Tips & Tricks

- A chemical bond is expected to be formed when the energy of the aggregate formed is about 40 kJ mole lower than the separate particles.
- Formation of a chemical bond is always an exothermic process.
- Lattice energies of bi-bivalent solids > bi-univalent solids > uniexample, solids. For lattice $Mg^{2+}O^{2-}(3932 \, kJ \, mole^{-1}) > Ca^{2+}(F^{-})_2 \, (2581 \, kJ \, mole^{-1}) >$ $Li^+F^-(1034 \, kJ \, mole^{-1}).$
- When co-ordination number increases, the coulombic forces of attraction increases and hence stability increases.
- lonic solids have negative vapour pressure.
- As a general rule, atomic crystals are formed by the lighter elements of the middle columns of the periodic table.
- \mathcal{L} $FeCl_3$ is more covalent than $FeCl_2$ because polarising power of Fe^{3+} is more than that of Fe^{2+} . Similarly $SnCl_4$ is more covalent than $SnCl_2$.
- Boron forms the maximum number of electron deficient compounds than any other elements in the periodic table.
- Roughly each lone pair decreases the bond angle by 2.5°.
- Greater the number of the lone pairs at the two bonding atoms, greater is the repulsion between them and weaker is the bond.
- The actual number of s- and p-electrons present in the outermost shell of the element is called maximum covalency of that atom.
- The hydrogen bonds are tetrahedral in their directions and not planar.
- The hydrogen bond is stronger in HF and persists even in vapour state. Such bonds account for the fact that gaseous hydrogen fluoride is largely polymerised into the molecular species $H_2F_2, H_3F_3, H_4F_4, H_5F_5 \text{ and } H_6F_6.$
- Hydrogen bonding is strongest when the bonded structure is stabilised by resonance.
- $m{\varkappa}$ Critical temperature of water is higher than that of O_2 because H_2O molecule has dipole moment.

Electrovalent bonding

Which forms a crystal of NaCl

[CPMT 1972; NCERT 1976; DPMT 1996]

- NaCl molecules
- (b) Na^+ and Cl^- ions
- (c) Na and Cl atoms
- (d) None of the above
- When sodium and chlorine reacts then

[NCERT 1973]

- (a) Energy is released and ionic bond is formed
- Energy is released and a covalent bond is formed
- (c) Energy is absorbed and ionic bond is formed
- Energy is absorbed and covalent bond is formed
- Which one is least ionic in the following compounds 3.

[CPMT 1976; BHU 1998]

- (a) AgCl
- (b) KCl
- (c) BaCl₂
- (d) $CaCl_2$
- The electronic configuration of four elements L, P, Q and R are given in brackets

$$L(1s^2, 2s^2 2p^4), Q(1s^2, 2s^2 2p^6, 3s^2 3p^5)$$

 $P(1s^2, 2s^2 2p^6, 3s^1), R(1s^2, 2s^2 2p^6, 3s^2)$

The formulae of ionic compounds that can be formed between these elements are

- (a) L_2P , RL, PQ and R_2Q (b) LP, RL, PQ and RQ
- (c) P_2L , RL, PQ and RQ_2 (d) LP, R_2L , P_2Q and RQ
- Electrovalent compound's

[MP PMT 1984]

- - (a) Melting points are low Boiling points are low (b)
 - (c) Conduct current in fused state
- Insoluble in polar solvent
- A electrovalent compound is made up of

[CPMT 1978, 81; MNR 1979]

- (a) Electrically charged molecules
- (b) Neutral molecules
- (c) Neutral atoms
- (d) Electrically charged atoms or group of atoms
- Electrovalent bond formation depends on 7.
 - (a) lonization energy
- (b) Electron affinity
- (c) Lattice energy
- (d) All the three above
- In the following which substance will have highest boiling point [NCERT 1973; I 8.
 - (a) *He*
- (b) CsF
- (c) NH_3
- (d) CHCl₃
- An atom of sodium loses one electron and chlorine atom accepts one electron. This result the formation of sodium chloride molecule. This type of molecule will be

[MP PMT 1987]

- (a) Coordinate
- (b) Covalent
- (c) Electrovalent
- (d) Matallic bond
- Formula of a metallic oxide is MO. The formula of its phosphate 10. [CPMT 1986, 93]
 - (a) $M_2(PO_4)_2$
- (b) $M(PO_4)$
- (c) M_2PO_4
- (d) $M_3(PO_4)_2$
- From the following which group of elements easily forms cation 11.
 - (a) F, Cl, Br
- (b) *Li*, *Na*, *K*
- (c) O, S, Se
- (d) N, P, As
- - Which type of compounds show high melting and boiling points
- (a) Electrovalent compounds

 - (b) Covalent compounds

- (c) Coordinate compounds
- All the three types of compounds have equal melting and
- Lattice energy of an ionic compound depends upon 13.

[AIEEE 2005]

- (a) Charge on the ion only
- (b) Size of the ion only
- (c) Packing of ions only
- (d) Charge on the ion and size of the ion
- In the given bonds which one is most ionic 14.

[EAMCET 1980]

- (a) Cs Cl
- (b) Al Cl
- (c) C-Cl
- (d) H-Cl
- Element x is strongly electropositive and y15. is strongly electronegative. Both element are univalent, the compounds formed from their combination will be [11T 1080]
 - (a) x^+y^-
- (b) $x^{-}y^{+}$
- (c) x-y
- (d) $x \rightarrow y$
- In the formation of NaCl from Na and Cl16. [CPMT 1985]

- (a) Sodium and chlorine both give electrons
- Sodium and chlorine both accept electrons
- (c) Sodium loses electron and chlorine accepts electron
- Sodium accepts electron and chlorine loses electron
- 17. Which of the following is an electrovalent linkage

[CPMT 1974; DPMT 1984, 91; AFMC 1988]

- (a) *CH*₄
- (b) $MgCl_2$
- (c) SiCl₄
- (d) BF_3
- Electrovalent compounds do not have [CPMT 1991] 18.
- (a) High M.P. and Low B.P.
 - (b) High dielectric constant
 - (c) High M.P. and High B.P.
- (d) High polarity
- Many ionic crystals dissolve in water because 19

[NCERT 1982]

- (a) Water is an amphiprotic solvent
- (b) Water is a high boiling liquid
- (c) The process is accompanied by a positive heat of solution
- Water decreases the interionic attraction in the crystal lattice due to solvation
- 20. The electronic structure of four elements A, B, C, D are
- (B) $1s^2$, $2s^2 2p^2$
- (C) $1s^2$, $2s^2 2p^5$
- (D) $1s^2$, $2s^2 2p^6$

The tendency to form electrovalent bond is largest in

[MNR 1987, 95]

(a) A

(b) B

(c) C

- (d) D
- Chloride of metal is $\ensuremath{\mathit{MCl}}_2$. The formula of its phosphate will be 21.
 - (a) M_2PO_4
- (b) $M_3(PO_4)_2$
- (c) $M_2(PO_4)_3$
- (d) MPO_4
- The phosphate of a metal has the formula MPO_4 . The formula of 22. [CPMT 1971; MP PMT 1996] its nitrate will be
 - (a) MNO_3
- (b) $M_2(NO_3)_2$
- (c) $M(NO_3)_2$
- (d) $M(NO_2)_2$

- In the transition of Zn atoms to Zn^{++} ions there is a decrease in 23. [CPMT 1972]
 - (a) Number of valency electrons
 - (b) Atomic weight
 - Atomic number
 - (d) Equivalent weight
- Phosphate of a metal M has the formula $M_3(PO_4)_2$. The formula 24. for its sulphate would be

[CPMT 1973; MP PMT 1996]

- (a) MSO_4
- (b) $M(SO_A)_2$
- (c) $M_2(SO_4)_2$
- (d) $M_3(SO_4)_2$
- The molecular formula of chloride of a metal M is MCl_3 . The 25. formula of its carbonate would be [CPMT 1987]
 - (a) MCO_3
- (b) $M_{2}(CO_{3})_{2}$
- (c) M_2CO_3
- (d) $M(CO_3)_2$
- Sodium chloride easily dissolves in water. This is because 26.

[NCERT 1972; BHU 1973]

- (a) It is a covalent compound
- (b) Salt reacts with water
- (c) It is a white substance
- (d) Its ions are easily solvated
- When NaCl is dissolved in water the sodium ion becomes 27.

[NCERT 1974; CPMT 1989; MP PMT 1999]

- (a) Oxidized
- (b) Reduced
- (c) Hydrolysed
- (d) Hydrated
- Solid NaCl is a bad conductor of electricity since 28.

[AFMC 1980]

- (a) In solid NaCl there are no ions
- (b) Solid NaCl is covalent
- (c) In solid NaCl there is no motion of ions
- (d) In solid NaCl there are no electrons
- 29. Favourable conditions for electrovalency are
 - (a) Low charge on ions, large cation, small anion (b) High charge on ions, small cation, large anion
 - High charge on ions, large cation, small anion
 - (d) Low charge on ions, small cation, large anion
- The sulphate of a metal has the formula $M_2(SO_4)_3$. The formula 30. for its phosphate will be

[DPMT 1982; CPMT 1972; MP PMT 1995]

- (a) $M(HPO_4)_2$
- (b) $M_3(PO_4)_2$
- (c) $M_2(PO_4)_3$
- (d) MPO_4
- lonic bonds are usually formed by combination of elements with [CBSE PMT 199] 31.
 - (a) High ionisation potential and low electron affinity
 - (b) Low ionisation potential and high electron affinity
 - High ionisation potential and high electron affinity
 - (d) Low ionisation potential and low electron affinity Molten sodium chloride conducts electricity due to the presence of
 - (a) Free electrons
 - Free ions (b)
 - (c) Free molecules
 - Atoms of sodium and chlorine

UNIVERSAL SELF SCORER 100 Chemical Bonding

33.	The phosphate of a metal has the formula $MHPO_4$. The formula of its chloride would be	45.	Out of the following, which compound will have electrovalent bonding
	[NCERT 1974; CPMT 1977]		(a) Ammonia (b) Water
	(a) <i>MCl</i> (b) <i>MCl</i> ₂		(c) Calcium chloride (d) Chloromethane
	(c) MCl_3 (d) M_2Cl_3	46.	The force which holds atoms together in an electrovalent bond is (a) Vander Waal's force
34.	A number of ionic compounds <i>e.g.</i> $AgCl$, CaF_2 , $BaSO_4$ are		(b) Dipole attraction force
	insoluble in water. This is because [NCERT 1984] (a) lonic compounds do not dissolve in water		(c) Electrostatic force of attraction(d) All the above
	(b) Water has a high dielectric constant	47.	The main reaction during electrovalent bond formation is
	(c) Water is not a good ionizing solvent		(a) Redox reaction (b) Substitution reaction
	(d) These molecules have exceptionally high alternative forces in the lattice		(c) Addition reaction (d) Elimination reaction
25		48.	Electrovalent compounds are [CPMT 1996
35.	What is the nature of chemical bonding between Cs and F [MP PMT 1987; CPMT 1976]		(a) Good conductor of electricity
	(a) Covalent (b) Ionic		(b) Polar in nature
	(c) Coordinate (d) Metallic		(c) Low M.P. and low B.P.
36.	Which one of the following compound is ionic		(d) Easily available
	[MNR 1985]	49.	lonic compounds do not have [RPMT 1997
	(a) KCl (b) CH_4		(a) Hard and brittle nature
	(c) Diamond (d) H_2		(b) High melting and boiling point
~-			(c) Directional properties
37.	Which of the following compound has electrovalent linkage [CPMT 1983, 84, 93]		(d) Soluble in polar solvents
	•	50.	Highest melting point would be of [RPMT 1999]
	(a) CH_3Cl (b) $NaCl$		(a) He (b) CsCl
	(c) CH_4 (d) Cl_2		(c) NH_3 (d) $CHCl_3$
38.	An ionic compound is generally a [MADT Bihar 1981]	51.	What is the effect of more electronegative atom on the strength o
	(a) Good electrolyte (b) Weak electrolyte		ionic bond [AMU 1999
	(c) Non-electrolyte (d) Neutral		(a) Decreases (b) Increases
39.	What metals combine with non-metals, the metal atom tends to		(c) Dd AMMsd983d wly (d) Remains the same
	(a) Lose electrons	52.	An element X with the electronic configuration $1s^2, 2s^2 2p^6, 3s^2$
	(b) Gain electrons		would be expected to form the chloride with the formula
	(c) Remain electrically neutral (d) None of these		(a) XCl_3 (b) XCl_2
			(c) XCl (d) X_2Cl
40.	Chemical formula for calcium pyrophosphate is $Ca_2P_2O_7$. The		· · · · · · · · · · · · · · · · · · ·
	formula for ferric pyrophosphate will be [NCERT 1977]	53.	Two element have electronegativity of 1.2 and 3.0. Bond formed between them would be [CPMT 1982; DCE 2000
	(a) $Fe_3(P_2O_7)_3$ (b) $Fe_4P_4O_{14}$		(a) Ionic (b) Polar covalent
	(c) $Fe_4(P_2O_7)_3$ (d) Fe_3PO_4		(c) Co-ordinate (d) Metallic
41.	Among the bonds formed by a chlorine atom with atoms of	54.	Which of the following is least ionic [MP PET 2002]
	hydrogen, chlorine, sodium and carbon, the strongest bond is		(a) C_2H_5Cl (b) KCl
	formed between [EAMCET 1988; MP PMT 1993]		
	(a) $H-Cl$ (b) $Cl-Cl$		(c) $BaCl_2$ (d) $C_6H_5N^+H_3Cl^-$
	(c) $Na - Cl$ (d) $C - Cl$	55.	Which type of bonding exists in Li_2O and CaF_2 respectively
42.	Which of the following is least soluble [CPMT 1989]		[RPET 2000]
	(a) BeF_2 (b) SrF_2		(a) Ionic, ionic (b) Ionic, covalent
	(c) CaF_2 (d) MgF_2		(c) Covalent, ionic (d) Coordinate, ionic
40		56.	An atom with atomic number 20 is most likely to combine
43.	Which of the following halides has maximum melting point		chemically with the atom whose atomic number is
	(a) NaCl (b) NaBr		[BHU 2000
	(c) NaI (d) NaF		(a) 11 (b) 14
44.	The high melting point and insolubility in organic solvents of		(c) 16 (d) 10
	sulphanilic acid are due to its structure. (a) Simple ionic (b) Bipolar ionic	57.	Bond formed in crystal by anion and cation is [CBSE PMT 2000]
	(c) Cubic (d) Hexagonal		(a) lonic (b) Metallic
	(a) 1.6.agonar		(-)

	(c) Covalent	(d)	Dipole			(c) 6		(d) 10		
58.	Atoms or group of atoms wh	nich are ele	ectrically charged	are known	3.	The ele ctif	BEATc200guration of	four eleme	nts are given	in brackets
	(a) Anions	(b)	Cations			$L(1s^2, 2s)$	$s^2 2p^1$, $M(1s^2, 2s)$	$^{2}2p^{5}$		
	(c) lons	(d)	Atoms			`	,	,	.)	
59.	Which one is the strongest b	ond	[1	Pb. PMT 2001]		$Q(1s^2, 2s)$	$s^2 2p^6, 3s^1$, $R(1s)$	2 , $2s^{2} 2p$	²)	
	(a) $Br-F$	(b)	F - F			The elemen	nt that would most r	eadily form	a diatomic	molecule is
	(c) $Cl - F$	(d)	Br-Cl			() 0		(1)		[NCERT 1983]
60.	The interionic attraction dep	ends on in	teraction of			(a) <i>Q</i>		(b) M		
	·		[Kerala CET	「 (Med.) 2002]	4.	(c) R In covalenc	v	(d) L	1074 76 78	81; AFMC 1982]
	(a) Solute-Solute	(b)	Solvent-Solvent		4.		ons are transferred	[CI WI	1974, 70, 70,	01, ATMC 1902]
	(c) The charges	(d)	Molecular proper	rties		` '	ons are equally share	ed		
61.	Which of the following comp	oounds is i	onic			(c) The el	ectron of one atom a	re shared b	etween two	atoms
			[1	UPSEAT 2002]		` '	of the above			
	(a) <i>KI</i>	(b)	CH_4		5.		pound is highest cov		Е	
	(c) Diamond	(d)	H_2			(a) LiCl		(b) <i>Li</i>	F	
			-		6.	(c) LiBr	of bonding in graph	(d) Lil		
62.	Which of the following pronting configuration	pairs of s		uPSEAT 2002]	0.	The nature	or boliding in graph	iite is	[DPMT 198	36; CPMT 1986]
				•		(a) Covale	ent	(b) lon	•	, .
	(a) Zn^{2+} and Ni^{2+}		Co^{+3} and Ni^{4+}	•		(c) Metall		(d) Co		
	(c) Co^{2+} and Ni^{2+}	(d)	Ti^{4+} and V^{3+}		7.		the following subs F 1985, 86; NCERT 1975		giant cova	lent structure
63.	The energy that opposes diss	solution of	a solvent is			•	: crystal	oj (b) Sol	id CO.	
	()	(1)		[CPMT 2002]		(c) Silica	Crystar		iite phospho	*****
	(a) Hydration energy	` '	Lattice energy		8.	` '	n of the given pairs (. ,		[BHU 2005]
	(c) Internal energy	. ,	Bond energy		-	(a) HgCl,			Cl, SnCl	[5.14.255]
64.	Which of the following has h	nghest mel	ting point	[RPET 2003]		(c) <i>CH</i> , <i>I</i>		. , .	and NO	
	$()$ $P_{\alpha}C_{\alpha}^{\dagger}$	(1.)	$M \circ Cl$	[RPE1 2003]	9.	The electro	on pair which form	s a bond 1	oetween two	similar non-
	(a) $BeCl_2$		$MgCl_2$			metallic ato				[11T 1986]
	(c) $CaCl_2$	(d)	$BaCl_2$				nilar shared between			
65.	Which of the following states	ments is no	ot true for ionic c	ompounds [RPE	T 2003]	. , .	mplete transfer from imilar spin condition	one atom	to other	
	(a) High melting point					. ,	y shared in between	the two		
	(b) Least lattice energy				10.	For the for	rmation of covalent	bond, the	difference ii	n the value of
	(c) Least solubility in organ	nic compou	ınds				tivities should be	[EAMCE		
	(d) Soluble in water					. , .	to or less than 1.7	. ,	re than 1.7 ne of these	
66.	Electrolytes are compound co	_	-		11.	(c) 1.7 or Which type	more c of bond is formed l	()		
	(a) Electrovalent bond	` '	Covalent bond		•••		or bond to formed t		_	
	(c) Coordinate bond		Hydrogen bond			(c) Coord		(d) Me		
67.	Which of the following hydri			Roorkee 1999]	12.	Covalent co	ompounds are genera	ally in v	/ater	
	(a) CaH_2	(b)	BaH_2			(a) Solubl	le.	(b) Ins	oluble	[CPMT 1987]
	(c) SrH_2	(d)	BeH_2			(c) Dissoc	_	(d) Hy		
68.	Which of the following cond	uct electric	eity in the fused s	tate	13.	. ,	is the electron defici	. , .	_	[AIIMS 1982]
	-		ָּ [נו	Roorkee 2000]		(a) ICl		(b) N	H_3	
	(a) $BeCl_2$	(b)	$MgCl_2$			(c) BCl ₃		(d) P	Ch	
	(c) SrCl ₂	(4)	$BaCl_2$		14.		ong the following o		·	ency to form
	(c) $SrCl_2$	(d)	Du Ci ₂		-7*	covalent co			ceria	
	Covaler	nt hand	lina			(a) <i>Ba</i>		(b) B	?	
	Covaler	וו טטווט	iiiy			(c) <i>Mg</i>		(d) Co	ı	
1.	The valency of sulphur in su	lphuric aci	d is [NCERT 1974]	15.	Silicon has	4 electrons in the o	outermost o	rbit. In form	ing the bonds
	(a) 2	(b)	_	-			ns electrons		oses electror	
	(c) 6	(d)	8			(c) It shar	res electrons	(d) No	ne of these	
2.	The number of electrons	involved	in the bond f	ormation of	16.	Which of the	he following occurs	when two l	nydrogen ato	ms bond with
	N_2 molecule					each others				
	[lir	T 1980; CPA	AT 1983, 84, 85; CB	SE PMT 1992]		(a) Potent	tial energy is lowered	i		

(a) 2

(b) 4

(b) Kinetic energy is lowered

102 Chemical Bonding Electronic motion ceases (d) Energy is absorbed A bond with maximum covalent character between non-metallic 17. elements is formed [NCERT 1082] Between identical atoms Between chemically similar atoms Between atoms of widely different electronegativities Between atoms of the same size Amongst the following covalent bonding is found in 18. [CPMT 1973] (a) Sodium chloride (b) Magnesium chloride (d) Brass Indicate the nature of bonding in diamond 19 [EAMCET 1980; BHU 1996; KCET 2000] (a) Covalent (b) lonic (c) Coordinate (d) Hydrogen Octet rule is not valid for the molecule 20. [IIT 1979; MP PMT 1995]

(a) CO_2 (b) H_2O (c) *CO* (d) O_2 21. Which of the following compounds are covalent [IIT 1980; MLNR 1982] (b) *CaO* H_2 (d) Na_2S (c) KCl 22. Indicate the nature of bonding in CCl_4 and CaH_2 [NCERT 1973] (a) Covalent in CCl_4 and electrovalent in CaH_2 (b) Electrovalent in both CCl_4 and CaH_2 Covalent in both CCl_4 and CaH_2 (d) Electrovalent in CCl_4 and covalent in CaH_2 23. If the atomic number of element X is 7, the best electron dot symbol for the element is (a) X. (b) . X . (c) X:

[NCERT 1973; CPMT 2003]

Which is the most covalent 24.

(a) C-O

(d) C-F(c) C-SThe covalent compound HCl has the ionic character as 25. [EAMCET 1980]

The electronegativity of hydrogen is greater than that of

(b) C - Br

- The electronegativity of hydrogen is equal to that of chlorine
- The electronegativity of chlorine is greater than that of hydrogen
- Hydrogen and chlorine are gases
- 26. The correct sequence of increasing covalent character is represented [CBSE PMT 2005]

- (a) $LiCl < NaCl < BeCl_2$ (b) $BeCl_2 < NaCl < LiCl$
- (c) $NaCl < LiCl < BeCl_2$ (d) $BeCl_2 < LiCl < NaCl$
- Bond energy of covalent O-H bond in water is 27.

[EAMCET 1982]

- (a) Greater than bond energy of H bond
- (b) Equal to bond energy of H bond
- (c) Less than bond energy of H bond
- (d) None of these

Solid CH 4 is 28. [DPMT 1983]

- (a) Molecular solid
- (b) Ionic solid
- (c) Pseudo solid
- (d) Does not exist
- A covalent bond is likely to be formed between two elements which 29.
 - Have similar electronegativities
 - Have low ionization energies
 - (c) Have low melting points
 - Form ions with a small charge
- The bond between two identical non-metal atoms has a pair of 30. [CPMT 1986]
 - (a) Unequally shared between the two
 - (b) Transferred fully from one atom to another
 - With identical spins
 - (d) Equally shared between them
- The valency of phosphorus in H_3PO_4 is [DPMT 1984] 31.
 - (a) 2

- (c) 4
- (d) 1
- Which of the following substances has covalent bonding 32.

[AMU 1985]

- (a) Germanium
- (b) Sodium chloride
- (c) Solid neon
- (d) Copper
- The covalency of nitrogen in HNO_3 is [CPMT 1987] 33.
 - (a) 0

(b) 3

(c) 4

[AFMC 1982]

- (d) 5
- Hydrogen chloride molecule contains a [CPMT 1984] 34.
 - (a) Covalent bond
- (b) Double bond
- (c) Coordinate bond
- (d) Electrovalent bond
- As compared to covalent compounds, electrovalent compounds 35. generally have

[CPMT 1990, 94; MP PMT 1997]

- (a) Low melting points and low boiling points
- (b) Low melting points and high boiling points
- (c) High melting points and low boiling points
- (d) High melting points and high boiling points
- The interatomic distances in H_2 and Cl_2 molecules are 74 and 36. 198 pm respectively. The bond length of HCl is

[MP PET 1993]

- (a) 272 pm
- (b) 136 pm
- (c) 124 pm
- (d) 248 pm
- On analysis, a certain compound was found to contain iodine and oxygen in the ratio of 254 gm of iodine and 80 gm of oxygen.

The atomic mass of iodine is 127 and that of oxygen is 16. Which of the following is the formula of the compound

- (a) Ю
- (b) I_2O
- (c) I_5O_2
- (d) I_2O_5
- lonic and covalent bonds are present in 38.

[CBSE PMT 1990; MNR 1990; KCET 2000; UPSEAT 2001]

- (a) CCl_A
- (b) $CaCl_2$
- (c) NH ₄ Cl
- (d) H_2O
- Highest covalent character is found in [EAMCET 1992] 39.
 - CaF_2
- (b) $CaCl_2$
- (c) $CaBr_2$
- (d) CaI_2
- 40. Among the following which property is commonly exhibited by a covalent compound [MP PET 1994]
 - (a) High solubility in water
 - (b) High electrical conductance
 - (c) Low boiling point
 - (d) High melting point
- Atoms in the water molecule are linked by 41.

[MP PAT 1996]

- (a) Electrovalent bond
- (b) Covalent bond
- (c) Coordinate covalent bond
- Odd electron bond
- Which is the correct electron dot structure of N_2O molecule 42.

- (a) : N = N = O
- (b) : $N \equiv N^+ O$:
- (c) N = N = O
- (d) : N = N = O:
- A covalent bond between two atoms is formed by which of the 43.
 - (a) Electron nuclear attraction
 - Electron sharing
 - (c) Electron transfer
 - Electrostatic attraction
- electronic configuration of 44. $1s^2$, $2s^2$ $2p^6$, $3s^1$. The formula of its oxides will be

[MP PET/PMT 1998]

- (a) *MO*
- (b) M_2O
- (c) M_2O_3
- (d) MO_2
- Which of the following statements regarding covalent bond is not 45. [MP PET/PMT 1998]
 - (a) The electrons are shared between atoms
 - The bond is non-directional
 - The strength of the bond depends upon the extent of overlapping
 - (d) The bond formed may or may not be polar
- If the electronic configuration of M = 2, 8, 3 and that of 46. A = 2, 8, 7, the formula of the compound is

[Bihar MEE 1996]

- (a) $M_2 A_3$
- (b) MA_2
- (c) M_2A
- (d) MA_3

(e)

[CPMT 1981] The table shown below gives the bond dissociation energies (E_{diss}) 47. for single covalent bonds of carbon (C) atoms with element A, B, C and D. Which element has the smallest atoms[CBSE PMT 1994]

Bond	E_{diss} (kJ mol^{-1})
C-A	240
C-B	328
C-C	276
C-D	485

(a) A

(b) B (d) D

- If a molecule X_2 has a triple bond, then X will have the electronic 48. configuration [CET Pune 1998]
 - (a) $1s^2 2s^2 2p^5$
- (b) $1s^2 2s^2 2p^3$
- (c) $1s^2 2s^1$
- (d) $1s^2 2s^2 2p^1$
- Which of the following compounds does not follow the octet rule for 49. electron distribution
 - (a) PCl₅
- (b) PCl_3
- (c) H_2O
- (d) PH_3
- The valency of A=3 and B=2, then the compound is 50.

[Bihar MEE 1997]

- (a) A_2B_3
- (b) $A_3 B_2$
- (c) A_3B_3
- (d) A_2B_2
- (e) None of these
- The number of electrons shared by each outermost shell of N_2 is
 - (a) 2

(c) 4

- Which of the following substances when dissolved in water will give 52. a solution that does not conduct electricity

[JIPMER 1999]

- (a) Hydrogen chloride
- (b) Potassium hydroxide
- (c) Sodium acetate
- (d) Urea
- Which of the following atoms has minimum covalent radius 53.

[DPMT 2000]

(a) B

- (b) C
- (c) N

- (d) Si
- Boron form covalent compound due to [Pb. PMT 2000]
 - (a) Small size
- (b) Higher ionization energy
- (c) Lower ionization energy
- (d) Both (a) and (b)
- Two elements X and Y have following electron configurations 55.

$$X = 1s^2$$
, $2s^2 2p^6$, $3s^2 3p^6$, $4s^2$

and $Y = 1s^2$, $2s^2 2p^6$, $3s^2 3p^6$

The compound formed by combination of X and Y is

[DPMT 2001]

- (a) XY_5
- (b) $X_{2}Y_{5}$
- (c) X_5Y_3
- (d) XY_2
- Covalent compounds have low melting point because 56.

[KCET 2002]

- (a) Covalent bond is less exothermic
- Covalent molecules have definite shape
- Covalent bond is weaker than ionic bond

UNIVERSAL SELF SCORER 104 Chemical Bonding

	(d) Covalent molecules attraction	are held by weak Vander Waal's force of		(a) 8 (c) 6	(b) 5 (d) 7
57.	p and n-type of semicondo	uctors are formed due to	70.		ogether to form hydrogen molecules by
		[UPSEAT 2002]		(a) Hydrogen bond	(b) Ionic bond
	(a) Covalent bonds	(b) Metallic bonds	71.	(c) Covalent bond Strongest bond is	(d) Dative bond [AFMC 1987
	(c) Ionic bonds	(d) Co-ordinate bond	,	(a) $C-C$	(b) $C-H$
58.	Which of the following is	Lewis acid [RPET 2003]		(c) $C-N$	(d) $C - O$
	(a) BF_3	(b) NH_3	72.	* /	diamond, silicon and quartz is [Kerala CET (Med.) 2002
	(c) PH_3	(d) SO_2		(a) Electrostatic force	(b) Electrical attraction
59.	Among the species : (CO_2 , CH_3COO^- , CO , CO_3^{2-} , $HCHO$		(c) Co-valent bond force	(d) Non-covalent bond force
	which has the weakest car		73.	Multiple covalent bonds exist	·
		[Kerala PMT 2004]		(a) H_2	(b) F_2
	(a) CO_2	(b) CH_3COO^-		(c) C_2H_4	(d) N_2
	(a) CO_2	(b) CH ₃ COO	74.	Which of the following doe	s not obey the octet rule
	(c) <i>CO</i>	(d) CO_3^{2-}	7 1-		[EAMCET 1993
	(e) <i>HCHO</i>			(a) <i>CO</i>	(b) <i>NH</i> ₃
60.	Valency of sulphur in Na	$a_2S_2O_3$ is [DPMT 1984]		()	(/)
00.				(c) H_2O	(d) PCl_5
	(a) Two	(b) Three	75.		ements is correct for covalent bond
	(c) Four	(d) Six		(a) Electrons are shared b	
61.	The acid having $O - O$	bond is		(b) It may be polar or not	•
		[IIT JEE Screening 2004]		(c) Direction is non-polar	
	(a) $H_2S_2O_3$	(b) $H_2 S_2 O_6$		(d) Valency electrons are	
	(c) $H_2S_2O_8$	(d) $H_2S_4O_6$	76.	Among CaH_2 , NH_3 , Na	$_{2}H$ and $B_{2}H_{6}$, which are covalen
c -				hydride	[Orissa JEE 2005
62.	The following salt shows i	maximum covalent character		(a) NH_3 and B_2H_6	(b) NaH and CaH_2
		[UPSEAT 2004]		(c) NaH and NH_3	(d) CaH_2 and B_2H_6
	(a) $AlCl_3$	(b) $MgCl_2$	-		
	(c) CsCl	(d) $LaCl_3$		Co-ordinate (or Dative bonding
63.	Which type of bond is pre	esent in H_2S molecule	1.	•	imum number of lone pair of electrons
		[MHCET 2003; Pb CET 2001]		on the central atom?	[IIT 2005
	(a) Ionic bond	(b) Covalent bond		(a) [<i>ClO</i> ₃] ⁻	(b) XeF
	(c) Co-ordinate	(d) All of three		(c) SF	(d) [<i>I</i>] ⁻
64.	H_2S is more acidic than	H_2O , due to [BVP 2004]	2.	A simple example of a coor	dinate covalent bond is exhibited by
	(a) O is more electrone	egative than S		(a) C_2H_2	(b) H_2SO_4
	(a) O is more electrone (b) $O-H$ bond is strong			(a) C_2H_2	(b) H_2SO_4
	(b) $O-H$ bond is strong			(c) <i>NH</i> ₃	(d) HCl
	(b) $O-H$ bond is strong (c) $O-H$ bond is weak (d) None of these	onger than $S-H$ bond aker than $S-H$ bond	3.	(c) <i>NH</i> ₃	- · · · · · · - · · · · · · · · · · · ·
65.	(b) $O - H$ bond is strong (c) $O - H$ bond is weak	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	3.	(c) <i>NH</i> ₃	(d) HCl
65.	(b) $O-H$ bond is stro (c) $O-H$ bond is weat (d) None of these Which of the following ha	onger than $S-H$ bond aker than $S-H$ bond as covalent bond [AFMC 1988; DCE 2004]	3.	(c) <i>NH</i> ₃	(d) HCl ten NH_3 and BF_3 is called
65.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following hat (a) Na_2S	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	3.	(c) NH_3 The bond that exists betwe	(d) HCl een NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994
	(b) $O-H$ bond is stro (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	3.	 (c) NH₃ The bond that exists between (a) Electrovalent (c) Coordinate 	(d) HCl ten NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen
65. 66.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for	onger than $S-H$ bond aker than $S-H$ bond as covalent bond [AFMC 1988; DCE 2004] (b) $AlCl_3$ (d) $MgCl_2$ orms a molecule with eight its own weight	3. 4.	 (c) NH₃ The bond that exists between (a) Electrovalent (c) Coordinate 	(d) HCl sen NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond
	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following hat (a) Na_2S (c) NaH The following element for atoms	onger than $S-H$ bond aker than $S-H$ bond as covalent bond		(c) NH ₃ The bond that exists between (a) Electrovalent (c) Coordinate Which of the following does	(d) HCl sen NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond [MADT Bihar 1984]
	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following hat (a) Na_2S (c) NaH The following element for atoms (a) Si	onger than $S-H$ bond aker than $S-H$ bond as covalent bond [AFMC 1988; DCE 2004] (b) $AlCl_3$ (d) $MgCl_2$ orms a molecule with eight its own weight [MHCET 2004] (b) S		 (c) NH₃ The bond that exists between (a) Electrovalent (c) Coordinate 	(d) HCl sen NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond
66.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following hat (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl	onger than $S-H$ bond aker than $S-H$ bond as covalent bond [AFMC 1988; DCE 2004] (b) $AlCl_3$ (d) $MgCl_2$ orms a molecule with eight its own weight [MHCET 2004] (b) S (d) P		(c) NH ₃ The bond that exists between (a) Electrovalent (c) Coordinate Which of the following does	(d) HCl sen NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond [MADT Bihar 1984]
	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxygen	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	4.	 (c) NH₃ The bond that exists between (a) Electrovalent (c) Coordinate Which of the following does (a) SO₂ (c) H₂SO₃ 	(d) HCl ten NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond [MADT Bihar 1984 (b) HNO_3 (d) HNO_2
66.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxygen (a) Electrovalent bond	onger than $S-H$ bond aker than $S-H$ bond as covalent bond		 (c) NH₃ The bond that exists between (a) Electrovalent (c) Coordinate Which of the following does (a) SO₂ 	(d) HCl ten NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond [MADT Bihar 1984 (b) HNO_3 (d) HNO_2
66. 67.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxygen (a) Electrovalent bond (c) Coordinate bond	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	4.	 (c) NH₃ The bond that exists between (a) Electrovalent (c) Coordinate Which of the following does (a) SO₂ (c) H₂SO₃ 	(d) HCl ten NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen s not have a coordinate bond [MADT Bihar 1984 (b) HNO_3 (d) HNO_2 bunds are formed by
66.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxyger (a) Electrovalent bond (c) Coordinate bond	onger than $S-H$ bond aker than $S-H$ bond as covalent bond [AFMC 1988; DCE 2004] (b) $AlCl_3$ (d) $MgCl_2$ orms a molecule with eight its own weight [MHCET 2004] (b) S (d) P n atoms have (b) Covalent bond (d) No bond 2 in CO and 4 in CO_2 and CH_4 . Its	4.	(c) NH_3 The bond that exists between the bond that exists the b	(d) HCl Len NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen Is not have a coordinate bond [MADT Bihar 1984] (b) HNO_3 (d) HNO_2 Dounds are formed by [CPMT 1990, 94] (b) Sharing of electrons
66. 67.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxygen (a) Electrovalent bond (c) Coordinate bond Carbon has a valency of valency in acetylene C_2H	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	4.	(c) NH_3 The bond that exists between the bond that exists the b	(d) HCl Len NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen Is not have a coordinate bond [MADT Bihar 1984 (b) HNO_3 (d) HNO_2 Founds are formed by [CPMT 1990, 94 (b) Sharing of electrons
66. 67.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxygen (a) Electrovalent bond (c) Coordinate bond Carbon has a valency of valency in acetylene C_2H (a) 1	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	4. 5.	(c) NH_3 The bond that exists between the bond that exists the b	(d) HCl ten NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen is not have a coordinate bond [MADT Bihar 1984 (b) HNO_3 (d) HNO_2 bunds are formed by [CPMT 1990, 94 (b) Sharing of electrons (d) None of these process
66. 67.	(b) $O-H$ bond is street (c) $O-H$ bond is weak (d) None of these Which of the following has (a) Na_2S (c) NaH The following element for atoms (a) Si (c) Cl In H_2O_2 , the two oxygen (a) Electrovalent bond (c) Coordinate bond Carbon has a valency of valency in acetylene C_2H (a) 1 (c) 3	onger than $S-H$ bond aker than $S-H$ bond as covalent bond	4. 5.	(c) NH_3 The bond that exists between the	(d) HCl ten NH_3 and BF_3 is called [AFMC 1982; MP PMT 1985; MNR 1994 KCET 2000; MP PET 2001; UPSEAT 2001 (b) Covalent (d) Hydrogen is not have a coordinate bond [MADT Bihar 1984 (b) HNO_3 (d) HNO_2 bunds are formed by [CPMT 1990, 94 (b) Sharing of electrons (d) None of these process

[DPMT 1985]

- (d) None of the above
 - Which of the following contains a coordinate covalent bond

(a) N_2O_5

7.

- (b) $BaCl_2$
- (c) HCl
- (d) H_2O
- 8. A coordinate bond is formed when an atom in a molecule has
 - (a) Electric charge on it
 - (b) All its valency electrons shared
 - (c) A single unshared electron
 - (d) One or more unshared electron pair
- Which has a coordinate bond 9.

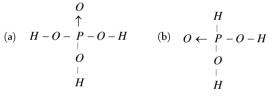
[RPMT 1997]

- (a) SO_3^{2-}
- (b) CH 4
- (c) CO,
- (d) NH_3
- The compound containing co-ordinate bond is 10.

[AFMC 1999; Pb. CET 2002]

- (a) O_3
- (b) SO_3
- (c) H_2SO_4
- (d) All of these
- The number of dative bonds in sulphuric acid molecules is 11.

[MP PET 2002]


(a) 0

(b) 1

(c) 2

- (d) 4
- Which of the following compounds has coordinate (dative) bond 12.
 - (a) CH_3NC
- (b) CH_3OH
- (c) CH_3Cl
- (d) NH_3
- The structure of orthophosphoric acid is 13.

[KCET 2003]

(c)
$$O \leftarrow P - O - H$$
 (d) $H - O - P = O$

- What is the nature of the bond between B and O in 14. $(C_2H_5)_2OBH_3$ [Orissa JEE 2003]
 - (a) Covalent
- (b) Co-ordinate covalent
- (c) lonic bond
- Banana shaped bond (d)
- Sulphuric acid provides a example of 15.

[Kerala CET (Med.) 2002]

- (a) Co-ordinate bonds
- (b) Non-covalent compound
- Covalent and co-ordinate bond
- (d) Non-covalent ion

Dipole moment

Which molecules has zero dipole moment

[AIIMS 1980, 82, 91; Roorkee 2000; MH CET 2001]

- (a) H_2O
- (b) *CO*₂

- 2. In the following which one have zero dipole moment

- (a) BF_3
- (b) *CCl*₄
- (c) $BeCl_2$
- (d) All of these
- Which molecule has the largest dipole moment

[CPMT 1991]

[CB\$E)PMT/1992]

- (b) HI
- (c) HBr
- (d) *HF*
- The unequal sharing of bonded pair of electrons between two atoms in a molecule causes [EAMCET 1986]
 - (a) Dipole
 - (b) Radical formation
 - Covalent bond (c)
 - Decomposition of molecule
- Which of the following will show least dipole character 5.

[NCERT 1975; Kurukshetra CEE 1998]

- (a) Water
- (b) Ethanol
- (c) Ethane
- (d) Ether
- 6. Which of the following molecules will show dipole moment

[NCERT 1972, 74; DPMT 1985]

- (a) Methane
- Carbon tetrachloride
- (c) Chloroform
- (d) Carbon dioxide
- Which of the following compounds possesses the dipole moment[NCERT 1978; E 7.
 - (a) W [RPET 2003]
- (b) Boron trifluoride
- (c) Benzene
- (d) Carbon tetrachloride
- Which bond angle θ would result in the maximum dipole moment 8. for the triatomic molecule YXY [AIIMS 1980]
 - (a) $\theta = 90^{\circ}$
- (b) $\theta = 120^{\circ}$
- (c) $\theta = 150^{\circ}$
- (d) $\theta = 180^{\circ}$
- Which of the following would have a permanent dipole moment[CBSE PMT 200,
 - (a) BF_3
- (b) SiF_4
- (c) SF_4
- (d) XeF_4
- Carbon tetrachloride has no net dipole moment because of 10.

[IIT 1982, 83; MP PMT 1985, 91; EAMCET 1988; AMU 1999

- (a) Its planar structure
- (b) Its regular tetrahedral structure
- (c) Similar sizes of carbon and chlorine atoms
- (d) Similar electron affinities of carbon and chlorine
- The molecule which has the largest dipole moment amongst the 11. following [MNR 1983]
 - (a) CH_4
- (b) CHCl₃
- (c) CCl₄
- CHI_3
- Positive dipole moment is present in 12.

[MNR 1986; MP PET 2000]

- (a) CCl₄
- (b) $C_6 H_6$
- (c) BF_3

13.

- (d) *HF*
- The polarity of a covalent bond between two atoms depends upon
- (a) Atomic size
- (b) Electronegativity
- (c) lonic size
- (d) None of the above
- Pick out the molecule which has zero dipole moment

[CPMT 1989; EAMCET 1993; MP PMT 1999]

- (a) NH_3
- (b) H_2O
- (c) BCl_3
- (d) SO_2

UNIVERSAL SELF SCORER 106 Chemical Bonding

15.	Zero	dipole moment is present in	1 [DP /	MT 1986; IIT 1987]		(c)	Sulphur dioxide	(d)	Water	
	(a)	NH_3	(b)	H_2O	28.	N_2	is less reactive than CN^{-1}	due to	[UPSEAT 20	03]
	(c)	cis 1, 2-dichloroethene	(d)	trans 1, 2-dichloroethene		(a)	Presence of more electron	ns in orl	bitals	
16.	Whi	ch of the following is the mo	st pol	ar [AFMC 1988]		(b)	Absence of dipole momen	nt		
	(a)	CCl_4	(b)	CHCl ₃		(c)	Difference in spin quantu	m no		
	(c)	CH_3OH	(d)	CH_3Cl		(d)	None of these			
17.	Whi	ch one has minimum (nearly		dipole moment Screening 1994; CBSE PMT 1996]	29.		polar molecule, the ionir ionic distance is one Å u			
	(a)	Butene-1	(b)	cis butene-2		(a)	41.8 debye	(b)	4.18 debye	
_	(c)	trans butene-2		2-methyl-1-propene		(c)	4.8 debye	(d)	0.48 debye	
18.	Whi	ch one of the following is ha		T 1997; EAMCET 1988; MNR 1991]	30.	Whi	ch of the following is a po	lar com	pound	[Pb. CET 2000]
	(a)	CCl_4	(b)	CH_3Cl		(a)	HCl	(b)	H_2Se	
	(c)	CH_3F	(d)	CHCl ₃		(a)	CH_4	(4)	HI	
19.		ch of the following molect le moment	iles d	oes not possess a permanent [CBSE PMT 1994]	31.	(c) Whi	ch of the following has no	(d) dipole		
	(a)	H_2S	(b)	SO_2						[DCE 2002]
	(c)	CS ₂	(d)	SO_3		(a)	CO_2	(b)	SO_3	
20.		ch of the following has zero	dipole	moment		(c)	O_3	(d)	H_2O	
				997; AFMC 1998; CBSE PMT 2001]	32.		ch of the following is non-	polar	-	[DCE 2002]
	(a)	CH_2Cl_2	(b)	CH_4	0	(a)	PCl ₅	(b)	PCl_3	[5 52 2552]
	(c)	NH_3	(d)	PH_3		. ,	5		-	
21.	Fluo	rine is more electronegative	than	either boron or phosphorus.		(c)	SF_6	(d)	IF_7	
		t conclusion can be drawn le moment but PF_3 does	fron	n the fact that BF_3 has no	33.		tify the non-polar molecular HF, H_2, HBr	ule in t	the set of co	ompounds given : [UPSEAT 2004]
	u.pc	ie moment but 113 does		[Pb. PMT 1998]		(a)	H_2	(b)	HCl	
	(a)	BF_3 is not spherically sym	metric	• •		(c)	HF, HBr	(d)	HBr	
	(b)	BF_3 molecule must be line	ar		34.	Dip	ole moment is shown by			[IIT 1986]
	(c)	The atomic radius of P is	larger	than the atomic radius of B		(a)	1, 4-dichlorobenzene			
	(d)	The BF_3 molecule must b	e plar	nar triangular		(b)	cis 1, 2-dichloroethene			
22.	Whi	ch molecule does not show z	ero d	ipole moment		(c)	trans1, 2-dichloroethene	!		
		n E	(1.)	[RPET 1997, 99]		(d)	trans1, 2-dichloro-2-pen	tene		
	(a)	BF_3	(b)	NH_3	35.		ICI molecule is completely	•	•	•
	(c)	CCl_4	(d)	CH_4			nent is 6.12D (deby), but e D. Calculate the percentag	-		•
23.	The	dipole moment of HBr is	s 1.6	5×10^{-30} cm and interatomic		(a)	17	(b)		[Kerala CET 2005]
	spac	ing is $1\mathring{A}$. The % ionic charac	ter of			(c)	50		Zero	
	(a)	7	(b)	[MP PMT 2000]		(e)	90	(-)		
	(c)	15	(d)	27	_	. ,				
24.	Non-	-polar solvent is		[RPET 2000]			Polarisation a	nd Fa	ajan's ru	le
		Dimethyl sulphoxide	(b)	Carbon tetrachloride		D.F				DE . 1
25	(c)	Ammonia ch shows the least dipole mo	(d)	Ethyl alcohol	1.		$_3$ and NF_3 both molecule		valent, but <i>I</i>	$3F_3$ is non-polar
25.	WIII	ch shows the least dipole inc	ment	[UPSEAT 2001; DPMT 1982]		and	NF_3 is polar. Its reason in	S		
	(a)	CCl_4	(b)	CHCl ₃					[CPMT	1989; NCERT 1980]
	(c)	CH_3CH_2OH	(d)	CH_3COCH_3		(a)	In uncombined state bord	on is me	etal and nitro	gen is gas
26.	` '	ch molecule has zero dipole	. ,			(b)	B-F bond has no dipo	le mom	ent whereas	N-F bond has
20.		H_2O		Agl		()	dipole moment			
		_	` ,			(c)	The size of boron atom is		·	en
		$PbSO_4$	` '	HBr		(d)	BF_3 is planar whereas	NF_3 is	pyramidal	
27.	The	dipole moment is zero for the	ne mo	lecule [IIT 1989; MP PMT 2002]	2.	Whi	ch one is polar molecule a	mong th	ne following	
	(a)	Ammonia	(b)	Boron trifluoride		(a)	CO_2	(b)	CCl_4	

										CONTRACTOR OF THE PARTY OF THE
	(c)	H_2O	(d)	CH ₄		(c)	Na ⁺	(d)	Ca ²⁺	
3.	If the	e electron pair forming a b	ond be	tween two atoms A and B is	15.	Max	simum covalent character i	s associa	ited with the cor	npound [RPMT 199 9
	not i	in the centre, then the bond	d is	[AIIMS 1984]		(a)	NaI	(b)	MgI_2	
	(a)	Single bond	(b)	Polar bond		(c)	$AlCl_3$	(d)	AlI_3	
	(c)	Non-polar bond	(d)	π bond	16.	Pola	arisibility of halide ions inc	reases in	the order	
4.	Whic	ch of the following liquids	s is no	ot deflected by a non-uniform						[DCE 1999]
	elect	trostatic field		[NCERT 1978]		(a)	F^-, I^-, Br^-, Cl^-	(b)	Cl^-, Br^-, I^-	F^{-}
	(a)	Water	(b)	Chloroform		(c)	$I^{-}, Br^{-}, Cl^{-}, F^{-}$	(d)	F^- , Cl^- , Br^-	\bar{I}
	()	Nitrobenzene	(d)	Hexane	17.		ording to Fajan's rule, cova			
5.		ch of the following is non-p	olar	[EAMCET 1983]	•		, ,		,	[AIIMS 1999]
	(a)	H_2S	(b)	NaCl			Large cation and small ar			
	(c)	Cl_2	(d)	H_2SO_4			Large cation and large ar			
6.	Polai	rization is the distortion	of th	e shape of an anion by an		(c) (d)	Small cation and large ar Small cation and small ar			
	adjac	cently placed cation. Wh	ich of	the following statements is	18.	()	ich of the following statem		orrect	[AMU 1999]
	corre			[NCERT 1982]	.0.	(a)	SF_4 is polar and non-rea		orrect	[/4/10 1999]
		Maximum polarization is charge	broug	ht about by a cation of high		(1)				
		Minimum polarization is b	rough	t about by a cation of		(b)	SF_6 is non-polar and ver	ry reacti	ve	
	(5)	low radius	. oug	t about by a cation of		(c)	SF_6 is a strong fluorinat	ing agen	it	
			to br	ing about a large degree of		(d)	SF_4 is prepared by fluor	rinating	SCl ₂ with NaI	7
		polarization		1 1 6 1	19.	Cho	oose the correct statement			[RPMT 2000]
				o a large degree of polarization		(a)	Amino polarisation is 1	more pr	ronounced by h	ighly charged
7.		bonds between P atoms	and C	l atoms in PCl_5 are likely to		(b)	cation Small cation has minimum	n canacit	v to polarise an	nion
	be	1 2 21 1 1 1		[MP PMT 1987]		(c)	Small anion has maximus	٠.	· ·	inon.
	()	Ionic with no covalent cha		tor		(d)	None of these	•	,	
	` '	Covalent with no ionic cha		tei	20.	The	ICl molecule is			[DPMT 2001]
	()	lonic with some metallic c		er		(a)	Purely electrovalent			
8.	` '			σ electrons of another atom B		(b)	Purely covalent			
		utilized to form a compoun				(c)	Polariwith pegative end of			
	(a)	Polar covalent bond	(b)	Non-polar covalent bond	01	(d)	U			[ANAG poor]
	()	Polar bond	()	Dative bond	21.		ich of the following is a po		HCl	[AIIMS 2001]
9.	ln w		ule is		[AMU 1985;	(c)		()	H_2SO_4	
	(a)	HI	(b)		22	. ,	ich of the following has zer			
	(c)	HCl	(d)	H_2	22.	VVIII	ich of the following has zer	ro dipoie		[MP PMT 2002]
10.	Amo	ongst ClF_3 , BF_3 and N	VH_3	molecules the one with non-		(a)	<i>ClF</i>	(b)	PCl_3	
	plana	ar geometry is		[MP PMT 1999]			SiF_4		$CFCl_3$	
	(a)	ClF_3	(b)	NH_3		(c)				
	(c)	BF_3	(d)		23.	Whi	ich of the following compo	unds ha	s least dipole mo	ment [RPET 2003]
			()			(a)	PH_3	(b)	$CHCl_3$	[RFE1 2003]
11.	wnic	ch of the following possesse	es nign	est meiting point [CPMT 1999]		. ,	-	(0)	3	
	(a)	Chlorobenzene	(b)	o-dichlorobenzene		(c)	NH_3	(d)	BF_3	
	(c)	<i>m</i> -dichlorobenzene	(d)	<i>p</i> -dichlorobenzene	24.		ling's electronegativity v	alues f	or elements a	
12.	()	polar molecule among the	. ,	•		pred (a)	dicting Polarity of bonds in mole	aulac		[UPSEAT 2004]
				[Orissa JEE 1997]		(b)	Position of elements in el		omical series	
	(a)	CCl_4	(b)	CO_2		(c)	Co-ordination number	.cc. ociic	cur series	
		•		-		(d)	Dipole moment of variou	s moleci	ıles	
	(c)	CH_2Cl_2		$CH_2 = CH_2$	25.	Amo	ongst <i>LiCl, RbCl, BeCl</i> ₂ [AllMS 1997]			ounds with the
13.		ch of the following have bo	٠.,	•		grea	[AIIMS 1997] atest and the least ionic ch	aracter, 1	respectively, are	[UPSEAT 2002]
	(a)	C_2H_6	(b)	NH_4Cl		(a)	LiCl and RbCl		RbCl and BeC	
	(c)	HCl	(d)	$AlCl_3$. ,		-
14.	Whic	ch of the following has a hi	gh pol	• ,		(c)	RbCl and MgCl ₂		$MgCl_2$ and E	ect ₂
		2.		[CET Pune 1998]	26.	Bon	d polarity of diatomic mol	ecule is	because of	[LIDODATI accal
	(a)	Mg^{2+}	(b)	Al^{3+}						[UPSEAT 2002]

- Difference in electron affinities of the two atoms
- Difference in electronegativities of the two atoms
- (c) Difference in ionisation potential
- All of these

Overlaping- σ and π - bonds

Triple bond in ethyne is formed from

[MP PMT 1990; NCERT 1979; EAMCET 1978; AMU 1985; CPMT 1988; MADT Bihar 1982; MH CET 2000]

- Three sigma bonds
- Three pi bonds
- One sigma and two pi bonds
- (d) Two sigma and one pi bond
- The bond in the formation of fluorine molecule will be 2.

[MP PMT 1987]

- (a) Due to s-s overlapping
- (b) Due to s p overlapping
- (c) Due to p-p overlapping
- (d) Due to hybridization
- Which type of overlapping results the formation of a π bond 3.

- (a) Axial overlapping of s s orbitals
- (b) Lateral overlapping of p p orbitals
- Axial overlapping of p p orbitals
- (d) Axial overlapping of s p orbitals
- The number and type of bonds between two carbon atoms in calcium carbide are [AIEEE 2005]
 - (a) One sigma, one pi
- (b) One sigma, two pi
- (c) Two sigma, one pi
- (d) Two singma, two pi
- In a double bond connecting two atoms, there is a sharing of

[CPMT 1977, 80, 81: NCERT 1975: Bihar MEE 1980; MP PET 1999]

- (a) 2 electrons
- (b) 1 electron
- (c) 4 electrons
- (d) All electrons
- Strongest bond is

[DPMT 1990]

- (a) C-C
- C = C
- (c) $C \equiv C$
- (d) All are equally strong
- π bond is formed 7.
- [IIPMER 2002]
- (a) By overlapping of atomic orbitals on the axis of nuclei
- - (b) By mutual sharing of pi electron
 - By sidewise overlapping of half filled *p*-orbitals
 - By overlapping of s-orbitals with p-orbitals
- 8. The double bond between the two carbon atoms in ethylene consists [NCERT 1981; EAMCET 1979]
 - (a) Two sigma bonds at right angles to each other
 - One sigma bond and one pi bond
 - Two pi bonds at right angles to each other
 - (d) Two pi bonds at an angle of 60° to each other
- In the series ethane, ethylene and acetylene, the C-Hbond 9. [NCERT 1977] energy is
 - The same in all the three compounds
 - Greatest in ethane
 - Greatest in ethylene (c)
 - Greatest in acetylene
- 10. In a sigma bond
 - Sidewise as well as end to end overlap of orbitals take place

- Sidewise overlap of orbitals takes place
- End to end overlap of orbitals takes place
- None of the above
- The number of sigma and pi bonds in 1-butene-3-yne are 11.

(a) 5 sigma and 5 pi

- (b) 7 sigma and 3 pi
- (c) 8 sigma and 2 pi
- (d) 6 sigma and 4 pi
- 12. The most acidic compound among the following is

[MP PET 1993]

[IIT 1989]

- (a) CH₃CH₂OH
- (b) C_6H_5OH
- (c) CH₃COOH
- $CH_3CH_2CH_2OH$ (d)
- Which of the following is not correct 13.

[CBSE PMT 1990]

- (a) A sigma bond is weaker than π bond
- (b) A sigma bond is stronger than π bond
- A double bond is stronger than a single bond
- A double bond is shorter than a single bond
- Strongest bond formed, when atomic orbitals 14.
 - Maximum overlap
- (b) Minimum overlap
- Overlapping not done
- (d) None of them
- The p-p orbital overlapping is present in the following molecule
 - (a) Hydrogen
- (b) Hydrogen bromide
- (c) Hydrogen chloride
- (d) Chlorine
- In N_2 molecule, the atoms are bonded by 16.

[MP PET 1996; UPSEAT 2001]

- (a) One σ , Two π
- (b) One σ , One π
- (c) Two σ , One π
- (d) Three σ bonds
- In which of following there exists a $p\pi d\pi$ bonding 17.

[AFMC 2001]

[DCE 2001]

[CBSE 2002]

[CPMT 1994]

- (a) Diamond
- (b) Graphite
- (c) Dimethyl amine
- (d) Trisilylamine

18.

- Number of bonds in SO_2 (a) Two σ and two π
- (b) Two σ and one π
- Two σ , two π and one lone pair
- None of these
- Which of the following has $p\pi d\pi$ bonding 19.
 - (b) CO_3^{-2}
 - (a) NO_3^- (c) BO_2^{-3}
- Number of sigma bonds in $P_4\,O_{10}$ is [AIEEE 2002] 20.
 - (a) 6
- (b) 7
- (c) 17
- (d) 16

Hybridisation

- Which molecule is not linear
- (b) BeH_2
- (a) BeF_2 (c) CO₂
- (d) H_2O
- The bond angle in water molecule is nearly or Directed bonds in water forms an angle of

[NCERT 1980; EAMCET 1981; MNR 1983, 85; AIIMS 1982: CPMT 1989: MP PET 1994, 96: MP PET/PMT 1998]

- 120^{o}
- (b) 180°

[CPMT 1991]

[DPMT 1990]

- (c) 109°28'
- (d) 104°30'
- **3.** The central atom in a molecule is in sp^2 hybrid state. The shape of molecule will be [MP PMT 1987; CBSE PMT 1989]
 - (a) Pyramidal
- (b) Tetrahedral
- (c) Octahedral
- (d) Trigonal planar
- 4. Which molecule is linear

[MP PMT 1984; IIT 1982, 88; EAMCET 1993; CBSE PMT 1992; MP PET 1995; RPMT 1997]

- (a) NO_2
- (b) ClO_2
- (c) CO₂
- (d) H_2S
- 5. Which of the following molecules has trigonal planer geometry [CBSE PMT 2005]
 - (a) IF_3
- (b) PCl_3
- (c) NH₃
- (d) BF_3
- **6.** A sp^3 hybridized orbital contains

[DPMT 1984; BHU 1985; CPMT 1976]

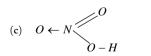
- (a) $\frac{1}{4}s$ character
- (b) $\frac{1}{2}s$ character
- (c) $\frac{2}{3}s$ character
- (d) $\frac{3}{4}s$ character
- 7. Structure of ammonia is

[MP PMT 1987, 89, 91; CPMT 1975, 82; RPMT 1999; JIPMER 2002]

- (a) Trigonal
- (b) Tetrahedral
- (c) Pyramidal
- (d) Trigonal pyramidal
- **8.** The bond angle in ethylene is

[CPMT 1987]

- (a) 180°
- (b) 120°
- (c) 109°
- (d) 90°
- **9.** Compound formed by sp^3d hybridization will have structure


[BHU 1982; RPMT 1999]

- (a) Planar
- (b) Pyramidal
- (c) Angular
- (d) Trigonal bipyramidal
- 10. Which of the following formula does not correctly represent the bonding capacity of the atom involved

[CBSE PMT 1990]

- $(d) \quad H C = C$
- 11. Which of the following statement is not correct

[AIIMS 1983]

- (a) Hybridization is the mixing of atomic orbitals prior to their combining into molecular orbitals
- (b) sp^2 hybrid orbitals are formed from two p atomic orbitals and one s atomic orbital
- (c) d^2sp^3 hybrid orbitals are directed towards the corners of a regular octahedron
- (d) dsp^3 hybrid orbitals are all at 90° to one another

- **12.** The mode of hybridisation of carbon in CO_2 is
 - (a) *sp*
- (b) *sp*
- (c) sp^3
- (d) None of these
- 13. In which of the following the central atom does not use sp^3 hybrid orbitals in its bonding [MNR 1992]
 - (a) BeF_3
- (b) OH_3^+
- (c) NH_2^-
- (d) NF_3
- XeF_2 involves hybridisation

- (a) sp^3
- (b) sp^3d
- (c) sp^3d^2
- (d) None of these
- 15. Which of the following hybridisation results in non-planar orbitals
 - (a) sp^3
- (b) dsp^2
- (c) sp^2
- (d) sp
- 16. Octahedral molecular shape exists in hybridisation

[DPMT 1990]

[MNR 1990]

[MNR 1983]

- (a) sp^3d
- (b) $sp^{3}d^{2}$
- (c) sp^3d^3
- (d) None of these
- 7. The electronic structure of molecule OF_2 is a hybrid of
 - (a) *sp*
- (b) sp^2
- (c) sp^3
- (d) sd^3
- **18.** Percentage of s-character in sp^3 hybrid orbital is
 - (a) 25
- (b) 50

- (c) 66
- (d) 75
- **19.** Shape of XeF_4 molecule is

[BHU 1987; AFMC 1992; CET Pune 1998; Roorkee Qualifying 1998; DCE 2002]

- (a) Linear
- (b) Pyramidal
- (c) Tetrahedral
- (d) Square planar
- **20.** For which of the following hybridisation the bond angle is maximum
 - (a) sp^2
- (b) *sp*
- (c) sp^3
- (d) dsp^2
- **21.** The C-H bond distance is the longest in
 - (a) C_2H_2 (b) C_2H_4
 - (c) $C_2H_4Br_2$
- (d) C_6H_6
- The nature of hybridization in $CH_2Cl CH_2Cl$ for carbon is
- (a) *sp*

22.

- (b) sp^2
- (c) sp^3
- (d) sp^2d
- 23. Shape of methane molecule is
- (a) Tetrahedral(c) Octahedral
- (b) Pyramidal(d) Square planer
- **24.** Which one amongst the following possesses an *sp* hybridized carbon in its structure [CBSE PMT 1989]
 - (a) $CH_2 = C.Cl CH = CH_2$

IF SCORER 110 Chemical Bonding

(1)	001	CCI
(b)	((./	$= C.Cl_2$

(c)
$$CH_2 = C = CH_2$$

(d)
$$CH_2 = CH - CH = CH_2$$

Which of the following is the correct electronic formula of chlorine 25.

(a)
$$:Cl:Cl:$$

(b)
$$:Cl^{-}::Cl^{+}:$$

(c)
$$: \overrightarrow{Cl} : \overrightarrow{Cl} :$$

In XeF_4 hybridization is 26.

(a)
$$sp^3d^2$$

(b)
$$sp^3$$

(c)
$$sp^3d$$

(d)
$$sp^2d$$

27. In HCHO, 'C" has hybridization [AIIMS 1987]

(b)
$$sp^2$$

(c)
$$sp^3$$

Which has the shortest C-C bond length 28.

[NCERT 1982; CPMT 1989]

(a)
$$C_2H_5OH$$

(b)
$$C_2H_6$$

(c)
$$C_2H_2$$

(d)
$$C_2H_4$$

The hybridization of Ag in the linear complex $\left[Ag\left(NH_3\right)_2\right]^+$ is 29.

(a)
$$dsp^2$$

(c)
$$sp^2$$

30.

(d)
$$sp^3$$

Experiment shows that H_2O has a dipole moment while CO_2 has

not. Point out the structures which best illustrate these facts [DPMT 1984; NCERT 1983; CPMT 1984]

(a)
$$O = C = O$$
; $H - O - H$

b)
$$O = C = O$$
; $H - O - H$

(c)
$$C \longrightarrow C$$
 ; $H-H-O$ (d) $O \longrightarrow H$ $C=O$; $O-H$

$$O H$$
 $\parallel \qquad \mid$
 $C=O; O-H$

31. Which species do not have sp^3 hybridization

[DPMT 1985]

- (a) Ammonia
- (b) Methane
- (c) Water
- (d) Carbon dioxide

As compared to pure atomic orbitals, hybrid orbitals have 32.

- (a) Low energy
- (b) Same energy
- (c) High energy
- (d) None of these

The compound 1, 2-butadiene has 33.

[IIT 1983; MP PMT 1996]

- (a) Only sp hybridized carbon atoms
- (b) Only sp^2 hybridized carbon atoms
- (c) Both sp and sp² hybridized carbon atoms
- (d) sp, sp^2 and sp^3 hybridized carbon atoms

The number of unpaired electrons in O_2 molecule is 34.

[MNR 1983; Kerala PET 2002]

(a) 0

- (b) 1
- (c) 2 (d) 3

In the following molecule, the two carbon atoms marked by asterisk 35. (*) possess the following type of hybridized orbitals

$$H_3C - C^* \equiv C^* - CH_3$$

[NCERT 1984]

- (a) sp^3 orbital
- (b) sp^2 orbital
- (c) sp orbital
- (d) s orbital

The bond angle in carbon tetrachloride is approximately 36.

[MNR 1981; MP PMT 1987]

- 90^{o} (a)
- (b) 109°
- (c) 120°
- (d) 180°

When two pairs of electrons are shared, bond is 37.

[MNR 1979]

- (a) Single covalent bond
- (b) Double covalent bond
- (c) Dative bond
- (d) Triple bond

38. The nature of hybridization in the NH_3 molecule is

[EAMCET 1982]

- (a) *sp*
- (b) sp^2
- (c) sp^3
- (d) sp^3d

Which one of the following compounds has bond angle as nearly 39. 90^{o} [MP PMT 1985]

- (a) NH_3
- (b) H_2S
- (c) H_2O
- (d) CH_4

In ethene, the bond angle(s) is/are

[CPMT 1985; BHU 1981]

[CPMT 1976; AMU 1984; MP PMT 1985]

- (a) $109^{\circ}28'$
- (b) 120°
- (c) 180°
- (d) Different

Structure formula of H_2O_2 is

[CPMT 1993]

(b) H - O - O - H (straight line)

(c)
$$\rho - O$$

Where $\angle H - O - O = \angle O - O - H' = 101.5^{\circ}$ and all the four atoms are in the same plane

(d)
$$P - O$$

Where $\angle H - O - O = \angle O - O - H' = 97^{\circ}$ and the angle

between H-O-O plane and O-O-H' plane is 101°

Number of shared electrons in between carbon-carbon atoms in [MADT Bihar 1983] ethylene molecule is

- (a) 2
- (b) 4
- (c) 6
- (d) 3

The structural formula compound 43. $CH_3 - CH = C = CH_2$. The type of hybridization at the four carbons from left to right are [CBSE PMT 1989]

- (a) sp^2 , sp, sp^2 , sp^3
- (b) sp^2 , sp^3 , sp^2 , sp

44	(c) sp^3 , sp^2 , sp , sp^2 (d) sp^3 , sp^2 , sp^2 , sp^2	55.	In diborane, the $H-B-H$ bond angle is 120° . The hybridization of boron is likely to be
44.	Acetate ion contains [AMU 1983] (a) One <i>C</i> , <i>O</i> single bond and one <i>C</i> , <i>O</i> double bond		[BHU 1981; CBSE PMT 1999]
			(a) sp (b) sp^2
	(b) Two <i>C</i> , <i>O</i> single bonds		(c) sp^3 (d) dsp^2
	(c) Two C, O double bonds	56.	The number of shared pairs of electrons in propane is
	(d) None of the above		[BHU 1981]
45.	The two carbon atoms in acetylene are [AMU 1984; MADT Bihar 1982]		(a) 2 (b) 4
	•		(c) 6 (d) 10
	(a) sp^3 hybridized (b) sp^2 hybridized	57.	s-character in sp hybridised orbitals are
	(c) sp hybridized (d) Unhybridized		(a) $\frac{1}{2}$ (b) $\frac{1}{2}$
46.	Among the following compounds which is planar in shape [AMU 1992]		3 2
	(a) Methane (b) Acetylene		(c) $\frac{1}{4}$ (d) $\frac{2}{3}$
	(c) Benzene (d) Isobutene		
47.	In methane the bond angle is [AMU 1983]	58.	The two types of bonds present in $B_2 H_6$ are covalent and
	(a) 180° (b) 90°		[IIT 1994] (a) Three centre bond (b) Hydrogen bond
	(c) 120° (d) 109°		(a) Three centre bond (b) Hydrogen bond (c) Two centre bond (d) None of the above
48.	The angle between sp^2 orbitals in ethylene is	59.	In the compound $CH_3 @OCl$, which type of orbitals have been
70.	[BHU 1987, 95; AMU 1985]	-	used by the circled carbon in bond formation
	(a) 90° (b) 120°		[MP PET 1994]
	(c) 180° (d) 109.5°		(a) sp^3 (b) sp^2
			(c) sp (d) p
49.	The species in which the central atom uses sp^2 hybrid orbitals in its bonding is [IIT 1988]	60.	The correct order of the ${\it O}-{\it O}$ bond length in ${\it O}_2,{\it H}_2{\it O}_2$ and
	4)		O_3 is [CBSE PMT 1995]
			(a) $O_2 > O_3 > H_2O_2$ (b) $O_3 > H_2O_2 > O_2$
	(c) H_3C^+ (d) SbH_3		(c) $H_2O_2 > O_3 > O_2$ (d) $O_2 > H_2O_2 > O_3$
50.	Carbon atoms in diamond are bonded to each other in a configuration [CPMT 1981]	61.	The structure of PF_5 molecule is
	(a) Tetrahedral (b) Planar		[AFMC 1995; JIPMER 2001]
	(c) Linear (d) Octahedral		(a) Tetrahedral (b) Trigonal bipyramidal
51.	Which of the following molecules can central atom said to adopt	62.	(c) Square planar (d) Pentagonal bipyramidal Which of the following hybridisation has maximum s-characters
	sp ² hybridization [CBSE PMT 1989; MP PET 1994]	 -	(a) sp^3 (b) sp^2
	(a) BeF_2 (b) BCl_3		
	(c) C_2H_2 (d) NH_3	60	**
52.	In $\left[Cu\left(N\!H_3\right)_{\!\!4}\right]\!SO_4$, ; Cu has following hybridization	63.	The PCl_5 molecule is a result of the hybridisation of
	[AIIMS 1988; UPSEAT 2001]		[MP PET 1995; DCE 2000; MP PMT 2002]
	(a) dsp^2 (b) sp^3		(a) sp^2d^2 (b) sp^3d
	(c) sp^2 (d) sp^3d^2		(c) spd^3 (d) sp^2d^3
53.	The hybridization of carbon atoms in $C-C$ single bond of	64.	Hybridisation involves [MP PMT 1996]
00.	$HC \equiv C - CH = CH_2$ is [IIT 1991; MP PET 1995]		(a) Addition of an electron pair (b) Mixing up of atomic orbitals
	(a) $sp^3 - sp^3$ (b) $sp^2 - sp^3$		(c) Removal of an electron pair
	(c) $sp - sp^2$ (d) $sp^3 - sp$	65.	(d) Separation of orbitals The geometry of sulphur trioxide molecule is
54.	The compound in which C^* uses sp^3 hybrids for bond formation	-	(a) Tetrahedral (b) Trigonal planar
	is [IIT 1989]		(c) Pyramidal (d) Square planar
	(a) $HCOOH$ (b) $(NH_2)_2CO$	66.	The shapes of BCl_3 , PCl_3 and ICl_3 molecules are all
	(b) (M12/2CO		(a) Triangular (b) Pyramidal

(a) Triangular

(c) T - shaped

(c) $(NH_3)_3^+COH \ HgCl_2$ (d) CH_3^-CHO

(b) Pyramidal

In benzene molecule all $\ C-C\$ bond lengths are equal because

(d) All above are incorrect

UNIVERSAL SELF SCORER 112 Chemical Bonding

- (a) All carbon atoms are equivalent
- (b) All carbon atoms are sp^2 hybridised
- (c) All C-C bonds in benzene, have same order
- (d) All C-C bonds are single covalent bond
- **68.** Which one is false in the following statements

[MP PET 1997]

- (a) Each carbon in ethylene is in sp^2 hybridisation
- (b) Each carbon in acetylene is in sp^3 hybridisation
- (c) Each carbon in benzene is in sp^2 hybridisation
- (d) Each carbon in ethane is in sp^3 hybridisation
- **69.** Out of the following hybrid orbitals, the one which forms the bond at angle 120° , is [MP PMT 1997]
 - (a) d^2sp^3
- (b) sp^3
- (c) sp²
- (d) sp
- **70.** As the p character increases, the bond angle in hybrid orbitals formed by s and atomic orbitals [MP PMT 1997]
 - (a) Decreases
- (b) Increases
- (c) Doubles
- (d) Remains unchanged
- **71.** sp^3 hybridization leads to which shape of the molecule

[MP PET/PMT 1998]

- (a) Tetrahedron
- (b) Octahedron
- (c) Linear
- (d) Plane triangle
- **72.** Which of the following will be octahedral [MP PET 1999]
 - (a) SF_6
- (b) BF_4
- (c) PCl₅
- (d) BO_3^{3-}
- **73.** The hybrid orbitals used by central atoms in $BeCl_2$, BCl_3 and CCl_4 molecules are respectively [MP PMT 1999]
 - (a) sp^2 , sp^3 and sp
- (b) sp, sp^2 and sp^3
- (c) sp^3 , sp and sp^2
- (d) sp^2 , sp and sp^3
- **74.** The structure of H_2O_2 is
- [CBSE PMT 1999; AFMC 2003]
- (a) Planar
- (b) Non-planar
- (c) Spherical
- (d) Linear
- **75.** Which of the following is isoelectronic as well as has same structure as that of N_2O [CPMT 1999]
 - (a) N_3H
- (b) H_2O
- (c) NO_2
- (d) CO_2
- **76.** CCl_4 has the hybridisation

[DPMT 1996]

- (a) sp^3d
- (b) dsp^2

- (c) *sp*
- (d) sp^3
- 77. Compound having planar symmetry is [DPMT 1996]
 - (a) H_2SO_4
- (b) H_2O
- (c) HNO_3
- (d) CCl_4
- 78. Which of the following compounds is not linear

[CPMT 1996]

- (a) $SnCl_2$
- (b) HCl
- (c) CO₂
- (d) $HgCl_2$
- **79.** Which one of the following statements is true for ammonium ion
 - (a) All bonds are ionic
 - (b) All bonds are coordinate covalent
 - (c) H atoms are situated at the corners of a square
 - (d) \ensuremath{H} atoms are situated at the corners of a tetrahedron
- **80.** The bond angle in sp^2 hybridisation is
 - -
- [RPMT 1997]

- (a) 180°
- (b) 120°
- (c) 90°
- (d) 109°2'
- 81. The correct order towards bond angle is
- [RPMT 1997]
- (a) $sp < sp^2 < sp^3$
- (b) $sp^2 < sp < sp^3$
- (c) $sp^3 < sp^2 < sp$
- (d) Bond angle does not depend on hybridisation
- **82.** The geometry and the type of hybrid orbital present about the central atom in BF_3 is [IIT 1998; BHU 2001]
 - (a) Linear, sp
- (b) Trigonal planar, sp^2
- (c) Tetrahedral, sp^3
- (d) Pyramidal, sp^3
- 83. In graphite, electrons are
- [CBSE PMT 1997]
- (a) Localised on every third C atom
 - (b) Present in antibonding orbital
 - (c) Localised on each C atom
 - (d) Spread out between the structure
- **84.** The ammonium ion is
- [CET Pune 1998]
- (a) Tetrahedral
- (b) Trigonal pyramidal
- (c) Square planar
- (d) Square pyramidal
- In sp hybridisation, shape is
- [Bihar MEE 1997]
- (a) Angular

85.

- (b) Tetrahedral
- (c) Bipyramidal
- (d) Linear
- (e) None of these
- **86.** When the hybridisation state of carbon atom changes from sp^3 to sp^2 to sp, the angle between the hybridised orbitals
 - [AIIMS 1998]

- (a) Decreases gradually
- (b) Increases gradually
- (c) Decreases considerably
- (d) All of these
- **87.** The structure and hybridisation of $Si(CH_3)_4$ is

[CBSE PMT 1996]

- (a) Bent, sp
- (b) Trigonal, sp^2
- (c) Octahedral, sp^3d
- (d) Tetrahedral, sp^3
- $\textbf{88.} \qquad \text{The type of hybridisation of boron in diborane is} \\$

[BHU 1999]

- (a) sp hybridisation
- (b) sp^2 hybridisation
- (c) sp^3 hybridisation
- (d) sp^3d^2 hybridisation
- **89.** Which compound does not possess linear geometry

(b) sp^2 hybridisation

(a) Tautomerism

[RPET 1999] 101. The bond angle is minimum in [Pb. PMT 2001; MP PET 2003; UPSEAT 2004] (b) $HC \equiv CH$ (a) $CH_2 = CH_2$ (a) H_2Te (b) H_2Se (c) $BeCl_2$ (d) CO_2 (c) H_2O (d) H_2S Which of the following molecule does not show tetrahedral shape [RPET 1999] 90. The correct order of hybridization of the central atom in the (a) CCl₄ (b) $SiCl_{4}$ following species NH_3 $[PtCl_4]^{2-}$, PCl_5 and BCl_3 is (c) SF_A (d) CF_{Λ} [IIT Screening 2001; BHU 2005] Pyramidal shape would be of [RPET 1999] 91. (a) dsp^2 , dsp^3 , sp^2 and sp^3 (b) sp^3 , dsp^2 , dsp^3 , sp^2 (a) NO_3^- (b) H_2O (d) dsp^2 , sp^3 , sp^2 , dsp^3 (c) dsp^2 , sp^2 , sp^3 , dsp^3 (c) H_3O^+ (d) NH_4^+ Which of the following pairs has same structure 103. [BHU 2001] What is the correct mode of hybridization of the central atom in the (a) PH_3 and BCl_3 (b) SO_2 and NH_3 92. following compounds : NO_2^+, SF_4, PF_6^- (d) NH_4^+ and SO_4^{2-} (c) PCl_5 and SF_6 [AMU 1999] The smallest bond angle is found in [AIIMS 2001] 104. (a) sp^2, sp^3, d^2sp^3 (b) sp^3 , sp^3d^2 , sp^3d^2 (a) IF_7 (b) *CH*₄ (c) BeF_2 (d) BF_3 (c) sp, sp^3d, sp^3d^2 (d) sp, sp^2, sp^3 Which of the following is not linear [DCE 2001] The hybridization in PF_3 is [DCE 2000] 93. (a) CO_2 (b) ClO_2 (a) sp^3 (b) sp^2 (d) None of these (c) dsp^3 (d) d^2sp^3 Which of the following is not tetrahedral [MP PMT 2001] Which of the following molecule is linear [MP PMT 2000] (a) SCl_A (b) SO_4^{2-} (a) SO_2 (b) NO_{2}^{+} (d) $NiCl_{\Lambda}^{2-}$ (c) $Ni(CO)_4$ (c) NO_{2}^{-} As the s-character of hybridisation orbital increases, the bond angle [BHU 2002; (d) SCl_2 107. (a) Increases (b) Decreases The geometry of the molecule with sp^3d^2 hybridised central atom 95. Becomes zero (d) Does not change [NCERT 1981; AFMC 1982; RPMT 2000] The shape of IF_7 molecule is 108. (a) Square planar (b) Trigonal bipyramidal [AFMC 2002; MHCET 2003] Octahedral (d) Square pyramidal (a) Octahedral (b) Pentagonal bipyramidal 96. The bond angle in PH_3 is [RPMT 2000] (c) Trigonal bipyramidal (d) Tetrahedral A completely filled d orbital (d^{10}) 109. [UPSEAT 2002] (a) Much less than NH 3 Spherically symmetrical (b) Equal to that of NH_3 Has octahedral symmetry Has tetrahedral symmetry (c) Much greater than NH_3 (d) Depends on the atom (d) Slightly greater than NH 3 Which has sp^3 hybridization of central atom 110. Which of the following has tetrahedral structure 97. [UPSEAT 2002] [CPMT 2000] (a) PCl_3 (b) SO_3 (a) CO_3^- (b) NH_4^+ (d) NO_3^- (c) BF_3 (c) $K_4[Fe(CN)_6]$ (d) None of these In which of the following species is the interatomic bond angle is 111. The single, double and triple bond lengths of carbon in carbon 98. 109°28′ [AIEEE 2002] dioxide are respectively [AIIMS 2000] (a) NH_3 , $(BF_4)^{-1}$ (b) $(NH_4)^+, BF_3$ (a) 1.15, 1.22 and 1.10 Å (b) 1.22, 1.15 and 1.10 Å (d) $(NH_2)^{-1}$, BF_3 (c) NH_3 , BF_4 (c) 1.10, 1.15 and 1.22 Å (d) 1.15, 1.10 and 1.22 Å A square planar complex is formed by hybridisation of which atomic 112. Shape of BF_3 molecule is [CPMT 2000; Pb. CET 2002] 99. orbitals [AIEEE 2002] (a) Linear (b) Planar (a) s, p_x, p_y, d_{yz} (b) $s, p_x, p_y, d_{x^2-y^2}$ Tetrahedral (d) Square pyramidal (c) s, p_x, p_y, d_{z^2} (d) s, p_v, p_z, d_{xv} In the complex $[SbF_5]^{2-}$, sp^3d hybridization is present. In benzene, all the six $\,C-C\,$ bonds have the same length because 113. Geometry of the complex is [Pb. PMT 2000] [MP PET 2002] (a) Square (b) Square pyramidal

(d) Tetrahedral

(c) Square bipyramidal

- (c) Isomerism
- (d) Inductive effect
- The bond energies of H-H and Cl-Cl are 430 kJ mol⁻¹ and 114. 242 kJ mol⁻¹ respectively, ΔH_s , for HCl is 91 kJ mol. The bond [MP PET 2003]
 - (a) 427 *kl*
- (b) 766 kJ
- (c) 285 kJ
- (d) 245 kJ
- Which of the following has dsp^2 hybridization 115.

[MP PET 2003]

- (a) $NiCl_4^{2-}$
- (b) SCl₄
- (c) NH_{4}^{+}
- (d) $PtCl_4^{2-}$
- Which one of the following is a planar molecule 116.

[EAMCET 2003]

- (a) NH 3
- (b) H_3O^+
- (c) BCl₂
- (d) PCl_3
- Which one of the following is a correct set with respect to molecule, 117. hybridisation and shape [EAMCET 2003]
 - (a) $BeCl_2$, sp^2 , linear
 - (b) $BeCl_2$, sp^2 , triangular planar
 - (c) BCl_3 , sp^2 , triangular planar
 - (d) BCl_3 , sp^3 , tetrahedral
- Which of the following compounds doesn't have linear structure [RPET 1997,0003] Which one of the following has the regular tetrahedral structure 118.
 - (a) CO_2
- (b) SO_2
- (c) BeCl 2
- (d) C_2H_2
- Which of the following bonds require the largest amount of bond 119. energy to dissociate the atom concerned

[UPSEAT 2003]

- (a) H-H bond in H_2
- (b) C-C bond in CH_4
- (c) $N \equiv N$ bond in N_2
- (d) O = O bond in O_2
- C-C bond in ethane
- The percentage s-character of the hybrid orbitals in methane, 120. ethene and ethyne are respectively [KCET 2003]
 - (a) 25, 33, 50
- (b) 25, 50, 75
- (c) 50, 75, 100
- (d) 10, 20, 40
- Arrange the hydra-acids of halogens in increasing order of acidity 121.
 - (a) HF < HCl < HBr < HI (b) HI < HBr < HCl < HF
 - (c) HF < HBr < HI < HCl (d) HF < HI < HBr < HCl
- Which one has sp^2 hybridisation [MP PMT 2004] 122.
 - (a) CO_2
- (b) N_2O
- (c) SO_2
- (d) *CO*
- Among the following compounds the one that is polar and has 123. central atom with sp^2 – hybridization is

[MP PMT 2004; IIT 1997]

- (a) H_2CO_3
- (b) BF_3
- (c) SiF_{Λ}
- (d) $HClO_2$
- The molecule which is pyramid shape is 124.

[MP PMT 2004; EAMCET 1985; IIT 1989]

- (a) PCl_3
- (b) CO_3^{2-}

- (c) SO_3
- (d) NO_2^-
- Which of the following has a linear structure [MP PMT 2004]
 - (a) CCl₄
- (b) C_2H_2
- (c) SO_2
- (d) C_2H_4
- In a regular octahedral molecule, MX_6 , the number X-M-X126. bonds at 180° is [CBSE PMT 2004]
 - (a) Six
- (b) Four
- (c) Three
- (d) Two
- sp^3d^2 hybrid orbitals are 127.
- [MP PET 2004]
- (a) Linear bipyramidal
- (b) Pentagonal
- (c) Trigonal bipyramidal
- (d) Octahedral
- In an octahedral structure, the pair of d orbitals involved in d^2sp^3 hybridization is [CBSE PMT 2004]
- (a) d_{x^2}, d_{xz}

128.

- (b) d_{yy}, d_{yz}
- (c) $d_{r^2-v^2}, d_{r^2}$
- (d) d_{xz}, d_{x^2}, d_{x^2}
- The correct order of bond angles (smallest first) in 129. H_2S , NH_3 , BF_3 and SiH_4 is [AIEEE 2004]
 - (a) $H_2S < NH_3 < SiH_4 < BF_3$
 - (b) $NH_3 < H_2S < SiH_4 < BF_3$
 - (c) $H_2S < SiH_4 < NH_3 < BF_3$
 - (d) $H_2S < NH_3 < BF_3 < SiH_4$

 - (a) BF_{Λ}
- (b) SF_4
- (c) XeF_{A}
- (d) $[Ni(CN)_{4}]^{2-}$

(Atomic no. : B = 5, S = 16, Ni = 28, Xe = 54)

- The states of hybridazation of boron and oxygen atoms in boric acid (H_3BO_3) are respectively [AIEEE 2004]
 - (a) sp^3 and sp^2
- (b) sp^2 and sp^3
- (c) sp^2 and sp^2
- (d) sp^3 and sp^3
- The hybridisation in BF_3 molecule is 132.
- [Pb. PMT 2004]

(a)

- (b) sp^2
- (c) Sp Orissa JEE 2003]
- (d) sp^3d
- Among the compounds, BF_3 , NCl_3 , H_2S , SF_4 and $BeCl_2$, 133. identify the ones in which the central atom has the same type of hybridisation [Kerala PMT 2004]
 - (a) BF_3 and NCl_3
- (b) H_2S and $BeCl_2$
- (c) BF_3 , NCl_3 and H_2S
- (d) SF_4 and $BeCl_2$
- (e) NCl_3 and H_2S
- The molecule of CO_2 has 180° bond angle. It can be explanid on 134. the basis of
 - (a) sp^3 hybridisation
- (b) sp^2 hybridisation
- sp hybridisation
- (d) d^2sp^3 hybridisation
- sp^3 hybridisation is found in 135.

[Pb. CET 2003; Orissa JEE 2005]

- (a) CO_3^{2-}
- (b) BF_3
- (c) NO_3^-
- (d) NH_3
- 136. Which set hydridisation is correct for the following compounds[Pb. CET 2003]

$$NO_2$$
, SF_4 PF_6

- (a) sp, sp^2 , sp^3
- (b) sp, sp^3d , sp^3d^2
- (c) sp^2 , sp^3 , d^2sp^3
- (d) sp^3 , sp^3d^2 , sp^3d^2
- **137.** The state of hybridisation of B in BCl_3 is

[Pb. CET 2000; BHU 2004]

- (a) *sp*
- (b) sp^2
- (c) sp^3
- (d) sp^2d^2
- 138. The hybrid state of sulphur in SO_3 molecule is [DCE 2004]
 - (a) sp^3d
- (b) sp^3
- (c) sp^3d^2
- (d) sp^2
- 139. Which of the following molecules has pyramidal shape

[DCE 2004; J&K CET 2005]

- (a) PCl_3
- (b) SO_3
- (c) CO_3^{2-}
- (d) NO_3^-
- **140.** The hybrdization of IF_7 is

[Pb. CET 2001]

- (a) sp^3d^3
- (b) sp^2d
- (c) d^2sp^3
- (d) sp^3
- 141. In which compound, the hydrogen bonding is the strongest in its liquid phase [Pb. CET 2001]
 - (a) *HF*
- (b) *HI*
- (c) CH₄
- (d) PH_3
- **142.** Geometry of ammonia molecule and the hybridization of nitrogen involved in it are [MH CET 2004]
 - (a) sp^3 -hybridization and tetrahedral geometry
 - (b) sp^3 -hybridization and distorted tetrahedral geometry
 - (c) sp^2 -hybridization and triangular geometry
 - (d) None of these
 - Be in $BeCl_2$ undergoes

[MH CET 2004]

- (a) Diagonal hybridization
- (b) Trigonal hybridization
- (c) Tetrahedral hybridization
- (d) No hybridization
- 144. Which of the following is non-linear molecule

[DCE 2003]

(a) CO_3

143.

- (b) *CO*₂
- (c) CS_2
- (d) $BeCl_2$
- 145. The trigonal bipyramidal geometry results from the hybridisation[UPSEAT 2004]
 - (a) dsp^3 or sp^3d
- (b) dsp^2 or sp^2d

- (c) d^2sp^3 or sp^3d^2
- (d) $d^3 s p^2$ or $d^2 s p^3$

The valency of carbon is four. On what principle it can be explained in a better way

(a) Resonance

147.

- (b) Hybridization
- (c) Electron transfer
- (d) None of the above
- Hybridization is due to the overlapping of

[MADT Bihar 1983]

- (a) Orbitals of different energy levels
- (b) Orbitals of different energy content
- (c) Orbitals of same energy content
- (d) None of the above
- **148.** If a molecule MX_3 has zero dipole moment, the sigma bonding orbital used by ${\it M}$ are

[IIT 1981; MP PMT 1994; Kerala PMT 2004]

- (a) sp^3d hybrid
- (b) sp hybrid
- (c) sp^3d^2 hybrid
- (d) sp^2 hybrid
- **149.** The linear structure is assumed by
- [11T 1991]
- (a) $SnCl_2$
- (b) *NCO*
- (c) CS_2
- (d) NO_2^+
- **150.** Hybridisation of central atom in NF_3 is
- is [Orissa | EE 2005]

- (a) sp^3
- (b) *sp*
- (c) sp^2
- (d) dsp^2
- **151.** The pair having similar geometry is
 - ry is [J&K CET 2005] (b) $BeCl_2, H_2O$
 - (a) PCl₃, NH₃(c) CH₄, CCl₄
- (d) IF_5 , PF_5
- **152.** The *d*-orbital involved in sp^3d hybridisation is

[J&K CET 2005]

- (a) $d_{x^2-y^2}$
- (b) d_{xy}
- (c) d_{z^2}
- (d) d_{zx}

Resonance

- **1.** Which one in the following is not the resonance structure of ${\it CO}_2$
 - (a) O = C = O
- (b) $^{-}O C \equiv O^{+}$
- (c) $^+O \equiv C O^-$
- (d) $O \equiv C = O$
- **2.** Which of the following molecule contains one pair of non-bonding electrons
 - (a) CH_4
- (b) NH_3
- (c) H_2O

3.

- (d) *HF*
- Resonance is due to [N
 (a) Delocalization of *sigma* electrons
 - (b) Delocalization of *pi* electrons
- (c) Migration of H atoms
- (d) Migration of protons
- Resonating structures have different [AMU 1983]
- (a) Atomic arrangements
- (b) Electronic arrangements

[NCERT 1981; Kurukshetra CEE 1998]

- (c) Functional groups
- (d) Alkyl groups

In the cyanide ion, the formal negative charge is on

[AMU 1984]

- C (a)
- (b) N
- (c) Both C and N
- Resonate between C and N
- Which does not show resonance

[CPMT 1990]

- (a) Benzene
- (b) Aniline
- (c) Ethyl amine
- (d) Toluene
- The enolic form of acetone contains 7.

[IIT 1990; Bihar MEE 1997]

- (a) 9 sigma bonds, 1 pi bond and 2 lone pairs
- (b) 8 sigma bonds, 2 pi bonds and 2 lone pairs
- (c) 10 sigma bonds, 1 pi bond and 1 lone pair
- (d) 9 sigma bonds, 2 pi bonds and 1 lone pair
- 8. Point out incorrect statement about resonance

[MP PET 1997]

- (a) Resonance structures should have equal energy
- In resonance structures, the constituent atoms should be in the
- (c) In resonance structures, there should not be the same number of electron pairs
- Resonance structures should differ only in the location of electrons around the constituent atoms
- The number of possible resonance structures for CO_3^{2-} is 9.

[MP PMT 2000]

(b) 3

(c) 6

- (d) 9
- Resonance hybrid of nitrate ion is 10.

[RPET 2000]

(a)
$$^{-1/2}O$$
 $\stackrel{\cdots}{=}$ N $\stackrel{\cdots}{=}$ $O^{-1/2}$ (b) $^{-2/3}O$ N N $O^{-2/3}$ N $O^{-2/3}$ $O^{-1/2}$ $O^{-2/3}$

(c)
$$^{-1/3}O$$
 $\stackrel{\cdots}{=}N$ $O^{-1/3}$ (d) $^{-2/3}O$ $O^{-2/3}$ $O^{-2/3}$ $O^{-2/3}$ $O^{-2/3}$

 CO_3^{2-} anion has which of the following characteristics 11.

[Roorkee 1999]

- (a) Bonds of unequal length
- (b) sp^2 hybridization of C atom
- Resonance stabilization
- (d) Same bond angles

VSEPR Theory

The structure of $\left[Cu\left(H_2O\right)_4\right]^{++}$ ion is 1.

[NCERT 1983; MP PMT 1983]

- (a) Square planar
- (b) Tetrahedral
- (c) Distorted rectangle
- (d) Octahedral
- The bond angle in PH_3 would be expected to be close to 2.
 - 90^{o} (a)
- (b) 105°
- (c) 109°
- (d) 120°
- In which molecule are all atoms coplanar [MP PMT 1994] 3.
 - (a) CH 4
- (b) BF_2

- (c) PF₂
- (d) NH_3
- Which has the least bond angle

NCERT 1973; DPMT 1990; CBSE PMT 1990; UPSEAT 2003]

- (a) NH_3
- (b) BeF_2
- (c) H_2O
- (d) *CH*₄
- In compound X , all the bond angles are exactly $109^{o}28$ ', X is 5.
 - (a) Chloromethane
- (b) lodoform
- (c) Carbon tetrachloride
- (d) Chloroform
- The shape of SO_4^{2-} ion is 6

[CPMT 1982; DPMT 1983, 84, 96; Bihar MEE 1997]

- (a) Square planar
- (b) Tetrahedral
- (c) Trigonal bipyramidal
- (d) Hexagonal
- 7. Which of the following molecules has one lone pair of electrons on the central atom

[EAMCET 1980; AMU 1982; MNR 1989]

- (a) H_2O
- (b) NH₃
- (c) CH 4
- (d) *PCl*₅
- Of the following compounds, the one having a linear structure is [NCERT 1981; C MP PMT 1985; AlIMS 1996]
 - (a) NH_{2}
- (b) CH 4
- (c) C_2H_2
- (d) H_2O
- XeF_6 is
 - (a) Octahedral
- (b) Distorted octahedral
- (c) Planar
- (d) Tetrahedral
- 10. Which has maximum bond angle
- [CPMT 1993]
- CHF_3
- (b) CHCl₃
- (c) $CHBr_3$
- (d) All have maximum bond angle
- Of the following species the one having a square planar structure is 11. [NCERT 1981; MP PMT 1994]
 - (a) NH_4^+
- (b) BF_{Δ}^{-}
- (c) XeF_{4}
- (d) SCl_{4}
- In which of the following is the angle between the two covalent 12. bonds greatest

NCERT 1975; AMU 1982; MNR 1987; IIT 1981; CPMT 1988; MP PMT 1994]

[BHU 1982]

- (a) CO_2
- (b) CH 4
- (c) NH_3
- (d) H_2O
- As the s-character of hybridized orbital decreases, the bond angle

(c) Does not change

- (a) Decreases (b) Increases
 - (d) Becomes zero
- XeF_2 molecule is
- (a) Linear
- (b) Triangular planar
- (c) Pyramidal
- (d) Square planar
- Of the following sets which one does NOT contain isoelectronic [AIEEE 2005]
 - (a) $PO_4^{3-}, SO_4^{2-}, ClO_4^-$ (b) CN^-, N_2, C_2^{2-}
 - (c) $SO_3^{2-}, CO_3^{2-}, NO_3^{-}$
- (d) $BO_3^{3-}, CO_3^{2-}, NO_3^{-}$
- 16. A molecule which contains unpaired electrons is

[NCERT 1982]

- (a) Carbon monoxide
- (b) Molecular nitrogen
- (c) Molecular oxygen
- (d) Hydrogen peroxide

 H_2O is 17.

[MADT Bihar 1983]

- (a) A linear triatomic molecule
- (b) A bent (angular) triatomic molecule
- (c) Both of these
- (d) None of these
- Bond angle between two hybrid orbitals is 105° .% s-orbital 18. character of hybrid orbital is [MP PMT 1986]
 - (a) Between 20 21%
- (b) Between 19 20%
- (c) Between 21-22%
- (d) Between 22-23%
- The bond angle between H O H in ice is closest to 19.

[CPMT 1989; UPSEAT 2002]

- 120°28'
- (b) 60°
- 90^{o} (c)
- (d) 105°
- Which of the following molecules does not have a linear 20. arrangement of atoms [CBSE PMT 1989]
 - (a) H_2S
- (b) C_2H_2
- (c) BeH_2
- (d) CO_2
- BCl_3 is a planar molecule while NCl_3 is pyramidal, because 21.
 - (a) BCl_3 has no lone pair of electrons but NCl_3 has a lone pair of electrons
 - (b) B-Cl bond is more polar than N-Cl bond
 - (c) Nitrogen atom is smaller than boron atom
 - N-Cl bond is more covalent than B-Cl bond
- The isoelectronic pair is 22.

[AIIMS 2005]

- (a) Cl_2O , ICl_2^-
- (b) ICl_2^-,ClO_2
- (c) IF_2^+, I_3^-
- (d) ClO_2^- , CIF_2^+
- According to VSEPR theory, the most probable shape of the 23. molecule having 4 electron pairs in the outer shell of the central atom is [MP PET 1996, 2001]
 - (a) Linear
- (b) Tetrahedral
- (c) Hexahedral
- (d) Octahedral
- The molecular shapes of SF_4 , CF_4 and XeF_4 are 24.

[AIEEE 2005]

- (a) The same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively
- The same with 1, 1 and 1 lone pair of electrons on the central atoms, respectively
- (c) Different with 0, 1 and 2 lone pairs of electrons on the central atom, respectively
- (d) Different with 1, 0 and 2 lone pairs of electrons on the central atom, respectively
- Which of the following species is planar 25.

[JIPMER 1997]

- (a) CO_3^{2-}
- (b) NH_2
- (c) PCl_3
- (d) None of these
- The shape of CH_3^+ species is 26.
- [RPET 1999]

- (a) Tetrahedral
- (b) Square planar
- (c) Trigonal planar
- (d) Linear
- Which of the following is the correct reducing order of bond-angle 27.
 - (a) $NH_3 < CH_4 < C_2H_2 < H_2O$

- (b) $C_2H_2 > NH_3 > H_2O < CH_4$
- (c) $NH_3 > H_2O > CH_4 < C_2H_2$
- (d) $H_2O < NH_3 > CH_4 < C_2H_2$
- 28. Which compound has bond angle nearly to 90°

[Pb. PMT 2001]

- (a) $H_{\gamma}O$
- (b) H_2S
- (c) NH₃

30.

- (d) *CH*₄
- 29. A lone pair of electrons in an atom implies

[KCET 2002]

- (a) A pair of valence electrons not involved in bonding
- (b) A pair of electrons involved in bonding
- (c) A pair of electrons
- (d) A pair of valence electrons

[CPMT 2002]

- The bond angle of water is 104.5° due to (a) Repulsion between lone pair and bond pair
- (b) sp^3 hybridization of O
- (c) Bonding of H_2O
- (d) Higher electronegativity of O
- The correct sequence of decrease in the bond angle of the following 31. hybrides is [MP PET 2002]
 - $NH_3 > PH_3 > AsH_3 > SbH_3$
 - $NH_3 > AsH_3 > PH_3 > SbH_3$ [CBSE PMT 1995] $SbH_3 > AsH_3 > PH_3 > NH_3$

 - (d) $PH_3 > NH_3 > AsH_3 > SbH_3$
- Central atom of the following compound has one lone pair of electrons and 32. three bond pairs of electrons [IIPMER 2002]
 - (a) H_2S
- (b) $AlCl_3$
- (c) NH_3
- (d) BF_2
- Among KO_2 , AlO_2^- , BaO_2 and NO_2^+ unpaired electron is 33. present in [MP PET 2003]
 - (a) NO_2^+ and BaO_2^-
- (b) KO_2 and AlO_2^-
- (c) KO_2 only
- (d) BaO_2 only
- True order of bond angle is 34.
- [RPET 2003]
- (a) $H_2O > H_2S > H_2Se > H_7Te$
- (b) $H_2 Te > H_2 Se > H_2 S > H_2 O$
- (c) $H_2S > H_2O > H_2Se > H_2Te$
- (d) $H_2O > H_2S > H_2Te > H_2Se$
- Which of the following has not a lone pair over the central atom
 - (a) NH_3
- (b) *PH*₃
- (c) BF_3
- (d) PCl_3
- In BrF_3 molecule, the lone pairs occupy equatorial positions to 36. [CBSE PMT 2004] minimize
 - (a) Lone pair- lone pair repuilsion and lone pair-bond pair
 - (b) Lone pair- lone pair repulsion only
 - (c) Lone pair- bond pair repulsion only
 - (d) Bond pair- bond pair repulsion only
- H_2O is dipolar, whereas BeF_2 is not. It is because 37.

BHU 2000

[CBSE PMT 1989; 2004]

(a) H_2O is linear and BeF_2 is angular

UNIVERSAL SELF SCORER 118 Chemical Bonding

38.

39.

40.

41.

42.

43.

44.

45.

1.

2.

3.

Which of the following species is the least stable

SATISFACE STATES									
(b)	H_2O is angular and BeF_2	is li	near		(a)	O_2	(b)	O_2^{-2}	
(c)	The electornegativity of F is	great	ter than that of O		(c)	O_2^{+1}	(d)	O_2^{-1}	
(d)	$\boldsymbol{H}_2\boldsymbol{O}$ involves hydrogen b	ondin	g whereas BeF_2 is a discrete	5.		bond order is maximum	. ,	0 2	
	molecule			J .				5; CBSE PMT 19	94; MP PET 2002]
Max	simum bond angle is present	in	[BVP 2004]		(a)	O_2	(b)	O_2^{-1}	
(a)	BCl_3	(b)	BBr_3				(1)	O_2^{-2}	
(c)	BF_3	(d)	Same for all	_	(c)	O_2^{+1}		=	
The	shape of a molecule of NH	I_3 , in	which central atoms contains	6.	_	ich of the following com form	pounds o	t boron does	not exist in the
lone	pair of electron, is		[MHCET 2003]		(a)	BCl_3	(b)	BF_3	
(a)	Tetrahedral		Planar trigonal			-	. ,	5	
(c)	Square planar	(d)		_	(c)	BBr_3	(d)	BH_3	
(a)	largest bond angle is in AsH_3	(b)	[DCE 2002; MNR 1984] NH 3	7.	Mol	ecular orbital theory was	developed		87; Pb. CET 2003]
	9				(a)	Pauling	(b)	Pauling and S	-
(c)	H_2O	(d)	PH ₃		(c)	Mulliken	(d)	Thomson	
	bond angle in ammonia mol		•	8.	The	bond order of a molecule	is given	by	[NCERT 1984]
(a)	91°8′	(b)	93°3'		(a)	The difference between		nber of electi	ons in bonding
(c)	106°45'	(d)	109°28'		(b)	and antibonding orbitals Total number of electron		ding and antib	onding orbitals
	olved based on their bond str		t arrangement of compounds		(c)	Twice the difference l		-	-
		- 6	[BHU 2005]		. ,	bonding and antibonding	_		
(a)	HF > HCl > HBr > Hl				(d)	Half the difference between		umber of elect	rons in bonding
(b)	HI > HBr > HCl > HF HF > HBr > HCl > HI			9.	Oxy	and antibonding electron gen molecule is paramagr		1150	
(c) (d)	HCl > HF > HBr > HI			۶۰	OAy	gen molecule is paramagi	ictic beca		RT 1984; IIT 1984]
` '	ich one has a pyramidal struc	ture	[CBSE PMT 1990]		(a)	Bonding electrons are m	ore than	antibonding el	ectrons
(a)	CH_4	(b)	NH ₃		(b)	Contains unpaired electr		1 1- 1	
(c)	H_2O	(d)	CO_2		(c) (d)	Bonding electrons are le Bonding electrons are ed		-	
. ,			hich the two species are not	10.	` '	ich one is paramagnetic fr	•	-	LIOIIS
	tructural is		[CBSE PMT 2004]			, ,		-	; CBSE PMT 1995]
(a)	BH_4^- and $N\!H_4^+$	(b)	PF_6^- and SF_6		(a)	O_2^-	(b)	NO	
(c)	SiF_4 and SF_4	(d)	IO_3^- and XeO_3		(c)	Both (a) and (b)	(d)	CN^-	
The	maximum number of 90° a	ngles	between bond pair-bond pair	11.	The	bond order in N_2^+ ion	is		[Pb. CET 2004]
of e	lectrons is observed in	[AlE	EE 2004]		(a)	1	(b)	2	
(a)	dsp^2 hybridization	(b)	sp^3d hybridization			2.5	(d)		
(c)	dsp^3 hybridization	(d)	sp^3d^2 hybridization	12.	Out	of the following which ha	as smalles	st bond length	[RPMT 1997]
					(-)	0	(L)	O+	[14411 1997]
	Molecular ork	oital	theory		(a)	O_2	(b)	O_2^+	
Por	d andon is a consent in the	malaa	ular orbital theory. It depends		(c)	O_2^-	(d)	O_2^{2-}	
	•		nding and antibonding orbitals.	13.	Whi	ich of the following molec	•	-	and DDM and
Wh	ich of the following statemen	ts is t	rue about it ? The bond order[All	MS 1980]	(a)	Chlorine		Nitrogen	999; RPMT 2000]
(a)	Can have a negative quantit	-			(c)	Oxygen	(d)	Hydrogen	
(b)	Has always an integral value		1 1 . 1	14.	Whi	ich molecule has the high	est bond	order	
(c)	including zero	e or	integral or fractional value		(a)	N_2	(b)	Li_2	
(d)	ls a non zero quantity				(c)	He_2	(d)	O_2	
The	bond order of NO molecul	le is	[MP PET 1996]	15.	The	molecular electronic conf	iguration	of H_2^- ion is	:
(a)	1	(b)	2	J .					
	2.5	(d)	_			$(\sigma 1s)^2$		$(\sigma 1s)^2 (\sigma^x)$	<i>(s)</i>
	en two atomic orbitals combi		•		(c)	$(\sigma 1s)^2 (\sigma^x 1s)^1$	(d)	$(\sigma 1s)^3$	
(a)	One molecular orbital Three molecular orbital		Two molecular orbital Four molecular orbital	16.		paramagnetic nature of	oxygen	molecule is be	
(c)	rince molecular orbital	(d)	rour morecular orollar		the	basis of			[BHU 1996]

(a) Valence bond theory

(b) Resonance

	(c) Molecular orbital theory	(d) Hybridization		(c) Equal to that of	of $2s$ orbital	
17.	In which case the bond leng nitrogen	th is minimum between carbon and		(d) Double that of	2s orbital	
	(a) CH_3NH_2	(b) $C_6H_5CH = NOH$	29.	In the electronic str	ucture of acetic acid, there are	
	(c) CH_3CONH_2	(d) CH_3CN			[AMU 1	983
18.	Which one of the following spe			* /	8 unshared electrons	
	while one or the rollowing ope	[AIEEE 2005]			6 unshared electrons	
	(a) He_2^+	(b) <i>H</i>		(c) 12 shared and	12 unshared electrons	
	(c) H_2^+	(d) H_2^-		` '	6 unshared electrons	
19.	- · · ·	iides is expected exhibit paramagnetic	30.	Which of the follo orbital theory	wing does not exist on the basis of molec [AFMC 1990; MP PMT 1996]	ulaı
19.	behaviour	[CBSE PMT 2005]		,	•	
	(a) CO_2	(b) <i>SO</i> ₂		(a) H_2^+	(b) He_2^+	
	(c) ClO_2	(d) SiO_2		(c) <i>He</i> ₂	(d) Li_2	
20.	The bond order in N_2 molecular	ıle is	31.	In P_4O_{10} , the	number of oxygen atoms attached to	eacl
	2	[CBSE 1995; Pb. PMT 1999; MP PET 1997]		phosphorus atom is		
	(a) 1	(b) 2		(a) 2	(b) 3	
01	(c) 3 Which one is paramagnetic and	(d) 4		(c) 4	(d) 2.5	
21.	which one is paramagnetic and	[NCERT 1983]	32.	Of the following sta	tements which one is correct	
	(a) O_2	(b) N ₂		(a) Oxygen and	nitric oxide molecules are both paramagr	ietio
	(c) F ₂	(d) H_2^+		because both	contain unpaired electrons	
22.		combine to form one molecule of			nitric oxide molecules are both diamagr	etic
	chlorine gas, the energy of the				contain no unpaired electrons amagnetic because it contains unpaired electr	one
	(a) Greater than that of separate				oxide is diamagnetic because it contains	
	(b) Equal to that of separate(c) Lower than that of separa			unpaired elect	_	
	(d) None of the above statem				iamagnetic because it contains no unpa	
23.		three electrons in its outermost shell			e nitric oxide is paramagnetic because it cont	ains
		s in the outermost shell. The formula		an unpaired el		~
	of the compound between thes	[CPMT 1974, 84; RPMT 1999]	33.		nolecular orbital theory, the bond order in	c_2
	(a) A_3B_4	(b) A_2B_3		molecule is	(b) 1	
	(c) A_3B_2	(d) A_2B		(a) 0 (c) 2	(d) 3	
24.		arbon-carbon bonds in benzene is	34.	()	al configuration of a diatomic molecule is	
	(a) One	(b) Two	34.			
	(c) Between 1 and 2	(d) One and two alternately		$\sigma 1s^2 \sigma^* 1s^2 \sigma$	$2s^2 \sigma^* 2s^2 \sigma 2p_x^2 \begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases}$	
25.	PCl ₅ exists but NCl ₅ does 1				$(n 2p_{\overline{z}}$	
	(a) Nitrogen has no vacant d-	[EAMCET 1977; MP PET/PMT 1988]		Its bond order is		
	(b) NCl_5 is unstable			(a) 3	(b) 2.5	
	(c) Nitrogen atom is much sr	naller		(c) 2	(d) 1	
	(d) Nitrogen is highly inert		35.		nergy between the molecular orbital formed	and
26.	Paramagnetism is exhibited by	molecules [NCERT 1979; MP PET 2002]		the combining aton		
	(a) Not attracted into a magr	-		(a) Bond energy(c) Stabilization e	(b) Activation energy nergy (d) Destabilization energy	
	(b) Containing only paired ele			• •		0
	(c) Carrying a positive charge		36.		cular orbital theory, the paramagnetism of	O_2
27.	(d) Containing unpaired elect Which one of the following is p			molecule is due to p	presence of [MP PMT 1997] rons in the bonding σ molecular orbital	
-/.					· ·	
	(a) H_2O	(b) NO_2			rons in the antibonding σ molecular orbital	
	(c) SO_2	(d) CO_2			ron in the bonding π molecular orbital	
28.	The energy of a $2p$ orbital exc	ept hydrogen atom is			rons in the antibonding π molecular orbital	
		[AMU 1983]	37.	The bond order in	O_2^+ is [MP PET 1999; BHU 2	2001
	(a) Less than that of $2s$ orb	ital		(a) 2	(b) 2.5	
	(b) More than that of 2s orb	ital		(c) 1.5	(d) 3	
	, , , , , , , , , , , , , , , , , , , ,					

UNIVERSAL 120 Chemical Bonding

38.	Which of the following is parar	magnetic [MP PET 1999]	50.	The number of antibonding	g electron pairs in O_2^{2-} molecular ion or
	(a) O_2	(b) <i>CN</i> ⁻		the basis of molecular orbit	
	(c) <i>CO</i>	(d) NO +		(-) 4	[Pb. PMT 2000]
20	If N_x is the number of bonding	· /	is the	(a) 4 (c) 2	(b) 3 (d) 5
39.	number of antibonding orbit		•	The bond order of He_2^+ n	. ,
	stable if		MT 1996]	2	[Pb. PMT 2000; Pb CET 2001]
	(a) $N_x > N_y$	(b) $N_x = N_y$		(a) 1	(b) 2
	(c) $N_x < N_y$	(d) $N_x \leq N_y$		(c) $\frac{1}{2}$	(d) $\frac{1}{4}$
40			50	2	·
40.	Which of the following molecul		ies 52.	Which (KCEI) (a) ClO ₂	t paramagnetism [DPMT 2000] (b) ClO_2^-
	(a) $\sigma 2s$	(b) $\pi 2p_y$. ,
	(c) $\pi^* 2p_y$	(d) $\sigma^* 2p_x$	F2	(c) NO ₂	(d) NO gairs the two molecules have identical
41.	The number of nodal planes 'a	d' orbital has [KC	53. ET 1996]	bond order	[MP PMT 2000]
	(a) Zero	(b) One		(a) N_2, O_2^{2+}	(b) $N_2 O_2^-$
	(c) Two	(d) Three		(c) $N_2^- O_2$	(d) $O_2^+ N_2$
42.	Atomic number of an element		54.	The bond order is not three	
	(-) F	- · · · · ·	MT 1996]	(a) N_2^+	(b) O_2^{2+}
	(a) Ferromagnetism(c) Paramagnetism	(b) Diamagnetism(d) None of these			(d) NO^+
43.	What is correct sequence of bo	. ,	HU 1997]	(c) N_2	,
	(a) $O_2^+ > O_2^- > O_2$	(b) $O_2^+ > O_2 > O_2^-$	55.		gle between the two $O - H$ planes is
				(a) 90°	(b) 101°
	(c) $O_2 > O_2^- > O_2^+$	(d) $O_2^- > O_2^+ > O_2$		(c) 103°	(d) 105°
44.	Which bond is strongest	-	MT 1997] 56.	which of the following moi	lecule has highest bond energy [A11MS 2002]
	(a) $F-F$	(b) $Br - F$		(a) $F-F$	(b) <i>C</i> – <i>C</i>
	(c) $Cl - F$	(d) <i>I-F</i>		(c) $N-N$	(d) $O - O$
45.	Which of the following is not p	paramagnetic [All	MS 1997] 57.		cies would be expected paramagnetic
	(a) S^{-2}	(b) N_2^-		(a) Copper crystals	(b) <i>Cu</i> ⁺
	(c) O_2^-	(d) NO		(c) Cu^{++}	(d) H_2
46.	Which one of the following mo	lecules is paramagnetic	58.	Which of the following is co	
		[Pb. P/	MT 1998]	(a) 3 <i>s</i>	[CPMT 2002] (b) 1 <i>p</i> , 2s
	(a) CO_2	(b) SO_2		(c) 2 <i>p</i> , 1s	$ \begin{array}{ccc} (a) & 3p \end{array} $
	(c) NO	(d) H_2O	59.	In which of the following pare isoelectronics	pairs molecules have bond order three and [MP PET 2003]
47.	N_{2} and O_{2} are converted	d into monoanions N_{2}^{-} and	nd O_2^-	(a) CN^- , CO	(b) <i>NO</i> ⁺ , <i>CO</i> ⁺
	respectively, which of the follow	-	MT 1007	(c) CN^- , O_2^+	(d) CO , O_2^+
	(a) In N_2 , the $N-N$ born	<u>-</u>	MT 1997] 60.	Which of the following is p	
	(b) In O_2 , the $O-O$ bond		00.	(a) O_2^+	(b) <i>CN</i> ⁻
				(c) CO	(d) N_2
	(c) $\ln O_2$, bond length incre		61.		on pairs are there in white phosphorous
	(d) N_2^- becomes diamagneti	c	o	(a) 6	(b) 12
48.	With increasing bond order, sta		01	(c) 4	(d) 8
	(a) Remains unaltered	(b) Decreases	ine 1998] 62.	The atomicity of phosphor molecule is Y. What are X a	rus is X and the \hat{PPP} bond angle in the and Y [EAMCET 2003]
	(c) Increases	(d) None of these		(a) $X = 4$, $Y = 90^{\circ}$	(b) $X = 4$, $Y = 60^{\circ}$
49.	Which is not paramagnetic		99, 2000]	(c) $X = 3$, $Y = 120^{\circ}$	(d) $X = 2$, $Y = 180^{\circ}$
	(a) O_2	(b) O_2^+		() ()	· · · · · · · · · · · · · · · · · · ·
	(c) O_2^{2-}	(d) O_2^-			

- 63. From elementary molecular orbital theory we can give the electronic configuration of the singly positive nitrogen molecular ion N_2^+ as
 - (a) $\sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2 \sigma^*(2s)^2 \pi(2p)^4 \sigma(2p)^1$
 - (b) $\sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2 \sigma^*(2s)^2 \sigma(2p)^1 \pi(2p)^3$
 - (c) $\sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2 \sigma^*(2p)^2 \pi(2p)^4$
 - $\sigma(1s)^2\sigma^*(1s)^2\sigma(2s)^2\sigma^*(2s)^2\sigma(2p)^2\pi(2p)^2$
- 64. The paramagnetic property of the oxygen molecule due to the presence of unpaired electorns present in

[Kerala PMT 2004]

- (a) $(\sigma 2p_x)^1$ and $(\sigma^* 2p_x)^1$
- (b) $(\sigma 2p_{y})^{1}$ and $(\pi 2p_{y})^{1}$
- (c) $(\pi * 2p_y)^1$ and $(\pi * 2p_z)^1$
- (d) $(\pi * 2p_y)^1$ and $(\pi 2p_y)^1$
- (e) $(\pi * 2p_z)^1$ and $(\pi 2p_z)^1$
- In PO_4^{3-} ion, the formal charge on each oxygen atom and 65. P-O bond order respectively are [DPMT 2004]
 - (a) -0.75, 1.25
 - (b) -0.75, 1.0
 - (c) -0.75, 0.6
- (d) -3, 1.25
- The bond order in CO_3^{2-} ion between C-O is 66.
 - (a) Zero
- [Pb. PMT 2004] (b) 0.88
- (c) 1.33
- (d) 2
- The bond order of O_2^+ is the same as in 67.

[CPMT 2004]

(a) N_2^+

- (b) *CN*
- (c) *CO*
- (d) NO^+
- Bond order of O_2 is 68.

[DPMT 2004]

(a) 2

(b) 1.5

- (d) 3.5
- The total number of electron that takes part in forming bonds in 69. [MP PET 2004] N_2 is
 - (a) 2

(b) 4

- (d) 10
- The bond length the species O_2, O_2^+ and O_2^- are in the order of 70.
 - (a) $O_2^+ > O_2 > O_2^-$
- (b) $O_2^+ > O_2^- > O_2$
- (c) $O_2 > O_2^+ > O_2^-$
- (d) $O_2^- > O_2 > O_2^+$
- 71. According to molecular orbital theory which of the following statement about the magnetic character and bond order is correct regarding O_2^+ [IIT JEE Screening 2004]
 - (a) Paramagnetic and bond order $< O_2$
 - (b) Paramagnetic and bond order> O_2
 - Dimagnetic and bond order< ${\cal O}_2$
 - Dimagnetic and bond order> O_2
- The bond order in NO is 2.5 while that in NO^+ is 3. Which of the following statements is true for these two species

[AIEEE 2004]

(a) Bond length in NO^+ is equal to that in NO

- (b) Bond length in NO is greater than in NO^+
- (c) Bond length in NO^+ is greater than in NO
- (d) Bond length is unpredictable
- 73. Which of the following is diamagnetic [BVP 2004]
 - (a) Oxygen molecule
- (b) Boron molecule
- (c) N_2^+
- (d) None
- Bond energies in NO, NO^+ and NO^- are such as

[Pb. CET 2004]

- (a) $NO^- > NO > NO^+$
- (b) $NO > NO^- > NO^+$
- (c) $NO^{+} > NO > NO^{-}$
- (d) $NO^{+} > NO^{-} > NO$
- Which of the following is paramagnetic [UPSEAT 2004] 75.
 - (a) B_2
- (b) C_2
- (c) N_2
- (d) F_2
- The paramagnetic molecule at ground state among the following is [UPSEAT 200 76.
 - (a) H_2
- (b) O_2
- (c) N_2
- (d) *CO*
- Which has the highest bond energy
- [DCE 2002]

- (a) F_2
- (b) *Cl*₂
- (c) Br_2
- (d) I_2
- In O_2^- , O_2 and O_2^{-2} molecular species, the total number of 78. antibonding electrons respectively are [DCE 2003]
 - (a) 7, 6, 8
- (b) 1, 0, 2
- (c) 6, 6, 6
- (d) 8, 6, 8
- 79. Which of the following is not paramagnetic
- [DCE 2002]
 - (a) O_2
- (b) O_2^{2+}
- (c) O_2^{2-}
- (d) O_{2}^{-}
- Which of the following species have maximum number of unpaired 80.
 - (a) O_2
- (b) O_2^+
- (c) O_{2}^{-}
- (d) O_2^{2-}
- 81. The correct order in which the O-O bond length increases in the following is [BHU 2000; CBSE PMT 2005]
 - (a) $H_2O_2 < O_2 < O_3$
- (b) $O_2 < H_2 O_2 < O_3$
- (c) $O_2 < O_3 < H_2O_2$
- (d) $O_3 < H_2O_2 < O_2$
- Correct MPdEF 6 2001 d length is 82.
- [Orissa JEE 2005] (b) $CO_2 > CO > CO_3^{2-}$
- (c) $CO > CO_2 > CO_3^{2-}$

(a) $CO_3^{2-} > CO_2 > CO$

- (d) None of these
- Which of the following is paramagnetic
- [DPMT 2005]
 - (a) N_2
- (b) C_2
- (c) N_2^+

84.

- (d) O_2^{2-} Among the following molecules which one have smallest bond angle[Orissa JEE
- (a) NH_3 (c) H_2O
- (b) PH_3 (d) H_2Sc
- (e) H_2S

Hydrogen bonding

- In the following which bond will be responsible for maximun value of hydrogen bond
 - (a) O-H
- (b) N-H

	(c) $S-H$	` '	F-H	13.	The	pairs of bases in DNA		-	
	In which of the following hy				, .		-	978; DPMT 1985; C	BSE PMT 1992]
	(a) H_2 (c) Sulphur	(q)	Hydrocarbon			Hydrogen bonds	` '	lonic bonds	
	In the following which has h		-		(c)	Phosphate groups	. ,	Deoxyribose gro	•
	Ü	J	[MP PMT 1989; RPMT 1997]	14.	Wat	er has high heat of vapor	risation di	ue to	[AFMC 1982]
	(a) HI	(b)	HF		(a)	Covalent bonding	(b)	H — bonding	
	(c) HBr	(d)	HCl		(c)	Ionic bonding	(d)	None of the abo	ove
	Which contains hydrogen bo		[MP PMT 1989]	15.	ln w	which of the following cor	npounds	does hydrogen bo	onding occur
	(a) HF	(b)	HCl		(a)	SiH_4	(b)	LiH	
	(c) HBr	(d)	HI		(c)	HI	(d)	NH_3	
	Contrary to other hydrogen halides, hydrogen fluoride is a liquid because [MP PMT 1990; AMU 1983; EAMCET 1980]				. ,	ich among the following	. ,		now hydrogen
	(a) Size of F atom is small	11			bonding [MP PMT 1989]				
	(b) HF is a weak acid				(a)	Chloroform		Ethyl alcohol	
	(c) HF molecule are hydr	rogen bonde	ed		(c)	Acetic acid	. ,	Ethyl ether	
	(d) Fluorine is highly react			17.		tic acid exists as dimer in	benzene	due to	[CPMT 1982]
	In the following which speci		contain sp^3 hybridization		(a) (b)	Condensation reaction Hydrogen 985 ding			
					(b) (c)	Presence of carboxyl gro	oun		
	(a) NH_3		CH_4		(d)	Presence of hydrogen at	•	– carbon	
	(c) H_2O	(d)	CO_2	18.	()	ich one among the follow			rogen bond
	As a result of $\mathit{sp}\ $ hybridiza	ntion, we get	[11T 1984]	ю.	** 111	and the uniong the follow	g does	nave the nyu	UPSEAT 2001
	(a) Two mutual perpendic	ular orbitals	S		(a)	Phenol	(b)	Liquid NH_3	•
	(b) Two orbitals at 180°				(c)	Water	(d)	Liquid HCl	
	(c) Four orbitals in tetrahe	edral directi	ons	19.	The	bond that determines th	. ,	•	protein is[NCE
	(d) Three orbitals in the sa	ame plane			(a)	Coordinate bond	(b)	Covalent bond	
•	The reason for exceptionally high boiling point of water is				(c)	Hydrogen bond	(d)	Ionic bond	
	· ·	[DPMT 1986; NCERT 1976; AMU 1984; EAMCET 1979;				${\it Cl}$ is a gas but ${\it HF}$ is a ${\it I}$	ow boilin	g liquid. This is l	ecause
		17 1993; AllW	IS 1996; KCET 2001; CPMT 2003]						; MP PMT 2001]
	(a) Its high specific heat				(a)	H-F bond is strong			
	(b) Its high dielectric const				(b)	H-F bond is weak			
	(c) Low ionization of wate				(c)	Molecules aggregate bed	cause of h	ydrogen bonding	,
	(d) Hydrogen bonding in t		rophenol is more volatile than		(d)	HF is a weak acid			
	<i>p</i> -nitrophenol	s that <i>O</i> -miti	ophenor is more volatile than	21.	The	relatively high boiling po	oint of H	F is due to	
	,	80, 82; Kuru	kshetra CEE 1998; MP PET 2002]			, , ,			[NCERT 1984]
	(a) Resonance	(b)	Hyperconjugation		(a)	Hydrogen bonding			•
	(c) Hydrogen bonding	(d)	Steric hindrence		(b)	Covalent bonding			
	Which contains strongest H	H – bond			(c)	Unshared electron pair	on F		
	דוו]	Γ 1986; MP P	ET 1997, 2003; UPSEAT 2001, 03]		(d)	Being a halogen acid			
	(a) $O-HS$	(b)	S-HO	22.	Wat	er is liquid due to		[MA	NDT Bihar 1983]
	(c) $F - HF$	(d)	F-HO		(a)	Hydrogen bonding	(b)	Covalent bond	
	Which of the following com	pound can	form hydrogen bonds		(c)	lonic bond	` '	Vander Waals f	
	(a) CH	(L)	[NCERT 1978; MP PMT 1997]	23.		maximum possible nui O molecule can participa		hydrogen bonds	in which an
	(a) CH_4	()	NaCl					MNR 1991; IIT 199	2;MP PET 1999]
	(c) $CHCl_3$	(d)	H_2O		(a)	-	(b)		
	Of the following hydrides w	of the following hydrides which has the lowest boiling point			(c)	3	(d)	4	
			[CBSE PMT 1987]	24.	Hyd	rogen bonding is maximi	ım in		
	(a) NH_3	(b)	PH_3				[11T 1987;	MP PMT 1991; MP	PET 1993, 2001;
	(c) SbH_3	(d)	AsH_3			_, ,		5; CPMT 1999; KCI	ET (Med.) 2002]
	` / 3	(-)	ی		(a)	Ethanol	(b)	Diethyl ether	

(a) Ethanol

(b) Diethyl ether

	(c) Ethyl chloride (d) Triethyl amine	35.	Ethanol and dimethyl ether form a pair of functional isomers. The
25.	The hydrogen bond is strongest in		boiling point of ethanol is higher than that of dimethyl ether due to
	[BHU 1987; CBSE PMT 1990, 92]		the presence of [AIIMS 1998]
	(a) Water (b) Ammonia		(a) Hydrogen bonding in ethanol
	(c) Hydrogen fluoride (d) Acetic acid		(b) Hydrogen bonding in dimethyl ether
26.	The high boiling point of ethanol (78.2°C) compared to dimethyl		(c) CH_3 group in ethanol
	ether (–23.6 o C), though both having the same molecular formulae		(d) CH_3 group in dimethyl ether
	C_6H_6O , is due to [MP PMT 1993]	36.	Which of the following hydrogen bonds are strongest in vapour
	(a) Hydrogen bonding		phase [AMU 1999]
	(b) Ionic bonding		(a) $HF HF$ (b) $HF HCl$
	(c) Coordinate covalent bonding		(c) $HClHCl$ (d) $HFHI$
	(d) Resonance	37.	Which of the following shows hydrogen bonding
27.	Methanol and ethanol are miscible in water due to		[CPMT 2000]
	[CPMT 1989]		(a) NH_3 (b) P
	(a) Covalent character		(c) As (d) Sb
	(b) Hydrogen bonding character	38.	The boiling point of a compound is raised by [DPMT 2001]
	(c) Oxygen bonding character		(a) Intramolecular hydrogen bonding
	(d) None of these		(b) Intermolecular hydrogen bonding
28.	B.P. of $H_2O(100^{\circ}C)$ and $H_2S(-42^{\circ}C)$ explained by		(c) Covalent bonding
	(a) Vander Waal's forces (b) Covalent bond		(d) lonic covalent
	(c) Hydrogen bond (d) Ionic bond	39.	The boiling point of water is exceptionally high because
29.	Strength of hydrogen bond is intermediate between		[KCET 2001]
	[DPMT 1991]		(a) Water molecule is linear
	(a) Vander Waal and covalent		(b) Water molecule is not linear
	(b) Ionic and covalent		(c) There is covalent bond between <i>H</i> and <i>O</i>
	(c) Ionic and metallic		(d) Water molecules associate due to hydrogen bonding
20	(d) Metallic and covalent	40.	NH_3 has a much higher boiling point than PH_3 because
30.	In which of the following compounds intramolecular hydrogen bond is present [MP PET 1994]		[UPSEAT 2002; MNR 1994]
	(a) Ethyl alcohol (b) Water		(a) NH_3 has a larger molecular weight
	(c) Salicylaldehyde (d) Hydrogen sulphide		(b) NH_3 undergoes umbrella inversion
31.	Hydrogen bonding is formed in compounds containing hydrogen		
	and [MP PET 1995]		(c) NH 3 forms hydrogen bond
	(a) Highly electronegative atoms		(d) $N\!H_3$ contains ionic bonds whereas $P\!H_3$ contains covalent
	(b) Highly electropositive atoms		bonds
	(c) Metal atoms with <i>d</i> -orbitals occupied	41.	Which one has the highest boiling point [MP PET 2002]
22	(d) Metalloids Which of the following compounds in liquid state does not have		(a) Acetone (b) Ethyl alcohol
32.	Which of the following compounds in liquid state does not have hydrogen bonding [MP PMT 1996]		(c) Diethyl ether (d) Chloroform
	(a) H_2O (b) HF	42.	Which of the following compounds has the highest boiling point
	(c) NH_3 (d) C_6H_6		(a) HCl (b) HBr
			(c) H_2SO_4 (d) HNO_3
33.	Compounds showing hydrogen bonding among HF , NH_3 , H_2S	43.	Which of the following has minimum melting point
	and PH_3 are		[UPSEAT 2003] (a) CsF (b) HCl
	(a) Only HF , NH_3 and PH_3		(a) <i>CsF</i> (b) <i>HCI</i> (c) <i>HF</i> (d) <i>LiF</i>
	(b) Only HF and NH_3	44.	Hydrogen bond energy is equal to [UPSEAT 2003]
	(c) Only $N\!H_3$, H_2S and PH_3		(a) 3 – 7 cals (b) 30 – 70 cals
	(d) All the four		(c) 3 – 10 <i>kcals</i> (d) 30 – 70 <i>kcals</i>
34.	The high density of water compared to ice is due to	45.	H_2O is a liquid while H_2S is gas due to [BHU 2003]
	[CBSE PMT 1997; BHU 1999; AFMC 2001]		(a) Covalent bonding
	(a) Hydrogen bonding interactions		
	(b) Dipole-dipole interactions		
	(c) Dipole-induced dipole interactions		(c) H – bonding

(d) H – bonding and molecular attraction

(d) Induced dipole-induced dipole interactions

į		
	UNIVERSAL SELF SCORER	124 Chemical Bonding
ì	CHANGE STATE OF THE PARTY OF TH	

<i>H</i> – bonding is maximum in		[BHU 2003]		(a)		itals		
(a) C_6H_5OH	(b)	C_6H_5COOH		(b)	Mobile valency electrons			
(c) CH_2CH_2OH	(d)	CH 2 COCH 2		(c)				
			R	` ,		Solid		[CPMT 1982]
•			٠.		•		Changes	[CIMI 1902]
(a) CCl_4	(b)	CS_2		(c)	Becomes compact	(d)	None of the ab	ove
(c) CHCl ₃	(d)	C_2H_5OH	9.	` '	•	e highest	t melting point	
When two ice cubes are pres	sed over	each other they unit to form						[CPMT 1994]
•				(a)	Pb	(b)	Diamond	
them together		[NCERT 1978]		(c)	Fe	(d)	Na	
(a) Vander Waal's forces			10.	In t	he formation of a molecule	e by an a	ntom	[AFMC 1995]
(b) Hydrogen bond formatic	n			(a)	Attractive forces operate			
(c) Covalent attraction				(b)	Repulsive forces operate			
(d) Dipole-dipole attraction				(c)	•	lsive forc	es operate	
Which is the weakest among	the follow	ing types of bond	**	(d)				[DDIATE1
		[NCERT 1979; MADT Bihar 1984]	11.			(L)	Neon (Sal: 4)	[RPMT 1997]
(a) lonic bond	(b)	Metallic bond					, ,	
(c) Covalent bond	(d)	Hydrogen bond	מי	` '		` '		ular forces[AllA)
()	` '	[BCECE 2005]	12.					uiai Torces[AIIM
	(b)					()		
		· ·			_		=	
(e) Hydrogen naonae	(u)	, a. ogen oarpinde	13.	Glyo	erol has strong intermole	cular bor	nding therefore i	
Types of bonding	and F	orces in solid		(2)	Sweet	(b)	Reactive	[RPET 2000]
71								
In a crystal cations and anion	s are held	together by	14.	. ,	•	()		
		[EAMCET 1982]	-		_ 3			04; CPMT 2002]
(a) Electrons	(b)	Electrostatic forces		(a)	Metallic bond	(b)	lonic bond	
(c) Nuclear forces	(d)	Covalent bonds		(c)	Van der Waal's force	` '		
In the following metals which	h one ha	s lowest probable interatomic	15.	Lat	tice energy of alkali metal	chloride	s follows the ord	er
forces		[MP PMT 1990]						[DPMT 2004]
(a) Copper	(b)	Silver		(a)	LiCl > NaCl > KCl >	RbCl:	> CsCl	
(c) Zinc	(d)	Mercury		(b)	CsCl > NaCl > KCl	> RbCl	> LiCl	
In solid argon, the atoms are	held toge	ther by		(c)	LiCl > CsCl > NaCl	> <i>KCl</i> >	> RbCl	
		[NCERT 1981; MP PET 1995]		(d)	NaCl > LiCl > KCl >	RbCl	> CsCl	
(a) lonic bonds	(b)	Hydrogen bonds	16.				•	electrovalent,
(c) Vander Waals forces				cova	alent and co-ordinate bond	d at the s	same time	
Which one is the highest mel				(a)	HCl	(b)	NH_4^+	
				(2)	Cl^-	(4)	н о	
	()		17.	Botl	n ionic and covalent bond	is preser		
ine enhanced force of cohesion	on in met						MNR 1986;	MP PMT 2004]
(a) The covalent linkages be	tween ato			(a)	CH_4	(b)	KCl	
				(c)	SO_2	(d)	NaOH	
(b) The electrovalent linkage			18.		formation of a chemical b	. ,		
(b) The electrovalent linkage(c) The lack of exchange of	valency el	ectrons	10.	ine		Julia 13 d	ecompanied by	
() = 1 1 1 2 1								[MP PET 1005]
(c) The lack of exchange of(d) The exchange energy of	mobile el			(a)	Decrease in energy			[MP PET 1995]
(c) The lack of exchange of(d) The exchange energy of	mobile el	ectrons		(a) (b)	Decrease in energy			[MP PET 1995]
(c) The lack of exchange of(d) The exchange energy ofWhich one of the following	mobile el substano	ectrons ces consists of small discrete		(b)	Increase in energy	rease in	enerov	[MP PET 1995]
(c) The lack of exchange of(d) The exchange energy ofWhich one of the following molecules	mobile ele substance (b) (d)	ectrons ces consists of small discrete [CPMT 1987] Graphite Dry ice			0,	rease in	energy	[MP PET 1995]
	(a) C_6H_5OH (c) CH_3CH_2OH Select the compound from the (a) CCl_4 (c) $CHCl_3$ When two ice cubes are presone cube. Which of the follation together (a) Vander Waal's forces (b) Hydrogen bond formation (c) Covalent attraction (d) Dipole—dipole attraction (d) Dipole—dipole attraction (d) Dipole—dipole attraction (e) Covalent bond (c) Covalent bond (d) Hydrogen fluoride Types of bonding In a crystal cations and anion (a) Electrons (c) Nuclear forces In the following metals whice forces (a) Copper (b) Zinc In solid argon, the atoms are (a) lonic bonds (b) Vander Waals forces (c) Vander Waals forces (d) NaCl (e) NaF The enhanced force of cohesical cations and content of the composition of the compositi	(a) C_6H_5OH (b) (c) CH_3CH_2OH (d) Select the compound from the following (a) CCl_4 (b) (c) $CHCl_3$ (d) When two ice cubes are pressed over one cube. Which of the following for them together (a) Vander Waal's forces (b) Hydrogen bond formation (c) Covalent attraction (d) Dipole—dipole attraction Which is the weakest among the following for them together (a) Ionic bond (b) (c) Covalent bond (d) Hebond is not present in (a) Water (b) (b) (c) Hydrogen fluoride (d) Types of bonding and F In a crystal cations and anions are held (a) Electrons (b) (c) Nuclear forces (d) In the following metals which one has forces (a) Copper (b) (c) Zinc (d) In solid argon, the atoms are held toge (a) Ionic bonds (b) (b) Vander Waals forces (d) Which one is the highest melting halid (a) $NaCl$ (b) The enhanced force of cohesion in metals are the content of the content of the property of the pr	(a) C_6H_5OH (b) C_6H_5COOH (c) CH_3CH_2OH (d) CH_3COCH_3 Select the compound from the following which dissolves in water (a) CCl_4 (b) CS_2 (c) $CHCl_3$ (d) C_2H_5OH When two ice cubes are pressed over each other, they unit to form one cube. Which of the following force is responsible for holding them together [NCERT 1978] (a) Vander Waal's forces (b) Hydrogen bond formation (c) Covalent attraction (d) Dipole—dipole attraction Which is the weakest among the following types of bond (c) Covalent bond (d) Hydrogen bond (e) Covalent bond (f) Metallic bond (g) Hydrogen fluoride (g) Hydrogen fluoride (h) Glycerol (g) Hydrogen fluoride (h) Hydrogen Sulphide Types of bonding and Forces in solid In a crystal cations and anions are held together by [EAMCET 1982] (a) Electrons (b) Electrostatic forces (c) Nuclear forces (d) Covalent bonds In the following metals which one has lowest probable interatomic forces (c) Zinc (d) Mercury In solid argon, the atoms are held together by [NCERT 1981; MP PET 1995] (a) Ionic bonds (b) Hydrogen bonds (c) Vander Waals forces (d) NaBr (d) NaBr (e) NaF (d) NaBr (l) CCERT 1972	(a) C_6H_5OH (b) C_6H_5COOH (c) CH_3CH_2OH (d) CH_3COCH_3 Select the compound from the following which dissolves in water (a) CCl_4 (b) CS_2 (c) $CHCl_3$ (d) C_2H_5OH 9. When two ice cubes are pressed over each other, they unit to form one cube. Which of the following force is responsible for holding them together [NCERT 1978] (a) Vander Waal's forces 10. (b) Hydrogen bond formation (c) Covalent attraction (d) Dipole-dipole attraction Which is the weakest among the following types of bond [NCERT 1979; MADT Bihar 1984] (a) Ionic bond (b) Metallic bond (c) Covalent bond (d) Hydrogen bond 12. **Types of bonding and Forces in solid** In a crystal cations and anions are held together by [EAMCET 1982] (a) Electrons (b) Electrostatic forces (c) Nuclear forces (d) Covalent bonds In the following metals which one has lowest probable interatomic forces: [MP PMT 1990] (a) Copper (b) Silver (c) Zinc (d) Mercury In solid argon, the atoms are held together by [NCERT 1978; MP PET 1995] (a) Ionic bonds (b) Hydrogen bonds (c) Vander Waals forces (d) Hydrophobic forces Which one is the highest melting halide [AIIMS 1980] (a) NaCl (b) NaBr (c) NaF (d) Nal 17. The enhanced force of cohesion in metals is due to	(a)	(a) C_6H_3OH (b) C_8H_3COOH (c) CH_3CH_2OH (d) CH_3COCH_3 (d) Highly directed both Select the compound from the following which dissolves in water (a) CCl_4 (b) CS_2 (c) $CHCl_3$ (d) C_2H_5OH 9. Which of the following force is responsible for holding them together objective (e) Except some sompact (for the following force is responsible for holding them together (g) CCI_4 (h) CI_3CI_4 (h) CI_3CI_4 (h) CI_4 (h) $CI_$	(a) C_0H_3OH (b) C_0H_3COOH (c) CH_3COH_3 (d) CH_3COOH_3 (e) CH_3COH_3 (d) CH_3COOH_3 (e) CCI_4 (b) CS_2 (e) $CHCI_3$ (d) C_2H_3OH (e) CS_2 (e) $CHCI_3$ (d) C_2H_3OH (e) CI_3 (d) C_2H_3OH (e) CI_3 (d) C_2H_3OH (e) CI_3 (e) CI_4 (b) CS_2 (e) $CHCI_3$ (d) C_2H_3OH (f) CI_3 (e) CI_4 (b) CI_3 (d) CI_4 (e) CI_4 (f) C	(a) $C_0H_3CH_2OH$ (b) $C_0H_3COCH_3$ Select the compound from the following which dissolves in water (a) CCI_4 (b) CS_2 (c) $CHCI_3$ (d) $CHCI_3$ (e) $CHCI_3$ (d) $CHCI_3$ (d) $CHCI_3$ (d) $CHCI_3$ (e) $CHCI_3$ (d) $CHCI_3$ (d) $CHCI_3$ (e) $CHCI_3$ (e) $CHCI_3$ (d) $CHCI_3$ (e) $CHCI_3$ (e) $CHCI_3$ (d) $CHCI_3$ (e) $CHCI_3$ (e) $CHCI_3$ (e) $CHCI_3$ (e) $CHCI_3$ (f) $CHCI$

[UPSEAT 2001]

- (a) Attraction
- (b) Repulsion
- (c) Neither attraction nor repulsion
- (d) Both (a) and (b)
- 20. Which of the following statements is true

[AIEEE 2002] 6.

- (a) HF is less polar than HBr
- (b) Absolutely pure water does not contain any ions
- (c) Chemical bond formation take place when forces of attraction overcome the forces of repulsion
- (d) In covalency transference of electron takes place
- **21.** Which of the following statements is true about $\left[Cu\left(NH_3\right)_4\right]SO_4$
 - (a) It has coordinate and covalent bonds
 - (b) It has only coordinate bonds
 - (c) It has only electrovalent bonds
 - (d) It has electrovalent, covalent and coordinate bonds
- 22. Blue vitriol has
 - (a) lonic bond
- (b) Coordinate bond
- (c) Hydrogen bond
- (d) All the above
- 23. The number of ionic, covalent and coordinate bonds in NH_4Cl are respectively [MP PMT 1999]
 - (a) 1, 3 and 1
- (b) 1, 3 and 2
- (c) 1, 2 and 3
- (d) 1, 1 and 3
- 24. Covalent molecules are usually held in a crystal structure by

[MP PET 1995]

- (a) Dipole-dipole attraction
- (b) Electrostatic attraction
- (c) Hydrogen bonds
- (d) Vander Waal's attraction

Critical Thinking

Objective Questions

- 1. The values of electronegativity of atoms A and B are 1.20 and 4.0 respectively. The percentage of ionic character of A-B bond is
 - (a) 50 %
- (b) 43 %
- (c) 55.3 %
- (d) 72.24%
- **2.** O_2^{2-} is the symbol of ion

[EAMCET 2003]

- (a) Oxide
- (b) Superoxide
- (c) Peroxide
- (d) Monoxide
- 3. The number of electrons that are paired in oxygen molecule is
 - (a) 7

(b) 8

(c) 14

- (d) 16
- **4.** When N_2 goes to N_2^+ , the N-N bond distance and when
 - O_2 goes to O_2^+ , the O-O bond distance

[11T 1996]

- (a) Decrease, increase
- (b) Increase, decrease
- (c) Increase, increase
- (d) None of these
- 5. Which of the following contains a coordinate covalent bond

(a) $N_2 H_5^+$

 $BaCl_2$

- (c) *HCl*
- (d) H_2O
- Which combination is best explained by the co-ordinate covalent bond[JIPMER 2001; CBSE PMT 1990]
 - (a) $H^+ + H_2 O$
- (b) C1 + C1
- (c) $Mg + \frac{1}{2}O_2$
- (d) $H_2 + I_2$
- 7. Arrange the following compounds in order of increasing dipole moment.
 - (1) Toluene
- (11) m dichlorobenzene
- (III) o dichlorobenzene
- (IV) p dichlorobenzene

[IIT 1996]

- (a) I < IV < II < III
- (b) IV < I < II < III
- (c) IV < I < III < II
- (d) IV < II < I < III
- 8. The correct order of dipole moment is [Roorkee 1999]
 - (a) $CH_4 < NF_3 < NH_3 < H_2O$
 - (b) $NF_3 < CH_4 < NH_3 < H_2O$
 - (c) $NH_3 < NF_3 < CH_4 < H_2O$
 - (d) $H_2O < NH_3 < NF_3 < CH_4$
- 9. Which of the following has the highest dipole moment

[AIIMS 2002]

(a)
$$H \subset C = O$$

$$\begin{array}{ccc}
CH_3 H \\
 & | & | \\
C = C \\
 & | & | \\
CH_3 H
\end{array}$$

$$\begin{array}{ccc}
Cl & CH \\
 & C \\
Cl & C \\
CH_3 & Cl
\end{array}$$

- 10. Which of the following arrangement of molecules is correct on the basis of their dipole moments [AIIMS 2002]
 - (a) $BF_3 > NF_3 > NH_3$
- (b) $NF_3 > BF_3 > NH_3$
- (c) $NH_3 > BF_3 > NF_3$
- (d) $NH_3 > NF_3 > BF_3$
- 11. The type of hybrid orbitals used by the chlorine atom in $\ensuremath{\mathit{ClO}}_2^-$ is
 - (a) sp^3
- (b) sp^2

- (c) *sp*
- (d) None of these
- 12. Among the following species, identify the isostructural pairs, NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3 [IIT 1996]
 - (a) $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$
 - (b) $[NF_3, HN_3]$ and $[NO_3^-, BF_3]$
 - (c) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$
 - (d) $[NF_3, H_3O^+]$ and $[HN_3, BF_3]$
- 13. In the compound $CH_2 = CH CH_2 CH_2 C \equiv CH$, the $C_2 C_3$ bond is of the type [IIT 1999]
 - (a) $sp sp^2$
- (b) $sp^3 sp^3$

- (c) $sp sp^3$
- (d) $sp^2 sp^3$
- The correct order of increasing C-O bond length of 14. CO, CO_3^{2-} , CO_2 is [IIT 1999]

 - (a) $CO_3^{2-} < CO_2 < CO$ (b) $CO_2 < CO_3^{2-} < CO$
 - (c) $CO < CO_3^{2-} < CO_2$
- (d) $CO < CO_2 < CO_3^{2-}$
- 15. In the dichromate dianion

[IIT 1999]

- (a) 4 Cr O bonds are equivalent
- 6 Cr O bonds are equivalent
- (c) All Cr O bonds are equivalent
- (d) All Cr O bonds are non-equivalent
- Bond length of ethane (1), ethene (11), acetylene (111) and benzene 16. (IV) follows the order [CPMT 1999]
 - (a) I > II > III > IV
- (b) I > II > IV > III
- (c) I > IV > II > III
- (d) III > IV > II > I
- Hybridisation state of chlorine in ClF_3 is 17.

[RPET 1999]

- (a) sp^3
- (b) sp^3d
- (c) sp^3d^2
- Molecular shapes of SF_4 , CF_4 and XeF_4 are 18.

[IIT Screening 2000]

- (a) The same with 2, 0 and 1 lone pairs of electrons respectively
- (b) The same, with 1, 1 and 1 lone pairs of electrons respectively
- (c) Different, with 0, 1 and 2 lone pairs of electrons respectively
- (d) Different, with 1, 0 and 2 lone pairs of electrons respectively
- Structure of IF_4^+ and hybridization of iodine in this structure are [UPSEAT 2001] 19.
 - - (a) sp^3d , Linear
 - (b) sp^3d^2 , *T*-shaped
 - (c) sp^3d , Irregular tetrahedral
 - (d) sp^3d^2 , Octahedral
- In which of the following the central atom does not use sp hybrid 20. orbitals in its bonding [UPSEAT 2001, 02]
 - (a) BeF_3^-
- (b) OH_{2}^{+}
- (c) NH_{2}^{-}
- (d) NF_3
- 21. The magnetic moment of $K_3[Fe(CN)_6]$ is found to be 1.7 B.M. How many unpaired electron (s) is/are present per molecule

(c) 3

- (d) 4
- 22. N_2 and O_2 are converted into monocations N_2^+ and O_2^+ respectively. Which is wrong [CBSE PMT 1997]
 - (a) In N_2 , the N-N bond weakens
 - (b) In O_2 , the O-O bond order increases
 - (c) In O_2 , paramagnetism decreases
 - (d) N_2^+ becomes diamagnetic
- The common features among the species CN^- , CO and NO^+ are 23. [IIT Screening 2001]
 - (a) Bond order three and isoelectronic
 - Bond order three and weak field ligands
 - Bond order two and π -acceptors

- (d) Isoelectronic and weak field ligands
- The number of S-S bonds in sulphur trioxide trimer S_3O_9 is

- (b) Two
- (c) One
- (d) Zero
- Strongest intermolecular hydrogen bond is present in the following molecules pairs [IIT 1981; DCE 2000]
 - (a) SiH_A and SiF

(b)
$$CH_3 - C - CH_3$$
 and $CHCl_3$

$$O \ || \ C$$
(c) $H-C-OH$ and CH_3-C-OH

- A compound contains atoms X, Y, Z. The oxidation number of 26. X is +2, Y is +5 and Z is -2. Therefore, a possible formula of the compound is [CPMT 1988]
 - (a) XYZ_2
- (b) $X_2 (YZ_3)_2$
- (c) $X_3 (YZ_4)_2$
- (d) $X_2(Y_4Z)_2$
- Bonds present in $CuSO_4.5H_2O$ is 27.
- [IIT 1983; DCE 2001]
- (a) Electrovalent and covalent
 - (b) Electrovalent and coordinate
 - Electrovalent, covalent and coordinate
 - Covalent and coordinate
- The ionization of hydrogen atom would give rise to 28.

[UPSEAT 2001]

- (a) Hybrid ion
- (b) Hydronium ion
- (c) Proton
- (d) Hydroxyl ion
- Which can be described as a molecule with residual bonding [JIPMER 2000]
 - (a) $BeCl_2$
- (b) NaCl
- (c) CH₄
- (d) N_2

Assertion & Reason For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- If both assertion and reason are true and the reason is the correct explanation of the assertion.
- *(b)* If both assertion and reason are true but reason is not the correct explanation of the assertion.
- If assertion is true but reason is false. (c)
- If the assertion and reason both are false. (d)
- (e) If assertion is false but reason is true.
- Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason Hydration energy of ions releases sufficient energy to overcome lattice energy and break hydrogen bonds in water, while covalent bonded compounds interact so weakly that even Vander

						Chemical Bonding 127
			Wall's forces between molecules of covalent compounds cannot be broken. [AIIMS 1996]	Assertion	:	The crystal structure gets stabilized even though the sum of electron gain enthalpy and ionization enthalpy is positive.
2.	Assertion	:	The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.	Reason	:	Energy is absorbed during the formation of crystal lattice.
	Reason	:	In a polar covalent molecule, the shared electrons	Assertion	:	Order of lattice energy for same halides are as $LiX > NaX > KX$.
			spend more time on the average near one of the atoms. [AIIMS 1996]	Reason	:	Size of alkaline – earth metal increases from $\ Li$ to $\ K$.
3.	Assertion	:	Diborane is electron deficient There are no enough valence electrons to form 18.	Assertion		
	Reason	:	the expected number of covalent bonds[AIIMS 2001]	Reason	:	Born-Haber cycle is based on Hess's law. Lattice enthalpy can be calculated by Born-
4.	Assertion	:	A resonance hybrid is always more stable than any of its canonical structures 19.	Assertion	:	Haber cycle. Bond energy has order like
	Reason	:	This stability is due to delocalization of electrons[AIIMS 1999	=		$C - C < C = C < C \equiv C.$
5.	Assertion	:	All $F-S-F$ angle in SF_4 greater than 90° but less than 180°	Reason	:	Bond energy increases with increase in bond order.
	Reason	:	The lone pair-bond pair repulsion is weaker than bond pair-bond pair repulsion	Assertion	:	Electron affinity refers to an isolated atom's attraction for an additional electron while electronegativity is the ability of an element to
c	Ati		[AIIMS 2004] O			attract electrons towards itself in a shared pair of electrons.
6.	Assertion	:	The electronic structure of O_3 is O	Reason	:	Electron affinity is a relative number and electronegativity is experimentally measurable.
	Reason	:	structure is not allowed because 21.	Assertion	:	Geometry of SF_4 molecule can be termed as
			0 0			distorted tetrahedron, a folded square or see saw.
			octet around cannot be expanded. [IIT 1998]	Reason	:	Four fluorine atoms surround or form bond with sulphur molecule.
7.	Assertion	:	Bond order can assume any value number 22.	Assertion	:	BF_3 has greater dipole moment than H_2S .
			including zero	Reason	:	Fluorine is more electronegative than sulphur.
	Reason	:	Higher the bond order, shorter is bond length and greater is bond energy 23.	Assertion	:	The bond between two identical nonmetal atoms has a pair of electrons with identical spin.
8.	Assertion	:	[AIIMS 1999] Ortho nitrophenol molecules are associated due to the presence of intermolecular hydrogen bonding while	Reason	:	Electrons are transferred fully from one atom to another.
			paranitrophenol involves intramolecular, hydrogen	Assertion	:	B molecule is diamagnetic.
	_		bonding	Reason	:	The highest occupied molecular orbital is of o
	Reason	:	Ortho nitrophenol is more volatile than the para nitrophenol [AIIMS 1999] 25.	Assertion		type. [AllMS 2005]
9.	Assertion	:	Nitrogen molecule diamagnetic.	Assertion	•	The nearly tetrahedral arrangement of the orbitals about the oxygen atom allows each water
	Reason	:	N_2 molecule have unpaired electrons.			molecule to form hydrogen bonds with as many as four neighbouring water molecules.
10.	Assertion	:	Ice is less dense than liquid water.	Reason		In ice each molecule forms four hydrogen bonds
	Reason	:	There are vacant spaces between hydrogen bonded water molecules in ice.		•	as each molecule is fixed in the space.
11.	Assertion	:	Water is liquid but H_2S is a gas.	Assertion	:	The bond order of helium is always zero.
	Reason	:	Oxygen is paramagnetic.	Reason	:	The number of electrons in bonding molecular orbital and antibonding molecular orbital is
12.	Assertion	:	lodine is more soluble in water then in carbon tetrachloride.			equal.
	Reason	:	lodine is a polar compound.			
13.	Assertion	:	o and p -nitrophenols can be separated by steam distillation.		Á	nswers
	Reason	:	o -nitrophenol have intramolecular hydrogen bonding while p -nitrophenol exists as associated molecules.		Ele	ectrovalent bonding

Assertion

Reason

Assertion

Reason

15.

The fluorine has lower reactivity.

 σ is strong while π is a weak bond.

Atoms rotate freely about $\,\pi\,$ bond.

 $F\!-\!F$ bond has low bond dissociation energy.

1	b	2	а	3	а	4	С	5	С
6	d	7	d	8	b	9	С	10	d
11	b	12	а	13	d	14	а	15	a
16	С	17	b	18	а	19	d	20	С

UNIVERSAL SELF SCORER 128

ORER 128 Chemical Bonding

21	b	22	d	23	а	24	а	25	b
26	d	27	d	28	С	29	а	30	d
31	b	32	b	33	b	34	d	35	b
36	а	37	b	38	а	39	а	40	С
41	С	42	b	43	d	44	b	45	С
46	С	47	а	48	b	49	С	50	b
51	b	52	b	53	а	54	а	55	a
56	С	57	а	58	С	59	а	60	С
61	а	62	b	63	d	64	d	65	b
66	а	67	abc	68	bd				

Covalent bonding

					_				
1	С	2	С	3	В	4	b	5	d
6	а	7	С	8	а	9	d	10	а
11	b	12	b	13	С	14	b	15	С
16	a	17	а	18	С	19	а	20	b
21	а	22	а	23	С	24	С	25	С
26	С	27	а	28	а	29	а	30	d
31	b	32	а	33	d	34	а	35	d
36	b	37	d	38	С	39	d	40	С
41	b	42	b	43	b	44	b	45	b
46	d	47	d	48	b	49	а	50	a
51	b	52	d	53	С	54	d	55	d
56	d	57	а	58	а	59	d	60	a
61	С	62	а	63	b	64	b	65	b
66	b	67	b	68	d	69	b	70	С
71	С	72	С	73	cd	74	ad	75	ab
76	а								

Co-ordinate or Dative bonding

1	d	2	b	3	С	4	d	5	С
6	b	7	а	8	d	9	а	10	d
11	С	12	а	13	а	14	b	15	С

Dipole moment

1	b	2	d	3	d	4	а	5	С
6	С	7	а	8	а	9	С	10	b
11	b	12	d	13	b	14	С	15	d
16	С	17	С	18	а	19	С	20	b
21	d	22	b	23	b	24	b	25	а
26	b	27	b	28	b	29	С	30	а
31	а	32	С	33	а	34	bd	35	а

Polarisation and Fajan's rule

1	d	2	С	3	b	4	d	5	С
6	а	7	b	8	а	9	С	10	b
11	d	12	С	13	b	14	b	15	d
16	d	17	С	18	b	19	а	20	d
21	а	22	С	23	d	24	а	25	b
26	b								

Overlaping - σ and $\pi\text{-}$ bonds

1	С	2	С	3	b	4	b	5	С
6	С	7	С	8	b	9	d	10	С
11	b	12	С	13	а	14	а	15	d
16	а	17	d	18	С	19	d	20	d

Hybridisation

1	d	2	d	3	d	4	С	5	d
6	а	7	С	8	b	9	d	10	d
11	d	12	а	13	а	14	b	15	а
16	b	17	С	18	а	19	d	20	b
21	С	22	С	23	а	24	С	25	а
26	a	27	b	28	С	29	b	30	а
31	d	32	а	33	d	34	С	35	С
36	b	37	b	38	С	39	b	40	b
41	d	42	b	43	С	44	а	45	С
46	С	47	d	48	b	49	С	50	а
51	b	52	а	53	С	54	С	55	С
56	d	57	b	58	а	59	b	60	С
61	b	62	С	63	b	64	b	65	b
66	а	67	С	68	b	69	С	70	а
71	а	72	а	73	b	74	b	75	d
76	d	77	С	78	а	79	d	80	b
81	С	82	b	83	d	84	а	85	d
86	b	87	d	88	С	89	а	90	С
91	С	92	С	93	а	94	b	95	С
96	а	97	b	98	b	99	b	100	b
101	а	102	b	103	d	104	а	105	b
106	a	107	а	108	b	109	b	110	а
111	а	112	b	113	b	114	d	115	d
116	С	117	С	118	b	119	С	120	а
121	а	122	С	123	а	124	а	125	b
126	С	127	d	128	С	129	С	130	а
131	b	132	b	133	е	134	С	135	d

136	b	137	b	138	d	139	а	140	а
141	а	142	b	143	a	144	а	145	а
146	b	147	С	148	d	149	bcd	150	а
151	ac	152	а						

_				
R	29	n	an	CE

1	d	2	b	3	b	4	b	5	b
6	С	7	а	8	С	9	b	10	С
11	abcd								

VSEPR Theory

1	а	2	а	3	b	4	С	5	С
6	b	7	b	8	С	9	b	10	а
11	С	12	a	13	а	14	а	15	С
16	С	17	b	18	d	19	d	20	а
21	а	22	d	23	b	24	d	25	а
26	С	27	b	28	b	29	а	30	а
31	а	32	С	33	С	34	а	35	С
36	b	37	b	38	d	39	d	40	b
41	С	42	а	43	b	44	С	45	d

Molecular orbital theory

1	а	2	С	3	b	4	b	5	С
6	d	7	С	8	b	9	С	10	b
11	С	12	b	13	С	14	а	15	С
16	С	17	d	18	b	19	С	20	С
21	d	22	С	23	b	24	С	25	а
26	d	27	b	28	b	29	а	30	С
31	С	32	а	33	С	34	а	35	С
36	d	37	b	38	а	39	а	40	С
41	С	42	а	43	b	44	а	45	а
46	С	47	b	48	С	49	С	50	а
51	С	52	b	53	а	54	а	55	а
56	С	57	С	58	С	59	а	60	а
61	a	62	b	63	а	64	С	65	а
66	С	67	а	68	а	69	С	70	a
71	b	72	b	73	d	74	С	75	а
76	b	77	b	78	а	79	С	80	a
81	С	82	а	83	С	84	d		

Hydrogen bonding

1	d	2	b	3	b	4	а	5	С

6	d	7	b	8	d	9	С	10	С
11	d	12	b	13	а	14	b	15	d
16	d	17	b	18	d	19	С	20	С
21	а	22	а	23	d	24	а	25	С
26	а	27	b	28	С	29	а	30	С
31	а	32	b	33	d	34	а	35	а
36	а	37	а	38	b	39	d	40	С
41	а	42	С	43	b	44	С	45	С
46	b	47	d	48	b	49	d	50	d

Types of bonding and Forces in solid

1	b	2	d	3	С	4	С	5	d
6	d	7	d	8	b	9	b	10	С
11	d	12	а	13	d	14	С	15	а
16	b	17	d	18	а	19	d	20	С
21	d	22	d	23	а	24	d		

Critical Thinking Question

1	d	2	С	3	С	4	b	5	а
6	а	7	b	8	а	9	а	10	d
11	а	12	С	13	d	14	d	15	b
16	С	17	b	18	d	19	С	20	а
21	а	22	d	23	а	24	d	25	С
26	С	27	С	28	С	29	а		

Assertion & Reason

1	а	2	а	3	а	4	а	5	C
6	b	7	b	8	е	9	С	10	а
11	b	12	d	13	а	14	е	15	C
16	С	17	С	18	b	19	а	20	C
21	b	22	е	23	d	24	d	25	а
26	а								