

Ordinary Thinking

Objective Questions

		Objec	silve Questions	14.	Which one of the following	ng is not an eler	nent
	Ciamificant figures. Ur	alta far			(a) Diamond	(b) Gra	phite
	Significant figures, Ur Matter and Sepa		-		(c) Silica	(d) Ozo	ne
	watter and Separ	allon	n illixture	15.	A mixture of $ZnCl_2$ and	$PbCl_2$ can be	separated by
1.	One fermi is	[Harvana	CEET 1994; DPMT 2004]				[AFMC 1989]
	(a) $10^{-13} cm$		$0^{-15} cm$		(a) Distillation	(b) Cry	stallization
	` '	` ′			(c) Sublimation		ling aceitic acid
•	(c) $10^{-10} cm$	(d) 10	$0^{-12} cm$	16.	A mixture of methyl alcoh	nol and acetone	can be separated by
2.	A picometre is written as				(a) Distillation		
	(a) $10^{-9} m$	(b) 10	$0^{-10} m$		(b) Fractional distillation	1	
	(c) $10^{-11} m$	(d) 10	$0^{-12} m$		(c) Steam distillation		
3.	One atmosphere is equal to			4-	(d) Distillation under red		
	(a) 101.325 K <i>pa</i>	(b) 10)13.25 K pa	17.		answer of	the expression
	(c) $10^5 Nm$	(d) No	one of these		$\frac{(29.2 - 20.2)(1.79 \times 10^5)}{1.37}$	$\frac{1}{2}$. The number	er of significant figures
4.	Dimensions of pressure are s	ame as tha	at of				
			[CBSE PMT 1995]		is	(1-) 2	[CBSE PMT 1994]
	(a) Energy	(b) Fo	orce		(a) 1 (c) 3	(b) 2 (d) 4	
	(c) Energy per unit volume	(d) Fo	orce per unit volume	18.	81.4 g sample of ethyl al-	` '	0.002 a of water. The
5.	The prefix 10^{18} is		[Kerala MEE 2002]	10.	amount of pure ethyl		_
	(a) Giga	(b) Na			significant figures is		e proper number of
	(c) Mega	(d) Ex			(a) 81.398 g	(b) 71.4	10 g
6.	Given the numbers : 161 <i>cm</i> ,				(c) 91.4 g	(d) 81 g	=
	of significant figures for the			19.	The unit $J Pa^{-1}$ is equival	ent to	
			[CBSE PMT 1998]	17.	(a) m^3	(b) <i>cm</i>	3
	(a) 3, 4 and 5 respectively	(b) 3,	3 and 3 respectively				
	(c) 3, 3 and 4 respectively	(d) 3,	4 and 4 respectively	••	(c) dm^3		ne of these
7.	Significant figures in 0.0005	1 are		20.	From the following masse	es, the one whi	ch is expressed nearest
	(a) 5	(b) 3			to the milligram is	(b) 16 /	La
	(c) 2	(d) 4			(a) 16 g	(b) 16.4 (d) 16.4	=
8.	Which of the following halog	gen can be	purified by sublimation	2.1	(c) 16.428 g [Manipal PMT 2001]	e e
	(a) F_2	(b) <i>C</i>	l_2	21.	The number of significant		2×10^{23} is
	(c) Br_2	(d) I ₂	,		(a) 23	(b) 3	
9.	Difference in density is the b	_		22	(c) 4	(d) 26	[DDMTE 2004]
9.	(a) Ultrafiltration		[Kerala MEE 2002] Tolecular sieving	22.	The prefix zepto stands fo		[DPMT 2004]
	(c) Gravity Separation		olecular attraction		(a) 10^9	(b) 10 ⁻³	
10.	Which of the following eler				(c) 10^{-15}	(d) 10 ⁻³	-21
10.	that there is life on earth	nents of fi	latter would best convey	23.	The significant figures in 3		[BHU 2004]
	(a) Oxygen	(b) H	ydrogen		(a) 2	(b) 5	
	(c) Carbon	(d) Ire			(c) 6	(d) 4	
11.	The compound which is ac	` '		24.	The number of significant	figures in 6.00	
-	proper health is				(a) 5	(L) 4	[Pb.CET 2001]
	(a) KCl	(b) <i>K</i>	Br		(a) 5	(b) 4	
	(c) NaI	(d) <i>M</i>	$MgBr_2$	25	(c) 3	(d) 1	2000
12.	Which of the following conta		_	25.	Given $P = 0.0030m$, Q		
-	(a) Marble	-	iamond		figures in P, Q and R are	-	[Pb. CET 2002]
	(c) Glass	(d) Sa			(a) 2, 2, 1	(b) 2, 3	
	(-)	(0) 50	- -		(c) 4, 2, 1	(d) 4, 2	, 3

13.

14.

(a) Metals

(c) Metalloids

In known elements, the maximum number is of

(b) Non-metals

(d) None of these

[CPMT 1985]

26. The number of significant figures in 60.0001 is

[Pb. CET 2000]

(a) 5

(b) 6

(c) 3

- (d) 2
- **27.** A sample was weighted using two different balances. The result's were (i) 3.929 *g* (ii) 4.0 *g*. How would the weight of the sample be reported
 - (a) 3.929 g
- (b) 3 g
- (c) 3.9 g
- (d) 3.93 g

Laws of chemical combination

- Which of the following pairs of substances illustrate the law of multiple proportions [CPMT 1972, 78]
 - (a) CO and CO_2
- (b) H_2O and D_2O
- (c) NaCl and NaBr
- (d) MgO and $Mg(OH)_2$
- 2. 1.0 g of an oxide of A contained 0.5 g of A. 4.0 g of another oxide of A contained 1.6 g of A. The data indicate the law of
 - (a) Reciprocal proportions
- (b) Constant proportions
- (c) Conservation of energy
- (d) Multiple proportions
- **3.** Among the following pairs of compounds, the one that illustrates the law of multiple proportions is
 - (a) NH_3 and NCl_3
- (b) H_2S and SO_2
- (c) CuO and Cu₂O
- (d) CS_2 and $FeSO_4$
- 4. The percentage of copper and oxygen in samples of *CuO* obtained by different methods were found to be the same. This illustrates the law of [AMU 1982, 92]
 - (a) Constant proportions
- (b) Conservation of mass
- (c) Multiple proportions
- (d) Reciprocal proportions
- 5. Two samples of lead oxide were separately reduced to metallic lead by heating in a current of hydrogen. The weight of lead from one oxide was half the weight of lead obtained from the other oxide. The data illustrates [AMU 1983]
 - (a) Law of reciprocal proportions
 - (b) Law of constant proportions
 - (c) Law of multiple proportions
 - (d) Law of equivalent proportions
- **6.** Chemical equation is balanced according to the law of

[AMU 1984]

- (a) Multiple proportion
- (b) Reciprocal proportion
- (c) Conservation of mass
- (d) Definite proportions
- 7. Avogadro number is
 - (a) Number of atoms in one gram of element
 - (b) Number of millilitres which one mole of a gaseous substances occupies at NTP
 - (c) Number of molecules present in one gram molecular mass of a substance
 - (d) All of these
- **8.** Different propartions of oxygen in the various oxides of nitrogen prove the [MP PMT 1985]
 - (a) Equivalent proportion
- (b) Multiple proportion
- (c) Constant proportion
- (d) Conservation of matter

- 9. Two elements *X* and *Y* have atomic weights of 14 and 16. They form a series of compounds *A*, *B*, *C*, *D* and *E* in which the same amount of element *X*, *Y* is present in the ratio 1 : 2 : 3 : 4 : 5. If the compound *A* has 28 parts by weight of *X* and 16 parts by weight of *Y*, then the compound of *C* will have 28 parts weight of *X* and [NCERT 1971]
 - (a) 32 parts by weight of Y
- (b) 48 parts by weight of Y
- (c) 64 parts by weight of Y
- (d) 80 parts by weight of Y
- **10.** Carbon and oxygen combine to form two oxides, carbon monoxide and carbon dioxide in which the ratio of the weights of carbon and oxygen is respectively 12:16 and 12:32. These figures illustrate the
 - (a) Law of multiple proportions
 - (b) Law of reciprocal proportions
 - (c) Law of conservation of mass
 - (d) Law of constant proportions
- 11. A sample of calcium carbonate $(CaCO_3)$ has the following percentage composition : Ca = 40%; C = 12%; O = 48%

If the law of constant proportions is true, then the weight of calcium in 4 g of a sample of calcium carbonate obtained from another source will be

- (a) 0.016 g
- (b) 0.16 g
- (c) 1.6 g
- (d) 16 g
- **12.** $n \ g$ of substance X reacts with $m \ g$ of substance Y to form $p \ g$ of substance R and $q \ g$ of substance S. This reaction can be represented as, X + Y = R + S. The relation which can be established in the amounts of the reactants and the products will be
 - (a) n-m=p-q
- (b) n + m = p + q
- (c) n = m
- (d) p = q
- **13.** Which of the following is the best example of law of conservation of mass [NCERT 1975]
 - (a) 12 g of carbon combines with 32 g of oxygen to form 44 g of CO_2
 - (b) When 12 g of carbon is heated in a vacuum there is no change in mass
 - (c) A sample of air increases in volume when heated at constant pressure but its mass remains unaltered
 - (d) The weight of a piece of platinum is the same before and after heating in air
- **14.** The law of multiple proportions is illustrated by the two compounds [NCERT 1972]
 - (a) Sodium chloride and sodium bromide
 - (b) Ordinary water and heavy water
 - (c) Caustic soda and caustic potash
 - (d) Sulphur dioxide and sulphur trioxide
- **15.** In compound *A*, 1.00 *g* nitrogen unites with 0.57 *g* oxygen. In compound *B*, 2.00 *g* nitrogen combines with 2.24 *g* oxygen. In compound *C*, 3.00 *g* nitrogen combines with 5.11 *g* oxygen. These results obey the following law [CPMT 1971]
 - (a) Law of constant proportion
 - (b) Law of multiple proportion
 - (c) Law of reciprocal proportion
 - (d) Dalton's law of partial pressure

- 16. Hydrogen combines with oxygen to form H_2O in which 16 g of oxygen combine with 2 g of hydrogen. Hydrogen also combines with carbon to form CH_4 in which 2 g of hydrogen combine with 6 g of carbon. If carbon and oxygen combine together then they will do show in the ratio of
 - (a) 6:16 or 12:32
- (b) 6:18
- (c) 1:2
- (d) 12:24
- **17.** 2 *g* of hydrogen combine with 16 *g* of oxygen to form water and with 6 *g* of carbon to form methane. In carbon dioxide 12 *g* of carbon are combined with 32 *g* of oxygen. These figures illustrate the law of
 - (a) Multiple proportions
- (b) Constant proportions
- (c) Reciprocal proportions
- (d) Conservation of mass
- **18.** An element forms two oxides containing respectively 53.33 and 36.36 percent of oxygen. These figures illustrate the law of
 - (a) Conservation of mass
- (b) Constant proportions
- (c) Reciprocal proportions
- (d) Multiple proportions
- 19. After a chemical reaction, the total mass of reactants and products [MP PMT 1989]
 - (a) Is always increased
- (b) Is always decreased
- (c) Is not changed
- (d) Is always less or more
- **20.** A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data support

[AIIMS 1992]

- (a) Law of constant composition
- (b) Law of conservation of mass
- (c) Law of reciprocal proportions
- (d) Law of multiple proportions
- **21.** The law of definite proportions is not applicable to nitrogen oxide because [EAMCET 1981]
 - (a) Nitrogen atomic weight is not constant
 - (b) Nitrogen molecular weight is variable
 - (c) Nitrogen equivalent weight is variable
 - (d) Oxygen atomic weight is variable
- **22.** Which one of the following pairs of compounds illustrates the law of multiple proportion **[EAMCET 1989]**
 - (a) H_2O , Na_2O
- (b) MgO, Na_2O
- (c) Na_2O, BaO
- (d) $SnCl_2, SnCl_4$

Atomic, Molecular and Equivalent masses

1. Which property of an element is always a whole number

[MP PMT 1986]

- (a) Atomic weight
- (b) Equivalent weight
- (c) Atomic number
- (d) Atomic volume
- Which one of the following properties of an element is not variable [Bihar MADT 1981]
 - (a) Valency
- (b) Atomic weight
- (c) Equivalent weight
- (d) All of these
- 3. The modern atomic weight scale is based on

[MP PMT 2002]

- (a) C^{12}
- (b) O^{16}
- (c) H^1
- (d) C^{13}

- **4.** 1 *amu* is equal to
 - (a) $\frac{1}{12}$ of C 12
- (b) $\frac{1}{14}$ of O 16
- (c) $1g \text{ of } H_2$
- (d) $1.66 \times 10^{-23} \text{ kg}$
- 5. Sulphur forms the chlorides S_2Cl_2 and SCl_2 . The equivalent mass of sulphur in SCl_2 is

[EAMCET 1985; Pb. CET 2001]

- (a) 8 *g*/mole
- (b) 16 g/mole
- (c) 64.8 g/mole
- (d) 32 g/mole
- **6.** The sulphate of a metal M contains 9.87% of M. This sulphate is isomorphous with $ZnSO_4.7H_2O$. The atomic weight of M is
 - (a) 40.3
- (b) 36.3
- (c) 24.3
- (d) 11.3
- 7. When 100 ml of 1 M NaOH solution and 10 ml of $10 \text{ } N \text{ } H_2 SO_4$ solution are mixed together, the resulting solution will be [DPMT 1982]
 - (a) Alkaline
- (b) Acidic
- (c) Strongly acidic
- (d) Neutral
- **8.** In chemical scale, the relative mass of the isotopic mixture of oxygen atoms (O^{16}, O^{17}, O^{18}) is assumed to be equal to

[Bihar MADT 1981]

- (a) 16.002
- (b) 16.00
- (c) 17.00
- (d) 11.00
- 9. For preparing 0.1 *N* solution of a compound from its impure sample of which the percentage purity is known, the weight of the substance required will be [MP PET 1996]
 - (a) More than the theoretical weight
 - (b) Less than the theoretical weight
 - (c) Same as the theoretical weight
 - (d) None of these
- 10. 1 mol of CH_4 contains
 - (a) 6.02×10^{23} atoms of *H*
 - (b) 4 g atom of Hydrogen
 - (c) 1.81×10^{23} molecules of CH_4
 - (d) 3.0 g of carbon
- 11. In the reaction $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$, the equivalent weight of $Na_2S_2O_3$ (mol. wt. = M) is equal to
 - (a) *M*

- (b) M/2
- (c) M/3
- (d) M/4
- 12. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganate is [CPMT 1988]
 - (a) Molecular weight /10
- (b) Molecular weight /5
- (c) Molecular weight /2
- (d) Molecular weight
- 13. Boron has two stable isotopes, 10 B (19%) and 11 B (81%). The atomic mass that should appear for boron in the periodic table is [CBSE PMT 1990]
 - (a) 10.8
- (b) 10.2
- (c) 11.2
- (d) 10.0

Chemical Arithmetic 13 UNIVERSAL SELF SCORER

14.	What is the concentration of nitrate ions if equal volumes of 0.1	27.	The atomic weights of two elements A and B are 40 and 80
	$M AgNO_3$ and 0.1 $M NaCl$ are mixed together		respectively. If $x g$ of A contains y atoms, how many atoms are
	[CPMT 1983; NCERT 1985]		present in $2x g$ of B
	(a) $0.1 M$ (b) $0.2 M$		(a) $\frac{y}{2}$ (b) $\frac{y}{4}$
15	(c) 0.05 <i>M</i> (d) 0.25 <i>M</i>		-
15.	Total number of atoms represented by the compound $CuSO_4.5H_2O$ is [BHU 2005]		(c) y (d) $2y$
	(a) 27 (b) 21	28.	Assuming fully decomposed, the volume of CO_2 released at
	(c) 5 (d) 8		STP on heating 9.85g of BaCO ₃ (Atomic mass of Ba=137)
16.	74.5 g of a metallic chloride contain 35.5 g of chlorine. The		will be [CBSE PMT 2000]
	equivalent weight of the metal is [CPMT 1986]		(a) $0.84 L$ (b) $2.24 L$
	(a) 19.5 (b) 35.5		(c) $4.06 L$ (d) $1.12 L$
	(c) 39.0 (d) 78.0	29.	If N_A is Avogadro's number then number of valence electrons
17.	7.5 grams of a gas occupy 5.8 litres of volume at STP the gas is		in 4.2 g of nitride ions (N^{3-})
	(a) NO (b) N_2O		
	(c) CO (d) CO_2		(a) $2.4 N_A$ (b) $4.2 N_A$
18.	The number of atoms in 4.25 g of NH_3 is approximately		(c) $1.6 N_A$ (d) $3.2 N_A$
	[CBSE PMT 1999; MH CET 2003]	30.	The weight of 1×10^{22} molecules of $CuSO_4.5H_2O$ is
	(a) 1×10^{23} (b) 2×10^{23}	50.	
	(c) 4×10^{23} (d) 6×10^{23}		[IIT 1991]
19.	One litre of a gas at STP weight 1.16 g it can possible be		(a) 41.59 g (b) 415.9 g (c) 4.159 g (d) None of these
	[AMU 1992]	21	- 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13
	(a) C_2H_2 (b) CO	31.	Rearrange the following (I to IV) in the order of increasing masses and choose the correct answer from (a), (b), (c) and (d)
	(c) O_2 (d) CH_4		(Atomic mass: $N=14$, $O=16$, $Cu=63$).
20.	The vapour density of a gas is 11.2. The volume occupied by		I. 1 molecule of oxygen
	11.2 g of the gas at ATP will be [Bihar CET 1995]		II. 1 atom of nitrogen
	(a) $11.2 L$ (b) $22.4 L$		-
	(c) $1 L$ (d) $44.8 L$		III. 1×10^{-10} g molecular weight of oxygen
21.	Equivalent weight of crystalline oxalic acid is		IV. 1×10^{-10} g atomic weight of copper
	[MP PMT 1995] (a) 30 (b) 63		(a) II <i<iii<iv (b)="" iv<iii<ii<<="" td=""></i<iii<iv>
	(c) 53 (d) 45		(c) II <iii<i<iv (d)="" iii<iv<i<ii<="" td=""></iii<i<iv>
22.	The equivalent weight of an element is 4. Its chloride has a V.D 59.25. Then the valency of the element is [BHU 1997]	32.	1.520 g of the hydroxide of a metal on ignition gave 0.995 gm of oxide. The equivalent weight of metal is
	(a) 4 (b) 3		[DPMT 1984]
	(c) 2 (d) 1		(a) 1.520 (b) 0.995
23.	1.25 g of a solid dibasic acid is completely neutralised by 25 ml		(c) 19.00 (d) 9.00
	of 0.25 molar $Ba(OH)_2$ solution. Molecular mass of the acid is	33.	How much coulomb charge is present on $1g$ ion of N^{3-}
	(a) 100 (b) 150		(a) 5.2×10^6 Couloumb (b) 2.894×10^5 Couloumb
	(c) 120 (d) 200		(c) 6.6×10^6 Couloumb (d) 8.2×10^6 Couloumb
24.	The oxide of a metal has 32% oxygen. Its equivalent weight	34.	Ratio of C_p and C_v of a gas X is 1.4, the number of atom of
	would be [MP PMT 1985]		the gas 'X' present in 11.2 litres of it at NTP will be
	(a) 34 (b) 32		[CBSE 1999]
	(c) 17 (d) 8		(a) 6.02×10^{23} (b) 1.2×10^{23}
25.	The mass of a molecule of water is [Bihar CEE 1995]		.,
	(a) $3 \times 10^{-26} kg$ (b) $3 \times 10^{-25} kg$	25	· · ·
		35.	If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole
26	(c) $1.5 \times 10^{-26} kg$ (d) $2.5 \times 10^{-26} kg$		of a substance will [AIEEE 2005]
26.	1.24 $gm P$ is present in 2.2 gm		(a) Decrease twice
	(a) P_4S_3 (b) P_2S_2		(b) Increase two fold
	(c) PS_2 (d) P_2S_4		(c) Remain unchanged
			(d) Be a function of the molecular mass of the substance

UNIVERSAL SELF SCORER 14 Chemical Arithmetic

36.	_	ent weight of phosphorous acid, if		(a)		(b)	
	P=31; O=16; H=1	4) 41			27.06	` ′	2.086
	(a) 82	(b) 41	49.				to combine with 80g o
27	(c) 20.5	(d) None of these			mine one gram of calo mine the equivalent we		ncy=2 combines with $4g$ o
37.		TP in 1 <i>ml</i> of an ideal gas will be		(a)	-	(b)	
	(a) 6×10^{23}	(b) 2.69×10^{19}		(a) (c)		(d)	
	(c) 2.69×10^{23}	(d) None of these	50.				is half its molecular weigh
38.	-	al is 0.16 its approximate atomic	20.		en it is converted to	mnso ₄	[IIT 1988; CPMT 1994
	weight would be	(b) 16			Mn_2O_3	(b)	MnO_2
	(a) 32 (c) 40	(b) 16 (d) 64			- *		2
39.	The weight of a molecule of t			(c)	MnO_4	(d)	MnO_4^{2-}
57.	The weight of a molecule of t	[AIIMS 2000]	51.	100	$0 mL$ of PH_3 on dec	ompositio	n produced phosphorus and
	(a) 1.4×10^{-21} g	(b) $1.09 \times 10^{-21} \text{ g}$		hyd	rogen. The change in v	volume is	[MNR 1986]
				(a)	50 mL increase	(b)	500 mL decrease
40		(d) $16.023 \times 10^{23} \text{ g}$		(c)	900 mL decrease	(d)	Nil.
40.	what is the weight of ox combustion of 2.8 kg of ethyl	ene [CBSE PMT 1989]	52.	12	$a \circ f Ma$ (at mass $2M$	l) on read	cting completely with acid
	(a) 2.8 kg	(b) $6.4 kg$	34.				which at STP would be
	(c) 9.6 kg	(d) 96 kg		give	es nydrogen gas, the ve	ordine or v	[CPMT 1978
41.	- · · ·	t STP would be needed to prepare		(a)	22.4 L	(b)	11.2 <i>L</i>
		nmonium hydroxide solution				` '	
	(a) 0.056 litres	(b) 0.56 litres			44.8 <i>L</i>		6.1 <i>L</i>
	(c) 5.6 litres	(d) 11.2 litres	53.	Wh	ich of the following ha	ıs least ma	SS [Pb. PET 1985
42.		$g cm^{-3}$ then the volume occupied		(a)	2 g atom of nitrogen	(b)	3×10^{23} atoms of C
42.	by one molecule of water is a	-		(c)	1 mole of S	(d)	7.0 g of Ag
	(a) 18 cm^3	(b) 22400 cm^3	54.	Hov	w many mole of heliu	m gas oc	cupy 22.4 L at $0^{\circ}C$ at 1
	(c) $6.02 \times 10^{-23} \text{ cm}^3$	(d) 3.0×10^{-23} cm ³		atm	. pressure	[Kurul	kshetra CEE 1992; CET 1992
12		•		(a)	0.11	(b)	0.90
43.		ght of 194. If it contains 28.9% by atoms of nitrogen in one molecule		(c)	1.0	(d)	1.11
	of caffeine is	ations of margen in one morecure	55.	Vol	ume of a gas at STP is	1.12×10	O ⁻⁷ cc. Calculate the numbe
	(a) 4	(b) 6			nolecules in it		[BHU 1997
	(c) 2	(d) 3		(2)	3.01×10^{20}	(b)	3.01×10^{12}
44.	A 400 mg iron capsule cont	tains 100 mg of ferrous fumarate,		` ′			
	$(CHCOO)_2 Fe$. The percentage	entage of iron pasent in it is					3.01×10^{24}
	approximately		56.				pies $2.24L$ of volume a
	(a) 33%	(b) 25%		stan	dard temperature and	pressure.	The gas may be
	(c) 14%	(d) 8%					[MP PMT 1995
45.	The element whose a atom ha	as mass of $10.86 \times 10^{-26} kg$ is		(a)	Carbon dioxide	(b)	Carbon monoxide
	(a) Boron	(b) Calcium		(c)	Oxygen	(d)	Sulphur dioxide
	(c) Silver	(d) Zinc	57.	The	number of moles of	oxygen in	1 L of air containing 21%
46.	-	of oxygen present in 0.3 gram mole		oxy	gen by volume, in stan	dard cond	litions, is
	of $(COOH)_2.2H_2O$ is					[CBS	SE PMT 1995; Pb. PMT 2004
	(a) 0.6	(b) 1.8		(a)	$0.186\ mol$	(b)	0.21 mol
	(c) 1.2	(d) 3.6		(c)	2.10 mol	(d)	0.0093 mol
47.	A gaseous mixture contains	CH_4 and C_2H_6 in equimolecular	58.			s in 896	L of a gas at $0^{\circ}C$ and
	proportion. The weight of 2.2	4 litres of this mixture at NTP is	20.				_
	(a) 4.6 g	(b) 1.6 g			osphere pressure is app		
	(c) 2.3 g	(d) 23 g			6.02×10^{23}		12.04×10^{23}
48.	-	chloride is 66. Its oxide contains		(c)	18.06×10^{23}	(d)	24.08×10^{22}
	53% metal. The atomic weigh	nt of the metal is [Ribar MADT 1982]					

Chemical Arithmetic 15 UNIVERSAL SELF SCORER

59.	The equivalent weight of a metal is 9 and vapour d	ensity of its	(c) 6×10^{23}	(d) 12×10^{23}
	chloride is 59.25. The atomic weight of metal is	6.	The volume occupied by 4	$1.4 g ext{ of } CO_2 ext{ at STP is}$
		o. CET 2002]		AFMC 1997, 2004; Pb. CET 1997, 2002]
	(a) 23.9 (b) 27.3		(a) 22.4 <i>L</i>	(b) 2.24 <i>L</i>
60	(c) 36.3 (d) 48.3	TD:	(c) 0.224 <i>L</i>	(d) 0.1 <i>L</i>
60.	The molecular weight of a gas is 45. Its density at S' [Pb.	TP is 7 PMT 2004]	The number of water m (volume $0.0018 \ ml$) at roo	olecules present in a drop of water m temperature is [DCE 2000]
	(a) 22.4 (b) 11.2		(a) 6.023×10^{19}	(b) 1.084×10^{18}
	(c) 5.7 (d) 2.0		(c) 4.84×10^{17}	(d) 6.023×10^{23}
61.	Equivalent weight of a bivalent metal is 37.2. Th weight of its chloride is [MI	e molecular 8. H CET 2003]	One mole of calcium ph water gives	nosphide on reaction with excess of [IIT 1999]
	(a) 412.2 (b) 216		(a) One mole of phosphir	ne
	(c) 145.4 (d) 108.2		(b) Two moles of phosph	
62.	On reduction with hydrogen, 3.6 g of an oxide of m		(c) Two moles of phosph	
	g of metal. If the vapour density of metal is 32, t		(d) One mole of phospho	
	formula of the oxide would be	9. DPMT 2004]	19.7 kg of gold was reco	overed from a smuggler. How many ered ($Au = 197$) [Pb. CET 1985]
	(a) MO (b) M_2O_3		(a) 100	(b) 6.02×10^{23}
	(c) M_2O (d) M_2O_5		(c) 6.02×10^{24}	(d) 6.02×10^{25}
	2 0	10.	The total number of prot	cons in $10 g$ of calcium carbonate is
63.	The number of molecules in 4.25 g of ammonia are		$(N_0 = 6.023 \times 10^{23})$	
	[Pt	o. CET 2000]	(a) 1.5057×10^{24}	(b) 2.0478×10^{24}
	(a) 0.5×10^{23} (b) 1.5×10^{23}		` ,	(d) 4.0956×10^{24}
	(c) 3.5×10^{23} (d) 1.8×10^{32}	11.	(c) 3.0115×10^{24} The number of molecules	` '
	- 1	11.	(a) 3.0×10^{23}	(b) 6.02×10^{23}
	The mole concept			
1.	Which one of the following pairs of gases contain number of molecules [EA]	ACCES 10051	(c) $\frac{16}{6.02} \times 10^{23}$	(d) $\frac{16}{3.0} \times 10^{23}$
	(a) $16 g$ of O_2 and $14 g$ of N_2	MCET 1987] 12.	Number of molecule O_2 , NH_3 and CO_2 at ST.	
	(b) $8 g$ of O_2 and $22 g$ of CO_2		(a) In the order $CO_2 < C$	$O_2 < NH_3$
	(c) $28 g$ of N_2 and $22 g$ of CO_2		(b) In the order $NH_3 < 0$	$O_2 < CO_2$
	(d) $32 g$ of O_2 and $32 g$ of N_2		(c) The same	
2.	Number of gm of oxygen in 32.2 g $Na_2SO_4.10H_2$	O is	(d) $NH_3 = CO_2 < O_2$	
	(a) 20.8 (b) 22.4 [Haryana	a PMT 2000] 13.	The molecular weight of unit of molecular weight	hydrogen peroxide is 34. What is the [MP PMT 1986]
	(c) 2.24 (d) 2.08		(a) g	(b) <i>mol</i>
3.	250 ml of a sodium carbonate solution contains 2.0	•	(c) $g mol^{-1}$	(d) $mol g^{-1}$
	Na_2CO_3 . If 10 ml of this solution is diluted to on is the concentration of the resultant solution (r	14.	The number of water mole	ecules in 1 litre of water is [EAMCET 1990]
	2 3 .	MCET 2001]	(a) 18	(b) 18×1000
	(a) 0.1 <i>M</i> (b) 0.001 <i>M</i>		(c) N_A	(d) $55.55 N_A$
	(c) $0.01 M$ (d) $10^{-4} M$	15.	The number of electrons is	n a mole of hydrogen molecule is
4.	A molar solution is one that contains one mole of a s	solute in [IIT 1986]	(a) 6.02×10^{23}	[CPMT 1987] (b) 12.046×10^{23}
	(a) $1000 g$ of the solvent (b) One litre of the		(c) 3.0115×10^{23}	(d) Indefinite
_	(c) One litre of the solution (d) 22.4 litres of th	16		$BaCO_3$ which contain 1.5 moles of
5.	The number of oxygen atoms in 4.4 g of CO_2 is applying the sum of CO_2 in CO_2 in CO_2 in CO_2 is applying the sum of CO_2 is applying the sum of CO_2 in CO_2 in CO_2 in CO_2 in CO_2 is a sum of CO_2 in CO_2 in CO_2 in CO_2 in CO_2 in CO_2 is a sum of CO_2 in CO_2	prox.	oxygen atoms is	[EAMCET 1991]
		E PMT 1990]	(a) 0.5	(b) 1
	(a) 1.2×10^{23} (b) 6×10^{22}		(c) 3	(d) 6.02×10^{23}

16 Chemical Arithmetic Which of the following is Loschmidt number 17. (b) 2.69×10^{19} (a) 6×10^{23} (c) 3×10^{23} (d) None of these 18. How many molecules are present in one gram of hydrogen

				[AIIMS 1982]
(a)	6.02×10^{23}	(b)	3.01×10^{23}	
(c)	2.5×10^{23}	(d)	1.5×10^{23}	

19. The total number of gm-molecules of SO_2Cl_2 in 13.5g of sulphuryl chloride is [CPMT 1992] (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4

20. The largest number of molecules is in [BHU 1997] (a) 34g of water (b) 28g of CO_2 (c) 46g of CH_3OH (d) 54g of N_2O_5

The number of moles of sodium oxide in 620g of it is 21. **IBHU 1992**1

> (a) 1 mol (b) 10 moles (c) 18 moles (d) 100 moles

22. 2g of oxygen contains number of atoms equal to that in

[BHU 1992]

(a) 0.5g of hydrogen (b) 4g of sulphur (c) 7g of nitrogen (d) 2.3g of sodium

23. Molarity of liquid HCl with density equal to 1.17g/cc is

> [CBSE PMT 2001] (a) 36.5 (b) 18.25

(d) 4.65

24. How many atoms are contained in one mole of sucrose $(C_{12}H_{22}O_{11})$ [Pb. PMT 2002]

(a) $45 \times 6.02 \times 10^{23}$ atoms/mole

(b) $5 \times 6.62 \times 10^{23}$ atoms/mole (c) $5 \times 6.02 \times 10^{23}$ atoms/mole

(d) None of these

25. The number of molecules of CO_2 present in 44g of CO_2 is

[BCECE 2005]

(a) 6.0×10^{23}

(b) 3×10^{23}

(c) 12×10^{23}

(d) 3×10^{10}

A sample of phosphorus trichloride (PCl₃) contains 1.4 moles 26. of the substance. How many atoms are there in the sample [Kerala PMT 2004

(a) 4

(c) 8.431×10^{23}

(d) 3.372×10^{24}

(e) 2.409×10^{24}

27. The number of sodium atoms in 2 moles of sodium ferrocyanide is [BHU 2004]

(a) 12×10^{23}

(b) 26×10^{23}

(c) 34×10^{23}

(d) 48×10^{23}

Percentage composition & Molecular formula

1. The percentage of oxygen in NaOH is [CPMT 1979] (a) 40

(b) 60

(c) 8

(d) 10

2. The percentage of nitrogen in urea is about [KCET 2001]

(c) 18

(d) 28

If two compounds have the same empirical formula but 3. different molecular formula, they must have

IMP PMT 19861

(a) Different percentage composition

(b) Different molecular weights

(c) Same viscosity

(d) Same vapour density

A compound (80 g) on analysis gave C = 24 g, H = 4 g, O =32 g. Its empirical formula is [CPMT 1981]

(a) $C_2H_2O_2$

(b) C_2H_2O

(c) CH_2O_2

(d) CH_2O

5. The empirical formula of a compound is CH_2O . 0.0835 moles of the compound contains 1.0 g of hydrogen. Molecular formula of the compound is

(a) $C_2H_{12}O_6$

(b) $C_5 H_{10} O_5$

(c) $C_4H_8O_8$

(d) $C_3 H_6 O_3$

The empirical formula of an acid is CH_2O_2 , the probable 6. molecular formula of acid may be [AFMC 2000]

(a) CH_2O

(b) CH_2O_2

(c) $C_2H_4O_2$

(d) $C_3H_6O_4$

7. In which of the following pairs of compounds the ratio of C, H and O is same

(a) Acetic acid and methyl alcohol

(b) Glucose and acetic acid

(c) Fructose and sucrose

(d) All of these

Chemical stoichiometry

How much of NaOH is required to neutralise 1500 cm³ of 0.1 [KCET 2001] N HCl (Na = 23)

(a) 40 g

(b) 4 g

(c) 6 g

(d) 60 g

How much water should be added to 200 c.c of semi normal solution of NaOH to make it exactly deci normal

[AFMC 1983]

(a) 200 cc

(b) 400 cc

(c) 800 cc

(d) 600 cc

2.76 g of silver carbonate on being strongly heated yield a residue weighing [Pb. CET 2003]

(a) 2.16 g

(b) 2.48 g

(c) 2.64 g

(d) 2.32 g

Chemical Arithmetic 17 UNIVERSAL SELF SCORER

4.	In the reaction, $4NH_3$ (g	$(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$,		(c) 80 grams	(d) 320 grams	
	When 1 mole of ammonia	and 1 mole of O_2 are made to react	13.	What is the normality of a	a 1 M solution of H_3PC	O_4
	to completion					[AIIMS 1982]
	(a) 1.0 mole of H_2O is pr	oduced		(a) $0.5 N$	(b) 1.0 <i>N</i>	
	(b) 1.0 mole of <i>NO</i> will b	a produced		(c) $2.0 N$	(d) 3.0 <i>N</i>	
		-	14.	Normality of 2M sulphuri	ic acid is	[AIIMS 1992]
	(c) All the oxygen will be			(a) 2N	(b) 4 <i>N</i>	
	(d) All the ammonia will b	e consumed		(c) $\frac{N}{2}$	(d) $\frac{N}{4}$	
5.		% of iron by weight. The molecular		2	4	
	-	pproximately 67200. The number of = 56) present in one molecule of	15.	How many g of a dibas		
	haemoglobin is	[CBSE PMT 1998]		present in 100 <i>ml</i> of its strength	aqueous solution to gr	[AIIMS 1992]
	(a) 6	(b) 1		(a) 1 g	(b) 2 g	
	(c) 4	(d) 2		(c) 10 g	(d) 20 g	
6.	production of NH ₃ gas s	ium sulphate is necessary for the sufficient to neutralize a solution	16.	The solution of sulphu H_2SO_4 . Specific gravity		
		$l? [HCl=36.5; (NH_4)_2 SO_4 = 132;$		is about (a) 18.0	(b) 27.9	[CBSE 1991]
	$NH_3 = 17$	[CPMT 1992]		(c) 1.0	(d) 10.0	
	(a) 272 g	(b) 403 g	17	, ,		nd of distilled
_	(c) 528 g	(d) 1056 g	17.	Mohr's salt is dissolved water to	iii dii. H_2SO_4 iliste	au of distilled
7.		diammonium hydrogen phosphate		(a) Enhance the rate of c	lissolution	
	$(NH_4)_2 HPO_4$ is	[CPMT 1992]		(b) Prevent cationic hyd		
	(a) 23.48	(b) 46.96		(c) Increase the rate of i		
	(c) 53.78	(d) 71.00		(d) Increase its reducing		
8.	If $1\frac{1}{2}$ moles of oxygen co	ombine with Al to form Al_2O_3 the	18.	Acidified potassium perm		colourised by
	weight of <i>Al</i> used in the rea		10.	(a) Bleaching powder	(b) White vitrio	
	(a) 27 g	(b) 54 g		(c) Mohr's salt	(d) Microcosmic	
	(c) 49.5 g	(d) 31 g	19.	Approximate atomic we	eight of an element is	26.89. If its
9.	- · · ·	roxidase anhydrous enzyme is 0.5%		equivalent weight is 8.9.	, the exact atomic weigh	
		=78.4). Then minimum molecular		would be (a) 26.89	(b) 8.9	[DPMT 1984]
	weight of peroxidase anhyd	•		(a) 20.89 (c) 17.8	(d) 26.7	
		[CBSE PMT 2001]	20.	Vapour density of a gas is		ar mass
	(a) 1.568×10^4	(b) 1.568×10^3				[AFMC 2000]
	(c) 15.68	(d) 3.136×10^4		(a) 33	(b) 22	
10.	H_2 evolved at STP on	complete reaction of 27 g of		(c) 44	(d) 11	
	Aluminium with excess of a	queous NaOH would be	21.	Equivalent weight of K	MnO_4 acting as an ox	idant in acidic
		[CPMT 1991]		medium is		MP PET 1999]
	(a) 22.4	(b) 44.8		(a) The same as its mole	_	
	(c) 67.2	(d) 33.6 <i>litres</i>		(b) Half of its molecular		
11.	What is the % of H_2O in I	$Fe(CNS)_3.3H_2O$		(c) One-third of its mole(d) One-fifth of its mole		
	(a) 45	(b) 30	22.	0.16 g of dibasic acid 1	_	normal <i>NaOH</i>
	(c) 19	(d) 25		solution for complete ne	-	
12.	What weight of SO_2 can	be made by burning sulphur in 5.0		the acid will be		[CPMT 1989]
	moles of oxygen			(a) 32	(b) 64	
	(a) 640 <i>grams</i>	(b) 160 grams		(c) 128	(d) 256	

(a) 0.1 N

(c) 0.3 N

31.

(b) 0.15 N

(d) 0.4 N

A solution containing Na_2CO_3 and NaOH requires 300 ml of

 $0.1\ N\ HCl$ using phenolphalein as an indicator. Methyl orange is then added to the above titrated solution when a further 25 ml

of 0.2 $N\ HCl$ is required. The amount of NaOH present in

solution is $(NaOH = 40, Na_2CO_3 = 106)$

23.

18 Chemical Arithmetic

of M/20 hydrochloric acid required is

To neutralise 20 ml of M/10 sodium hydroxide, the volume

[Andhra MBBS 1980]

	(a) 10 <i>ml</i>	(b) 15 <i>ml</i>	32.	In the preceeding ques	stion, the amount of Na_2	CO_3 present in
	(c) 20 ml	(d) 40 ml		the solution is		[CPMT 1992]
24.	-	and <i>B</i> have concentration of 0.5		(a) 2.650 g	(b) 1.060 g	
		ne volume of solutions A and B		(c) $0.530 g$	(d) 0.265 g	
	required to make 2 <i>litres</i> of 0.2	[KCET 1993]	33.	How many ml of 1 (M	H_2SO_4 is required to	neutralise 10 ml
	(a) $0.5 l$ of $A + 1.5 l$ of B	[KCE1 1993]		of 1 (M) NaOH solution		
	(a) $0.5 l$ of $A + 1.5 l$ of B				[MP PET 1998; MNR 1982	2; MP PMT 1987]
	(c) $1.0 l \text{ of } A + 1.0 l \text{ of } B$			(a) 2.5	(b) 5.0	
	(d) $0.75 l \text{ of } A + 1.25 l \text{ of } B$			(c) 10.0	(d) 20.0	
25.		$N/2 H_2 SO_4$ and 30 ml of	34.	Which of the following	g cannot give iodometric t	titrations
25.						[AIIMS 1997]
	The normality of the resulting	her and volume made to one <i>litre</i> . solution is [MNR 1991]		(a) Fe^{3+}	(b) Cu^{2+}	
				(c) Pb^{2+}	(d) Ag^+	
	(a) $N/5$	(b) N/10	25		. ,	
	(c) N/20	(d) N/40	35.	•	errous ammonium sulpha	te according to
26.	-	ressure and temperature, 40 ml of		the equation	. 2. 2.	
		ride gas is mixed with 20 <i>ml</i> of e of gas at the same temperature		$MnO_4^- + 5Fe^{2+} + 8H$	$^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4I$	H_2O , here 10
	and pressure will be	[CBSE PMT 1993]		$ml ext{ of } 0.1 ext{ } M ext{ } KMnO_4 ext{ } i$	is equivalent to	[CPMT 1999]
	(a) 100 ml	(b) 20 <i>ml</i>		(a) 20 ml of 0.1 M F	eSO_{4}	
	(c) 40 ml	(d) 60 ml			•	
27.	$KMnO_4$ reacts with oxalic	acid according to the equation,		(b) 30 ml of 0.1 M F	esO_4	
	•	$2Mn^{2+} + 10CO_2 + 8H_2O$, here		(c) 40 ml of 0.1 M F	eSO_4	
	$20 \text{ ml of } 0.1 \text{ M } \text{KMnO}_4 \text{ is equ}$			(d) 50 ml of 0.1 M F	eSO ₄	
			2.			
	(a) $20 \ ml \ of \ 0.5 \ M \ H_2 C_2 O_4$	(b) $50 \ ml \ of \ 0.1 \ M \ H_2 C_2 O_4$	36.	$Ca(OH)_2 + H_3PO_4$		the equivalent
	(c) $50 \ ml \ of \ 0.5 \ M \ H_2 C_2 O_4$	(d) $20 \ ml \ of \ 0.1 \ M \ H_2 C_2 O_4$		weight of H_3PO_4 in	the above reaction is	[Pb. PMT 2004]
28.	In order to prepare one litre n	ormal solution of $KMnO_4$, how		(a) 21	(b) 27	
	many grams of $KMnO_4$ are a	required if the solution is used in		(c) 38	(d) 49	
	acidic medium for oxidation	[MP PET 2002]	37.	The mass of $BaCO_3$	produced when excess	CO, is bubbled
	(a) 158 g	(b) 31.6 g		through a solution of 0		2
	(c) 790 g	(d) 62 g		C	, , , ,	[UPSEAT 2004]
29.	What is the concentration of n	itrate ions if equal volumes of 0.1		(a) 91 a	(b) 40.5 c	[UFSEAT 2004]
	M AgNO ₃ and 0.1 M NaCl ar	-		(a) 81 g	(b) 40.5 g	
		[NCERT 1981; CPMT 1983]		(c) $20.25 g$	(d) 162 g	
	(a) 0.1 <i>N</i>	(b) 0.2 <i>M</i>	38.	The amount of water th	hat should be added to 50	0 <i>ml</i> of 0.5 <i>N</i>
	(c) 0.05 M	(d) 0.25 <i>M</i>		solution of NaOH to	give a concentration of 1	0 mg per ml is
30.		ralized by 15 ml of a 0.2 N base.		(a) 100	(b) 200	
	The strength of acid solution is			(c) 250	(d) 500	

39.

40.

(a) 0.6

(c) 0.2

Number of moles of $KMnO_4$ required to oxidize one mole of

A hydrocarbon contains 86% carbon, 488ml of the hydrocarbon

weight 1.68 g at STP. Then the hydrocarbon is an

(b) 0.167

(d) 0.4

[Haryana CEE 1996]

 $Fe(C_2O_4)$ in acidic medium is

(a) 0.6 g

(c) 1.5 g

[CPMT 1992]

(b) 1.0 g

(d) 2.0 g

(b) Alkene (c) 18 g (d) 19 g (a) Alkane (c) Alkyne (d) Arene $\frac{M}{10}$ FeSO₄ was titrated with 50. A solution of 10 41. The ratio of amounts of H_2S needed to precipitate all the metal KMnO₄ solution in acidic medium. The amount of ions from 100 ml of 1 M AgNO₃ and 100 ml of 1 M KMnO₄ used will be [CPMT 1984] CuSO 4 will be (a) 5 ml of 0.1 M (b) 10 ml of 1.1 M (a) 1:1 (b) 1:2 (c) $10 \, ml \, of \, 0.5 \, M$ (d) 10 ml of 0.02 M (c) 2:1 (d) None of these 51. 1.12 ml of a gas is produced at STP by the action of 4.12 mg of 42. An electric discharge is passed through a mixture containing 50 alcohol, with methyl magnesium iodide. The molecular mass of alcohol is [Roorkee 1992; IIT 1993] c.c. of O_2 and 50 c.c. of H_2 . The volume of the gases formed (i) at room temperature and (ii) at 110°C will be (a) 16.0 (b) 41.2 (a) (i) 25 c.c. (ii) 50 c.c. (b) (i) 50 c.c. (ii) 75 c.c. (c) 82.4 (d) 156.0 (c) (i) 25 c.c. (ii) 75 c.c. (d) (i) 75 c.c. (ii) 75 c.c. 52. The simplest formula of a compound containing 50% of element X (atomic mass 10) and 50% of element Y (atomic 100 ml of 0.1 N hypo decolourised iodine by the addition of x g 43. mass 20) is of crystalline copper sulphate to excess of KI. The value of 'x' (b) X_2Y (a) *XY* is (molecular wt. of $CuSO_4.5H_2O$ is 250) (c) XY_3 (d) X_2Y_3 (b) 1.25 g (a) 5.0 g53. A compound contains atoms of three elements in A, B and C. If (c) 2.5 g (d) 4 g the oxidation number of A is +2, B is +5 and that of C is -2, the 44. How many grams of caustic potash required to completely possible formula of the compound is neutralise 12.6 gm HNO₃ [CBSE PMT 2000] (a) 22.4 KOH (b) 1.01 KOH (a) $A_3(BC_4)_2$ (c) 6.02 KOH (d) 11.2 KOH (b) $A_3(B_4C)_2$ 45. If isobutane and n-butane are present in a gas, then how much (c) ABC_2 oxygen should be required for complete combustion of 5 kg of this gas (d) $A_2(BC_3)_2$ (a) 17.9 kg (b) 9 kg 54. What will be the volume of CO_2 at NTP obtained on heating (d) 1.8 kg (c) 27 kg 10 grams of (90% pure) limestone [Pb. CET 2001] 46. 16.8 litre gas containing H_2 and O_2 is formed at NTP on (a) 22.4 litre electrolysis of water. What should be the weight of electrolysed (b) 2.016 litre water (c) 2.24 litre (a) 5 g (b) 9 g (d) 20.16 litre (c) 10 g (d) 12 g 55. The ratio of the molar amounts of H_2S needed to precipitate On electrical decomposition of 150 ml dry and pure O_2 , 10% 47. the metal ions from 20mL each of $1M Cd(NO_3)_2$ and of O_2 gets changed to O, then the volume of gaseous mixture $0.5M\ CuSO_4$ is [CPMT 1997] after reaction and volume of remaining gas left after passing in (a) 1:1 turpentine oil will be (b) 2:1 (a) 145 ml (b) 149 ml (c) 1:2 (c) 128 ml (d) 125 ml (d) Indefinite What should be the weight of 50% HCl which reacts with 100 g 48. 56. 12g of Mg (at. mass 24) will react completely with acid to of limestone [MNR 1985] (a) 50% pure (b) 25% pure

(c) 10% pure

(a) 14.35 g

 $AgNO_3$ solution? ($AgNO_3 = 170$)

49.

(d) 8% pure

(b) 15 g

What should be the weight and moles of AgCl precipitate

obtained on adding 500ml of 0.20 M HCl in 30 g of

(a) One mole of H_2

(b) 1/2 mole of H_2

(c) 2/3 mole of O_2

(d) Both 1/2 mol of H_2 and 1/2 mol of O_2

57. 1.5 mol of O_2 combine with Mg to form oxide MgO. The mass of Mg (at. mass 24) that has combined is

[KCET 2001]

- (a) 72 g
- (b) 36 g
- (c) 48 g
- (d) 24 g
- **58.** 100 g $CaCO_3$ reacts with 1 $litre\ 1$ N HCl. On completion of reaction how much weight of CO_2 will be obtain

[Kerala CET 2005]

- (a) 5.5 g
- (b) 11 g
- (c) 22 g
- (d) 33 g
- (e) 44 g

Critical Thinking

Objective Questions

1. Mixture of sand and sulphur may best be separated by

[Kerala CET 2001

- (a) Fractional crystallisation from aqueous solution
- (b) Magnetic method
- (c) Fractional distillation
- (d) Dissolving in CS2 and filtering
- 2. Irrespective of the source, pure sample of water always yields 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of [Kerala CEE 2002]
 - explained by the law of
 (a) Conservation of mass
- (b) Constant composition
- (c) Multiple proportions
- (d) Constant volume
- 3. Zinc sulphate contains 22.65% of zinc and 43.9% of water of crystallization. If the law of constant proportions is true, then the weight of zinc required to produce 20 g of the crystals will be
 - (a) 45.3 g
- (b) 4.53 g
- (c) 0.453 g
- (d) 453 g
- **4.** 10 dm^3 of N_2 gas and 10 dm^3 of gas X at the same temperature contain the same number of molecules. The gas X is
 - (a) *CO*
- (b) CO_2
- (c) H_2
- (d) NO
- 5. The molar heat capacity of water at constant pressure is 75 $JK^{-1} \ mol^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increases in temperature of water is
 - (a) 6.6 K
- (b) 1.2 K
- (c) 2.4 K
- (d) 4.8 K
- **6.** A compound possesses 8% sulphur by mass. The least molecular mass is **[AIIMS 2002]**
 - (a) 200
- (b) 400
- (c) 155
- (d) 355
- 7. Which of the following contains maximum number of atoms
 [JIPMER 2000]
 - (a) 6.023×10^{21} molecules of CO_2

- (b) 22.4 L of CO₂ at STP
- (c) $0.44 g \text{ of } CO_2$
- (d) None of these
- 8. In a mole of water vapour at STP, the volume actually occupied or taken by the molecules (i.e., Avogadro's No. × Volume of one molecule) is [Kerala EEE 2000]
 - (a) Zero
 - (b) Less than 1% of 22.4 litres
 - (c) About 10% of the volume of container
 - (d) 1% to 2% of 22.4 litres
 - (e) Between 2% to 5% of 22.4 litres
- 9. If 10^{21} molecules are removed from 200mg of CO_2 , then the number of moles of CO_2 left are [IIT 1983]
 - (a) 2.85×10^{-3}
- (b) 28.8×10^{-3}
- (c) 0.288×10^{-3}
- (d) 1.68×10^{-2}
- **10.** The set of numerical coefficient that balances the equation $K_2CrO_4 + HCl \rightarrow K_2Cr_2O_7 + KCl + H_2O$ is

[Kerala CEE 2001]

- (a) 1, 1, 2, 2, 1
- (b) 2, 2, 1, 1, 1
- (c) 2, 1, 1, 2, 1
- (d) 2, 2, 1, 2, 1
- 11. One litre hard water contains 12.00 mg Mg^{2+} milli equivalent of washing soda required to remove its hardness is
 - (a)

- (b) 12.15
- (c) 1×10^{-3}
- (d) 12.15×10^{-3}
- 12. In standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by iodometry, the equivalent weight of $K_2Cr_2O_7$ is [IIT 2000]
 - (a) MW/2
- (b) MW/3
- (c) MW/6
- (d) MW/1
- 13. 3.92 g of ferrous ammonium sulphate crystals are dissolved in 100 ml of water, 20 ml of this solution requires 18 ml of KMnO₄ during titration for complete oxidation. The weight of KMnO₄ present in one litre of the solution is

[Tamilnadu CET 2002]

- (a) 3.476 g
- (b) 12.38 g
- (c) 34.76 g
- (d) 1.238 g
- **14.** A 100 *ml* solution of 0.1 *n HCl* was titrated with 0.2 *N NaOH* solution. The titration was discontinued after adding 30 *ml* of *NaOH* solution. The remaining titration was completed by adding 0.25 *N KOH* solution. The volume of *KOH* required for completing the titration is **[DCE 1999]**
 - (a) 70 ml SE PMT 2003]
- (b) 32 *ml*
- (c) 35 ml
- (d) 16 ml
- 15. What volume of Hydrogen gas, at 273 K and 1 atm pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass = 10.8) from the reduction of boron trichloride by Hydrogen [AIEEE 2003]
 - (a) 22.4 L
- (b) 89.6 *L*
- (c) 67.2 L
- (d) 44.8 *L*
- **16.** The mass of $112 cm^3$ of CH_4 gas at STP is

[Karnataka CET 2001]

- (a) 0.16 g
- (b) 0.8 g
- (c) 0.08 g
- (d) 1.6 g
- 17. Complete combustion of 0.858 g of compound X gives 2.63 g of CO_2 and 1.28 g of H_2O . The lowest molecular mass X can have [Kerala MEE 2000]
 - (a) 43 g
- (b) 86 g
- (c) 129 g
- (d) 172 g
- **18.** In the following reaction, which choice has value twice that of the equivalent mass of the oxidising agent

$SO_2 + H_2O$ —	$\rightarrow 3S + 2H_2O$
-----------------	--------------------------

[DPMT 2000]

(a) 64

(b) 32

- (c) 16
- (d) 48

Assertion & Reason For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion : Volume of a gas is inversely proportional to

the number of moles of a gas.

Reason : The ratio by volume of gaseous reactants and

products is in agreement with their mole

ratio.

[AIIMS 1995]

- **2.** Assertion : Molecular weight of oxygen is 16.
 - Reason : Atomic weight of oxygen is 16.

[AIIMS 1996]

- **3.** Assertion : Atoms can neither be created nor destroyed.
 - Reason : Under similar condition of temperature and pressure, equal volume of gases does not

contain equal number of atoms.

[AIIMS 1994,2002]

4. Assertion : One mole of SO_2 contains double the number of

molecules present in one mole of O_2 .

Reason : Molecular weight of SO_2 is double to that of

 O_2 .

- **5.** Assertion : 1.231 has three significant figures.
 - Reason : All numbers right to the decimal point are

significant.

6. Assertion : 22.4 L of N_2 at NTP and 5.6 L O_2 at NTP

contain equal number of molecules.

Reason

Under similar conditions of temperature and pressure all gases contain equal number of

molecules.

7. Assertion : One atomic mass unit (amu) is mass of an

atom equal to exactly one-twelfth the mass of

a carbon-12 atom.

Reason : Carbon-12 isotope was selected as standard.

8. Assertion

Molecular mass of A is $\frac{M}{4}$ if the molecular

mass of B is M.

Reason : Vapour density of A four times that of B.

9. Assertion: Pure water obtained from different sources

such as, river, well, spring, sea etc. always contains hydrogen and oxygen combined in

the ratio 1:8 by mass.

Reason : A chemical compound always contains elements combined together in same

proportion by mass, it was discovered by

French chemist, Joseph Proust (1799).

10. Assertion: As mole is the basic chemical unit, the

concentration of the dissolved solute is usually specified in terms of number of moles

of solute.

Reason : The total number of molecules of reactants

involved in a balanced chemical equation is

known as molecularity of the reaction.

11. Assertion: A certain element X, forms three binary

compounds with chlorine containing 59.68%,68.95% and 74.75% chlorine respectively. These data illustrate the law of

multiple proportions.

Reason : According to law of multiple proportions, the

relative amounts of an element combining with some fixed amount of a second element in a series of compounds are the ratios of

small whole numbers.

12. Assertion : Equivalent weight of Cu in CuO is 63.6

and in Cu_2O 31.8.

Reason : Equivalent weight of an element

 $= \frac{\text{Atomic weight of the element}}{\text{Valency of the element}}$

13. Assertion : Mass spectrometer is used for the

determination of isotopes.

Reason : Isotopes are the atoms of same element

differing in mass numbers.

14. Assertion : Gases combine in simple ratio of their

volume but, not always.

Reason : Gases deviate from ideal behaviour.

15. Assertion : Isomorphous substances form crystals of

same shape and can grow in saturated

solution of each other.

Reason : They have similar constitution and chemical

formulae.

16. Assertion : Atomicity of oxygen is 2.

Reason : 1 mole of an element contains 6.023×10^{23}

atoms.

17. Assertion : 1 amu equals to $1.66 \times 10^{-24} \ g$.

Reason : 1.66×10^{-24} g equals to $\frac{1}{12}th$ of mass of a

 C^{12} atom.

Significant figures, Units for measurement, Matter and Separation of mixture

1	а	2	d	3	а	4	С	5	d
6	b	7	С	8	d	9	С	10	С
11	С	12	b	13	а	14	С	15	b
16	b	17	b	18	а	19	а	20	С
21	b	22	d	23	а	24	а	25	b
26	b	27	d						

Laws of chemical combination

1	а	2	d	3	С	4	а	5	С
6	С	7	С	8	b	9	b	10	а
11	С	12	b	13	а	14	d	15	b
16	а	17	С	18	d	19	С	20	а
21	С	22	d						

Atomic, Molecular and Equivalent masses

1	С	2	b	3	а	4	а	5	b
6	С	7	d	8	b	9	а	10	b
11	а	12	b	13	а	14	С	15	b
16	С	17	а	18	d	19	а	20	а
21	b	22	b	23	d	24	С	25	а
26	а	27	С	28	d	29	а	30	С
31	а	32	d	33	b	34	а	35	С
36	b	37	b	38	С	39	а	40	b
41	С	42	d	43	а	44	d	45	d
46	b	47	С	48	С	49	b	50	b
51	а	52	b	53	b	54	С	55	b
56	а	57	d	58	d	59	а	60	d
61	С	62	d	63	b				

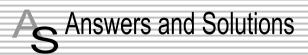
The mole concept

1	а	2	b	3	b	4	С	5	а
6	b	7	а	8	С	9	d	10	С
11	b	12	С	13	С	14	d	15	а
16	а	17	b	18	b	19	а	20	а
21	b	22	b	23	С	24	а	25	а
26	С	27	d						

Percentage composition & Molecular formula

1	а	2	а	3	b	4	d	5	а
6	b	7	b						

Chemical stoichiometry


1	С	2	С	3	а	4	С	5	С
6	С	7	С	8	b	9	а	10	d
11	С	12	d	13	d	14	b	15	а
16	b	17	b	18	С	19	d	20	С
21	d	22	С	23	d	24	а	25	d
26	b	27	b	28	b	29	С	30	а
31	b	32	С	33	b	34	С	35	d
36	d	37	b	38	d	39	а	40	b
41	b	42	С	43	С	44	d	45	а
46	b	47	а	48	а	49	а	50	d
51	С	52	b	53	а	54	b	55	b
56	b	57	а	58	С				

Critical Thinking Questions

1	d	2	b	3	b	4	а	5	С
								10	
11	а	12	С	13	а	14	d	15	С
16	С	17	а	18	b				

Assertion & Reason

1	е	2	е	3	С	4	е	5	d
	d		а	8	С	9	а	10	b
		12	е	13	е	14	а	15	а
16	b	17	а						

Significant figures, Units of measurement, Matter and Separation of mixture

- **4.** (c) Pressure = $\frac{\text{Force}}{\text{Area}} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$
 - Energy per unit volume $=\frac{[ML^2T^{-2}]}{[L^3]} = [ML^{-1}T^{-2}]$
- 17. (b) $\frac{(29.2 20.2)(1.79 \times 10^5)}{1.37} = \frac{9.0 \times 1.79 \times 10^5}{1.37}$

Least precise terms *i.e.*, 9.0 has only two significant figures. Hence, final answer will have two significant figures.

- **18.** (a) Pure ethyl alcohol = 81.4 0.002 = 81.398.
- **19.** (a) JPa^{-1} ; Unit of work is *Joule* and unit of pressure is *Pascal*.

Dimension of Joule i.e. work =
$$F \times L = MLT^{-2} \times L$$

$$= \left[ML^2T^{-2}\right]$$

$$\frac{1}{Pa} = \frac{1}{Pressure} = \frac{1}{\frac{F}{A}} = \frac{1 \times A}{F} = \left[MLT^{-1}\right]$$
So, $JPa^{-1} = \left[ML^2T^2\right] = \left[L^2 \times L\right] = \left[L^3\right]$.

- **22.** (d) 1 zepto = 10^{-21}
- **23.** (a) As we know that all non zero unit are significant number. Therefore significant figure is 2.
- **24.** (a) Number of significant figures in 6.0023 are 5 because all the zeroes stand between two non zero digit are counted towards significant figures.
- **25.** (b) Given P = 0.0030m, Q = 2.40m & R = 3000m In P(0.0030) initial zeros after the decimal point are not significant. Therefore, significant figures in P(0.0030) are 2. Similarly in Q(2.40) significant figures are 3 as in this case final zero is significant. In R = (3000) all the zeroes are significant hence, in R significant figures are 4.
- **26.** (b) All the zeroes between two non zero digit are significant. Hence in 60.0001 significant figures is 6.
- 27. (d) Round off the digit at 2nd position of decimal 3.929 = 3.93.

Laws of chemical combination

n+m=p+q by low of conservation of mass.

Atomic, Molecular and Equivalent masses

5. (b) The atomic weight of sulphur =32 In SCl_2 valency of sulphur =2

So equivalent mass of sulphur = $\frac{32}{2}$ = 16.

(c) As the given sulphate is isomorphous with $ZnSO_4.7H_2O$ its formula would be $MSO_4.7H_2O.m$ is the atomic weight of M, molecular weight of $MSO_4.7H_2O$ = m + 32 + 64 + 126 = m + 222

6.

Hence % of
$$M = \frac{m}{m + 222} \times 100 = 9.87$$
 (given) or $100m = 9.87m + 222 \times 9.87$ or $90.13m = 222 \times 9.87$ or $m = \frac{222 \times 9.87}{90.13} = 24.3$.