replace the body into the liquid by the same liquid of equal volume. The
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replaced liquid is at rest with respect to the elevator. Thus, this replaced liquid is also moving up with an
acceleration a together with the rest of the liquid.

The forces acting on the replaced liquid are,

(1) the buoyant force F and

(ii) the weight mg of the substituted liquid. i

From Newton’s second law,

F —mg=ma or F=m(g+a)
Here, m=Vp,
F=Vp,(g+a)=Vp,8ex
where gr=g+a
Sample Example 13.6 Density of ice is 900 kg/m’. A piece of ice is floating in water of density
1000 kg/m*. Find the fraction of volume of the piece of ice outside the water.
Solution Let V be the total volume and V; the volume of ice piece immersed in water. For equilibrium

of ice piece,
weight = upthrust

Vplg = prwg
Here, p; =density of ice =900 kg/m?
and  ——p, =density of water =1000 kg/m’

Substituting in above equation, we get
V, 900

= =09
V1000 ==,
i.e., the fraction of volume outside the water,
f=1-09=0.1 Ans.

Sample Example 13.7 A piece of ice is floating in a glass vessel filled with water. How will the level
of water in the vessel change when tﬁe ice melts?

Solution Let m be the mass of ice piece floating in water.
In equilibrium, weight of ice piece = upthrust

or mg=Vp,g
m
or Vf —_——-— .H{i]
P

Here, ¥; is the volume of ice piece immersed in water

When the ice melts, let ¥ be the volume of water formed by m mass of ice. Then,

V= ... (ii)

Pw
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From Egs. (i) and (ii), we see that

Hence, the level will not change. Ans.

Sample Example 13.8 4 piece of iceghaving a stone frozen in it floats in a glass vessel filled with
water. How will the level of water in the vessel change when the ice melts? &

Solution Let, m =massof ice, m, = mass of stone

p ¢ =density of stone and p,, =density of water

In equilibrium, when the piece of ice floats in water,

weight of (ice + stone) = upthrust

or (my +my)g=V,p,8 ¥
v, = o (i)
Pw Pw

Here, V; = Volume of ice immersed

When the ice melts, m, mass of ice converts into water and stone of mass m, is completely
submerged.

Volume of water formed by m, mass of ice,

yo=m
Pw
Volume of stone (which is also equal to the volume of water displaced)
m
V, = i
Since, Pg ”Pw
Therefore, V, +V, <V,
or, the level of water will decrease. Ans.

Sample Example 13.9 An ornament weighing 50 g in air weighs only 46 g is water. Assuming that
some copper is mixed with gold to perpare the ornament. Find the amount of copper in it. Specific
gravity of gold is 20 and that of copper is 10.

Solution Let m be the mass of the copper in ornament. Then mass of gold in it is (50 —m).

Volume of copper V, = lina (\fﬂlumﬁ = _F_I'ty ]
50—m
ind volume of gold V, = 20

When immersed in water (p,, =1 gfumj}
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Decrease in weight = upthrust
(50-46)g =V, +V,)p .8

m 50-m
3 20
or BO0=2m+50—m
m=30g

Sample Example 13.10 The tension in a string holding a solid block
below the surface of a liquid (of density greater than that of solid) as
shown in figure is T, when the system is at rest. What will be the tension
in the string if the system has an upward acceleration a?

Solution Let m be the mass of block.
Initially for the equilibrium of block,
F=T, +mg
Here, F is the upthrust on the block.
When the lift is accelerated upwards, g . becomes g + a instead of g. Hence,

] a
To + Mg T+mg
Fig. 13.26 Fig. 13.27

F’=F[g+“]
g

F’'—T —mg=ma
Solving Egs. (i), (i1) and (iii), we get
(7
T=T,|14+—
? ( g)

F F’

T T

From Newton’s second law,

Fig. 13.25
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Introductory Exercise 13.2 |

1. A metallic sphere floats in an immissible mixure of water (p, = 10° kg/m>) and a liquid

(p, =13.5x 10* kg/m®) such that it{ % th volume is in water and % th volume in the liquid. Find the
density of metal. 1

2. A metallic sphere weighs 210 g in air, 180 g in water and 120 g in an unknown liquid. Find the density of
metal and of liquid.

3. A block of wood floats in a bucket of water placed in a lift. Will the block sink more or less if the lift starts
accelerating up?

4, A weightless balloon is filled with water. What will be its apparent weight when weighed in water?

5. A body of weight W, displaces an amount of water W,. Then W, <W,, is this statement true or false?

6. Araft of wood (density = 600 kg/m?) of mass 120 kg floats in water. How much weight can be put on the
raft to make it just sink?

7. Aman is sitting in a boat which is floating in a pond. If the man drinks some water from the pond, howiwill
the level of water in the pond change?

8. A cubical block of ice floating in water has to support a metal piece weighing 0.5 kg. What can be the
minimum edge of the block so that it does not sink in water? Specific gravity of ice = 0.9.

9. When a cube of wood floats in water, 60% of its volume is submerged. When the same cube floats in an

unknown fluid 85% of its volume is submerged. Find the densities of wood and the unknown fluid.

10. A glass tube of radius 0.8 cm floats vertical in water, as shown in figure. What mass of lead —
pellets would cause the tube to sink a further 3 cm?

&/

Fig. 13.28
r -
. m Flow of Fluids
Steady Flow =
. . . . . i 3
[f the velocity of fluid particles at any point does not vary with time, v
the flow is said to be steady. Steady flow is also called streamlined or o
aminar flow. The velocity at different points may be different. Hence, Vo
m the figure,
— — -3
v, =constant, v, =constant, v, =constant
but v, # ?2 £V,

Principle of Continuity

[t states that, when an incompressible and non-viscous liquid
Jows in a stream lined motion through a tube of non-uniform cross

Fig. 13.30
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section, then the product of the area of cross section and the velocity of flow is same at every point in the
tube.

Th'l.lﬁ, -Al V= A;FI
or Av =constant
1 -
or YV o —
A

This is basically the law of conservation of mass in fluid dynamics.

Proof

Let us consider two cross sections P and Q of area 4, and 4,
of a tube through which a fluid is flowing. Let v, and v, be the
speeds at these two cross sections. Then being an incompressible
fluid, mass of fluid going through P in a time interval Ar =massof =0
fluid passing through Q in the same interval of time At. Fig. 13.31

A: Vi pﬂf = AE Pzp At or AI V) = Az Va Proved.

Therefore, the velocity of the liquid is smaller in the wider parts of the tube and larger in the

narrower parts.
or Vy >V as A, < A,
Note The product Av is the volume flow rate [:;—E . the rate at which volume crosses a section of the tube.
Hence
dv :
E = wimﬂuwme = Ay

The mass flow rate is the mass flow per unit time through a cross section. This is equal to density (p)

. dV
times the volume flow rate E

We can generalize the continuity equation for the case in which the fluid is not incompressible. Ifp,
and p, are the densities at sections 1 and 2 then,
P1A v =pa4;v;
So, this is the continuity equation for a compressible fluid.

Sample Example 13.11 Water is flowing through a horizontal tube of non-uniform crross section. At
a place the radius of the tube is 1.0 cm and the velocity of water is 2 m/s. What will be the velocity of
water where the radius of the pipe is 2.0 cm?

Solution Using equation of continuity,  4,v, = 4,v,

or v, =0.5m/s Ans.
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| FEX2 Bernoulli's Equation

Bernoulli’s equation relates the pressure, flow speed and height for flow of an ideal (incompressible
and non-viscous) fluid. The pressure of a fluid depends on height as in the static situation, and it also
depends on the speed of flow. A

The dependence of pressure on speed can be understood from the continuity equation. When an
incompressible fluid flows along a tube with varying cross section, 1ts speed must change, and so, an
slement of fluid must have an acceleration. If the tube is Az
horizontal, the force that causes this acceleration has to be applied
by the surrounding fluid. This means that the pressure must be
different in regions of different cross section. When a horizontal
flow tube narrows and a fluid element speeds up, it must be
moving towards a region of lower pressure in order to have a net
forward force to accelerate it. If the elevation also changes, this
causes additional pressure difference.

To derive Bernoulli’s equation, we apply the work-energy
theorem to the fluid in a section of the fluid element. Consider the element of fluid that at some initial
«ime lies between two cross sections a and b. The speeds at the lower and upper ends are v, and v,.In 2
<mall time interval the fluid that is initially at @ moves to a’ a distance aa” = ds; = v, dt and the fluid that
s initially at b moves to b’ a distance bb’” = ds, = v, dt. The cross-section areas at the two ends are 4, and
4, as shown. The fluid is incompressible, hence, by the continuity equation, the volume of fluid dV
aassing through any cross-section during time dt is the same.

That is,

Fig. 13.32

dV = A,ds, = A,ds,

Work done on the Fluid Element

Let us calculate the work done on this fluid element during time interval dt. The pressure at the two
-nds are P, and P,, the force on the cross section at a is P; 4, and the force at b is P, A,. The net work done
ZW on the element by the surrounding fluid during this displacement is,

The second term is negative, because the force at b opposes the displacement of the fluid.

This work dW is due to forces other than the conservative force of gravity, so it equals the change in
w3l mechanical energy (kinetic plus potential). The mechanical energy for the fluid between sections a
=d b does not change.

Change in Potential Energy

At the beginning of dt the potential energy for the mass between a and a’is dmgh, =pdVgh,. Atthe
e=d of dt the potential energy for the mass between b and b is dmgh, =pdVgh,. The net change in
sotential energy dU during dt is,

dU =p(dV)g(hy —h) ...(ii)
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Change in Kinetic Energy
At the beginning of dt the fluid between a and @’ has volume A, ds,, mass pA4,ds, and kinetic energy

%p(A,dsl )vi. At the end of dt the fluid between b and b’ has kinetic energy ;}p[ A,ds, )v;. The net
)

-E‘

change in kinetic energy dK during time dt is,

dK =~% p(dV)(vi —v;) ....(iii)
Combining Egs. (i), (i1) and (iii) in the energy equation,
dW =dK +dU
We obtain,
1
(B = Py)dV == pdV (vy —vi) +p(dV)g(h, — hy)
1 :
or P, - P, =Ep(u§ —vi) +pglhy —h) ... (1v)

This is Bernoulli’s equation. It states that the work done on a unit volume of fluid by the surrounding
fluid is equal to the sum of the changes in kinetic and potential energies per unit volume that occur during
the flow. We can also express Eq. (iv) in a more convenient form as,

1 1 :
P, +pgh + 5 pvf =P, +pgh, + 3 pviz Bernoulli’s equation
The subscripts | and 2 refer to any two points along the flow tube, so we can also write

P +pgh+ % pv* =constant

Note When the fluid is not moving (v, =0 = v,). Bernoulli's equation reduces to,
P +pgh, = P, + pgh,
B - P =pglhy—hy)
This is the pressure relation we derived for a fluid at rest. ~

e Points to be Remembered in Bernoulli’s Theorem

(1) Energy of a flowing fluid
There are following three types of energies in a flowing fluid.

(i) Pressure energy

If Pis the pressure on the area A of a fluid, and the liquid moves through a distance / due to this
pressure, then
Pressure energy of liquid =work done
= force x displacement
= PAl

The volume of the liquid is Al.

. Pressure energy per unit volume of liquid -- %f

=P
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(i) Kinetic energy
If a liquid of mass m and volume V is flowing with velocity v, then the kinetic energy is % mv2.

. Kinetic energy per unit volume {1 liquid
a1 PR
2\v 5P
Here, p is the density of liquid.
(iii) Potential energy
If a liquid of mass mis at a height hfrom the reference line (h = 0), then its potential energy is mgh.
. Potential energy per unit volume of the liquid = (g] gh=pgh

Thus, the Bernoulli's equation
P+ % pv? + pgh = constant (J/m®)

&
can also be written as:

Sum of total energy per unit volume (pressure + kinetic + potential) is constant for an ideal
fluid.

{2) Pressure head, velocity head and gravitational head of a flowing Liquid
Dividing the Bernoulli's equation by pg, we have

P 2
~ + 2+ h=constant (m)
Pg 29
; P . ' . : .
In this expression IE is called the ‘pressure head’, ;—g- the velocity head and h the gravitational head. The

Sl unit of each of these three is metre. Therefore, Bernoulli's equation may also be stated as,
Sum of pressure head, velocity head and gravitational head is constant for an ideal fluid.

Sample Example 13.12 Calculate the rate of flow of glycerine of density1.25 x10° kg/m® through
the conical section of a pipe, if the radii of its ends are0.1 mand 0.04 mand the pressure drop across its

length is 10 N/m*.
Selution  From continuity equation, Ay, Py
Ay = A;v,

Vi _ Az _ Tl:rf = L] ¥ _(%]1 _i ()
Vi A| Efiz 0.1 _25 Y

From Bemnoulli’s equation,

P +%pvf =P, +%pu§ Fig. 13.33
1?21-"1-'{2 :jlz(Pl _Pz}
2x10 P
v =V = ~1.6x10% m?/s> i

1.25 %103
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Solving Egs. (i) and (ii), we get
Vl = ﬂ. ] 23 ﬂlﬂ"E

Rate of volume flow through the tube
Q=4;v, = (ﬁ"z V2
= 1:{0 04)*(0.128)
=6.43x107" m?/s Ans.

FEX] Applications Based on Bernoulli’s Equation

(a) Venturimeter

Figure shows a venturimeter used to measure flow
speed in a pipe of non-uniform cross-section. We apply
Bernoulli’s equation to the wide (point 1) and narrow
(point 2) parts of the pipe, with iy = h,

1
P +-pvy =5 +5pv§
i Al Vi
Fromn the continuity equation v, = 4
2
Substituting and rearranging, we get
2
P - P-,*lpv, f'l“- ...(1)
2 A}

Because A, is greater than A4,, v, is greater than v; and hence the pressure P, is less than P,. A net
force to the right accelerates the fluid as it enters the narrow part of the tube (called throat) and a net force
to the left slows as it leaves. The pressure difference is also equal to pgh, where h is the difference in
liquid level in the two tubes. Substituting in Eq. (i), we get

oo [22

() -

Note (i) The discharge or volume flow rate can be obtained as,

dv [ 20h
_'_-AH‘AI S

2
dl ﬂ e
A;

(ii) The venturi effect can be used to give a qualitative understanding of the lift of an air plane wing and
the path of a pitcher's curve ball. An airplane wing is designed so that air moves faster over the top
of ihe wing that it does under the wing, thus, making the air pressure less on top than underneath
This difference in pressure results in a net force upward on the wing.
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(b) Speed of Efflux

Suppose, the surface of a liquid in a tank is at a height & from the orifice O on its sides, through which
the liquid issues out with velocity v. The speed of the liquid coming out is called the speed of efflux. If
the dimensions of the tank be sufficiently large, the velocity of the liquid at its surface may be taken to be
zero and since the pressure there as well as at the orifice O is the same viz atmospheric it plays no part in
the flow of the liquid, which thus purely in consequence of the hydrostatic pressure of the liquid
itself, So that, considering a tube of flow, starting at the liquid surface and ending at the orifice, as shown
in figure. Applying Bernoulli’s equation, we have

Fig. 13.35

Total energy per unit volume of the liquid at the surface
= KE + PE + pressure energy =0 +pgh + F, ekl
and total energy per unit volume at the orifice

=I~il]3+PE+;1l1't=:ﬁuri:::tu:rg*_','=%pw2 +0+ P, ..(11)

Since total energy of the liquid must remain constant in steady flow, in accordance with Bernoulli’s
equation, we have

pgh'l‘.Pn =‘1ip'h'] +Pﬂ

or “=\{38"

Evangelista Torricelli showed that this velocity is the same as the liquid will attain in falling freely
through the vertical height (/) from the surface to the orifice. This is known as Torricelli’s theorem and
may be stated as, “The velocity of efflux of a liquid issuing out of an orifice is the same as it would attain
if allowed to fall freely through the vertical height between the liquid surface and orifice.”

Range (R)
Let us find the range R on the ground.
Considering the vertical motion of the liquid,

23
H-h)= gt
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o ;=J_2f”j_-"'>
g
Now, considering the horizontal motion,
R=vt %

or R =(y/2gh) [JZ{H h) ]
or R =2h(H =)
From the expression of R, following conclusions can be drawn,
(1) Ry, =Ry 4

as R, =2Jh(H — h)

and Ry_y =23J(H — h)h

This can be shown as in Fig, 13.36.
(i) R1s m&ximmnalh=% and R . =H.
Proof : R* =4(Hh-h*)
For R to be maximum, R =0

dh
or H-2h=0 or h =g
: : : H
That is, R is maximum at A= ?
and R ae =2 E(H—£]=H Proved.
2 2
Time taken to empty a tank

We are here interested in finding the time required to empty a tank if'a hole is made at the bottom of
the tank.

Consider a tank filled with a liquid of density p upto a height H. A small hole of area of cross section
a 1s made at the bottom of the tank. The area of cross-section of the tank is A.

Let at some instant of time the level of liquid in the tank is y. Velocity of efflux at this instant of time

would be,
y= 1/2gp

Now, at this instant volume of liquid coming out of the hole per second is [d;' ]
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V.
Volume of liquid coming down in the tank per second is [d 2 J

dt
4::"l'r’l_f:ﬂ"’2
Y dt dt
(
av=A —Q]
\ di
{ dy]
aJ2ey=A4|—-—
& \ dt
t A 0
or dt =— y V2 gy ...(1)
0 H-JZ_EIH
24 H
I=
a./2g [\G]n &
A PH
ayg

Sample Example 13.13 A tank is filled with a liquid upto a height H. A small hole is made at the
bottom of this tank. Let t, be the time taken to empty first half of the tank and t,, the time taken to empty

rest half of the tank. Then ﬁnd
ty

Solution Substituting the proper limits in Eq. {i), derived in the theory, we have

HJ_ r”l U2 4
rtf Vs

=
B ( (V2 -1) ..(ii)

s & f -
Similarly, fdt =— ‘[L”z y 2 dy

df =

or E

or

or I, =—  |— ...(111)
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From Egs. (11) and (111), we get

I
I

or —=0.414 % Ans,
:2 e

Note From here we see thatt, < t,.This is because initially the pressure is high and the liquid comes out with

greater speed.
V- - — F'. —
I T T I ——— |
IFEX] Viscosity z

Viscosity is internal friction in a fluid. Viscous
forces opposes the motion of one portion of a fluid
relative to the other.

e
The simplest example of viscous flow is % S—
motion of a fluid between two parallel plates. ) -

The bottom plate is stationary and the top plate

|

_ | . . Fig. 13.37
moves with constant velocity v. The fluid in ¢

contact with each surface has same velocity at that surface. The flow speeds of intermediate layers of
fluid increase uniformly from bottom to top, as shown by arrows. So the fluid layers slide smoothly over

one another.
According to Newton, the frictional force F (or viscous force) between two layers depends upon the
following factors,

(i) Force F is directly proportional to the area (A) of the layers in contact, i.e.,
Focd

(i1) Force F is directly proportional to the velocity gradient [?] between the layers. Combining
y

these two, we have

dv
Fod—

dy

or F=-m4d—
'Mﬂ!v

Here, 1) is constant of proportionality and is called coefficient of viscosity. Its value depends on the

nature of the fluid. The negative sign in the above equation shows that the direction of viscous force F'is
opposite to the direction of relative velocity of the layer.

The SI unit of 1) is N-s/m*. It is also called decapoise or pascal second. Thus,
| decapoise = 1 N-s/m? = 1 Pa-s = 10 poise
Dimensions of nare [ML™'T™' ]

Coefficient of viscosity of waterat 10°Cisn=1.3 X 10~ N-s/m*. Experiments show that coefficient
of viscosity of a liquid decreases as its temperature rises.
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Sample Example 13.14 A plate of area 2 m* is made to move horizontally with a speed of 2 m/s by

applying a horizontal tangential force over the free surface of'a liquid. If the depth of the liquid is1 m
and the liquid in contact with the bed is stationary. Coefficient of viscosity of liquid is 0.01 poise. Find
the tangential force needed to move the plate.

Av . %

Solution Velocity gradient = v v=2m/s
) T LT T T A
W20, 5 R im "
1 — m
From, Newton’s law of viscous force, Fig. 13.38
Av
Fl=nd —
|Fl=n A

=(0.01x107")(2)(2)
=4x107° N. &
So, to keep the plate moving, a force of 4 x10™ N must be applied Ans.

P T

Figure shows the flow speed profile for laminar flow of a viscous
fluid in a long cylindrical pipe. The speed is greatest along the axis and
zero at the pipe walls. The flow speed v at a distance r from the axis of a
pipe of radius R is,

Flow of liquid through a Cylindrical pipe
HI

L g gt 8

Fig. 13.39

P-P,
v=—"1—2(R? - r?)
nlL
where P, and P, are the pressure at the two ends of a pipe with length L. The flow is always in the
direction of decreasing pressure.

From the above equation we can see that v-r graph is a parabola.

v=0 at r=R (along the walls)
P, — P,)R? |
and V= G 471;«} =V s at r=0 (along the axis)
VYolume flow rate (Q or %)

To find the total volume flow rate through the pipe, we consider a ring with inner radius r, outer
radius r + dr and cross sectional area d4 = 2nr dr. The volume flow rate through this element is v d4. The
total volume flow rate is found by integrating from »=0to » = R. The result is,

P ¥ R_"[PI“PE)
s, o VY L

The relation was first derived by Poiseuille and is called Poiseuille’s equation.




266 Mechanics-Il

e /mportant point /n Poiseuille’s Equation

1. Poiseuille’'s equation can also be written as,
P -P, AP
[ o :ﬁf*
nR*
8nL
nR*
This equation can be compared with the current equation through a resistance, i.e.,

j=4Y
A

Here, AV =potential difference  and R = electrical resistance

For current flow through a resistance, potential difference is a requirement similarly for flow of liquid
through a pipe pressure difference is must.

Problems of series and parallel combination of pipes can be solved in the similar manner as is done
in case of an electrical circuit. The only difference is,

(i) Potential difference (AV) is replaced by the pressure difference (AP)

8nL
R*

Here, X=

(ii) The electrical resistance R [: p %) is replaced by X ( ] and

(iii) The electrical current j is replaced by volume flow rate Q or % The following example will

illustrate the above theory.

- - - 5—-————_
Sample Example 13.15 A liguid is flowing through £ £
horizontal pipes as shown in figure. —
Q
L — —e |
Length of different pipes has the following ratio A 8 c D
Lgrp Loy —
Lig=Ll-n= =
18 =Lep == 5 G H
Similarly, radii of different pipes has the ratio, s’
Ron
R s =Rgr =Rep = Ty

Pressure at A is2Py and pressure at D is Py. The volume flow rate through the pipe AB is Q. Find,
(a) volume flow rates through EF and GH,
(b) pressure at E and F.
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Solution The equivalent electrical circuit can be drawn as under,

16X
8X BX
o AN .
2P, 3 @ Q Po
16 X
1 Q
Fig. 13.41
8nL
X o< %— (as X =—7|::4 ]

&
2 . \2) O

oy Y oy o
5 ) G) b
=R:8B:16:1

(a) As the current is distributed in the inverse ratio of the resistance (in parallel). The Q will be
distributed in the inverse ratio of X

Xp:Xep:Xppi&gy =

%and that from GH will be %Q. Ans.

_ (16X )(X) _ 288
(b) X o =8X +[(lﬁX}+[X]]+3X_ =

v
Q= = [as f=ﬂ—]
XI'II:!
_(2Py—-Py) _17P,
~ 288 T 288X

——.X
17

Thus, volume flow rate through EF will be

X

Now, let P, be the pressure at £, then

8x17P,
2P, — P, =80X =
o —F =80 288

1
P =(2-— ?xg]ﬂ, ~1.53P, Ans.
288

Similarly, if P, be the pressure at F, then
P, — Py, =80X
8x17
288

or P, =147P, Ans.

F1=P0+

Fo
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IfEBT] Stoke’s Law and Terminal Velocity

When an object moves through a fluid, it experiences a viscous force which acts in opposite
direction of its velocity. The mathematics of the viscous force for an irregular object is difficult, we will

consider here only the case of a small sphere moving _thgough a fluid.

The formula for the viscous force on a sphere was first derived by the English physicist G. Stokes in
1843. According to him, a spherical object of radius » moving at velocity v experiences a viscous force

given by

F =6mnrv (n = coefficient of viscosity)
This law is called Stoke’s Law. R F
A

Terminal velocity (v ) _

Consider a small sphere falling from rest through a large column of viscous .31 v
fluid. The forces acting on the sphere are,

(i) Weight W of the sphere acting vertically downwards 1
(11) Upthrust F, acting vertically upwards w
(iii) Viscous force F, acting vertically upwards, i.e., in a direction opposite to Fig. 13.42
velocity of the sphere.
Initially, F,=0 (as v=0)
and W>F,

and the sphere accelerates downwards. As the velocity of the sphere increases, F, increases. Eventually
a stage in reached when

W=F +F, ...(1)

After this net force on the sphere is zero and it moves downwards with a V4

constant velocity called terminal velocity (v; ).

Substituting proper values in Eq. (i) we have,

4 4 ) R ———
3 nrspg = 3 nrlﬁg + 61N v, 59
Here, p =density of sphere, © =density of fluid .
and N =coefficient of viscosity of fluid o t
; 2r*(p-o Fig. 13.43
From Eq. (ii), we get vp =— r'(p-ojg g

9 n
Figure shows the variation of the velocity v of the sphere with time.

Note From the above expression we can see that terminal velocity of a spherical body is directly proportional
to the difference in the densities of the body and the fluid (p — o). If the density of fluid is greater than
that of body (i.e., ¢ > p), the terminal velocity is negative. This means that the body instead of falling,
moves upward. This is why air bubbles rise up in water.

Sample Example 13.16 Two spherical raindrops of equal size are falling vertically through air with
a terminal velocity of 1 m/s. What would be the terminal speed if these two drops were to coalesce to

form a large spherical drop?
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Solution vy o< pt (1)

Let r be the radius of small rain drops and R the radius of large drop.
Equating the volumes, we have

. 3 3
R=)"r o =@
r
’ 2
v R
T =(_) =(2)¥?
‘PT r
v =) v, =(2)Y?(1.0) m/s=1.587 m/s Ans.

|EEER] Surface Tension

A needle can made to float on a water surface if it is placed there
carefully. The forces that support the needle are not buoyant forces but are
due to surface tension. The surface of a liquid behaves like a membrane
under tension. The molecules of the liquid exert attractive forces on each
other. There is zero net force on a molecule inside the volume of the
liquid.But a surface molecule is drawn into the volume. Thus, the liquid
tends to minimize its surface area, just as a stretched membrane does.

Freely falling raindrops are spherical because a sphere has a smaller surface area for a given volume
than any other shape. Hence, the surface tension can be defined as the property of a liquid at rest by
virtue of which its free surface behaves like a stretched membrane under tension and tries to
occupy as small area as possible.

Let an imaginary line AB be drawn in any direction in a liquid surface. The surface
on either side of this line exerts a pulling force on the surface on the other side. This force
is at right angles to the line AB. The magnitude of this force per unit length of AB is taken
as a measure of the surface tension of the liquid. Thus, if F be the total force acting on

either side of the line AB of length L, then the surface tension is given by, '
F Fig. 13.45
=~
L

Hence, the surface tension of a liquid is defined as the force per unit length in the plane of the liquid
surface, acting at right angles on either side of an imaginary line drawn on that surface.

Few Examples of Surface Tension

Example 1 Take a ring of wire and dip it in a soap solution.
When the ring is taken out, a soap film is formed. Place a loop
of thread gently on the soap film. Now, prick a hole inside the
loop.

The thread is radially pulled by the film surface outside and it
takes a circular shape.
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Reason : Before the pricking, there were surfaces both inside and outside the thread loop.
Surfaces on both sides pull it equally and the net force is zero. Once the surface inside was punctured, the
outside surface pulled the thread to take the circular shape so that area outside the loop becomes
minimum (because for given perimeter area of circle is maximum).

Example 2 A piece of wire is bent into a U-shape, and ci"&
second piece of wire slides on the arms of the U. When the
apparatus is dipped into a soap solution and removed, a
liquid film is formed. The film exerts a surface tension W— I | |
force on the slider and if the frame is kept in a horizontal ﬁ
position, the slider quickly slides towards the closing arm &

of the frame. If the frame is kept vertical, one can have

some weight to keep it in equilibrium. This shows that the Fig. 13.47
soap surface in contact with the slider pulls it parallel to

the surface.

Note The surface tension of a particular liquid usually decreases as temperature increases. To wash clothing
thoroughly, water must be forced through the tiny spaces between the fibres. This requires increasing
the surface area of the water ,which is difficult to do because of surface tension. Hence, hot water and
soapy water is better for washing.

Surface Energy

When the surface area of a liquid is increased, the molecules from the interior
rise to the surface. This requires work against force of attraction of the molecules
just below the surface. This work is stored in the form of potential energy. Thus, the r
molecules in the surface have some additional energy due to their position. This
additional energy per unit area of the surface is called ‘surface energy’. The surface
energy is related to the surface tension as discussed below: Fig. 13.48

Let a liquid film be formed on a wire frame and a straight wire of length / can
slide on this wire frame as shown in figure. The film has two surfaces and both the surfaces are in contact
with the sliding wire and hence, exert forces of surface tension on it. If 7" be the surface tension of the
solution, each surface will pull the wire parallel to itself with a force 77. Thus, net force on the wire due to
both the surfaces is 277. One has to apply an external force F equal and opposite to it to keep the wire in
equilibrium. Thus,

-

U U -

F =2T]

Now, suppose the wire is moved through a small distance dx, the work done by the force is,
dW =F dx = (2T]) dx

But (2/) (dx) is the total increase in area of both the surfaces of the film. Let it be d4. Then,

dW =T dA

4

Tt

ar dA

Thus, the surface tension 7 can also be defined as the work done in increasing the surface area by unity.
Further, since there is no change in kinetic energy, the work done by the external force is stored as
the potential energy of the new surface.



CHAPTER 13  Fluid Mechanics 271

T—d—U (as dW =dU)

dA
Thus, the surface tension of a liquid is equal to the surface energy per unit surface area.

Sample Example 13.17 How milch work will be done in increasing the dmmerer of a soap bubble
from 2 emto 5 em? Surface tension of soap solution is 3.0 10 2 Nim

Solution Soap bubble has two surfaces. Hence,

W=TAA
Here, A4 =2[4T{(2.5%107)% - (1.0x107%)*}]
=132x10"2 m?
W=3.0x10"2)(1.32x107%)]
=3.96x107"%J Ans.

Sample Exatnptu 13.18 Calculate the energy released when 1000 small water draps each of same
radius10~" m coalesce to form one large drop. The surface tension of water is 7.0 x 1072 N/m.

Solution Let r be the radius of smaller drops and R of bigger one. Equating the initial and final
volumes, we have

4
— R’ =(1000) (5 r’ ]
3 3

or R =10r=(10)10") m
or R=10"m
Further, the water drops have only one free surface. Therefore,
A4 =4nR? - (1000)(4nr?)
=47 [(107%)* —(107)(1077)?]
=-36m(107"*) m?
Here, negative sign implies that surface area is decreasing. Hence, energy released in the process.
U =T|Ad|=(Tx1072)36n x107'*) J
=7.9x107" ] Ans.

Excess Pressure inside a bubble or liquid drop
Surface tension causes a pressure difference between the inside and outside of a
soap bubble or a liquid drop.
(i) Excess pressure inside soap bubble

A soap bubble consists of two spherical surface films with a thin layer of
liquid between them. Because of surface tension, the film tend to contract in an

attempt to minimize their surface area. But as the bubble contracts, it
Fig. 13.49
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compresses the inside air, eventually increasing the interior pressure to a level that prevents further
contraction.

We can derive an expression for the excess pressure inside a bubble in terms of its radius R and the
surface tension T of the liquid.

. R
Surface tension force :
Force due to pressure
8 = (2T)(2rA) difference
# = AP II.FF
I
Fig. 13.50

Each half of the soap bubble is in equilibrium. The lower half is shown in figure. The forces at the
flat cirular surface where this half joins the upper half are :

(i) The upward force of surface tension. The total surface tension force for each surface (inner and
outer) is T(2nR), for a total of (2T )(2%R)

(i) downward force due to pressure difference. .
The magnitude of this force is (AP )(nR %). In equilibrium these two forces have equal magnitude.

2T)2nR) = (AP)(R?)

Po
- 4T
or ﬂ.P =
TGIEY ¢
Note Suppose, the pressure inside the air bubble is P, then
P - Pﬂl = ﬂ
R Fig. 13.51

(ii) Excess pressure inside a liquid drop

A liquid drop has only one surface film. Hence, the surface tension force is T'(2nR), half that for a
soap bubble. Thus, in equilibrium,

T(2rR)=AP(nR?)

s )
AP =—=—
o R

Note (i) If we have an air bubble inside a liquid, a single surface is
formed. There is air on the concave side and liquid on the

convex side. The pressure in the concave side (that is in the air)
is greater than the pressure in the convex side (that is in the

liquid) by an amount ?ET:

Fig. 13.52

B-A=2
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The above expression has been written by assuming P, to be constant from all sides of the bubble.

For small size bubbles this can be assumed.

(ii] From the above discussion, we can make a general statement. The pressure on the concave side of

a spherical liquid surface is greater than the convex side by %

Sample Example 13.19 What &‘}nuid be the pressure inside a small air bubble of 0.1 mm radius
situated just below the water surface. Surface tension of water =7.2%x1072 N/m and atmospheric

pressure =1.013 x10° N/im?.
Solution Surface tension of water 7 =7.2x107* N/m
Radius of air bubble R =0.1mm =10"* m

The excess pressure inside the air bubble is given by,

2T
P, —P =—
2 1 R
< ; 2T
. Pressure inside the air bubble, P,=P + =

Substituting the values, we have
2x7.2x107%)
107

P, =(1.013x10°) +

=1.027x10° N/m?

Shape of liquid Surface

The surface of a liquid when meets a solid, such as the wall of a
container, it usually curves up or down near the solid surface. The angle
0 at which it meets the surface is called the contact angle. The curved
surface of the liquid is called meniscus. The shape of the meniscus
(convex or concave) is determined by the relative strengths of what are
called the cohesive and adhesive forces. The force between the
molecules of the same material is known as cohesive force and the force
between the molecules of different kinds of material is called adhesive
force.

When the adhesive force (P) between solid and liquid molecules is more
than the cohesive force (Q) between liquid-liquid molecules (as with water and
glass), shape of the meniscus is concave and the angle of contact 0 is less than
90°. In this case the liquid wets or adheres to the solid surface. The resultant (R)
of P and Q passes through the solid.

On the other hand when P < Q (as with glass and mercury), shape of the
meniscus is convex and the angle of contact © >90°, The resultant (R) of P and
0 in this case passes through the liquid.

Let us now see why the liquid surface bends near the contact with a solid. A

Ans.

Glass

Fig. 13.53

Glass

R

mercury

Fig, 13.54

liquid in equilibrium can not sustain tangential stress. The resultant force on any small part of the surface
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layer must be perpendicular to the surface at that point. Basically three forces are acting on a small part of
the liquid surface near its contact with solid. These forces are,
(1) P, attraction due to the molecule of the solid surface near it

(1) Q, attraction due to liquid molecules near this part and

(i) The weight W of the part considered. 5 3

We have considered very small part, so weight of that part can be ignored for better understanding.
As we have seen in the last figures, to make the resultant (R) of P and Q perpendicular to the liquid
surface the surface becomes curved (convex or concave).

Note The angle of contact between water and clean glass is zero and that between mercury and clean glass is
137°.

Capillarity

Surface tension causes elevation or depression of the liquid in a narrow tube. This effect is called
capillarity.

When a glass capillary tube (A tube of very small diameter is called a capillary tube) open at both
ends is dipped vertically in water,the water in the tube will rise above the level of water in the vessel as

shown in figure (a). In case of mercury, the liquid is depressed in the tube below the level of mercury in
the vessel as shown in figure (b).

(b)

Fig. 13.55

When the contact angle is less than 90° the liquid rises in the tube. For a nonwetting liquid angle of
contact 1s greater than 90° and the surface is depressed, pulled down by the surface tension forces.

Explanation
When a capillary tube is dipped in water, the water meniscus inside the tube is concave. The pressure

; : : . ., 2T . .
just below the meniscus is less than the pressure just above it by i where T is the surface tension of

water and R is the radius of curvature of the meniscus. The pressure on the surface of water is P,, the
atmospheric pressure. The pressure just below the plane surface of water outside the tube is also P,, but

. . _— , 2T s W
that just below the meniscus inside the tube is P, — 2 We know that pressure at all points in the same

: 2T ,
level of water must be the same. Therefore, to make up the deficiency of pressure 7 below the meniscus

water begins to flow from outside into the tube. The rising of water in the capillary stops at a certain

height 4. In this position the pressure of water column of height 4 becomes equal to % ,Le.,
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2T
hpg = R év
‘R
oF i :_T Xg |
& Pg i
If r is the radius of the capillary tube and 0 the angle of contact, then Fig. 13.56
R=—
cos B
= 2T cos B
g

Alternative proof for the formula of Capillary rise

As we have already seen, when the
contact angle is less than 90° the total
surface tension force just balances the extra
weight of the liquid in the tube.

The water meniscus in the tube is along a
circle of circumference 2mr which is in
contact with the glass. Due to the surface
tension of water, a force equal to T per unit
length acts at all points of the circle. If the
angle of contact is 6, then this force is
directed inward at an angle 6 from the wall of the tube.

In accordance with Newton’s third law, the tube exerts an equal and opposite force T per unit length
on the circumference of the water meniscus. This force which is directed outward, can be resolved into
two components. T cos © per unit length acting vertically upward and 7 sin 6 per unit length acting
horizontally outward. Considering the entire circumference 27r, for each horizontal component T sin 6
there is an equal and opposite component and the two neutralise each other. The vertical components
being in the same direction are added up to give a total upward force (2nr)(7 cos 0).1t is this force which
supports the weight of the water column so raised. Thus,

(7 cos B)(2nr) = Weight of the liquid column.

= (nr'pgh) ...(1)
_ 2T cos®

pg

The result has following notable features,

(1) If the contact angle 8 is greater than 90°, the term cos 0 is negative
and hence, h is negative. The expression then gives the depression
of the liquid in the tube.

(i1) The correction due to weight of the liquid contained in the
meniscus can be made for contact angle ® =0°. The meniscus is
then hemispherical. The volume of the shaded part is

Tcos® TcosH Tcos %2“”
'

Fig. 13.57

h

Fig. 13.58
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P"=(:ﬂ:.a"2 )(r) —%[g Er3)=%ﬂ;r3

. -
The weight of the liquid contained in the meniscus is imerg. h

Therefore, we can write Eq. (i) as, *.

u ‘I‘I‘IlI‘""'l-—l-l"""."-"I
1
(T cos 0°)(2nr) = nripgh + 3 nr3pg

Fig. 13.59
% T‘
or '_ﬁ=-§:—-.-:—
mg 3
(iii) Suppose a capillary tube is held vertically in a liquid which has a concave meniscus, then
capillary rise is given by,
,_2Tcos® 2T (as — ]
g  Rpg cos O
o hR = ...(ii)
Pg

When the length of the tube is greater than A, the liquid rises in the tube, so as to satisfy the above
relation. But if the length of the tube is insufficient (i.e., less than k) say A", the liquid does not emerge in
the form of a fountain from the upper end (because it will violate the law of conservation of energy) but
the angle made by the liquid surface and hence, the R changes in such a way that the force 2nrT cos 6
equals the weight of the liquid raised. Thus,

2mrT cos ® = nr’pgh’

2T cos B’ , 2T
J.'I'r = Qr ﬁ — =
"PE R'pg
or »':";Fi.":E ...(111)
Pg
e et P s T ZT
From Eqgs. (ii) and (iii) hR=hR =p_g

Effect of Detergent on Surface Tension

As we have already learned that the surface of any liquid behaves as though it is covered by a
stretched membrane. Small insects can walk on water without getting wet only due to this property of
liquid called surface tension.

Detergents

The properties of detergents arise from their complicated molecular structure. This is illustrated
schematically in figure.

When detergent is put into water the detergent molecules on the surface are aligned with their
hydrophobic ends pointing up as shown in figure (¢). Other detergent molecules are dispersed
throughout the water. Along the surface there are water molecules and hydrophobic ends. the surface
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This end is repelled by water This end is attracted to water
molecules [hydrophobic) molecules [hydrophilic]

and Is attracted to oils, fats [lipiphilic] Wm

H HHHHH

~N 7

' ‘ [ ' ' .:,l"L_ S . Hydrophiic | N o= N\
Hydrgphuhin e / g /

\: =,

HHHHHHH and

Fig. 13.60 (a) Detergent molecule (b) (c) Detergent molecules in water

membrane is broken by the detergent molecules. It is easier to pull this surface apart than it is to pull a
surface of pure water apart, Due to this surface tension is decreased.

Sample Example 13.20 A capillary tube whose inside radius is 0.5 mm is ﬁl}sp@d in water having
surface tension 7.0 %1072 Nim. To what height is the water raised above the normal water level?

Angle of contact of water with glass is 0°. Density of water is 10° kg/m> and g =9.8 mA>.
2T cos B
"Pg

Solution h=

Substituting the proper values, we have
,_ @(7.0% 10 ) cos 0°

05 x107)(10%)(9.8)
= 2.86 cm Ans.

Sample Example 13.21 4 glass tube of radius 0.4 mm is dipped vertically in water. Find upto what
height the water will rise in the capillary? If the tube in inclined at an angle of 60° with the vertical,

how much length of the capillary is occupied by water? Surface tension of water = 7.0 x10™% Nim,
density of water =10° kg/m’>.

Solution For glass-water, angle of contact ® =0°.

2T cos® _ (2)(7.0%107%)cos 0°

=286x102 m

Now, h= - 3
g (0.4 x1077)(107)(9.8)
=357x10" m
=3.57cm Ans.
= i =3'5T=7‘14cm Ans.

cos 60° l
2
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Introductory Exercise FEIR] |

1. Awater film is made between two straight parallel wires of length 10 ¢cm each, and at a distance of 0.5 cm
from each other. If the distance between the wires is increased by 1 mm, how much work will be done?
Surface tension of water = 7.2x 107 N/m.

2. A soap bubble of radius R has been formed at nnﬁ'nal temperature and pressure under isothermal
conditions. Compute the work done. The surface tension of soap solution is T.

3. Ifadrop of radius r breaks up into 27 small drops then how much will be the change in the surface energy.
The surface tension of liquid is T.

4. When wax is rubbed on cloth, the cloth becomes water proof why?

5

. Water at 20°C is flowing in a pipe of radius 20.0 cm. The viscosity of water at 20°C is 1.005 centipoise. If
the water’s speed in the centre of the pipe is 3.00 m/s, what is water’s speed:
(a) 10.0 cm from the centre of the pipe (half way between the centre and the walls)
(b) at the walls of the pipe?

6. Water at 20°C is flowing in a horizontal pipe that is 20.0 m long. The flow is laminar and the water
completely fills the pipe. A pump maintains a gauge pressure of 1400 Pa, at a large tank at one end of the
pipe. The other end of the pipe is open to the air, The viscosity of water at 20°C is 1.005 poise.

(a) If the pipe has diameter 8.0 cm, what is the volume flow rate?
(b) What gauge pressure must the pump provide to achieve the same volume flow rate for a pipe with a
diameter of 4.0 cm?

(c) For pipe in part (a) and the same gauge pressure maintained by the pump, what does the volume
flow rate become if the water is at a temperature of 60°C (the viscosity of water at 60°C is
0.469 poise)

\FERPY Laminar And Turbulent Flow, Reynolds Number

When a liquid flowing in a pipe is observed carefully, it will be seen that the pattern of flow becomes
more disturbed as the velocity of flow increases. Perhaps this phenomenon is more commonly seen in a
river or stream. When the flow is slow the pattern is smooth, but when the flow is fast, eddies develop and
swirl in all directions.

At the low velocities, flow is calm. This is called “laminar flow™.

In a series of experiments, Reynelds showed this by injecting a thin stream of dye into the fluid and
finding that it ran in a smooth stream in the direction of the flow at low speeds. As the velocity of flow
increased, he found that the smooth line of dye was broken up, at high velocities, the dye was rapidly

mixed into the disturbed flow of the surrounding fluid. This is called *“turbulent flow™.

Turbulent Laminar

Fig. 13.61

After many experiments Reynolds saw that the expression:
pud
n
where, p = density, ¥ = mean velocity, d = diameter and 1} = viscosity
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would help in predicting the change in flow type. If the value is less than about 2000 then flow is
laminar, if greater than 4000 then turbulent and in between these two in the transition zone.

This value is known as the Reynolds number, Re.
Re= pud
$. ! n

Laminar flow: Re <2000
Transitional flow: 2000 < Re < 4000
Turbulent flow: Re > 4000

SI Units Of Reynolds Number :
p=kgfm'1‘, u= m/s’ , d=m
n=Ns/m?* =kg/ms
_pud _ (kg/m”) (m/s)(m) _,
M (kg/ms) ~ &
i.e. it has no units. A quantity that has no units is known as a non-dimensional (or dimensionless)
quantity. Thus the Reynolds number, Re, is a non-dimensional number.

Re

Laminar flow

* Re< 2000

* ‘low’ velocity

* Dye does not mix with water

* Fluid particles move in straight lines

* Simple mathematical analysis possible
* Rare in practice in water systems.

Transitional flow

* 2000> Re< 4000
* ‘medium’ velocity
* Dye stream wavers in water - mixes slightly.

Turbulent flow

* Re> 4000

* ‘high’ velocity

* Dye mixes rapidly and completely

* Particle paths completely irregular

* Average motion is in the direction of the flow

* Mathematical analysis very difficult - so experimental measures are used
* Most common type of flow.
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Extra Points B!

= Torque due to hydrostatic forces : Consider a dam in which water A
of density p is filled upto a height H. We are interested in finding the \V
torque of hydrostatic forces on wall AB about.feint B. For this, = T
consider a small length AS equal to dh of the wall AB at a depth h h
below the free surface of the dam. Further, let us assume a unit width A
perpendicular to paper inwards. Pressure on RS from left side is Foszonf Po 3
P, + pgh and from right side is F,. s
Area of RS, dA =(1)dh =dh
Excess pressure P=pgh

Net force F = PdA =pgh dh
Perpendicular distance of this force from point Bis,r, =H-h

~ Torque of this force about B, dt=Fr,
or dt=pgh(H - h)dh

-H
Therefore, net torque T= ud‘l.'

Fig. 13.62

0 ':pgh (H - h) dh
_pgH®
e
This is the torque of hydrostatic forces per unit width of the wall.

Note

In the figure shown, torque of hydrostatic force
about point O, the centre of a semicylindrical (or
hemispherical) gate is zero as the hydrostatic force
at all points passes through point O.

= Principle of Syphon
In Fig. 13.62 Vy =y =0
R=F=FK
Va =V4 =V5 =Vg =V (say)

Applying Bernoulli's equation at1(or 2), 3, 4,5and 6, we °
have

Py+ 0+ D=P3+%PF2+U=P¢+%P"E"‘P§”2

=P5+‘;'ﬂVE+0=Fu+%PV2—PQfH

From this equation following conclusions can be made.

i A=R =K

(i) Pa=Ps <Py Note r:iné 3 by II::LEECNE point 2,

(ii)) vy =v, =0 Fig. 13.64
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["c’i] V3 ='F'4 =1-|"’5 =VE =V
(v) v =.,/2gh, so, h, should be greater than zero

(vi) P, =Fy—pg(h + hy)
From the last equation we can sbe that P, decreases as (h; + h,) increases. Minimum value of P; can
be zero and this will occur at,

0=FRy-pg(h+hs) _

Thus, (B + R2)pax = % and simultaneously h, > 0

Thus, syphon will work when h, > 0 and (b, + h,) < p%-.

In projectile motion the path of the projectile is a parabola if the effects of air resistance are
neglected. In more realistic model that includes the drag force due to the air, the path of the ball is
non-parabolic and the ball lands short of range predicted with the simple model (without consi g

the air drag).

Furthermore, the launch angle for maximum range is less than 45° and depends upon the initial speed
of the ball.
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Solved Examples
For JEE Main 2

Example 1 For the arrangement shown in the figure, what is the density of oil ?

ol

Solution P, +p,gl=Py+py (I+d)g
_p,l _1000.(135)
Poil = d ™~ (135+12.3)

= =~'E-\1&1;£gz‘rn3 Ans.

Example 2 A4 solid floats in a liquid of different material. Carry out an analysis to see whether the
level of liquid in the container will rise or fall when the solid melts.

Solution Let M = Mass of the floating solid

p, =density of liquid formed by the melting of the solid
p, =density of the liquid in which the solid is floating

The mass of liquid displaced by the solid is M. Hence, the volume of liquid displaced is E

P2
When the solid melts, the volume occupied by it is p_ Hence, the level of liquid in container will
!
rise or fall according as
M.‘::- or -:M e p;< or >p
— — € ! 2
P P2

There will be no change in the level ifp, =p,. In case of ice floating in waterp, =p, and hence, the
level of water remains unchanged when ice melts.

Example 3 An iron casting containing a number of cavities weighs 6000 N in air and 4000 N in

water. What is the volume of the cavities in the casting? Density of iron is 7.87 glem” .
Take g =9.8 m/s* and density of water =10° kg/m’.

Solution Let v be the volume of cavities and ¥ the volume of solid iron. Then,

p o mass 6000/9.8
7.87 x10°

e ]=0.ms m°
density
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Further, decrease in weight = upthrust
: (6000 — 4000) = (V +v)p .8
or 2000 = (0.078 + v) x10° x9.8
or 0.0 +v=02
 y=0.12m? Ans.

Example 4 A boat floating in a water tank is carrying a number of stones. If the stones were
unloaded into water, what will happen to the water level?

Solution Let weight of boat = and weight of stone =w.
Assuming density of water =1 g/cc

Volume of water displaced initially = (w+ W)

Later, volume displaced = [W + E ] (p = density of sfpnes)

= Water level comes down.

Example 5 Water rises in a capillary tube to a height of 2.0cm. In another capillary tube whose
radius is one third of it, how much the water will rise?

2T cos ©
Solution Eit
g
2T cos©
hr = =C0
Pg
h
hll"i zhzrz or I'Iz =‘—'ﬂ
r
noo|
Substituting the values h, =(2.0)(3) [;- = 73,-]
i
=6.0cm Ans.

Example 8 Mercury has an angle of contact of 120° with glass. A narrow tube of radius 1.0 mm made

of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in

the tube relative to the liqguid surface outside. Surface tension of mercury at the temperature of
the experiment is 0.5 N/m and density. of mercury is 13.6 x10° kg/m®. (Take g =9.8 m/s*).

2T cos O
Solution fus 20
Pg
2 %0.5 xcos 120° -
Substituting the values, we get ~ h=——; e > =-3.75x10" m
1077 x13.6x10° x9.8
or =—3.75 mm Ans.

“ote Here, negative sign implies that mercury suffers capillary depression.
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Example 7 Two narrow bores of radius 3.0 mm and 6.0 mm are joined together to form a U-shaped
tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs

of the tube? Surface tension of water is 7.3 X 1072 N/m. Take the angle of contact to be zero and density
of water to be10” kg/m>. (g =9.8 m/s®)

2T cds'j'b 2T cos ©

Solution hpg=AP=
h 2
25 thTmsﬂ[a—qJ
pg hn

Substituting the values, we have

, _2X13 x107% x cos 0° (&n-m} 1

10° x 98 6.0%3.0) 107
=248x10° m
=2.48 mm Ans.
Example 8 With what terminal velocity will an air bubble 0.8 mm in diameter rise in a liquid of
viscosity 0.15 N-s/m* and specific gravity 0.9? Density of air is 1.293 kg/m”.
Solution The terminal velocity of the bubble is given by,

2ri(p-o)g
Vr =a n

Here, r=0.4x107m o0=09x%10° kg/m?®, p=1.293 kg/m>, n=0.15, N-s/m?

and g=9.8 m/s’
Substituting the values, we have
_2_ (04x 103)2(1.293-0.9%107) x9.8
¢ 0.15
=~-0.0021 m/s
or vp =—0.21 cm/s Ans.

Vr

Note Here negative sign implies that the bubble will rise up.

Example 8 A spherical ball of radius 3.0 x10™* m and density 10° ke/m> falls freely under gravity

through a distance h before entering a tank of water. If afier entering the water the velocity of the ball

does not change, find h. Viscosity of water is 9.8 x 1075 N-s/m*.

Solution Before entering the water the velocity of ball is /2gh. If after entering the water this velocity
does not change then this value should be equal to the terminal velocity. Therefore,

_2r%p-o)g
Jagh =3 &
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) 2
2r (p-o)g
e

2g
Ip-0)g
81 1'}1
M« x107*10* -10%)* x9.8
_BI (9.8 x107%)2
=1.65%10° m Ans.

For JEE Advanced

Example 1 A solid ball of density half that of water falls freely under gravity from a height o] 9.6 m
and then enters water. Upto what depth will the ball go. How much time will it take to come agaih to the

water surface? Neglect air resistance and viscosity effects in water. (Take g =9.8 m/s %)

Solution  v=42gh =4/2x9.8x19.6 =19.6 m/s

Let p be the density of ball and 2p the density of water. Net
retardation inside the water,

upthrust — weight

Imass

_F@p)g-Vip)g) ., _
= Vo) (V' = volume of ball)

=g=98 m/s?

d =

Hence, the ball will go upto the same depth 19.6 m below the water

surface. Ans.
Further, time taken by the ball to come back to water surface is,

V 19.6
=2]—|=2 Ans.
t L) [93] 4s ns
Example 2 Abiackafmtmlkganddembros,gfm is held
stationary with the help of a string as shown in figure. Tﬁctﬂﬂth
accelerating vertically upwards with an acceleration a=1.0 mls’.
Find :

(a) the tension in the .slring,
(b) if the string i i now cut find the acceleration of block.

(Take g =10 m/s* and density of water =10° kg/m’).

Fig. 13.67
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Solution (a) Free body diagram of the block is shown in Fig. 13.66 te
In the figure, - [

F = upthrust force
=Wa(g+a) p Wk

( mass of block Bl 2008

~ | density of bluck)p” & va)

(1
= | =1
gﬂﬂﬂ]( 000)(10+1)=13.75N

W=mg=10N
Equation of motion of the block is,
F-T-W=ma
13,75-T=10=1x1
T'=275N Ans.

(b) When the string is cut T =0

=
m

_13.75-10
[

=3.75 m/s®

Emnpln 3 *..r! Jnmter on a reservoir is 10m deep. A
izontal pipe 4.0 cm in diameter passes through the reservoir
6. Dmbefw the water surface as shown in figure. A plug secures 10m

the pipe opening.
(a) Find the friction force between the plug and pipe wall.
(b) The plug is removed. What volume of water flows out of
the pipe in 1 h? Assume area of reservoir to be too large.

Solution (a) Force of friction
= pressure difference on the sides of the plug X area of cross section of the plug
= (pgh)4 = (10°)(9.8)(6.0)(m)2 x1072)?
=T739N Ans.
(b) Assuming the area of the reservoir to be too large,
Velocity of efflux v = ./2gh = constant

v=42%9.8%6=10.84 m/s
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Volume of water coming out per sec,

— = Ay
dt

=7(2x107%)%(10.84)
=1.36 %1072 m¥/s
The volume of water flowing through the pipein 1 h
V= [f:]r
= (1.36 x1072)(36 00)
=48.96m’ Ans.

A

Example 4 The U-tube acts as a water siphon. The bend
in the tube is 1 m above the water surface. The tube outlet
is 7 m below the water surface. The water issues from the
bottom of the siphon as a free jet at atmospheric
pressure. Determine the speed of the free jet and the
minimum absolute pressure of the water in the bend.
Given atmospheric  pressure =1.01 x10° N /m?,

g =9.8m/s* and density of water =10° kg/m”.

A
B
;
o
h |
:
d

Fig. 13.70
Solution (a) Applying Bernoulli’s equation between points (1) and (2)
1 1
P+ pvi +pgh =Py +2pv; +pgh,

Since, area of reservoir >> area of pipe
v, =0, also P, =P, =atmospheric pressure
So, vy =2g(h —hy) =4/2%x9.8% 7 =117 m/s Ans.

(b) The minimum pressure in the bend will be at 4. Therefore, applying Bernoulli’s equation
between (1) and (A)

1 l
P, +§PV11 +pgh =P, +Epvi +pgh,
Again, v, =0and from conservation of mass v, =v,

|
or Py=P +pg(h _hﬂ]'ip"’i
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Therefore, substituting the values, we have
P, =(1.01x10%) + (1000)(9.8)(-1) -% x (1000)(11.7)*2

=227x10* N/m? " Ans.

Example 5 A wooden rod weighing 25 N is mounted on a hinge
below the free surface of water as shown. The rod is 3 m long and
uniform in cross section and the support is 1.6 m below the free
surface. At what angle . will it come to rest when allowed to drop
from a vertical position. The cross-section of the rod is
9.5%10™ m? in area. Density of water is 1000 kg/m’. Assume

buoyancy to act at centre of immersion. g =9.8m/s*. Also find the
reaction on the hinge in this position.

Fig. 13.71
Solution Let G be the mid-point of 4B and E the mid point of AC (i.e., the centre of buoyancy)
AC =1.6¢cosec ot
Volume of AC = (1.6 x9.5x10™*) cosec o

Weight of water displaced by AC
=(1.6x9.5x10™ x10? x9.8) cosec a

=14.896 cosec o

Hence, the buoyant force is 14.896 cosec o acting vertically

Fig. 13.72
upwards at £. While the weight of the rod is 25 N acting vertically .
downwards at G. Taking moments about A4,
(14,896 cosec o) (AE cos o) = (25)(AG cos )
or (14.896 cosec u)(l'ﬁm‘ﬂ“J=zsx§
2 2

or sin” o =0.32

& sin ot =0.56
or o =34.3° Ans,

Further, let F be the reaction at hinge in vertically downward direction. Then, considering the
translatory equilibrium of rod in vertical direction we have,
F + weight of the rod = upthrust
F = upthrust — weight of the rod
=14.896 cosec (34.3°) - 25
=26.6-25
F=16N (downwards) Ans.
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Example 8 Two separate air bubbles (radii 0.004 m and 0.002 m) formed of the same liguid (surface
tension 0.07 N/m) come together to form a double bubble. Find the radius and the sense of curvature of
the internal film surface common to both the bubbles.

Solution 5 P, =P, +£
4
g
rz < fi
P, > P
Fig. 13.73
i.e., pressure inside the smaller bubble will be more, The excess pressure
P=Fz—.vl=4i*[r'"r1] ? .3
nn

This excess pressure acts from concave to convex side, the interface will be concave towards smaller
bubble and convex towards larger bubble. Let R be the radius of interface then,

4T
P=— ...(1
P (11)

From Egs. (1) and (11)
nr;  (0.004)(0.002)
J"l = rz {ﬁ.m“ = UDGZ}

=0.004 m Ans.

R =

Example 7 Under isothermal condition two soap bubbles of radii  and r, coalesce to form a single

bubble of radius r. The external pressure is Py. Find the surface tension of the soap in terms of the given
paramelers.

Solution As mass of the air is conserved,
n+n,=n (as PV =nRT)

+.“

Fig. 13.74

PV, PV _ PV
RT, RT, RT
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As temperature is constant, IL=1,=T
;i P]VI +P1V2=PV

(
(Pu+is-][£nq3] Pn+£](-mf]
nJ\3 . W 3

"

\
()
- r J\3

- T .
Po(r’—n —n)

Solving, this we get

= Ans.

2 2
4’ +ry —r)

Note To avoid confusion with the temperature surface tension here is represented by S.

Example 8 A cylindrical tank of base area A has a small hole of area ‘a’ at the bottom. At time t =0,a

tap starts to supply water into the tank at a constant rate o. m’/s.
(a) what is the maximum Iﬁv&lqr‘uw,& _in the tank?

(b) find the time when level of water beco ome A(<hy )
Solution (a) Level will be maximum when
: Rate = nr.rﬂ-a
Rate of inflow of water = rate of outflow of water U B
ie., o =av
or O = a+)28h
P
- Ans.
= | B = s
(b) Let at time ¢, the level of water be A. Then, Fig. 13.75
dh
A o — a+/2gh
[ dr ) S
' d.','

or Jnﬂ an_g_

Solving this, we get
o — a42gh
t= 2 [E In { _ } - 1;’2@‘1] Ans.
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Subjective Questions
Upthrust

1.

A block of material has a density p, and floats three-fourth submerged in a liquid of unknown

4
density. Show that the density p, of the unknown liquid is given by p, = 3 P

. A metal ball weighs 0.096 N. When suspended in water it has an apparent weight of 0.071 N. Find

the density of the metal. i

. A block of wood has a mass of 25 g. When a 5 g metal piece with a volume of 2cm 3 is attached to

the bottom of the block, the wood barely floats in water, What is the volume ¥ of the wood?

A block of wood weighing 71.2 N and of specific gravity 0.75 is tied by a string to the bottom of a
tank of water in order to have the block totally immersed. What is the tension in the string?

What is the minimum volume of a block of wood (density =850kg/ m?)if it is to hold a 50 kg
woman entirely above the water when she stands on it 7

. An irregular piece of metal weighs 10.00 g in air and 8.00 g when submerged in water.

(a) Find the volume of the metal and its density.

(b)If the same piece of metal weighs 8.50 g when immersed in a particular oil, what is the density of
the oil ?

. A beaker when partly filled with water has total mass 20.00 g. If a piece of metal with density

3.00 g/cm* and volume 1.00 cm? is suspended by a thin string, so that it is submerged in the water
but does not rest on the bottom of the beaker, how much does the beaker then appear to weigh if it is
resting on a scale?

A tank contains water on top of mercury. A cube of iron, 60 mm along each edge, is sitting upright
in equilibrium in the liquids. Find how much of it is in each liquid. The densities of iron and
mercury are 7.7 X 10° ]l:g,*’m:i and 13.6 x10° kg/m? respectively.

Water
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9. A small block of wood, of density 0.4 x10°* kg/m”, is submerged in water at a depth of 2.9 m.

10.

11.

Find :
(a) the acceleration of the block toward the surface when the block is released and
(b) the time for the block to reach the surface. Ignore viscosity.

A uniform rod 4B, 4 m long and weighing 12 kg, is ‘s’gbported atend A4, with a 6 kg lead weight at B.
The rod floats as shown in figure with one-half of its length submerged. The buoyant force on the
lead mass is negligible as it is of negligible volume. Find the tension in the cord and the total
volume of the rod.

A solid sphere of mass m =2 kg and density p=500kg/m? is held
stationary relative to a tank filled with water. The tank is accelerating
upward with acceleration 2 m/s*. Calculate :

(a) Tension in the thread connected between the sphere and the
bottom of the tank.

(b) If the thread snaps, calculate the accelerstion of sphere with respect to the tank.
[Density of water =1000 kgfmj, g=10 mfszl

Pressure and Pascal's Law

12.

13.

The pressure gauge shown in figure has a spring for which & =60 N/m and the area of the piston is

0.50cm?. Its right end is connected to a closed container of gas at a gauge pressure of 30 kPa. How
far will the spring be compressed if the region containing the spring is (a) in vacuum and (b) open
to the atmosphere ? Atmospheric pressure is 101 kPa.

/ Piston

Spring ;-
VVW—Lie—
\\
Area=A

A small uniform tube is bent into a circle of radius r whose plane is
vertical. Equal volumes of two fluids whose densities are p and o(p > o)
fill half the circle. Find the angle that the radius passing through the
interface makes with the vertical.
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14. For the system shown in figure, the cylinder on the left, at L, has a mass of 600 kg and a
cross-sectional area of 800 cm 2. The piston on the right, at S, has cross-sectional area 25 cm? and
negligible weight. If the apparatus is filled with oil (p =0.78 g/cm 3), what is the force F required to

hold the system in equilibrium ?

15. A U-tube of uniform cross-sectional area and open to the atmosphere is partially ﬁIl% with
mercury. Water is then poured into both arms. If the equilibrium configuration of the tube is as
shown in figure with s, =1.0 cm, determine the value of 4, .

16. Water stands at a depth 4 behind the vertical face of a dam. It exerts a resultant horizontal force on
the dam tending to slide it along its foundation and a torque tending to overturn the dam about the

point O. Find :

(a) horizontal force,
(b) torque about O,
(c) the height at which the resultant force would have to act to produce the same torque,
| = cross-sectional length and p = density of water.
17. A U-shaped tube open to the air at both ends contains some mercury. A quantity of water is
carefully poured into the left arm of the U-shaped tube until the vertical height of the water column

1s 15.0 em.
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(a) What is the gauge pressure at the water mercury interface ?
(b) Calculate the vertical distance / from the top of the mercury in the right hand arm of the tube to
the top of the water in the left-hand arm.

%
- T o 1.
h
Water| [15.0cm 1
Mercury

18. Water and oil are poured into the two limbs of a U-tube containing mercury. The interfaces of the
mercury and the liquids are at the same height in both limbs.
Determine the height of the water column A if that of the oil £, =20 cm. The density of the oil
is 0.9.

b= 3 =
i - T

19. Mercury is poured into a U-tube in which the cross-sectional area of the left-hand limb is three
times smaller than that of the right one. The level of the mercury in the narrow limb is a distance
[ =30 cm from the upper end of the tube. How much will the mercury level rise in the right-hand
limb if the left one is filled to the top with water ?

Fluids in Motion

20. Water is flowing smoothly through a closed-pipe system. At one point the speed of the water is
3.0 m/s, while at another point 1.0 m higher the speed is 4.0 m/s. If the pressure is 20 kPa at the
lower point, what is the pressure at the upper point 7 What would the pressure at the upper point be
if the water were to stop flowing and the pressure at the lower point were 18 kPa ?

21. A water barrel stands on a table of height 4. If a small hole is punched in the side of the barrel at its
base, it is found that the resultant stream of water strikes the ground at a horizontal distance R from
the barrel. What is the depth of water in the barrel ?

22. A pump is designed as a horizontal cylinder with a piston of area 4 and an outlet orifice of area a
arranged near the cylinder axis. Find the velocity of out flow of the liquid from the pump if the
piston moves with a constant velocity under the action of a constant force F. The density of the
liquid is p.




23.

24.

25.

26.
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When air of density 1.3 kg/m " flows across the top of the tube shown in the accompanying figure,
water rises in the tube to a height of 1.0 cm. What is the speed of the air ?

o

The area of cross-section of a large tank i1s 0.5 m 2 Ithasan opening near the bottom having area of

cross-section 1 cm~. A load of 20 kg is applied on the water at the top. Find the velocity of the water
coming out of the opening at the time when the height of water level is 50 cm above the _gnttnm.

(Take g =10m/s?)

Water flows through a horizontal tube as shown in figure . If the
difference of heights of water column in the vertical tubes is 2 cm
and the areas of cross-section at A and B are 4 cm” and 2cm’
respectively. Find the rate of flow of water across any section.
Water flows through the tube as shown in figure. The areas of
cross-section of the wide and the narrow portions of the tube are 5 cm
and 2cm? respectively. The rate of flow of water through the tube is

500 cm>/s. Find the difference of mercury levels in the U-tube.

2

Viscosity and Surface Tension

———

Note 1 Poise=0.1 N-s/m® and 1 Pl =1.0 Nem®.

27.

28.

29.

30.

A typical riverborne silt particle has a radius of 20 pm and a density of 2x10% kg/m?.
The viscosity of water is 1.0 mPl. Find the terminal speed with which such a particle will settle to
the bottom of a motionless volume of water.

What is the pressure drop (in mm Hg) in the blood as it passes through a capillary 1 mm long and
2um in radius if the speed of the blood through the centre of the capillary is 0.66 mm/s ?
(The viscosity of whole blood is 4 x 107 PI).

Two equal drops of water are falling thiough air with a steady velocity v. If the drops coalesced,
what will be the new velocity ?

A long cylinder of radius R is displaced along its axis with a constant velocity u, inside a stationary

co-axial cylinder of radius R,. The space between the cylinders is filled with viscous liquid. Find
the velocity of the liquid as a function of the distance » from the axis of the cylinders. The flow is
laminar.



