

Objective Questions

Electrical conductors, Arrhenius theory and Ostwald's dilution law

Which of the following is non-electrolyte 1.

[CPMT 2001]

13.

15.

17.

20.

11.

- (a) NaCl
- (b) $CaCl_2$
- (c) $C_{12}H_{22}O_{11}$
- (d) CH₃COOH
- Ammonium hydroxide is a 2.

[CPMT 1977]

- (a) Strong electrolyte
 - (b) Weak electrolyte
 - (c) Both under different conditions
 - (d) Non-electrolyte
- Ammonium hydroxide is a weak base because 3.

[MP PET 2000]

- (a) It has low vapour pressure
- (b) It is only slightly ionized
- (c) It is not a hydroxide of any metal
- (d) It has low density
- Electrolytes when dissolved in water dissociate into their constituent ions. The degree of dissociation of an electrolyte increases with [CPMT 1974]
 - (a) Increasing concentration of the electrolyte
 - Decreasing concentration of the electrolyte (b)
 - Decreasing temperature (c)
 - Presence of a substance yielding a common ion (d)
- An electrolyte 5.
- [MP PMT/PET 1988; CPMT 1974]
- Gives complex ions in solution (a)
 - (b) Dissolves in water to give ions
 - Is ionized in the solid state
- Generates ions on passing electric current
- A monoprotic acid in 1.00 M solution is 0.01% ionised. The 6. dissociation constant of this acid is [BVP 2003]
 - (a) 1×10^{-8}
- (b) 1×10^{-4}
- (c) 1×10^{-6}
- (d) 10^{-5}
- 7. Molten sodium chloride conducts electricity due to the presence of
 - (a) Free electrons
 - (b) Free ions
 - (c) Free molecules
 - (d) Atoms of sodium and chlorine
- 8. An example for a strong electrolyte is [KCET 2002]
 - (a) Urea
- (b) Ammonium hydroxide
- Sugar
- (d) Sodium acetate
- Which one is strongest electrolyte in the following 9.

[CPMT 1990]

- (a) NaCl
- (b) CH₃COOH
- NH_4OH
- (d) $C_6 H_{12} O_6$
- The equivalent conductance at infinite dilution of a weak acid such 10. as HF
 - Can be determined by measurement of very dilute HF
 - Can be determined by extrapolation of measurements on dilute solutions of HCl, HBr and HI

- Can best be determined from measurements on dilute solutions of NaF, NaCl and HCl
- (d) Is an undefined quantity

If α is the degree of ionization, C the concentration of a weak electrolyte and K_a the acid ionization constant, then the correct relationship between α , C and K_a is

[CET Pune 1998; Pb. PMT 1998; RPMT 2002]

(a)
$$\alpha^2 = \sqrt{\frac{K_a}{C}}$$

(b)
$$\alpha^2 = \sqrt{\frac{C}{K_a}}$$

(c)
$$\alpha = \sqrt{\frac{K_a}{C}}$$

(d)
$$\alpha = \sqrt{\frac{C}{K_a}}$$

Theory of ionization was given by

[AMU 1983; DPMT 1985]

- (a) Rutherford
- Graham (b)
- (c) Faraday
- Arrhenius (d)

An ionizing solvent has

- Low value of dielectric constant
- High value of dielectric constant
- A dielectric constant equal to 1
- (d) Has a high melting point
- The extent of ionization increases

[MNR 1982]

- With the increase in concentration of solute
- On addition of excess water to solution
- (b)
- On decreasing the temperature of solution (c)
- On stirring the solution vigorously (d)

Which is generally true about ionic compounds

[Pb. PMT 2002]

- (a) Have low boiling point
- (b) Have low melting point
- Soluble in non polar solvents
- Conduct electricity in the fused state
- 16. At infinite dilution, the percentage ionisation for both strong and [CPMT 1999] weak electrolytes is
 - (a) 1%
- (b) 20%
- (c) 50%
- (d) 100%

The degree of ionization of a compound depends on

[MNR 1980]

- Size of solute molecules
- Nature of solute molecules
- Nature of yessel used Quantity of electricity passed
- 18. For a weak acid HA, Ostwald's dilution law is represented by the

(a)
$$K_a = \frac{\alpha c}{1 - \alpha^2}$$

(b)
$$K_a = \frac{\alpha^2 c}{1 - \alpha}$$

(c)
$$\alpha = \frac{K_a c}{1 - c}$$

(d)
$$K_a = \frac{\alpha^2 c}{1 - \alpha^2}$$

- Acetic acid is a weak electrolyte because
- [CPMT 1974]
- (a) Its molecular weight is high
 - (b) It is covalent compound
 - (c) It does not dissociate much or its ionization is very less
 - (d) It is highly unstable
- In which of the following dissociation of $N\!H_4OH$ will be minimum [MP PET 2000]
 - NaOH
- NH_4Cl
- (d) NaCl

21.	Vant hoff factor of $BaCl_2$ of conc. $0.01M$ is 1.98. Percentage		. ,	1.25×10^{-6}	` '	4.8×10^{-5}	
	dissociation of $BaCl_2$ on this conc. Will be	32.	The b	pest conductor of electricity	y is a 1.	.0 M solution of	[NCEPT 1070]
	[Kerala CET 2005]		(a)	Boric acid	(b)	Acetic acid	[NCERT 1973]
	(a) 49 (b) 69		` '	Sulphuric acid	` '	Phosphoric acid	
	(c) 89 (d) 98 (e) 100	33.	. ,	colour of an electrolyte sol	. ,	•	
22.	In which of the following solutions, ions are present			·		•	[DPMT 1985
	[NCERT 1981]			The nature of the anion			
	(a) Sucrose in water (b) Sulphur in CS ₂			The nature of the cation			
	(c) Caesium nitrate in water (d) Ethanol in water			The nature of both the ion	ns		
23.	The following equilibrium exists inaqueous solution,		()	The nature of the solvent			_
_0.	$CH_3COOH = CH_3COO^- + H^+$ if dil HCI is added, without	34.		ntion depends upon	(1.)	N/ 1	[CPMT 2004
	change in temperature, the [UPSEAT 2000, 02]		()	Pressure	` '	Volume	
			()	Dilution	. ,	None of these	0
	(a) Concentration of CH_3COO^- will increase	35.		values of dissociation con- lows. Indicate which is the			25°C) are
	(b) Concentration of CH_3COO^- will decrease		(a)	1.4×10^{-2}	(b)	1.6×10^{-4}	
	(c) The equilibrium constant will increase (d) The equilibrium constant will decrease		(c)	4.4×10^{-10}	(d)	4.3×10^{-7}	
24.	Which will not affect the degree of ionisation	26	. ,	entration CN^- in $0.1M_\odot$. ,		10-101
	[MP PMT 1994]	36.	Conc	entration CIV in 0.17	и псіч	is $[K_a = 4 \times 1]$	
	(a) Temperature (b) Concentration			6		6	[RPET 2000]
	(c) Type of solvent (d) Current		()	$2.5 \times 10^{-6} M$. ,	$4.5 \times 10^{-6} M$	
25.	The addition of a polar solvent to a solid electrolyte results in [NCERT 15	973]	(c)	$6.3 \times 10^{-6} M$	(d)	$9.2 \times 10^{-6} M$	
	(a) Polarization (b) Association						
	(c) Ionization (d) Electron transfer			Acids an	d Ba	ses	
26.	The degree of dissociation of $0.1 MHCN$ solution is 0.01%. Its	1	W/bio	h of the following is not a	Louris	acid	MP PET 2002
	ionisation constant would be [RPMT 1999]	1.		CO		$SiCl_4$	MF FET 2002
	(a) 10^{-3} (b) 10^{-5}		` '			•	
	(c) 10^{-7} (d) 10^{-9}		(c)	SO_3	(d)	Zn^{2+}	
27.	The hydrogen ion concentration in weak acid of dissociation	2.		w the equilibrium an		ose the correc	t statement
	constant K_a and concentration c is nearly equal to		HCl	$O_4 + H_2O \rightleftharpoons H_3O^+ +$	$-ClO_4^-$		[RPMT 2000
	[CBSE PMT 1989; RPMT 2000]		(a)	$HClO_4$ is the conjugate	acid of	H_2O	
	(a) $\sqrt{K_a/c}$ (b) c/K_a		(b)	H_3O^+ is the conjugate b	ase of	H_2O	
	(c) $K_a c$ (d) $\sqrt{K_a c}$		(c)	H_2O is the conjugate ac	id of H	I_3O^+	
28.	Degree of dissociation of $0.1 N CH_3 COOH$ is		(d)	ClO_4^- is the conjugate be	ase of 1	HClO ₄	
		2		ution of $FeCl_3$ in water		•	
	(Dissociation constant $= 1 \times 10^{-5}$) [MP PET 1997]	3.	A 501	ution of Tect ₃ in water	acts as	acidic due to	[BVP 2003
	(a) 10^{-5} (b) 10^{-4}			Hydrolysis of Fe^{3+}	(1.)	A : 1: : :::	•
	(c) 10^{-3} (d) 10^{-2}			Dissociation		Acidic impuritie lonisation	S
29.	Which of the following substance is an electrolyte	4.	()	ite substance having alkali	. ,		
	[MADT Bihar 1980]			· ·			[BVP 2003
	(a) Chloroform		(a)	$NaNO_3$	(b)	NH_4Cl	
	(b) Benzene (c) Toluene		(c)	Na_2CO_3	(d)	Fe_2O_3	
	(c) Toluene (d) Magnesium chloride	5.	Whic	h of the following can ac	t both a	as Bronsted acid	and Bronsted
30.	In weak electrolytic solution, degree of ionization		base	· ·	[/	MP PET 1995; MP 1	PET/PMT 1998
0-1	(a) Will be proportional to dilution		(a)	Cl^-	(b)	HCO_3^-	
	(b) Will be proportional to concentration of electrolyte		(c)	H_3O^+	(d)	OH^-	
	(c) Will be proportional to the square root of dilution	6.	Lewis	-	(u)		MP PMT 1987
	(d) Will be reciprocal to the dilution	u.		s acid Presence of <i>H</i> atom is nec	essarv	l	MIF FINI 1987
31.	0.2 molar solution of formic acid is ionized 3.2%. Its ionization		. ,	ls a electron pair donor	,		
	constant is [MP PMT 1991]			Always a proton donor			
	(a) 9.6×10^{-3} (b) 2.1×10^{-4}		(d)	ls a electron pair acceptor			

UNIVERSAL SELF SCORER

352 Ionic Equilibrium

7.	For two acids A and B , $pK_a=1.2$, $pK_b=2.8$ respectively in		$CH_3COOH + HF \rightleftharpoons CH_3COOH_2^+ + F^-$ [BHU 1987]
	value, then which is true [Bihar MEE 1998] (a) A and B both are equally acidic		(a) F^- is the conjugate acid of CH_3COOH
	(b) A is stronger than B		
	(c) B is stronger than A		(b) F^- is the conjugate base of HF
	(d) Neither <i>A</i> nor <i>B</i> is strong (e) None of these		(c) CH_3COOH is the conjugate acid of $CH_3COOH_2^+$
8.	Aq. solution of sodium cyanide is [BHU 1981]		(d) $CH_3COOH_2^+$ is the conjugate base of CH_3COOH
	(a) Acidic (b) Amphoteric	21.	The compound that is not a Lewis acid is [IIT 1985]
9.	(c) Basic (d) Netural Which of the following is the strongest conjugate base		(a) BF_3 (b) $AlCl_3$
-	[MADT Bihar 1983; CBSE PMT 1999; KCET (Med.) 2001]		(c) $BeCl_2$ (d) NH_3
	(a) Cl^- (b) CH_3COO^-	22.	Which of the following dissolves in water to give a neutral solution [Bihar MAD
	(c) $SO_4^{}$ (d) NO_2^{-}		(a) $(NH_4)_2SO_4$ (b) $Ba(NO_3)_2$
10.	NaOH is a strong base because [AIIMS 2001]		(c) $CrCl_3$ (d) $CuSO_4$
	(a) It gives OH^- ion (b) It can be oxidised	23.	Which of the following is the strongest acid [AMU 1982] (a) H_3PO_4 (b) H_2SO_4
	(c) It can be easily ionised (d) Both (a) and (c)		
11.	Which one of the following can be classified as a Bronsted base	24	(c) H [RCET 2001] (d) CH_3COOH An example of a Lewis acid is
	(a) NO_3^- (b) H_3O^+	24.	[MADT Bihar 1982; AMU 1982; MNR 1994;
	(c) NH_4^+ (d) CH_3COOH		RPMT 1997; KCET 2000; Orissa JEE 2005]
12.	Which one of the following substance has the highest proton affinity [AIEEE 2003]		(a) $NaCl$ (b) $MgCl_2$
	(a) H_2O (b) H_2S		(c) $AlCl_3$ (d) $SnCl_4$
	(c) NH_3 (d) PH_3	25.	In the equilibrium $HClO_+HO \Rightarrow HO_+ClO_4^-$
13.	Which of the following is the strongest Lewis acid		[BHU 1981, 86]
	[EAMCET 1998]		(a) $HClO_4$ is the conjugate acid of H_2O
	(a) BI_3 (b) BBr_3		(b) H_2O is the conjugate acid of H_3O^+
	(c) BCl_3 (d BF_3		(c) H_3O^+ is the conjugate base of H_2O
14.	An aqueous solution of ammonia consists of [MP PET 2001]		(d) ClO_4^- is the conjugate base of $HClO_4$
	(a) H^+ (b) OH^-	26.	Which of the following would be expected to form ionic solution in
	(c) NH_4^+ (d) NH_4^+ and OH^-		water [CPMT 1976; Kurukshetra CEE 1998]
15.	Which of the following is not a Lewis acid		(a) CCl_4 (b) O_2
	[CBSE PMT 1996]		(c) $NaBr$ (d) $CHBr_3$
	(a) BF_3 (b) $FeCl_3$	27.	A solution of sodium bicarbonate in water turns [NCERT 1971]
	(c) SiF_4 (d) C_2H_4		(a) Phenolphthalein pink (b) Methyl orange yellow
16.	The conjugate base of NH_2^- is [EAMCET 1998]	-0	(c) Methyl orange red (d) Blue litmus red
	(a) NH_3 (b) NH^{2-}	28.	Accepting the definition that an acid is a proton donor, the acid in the following reaction $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ is [Kerala (Med.) 2003
	· /		
177	(c) NH_4^+ (d) N_3^- The strength of an acid depends on its tendency to		(a) NH_3 (b) H^+
17.	[MP PET 1996]		(c) NH_4^+ (d) H_2O
	(a) Accept protons (b) Donate protons	29.	With reference to protonic acids, which of the following statements is correct [CPMT 1990]
18.	(c) Accept electrons (d) Donate electrons Which is not a electrophile [RPET 1999]		(a) PH_3 is more basic than NH_3
10.	(a) $AlCl_3$ (b) BF_3		(b) PH_3 is less basic than NH_3
			(c) PH_3 is equally basic as NH_3
10			(d) PH_3 is amphoteric while NH_3 is basic
19.	Ammonia gas dissolves in water to give NH_4OH . In this reaction water acts as [CPMT 1990; MP PMT 1990]	30.	NH ₄ OH is weak base because [CPMT 1979]
	(a) An acid (b) A base		(a) It has low vapour pressure
	(c) A salt (d) A conjugate base		(b) It is only slightly ionized
20.	In the equilibrium		(c) It is not a hydroxide of metal

(d) It has low density

31.	HNO_3 in liquid hydrogen fluoride	behaves		(c) Both A and B	(d) Neither A	nor B
	(a) As an acid		45.	The conjugate acid of NH_2^- is	[1	IT 1985; Roorkee 1995
	(b) As a base			EAMCET 1997;C	BSE PMT PMT 200	0; MP PET 1996,2000]
	(c) Neither as a base nor as an ac	eid		(a) NH_3	(b) NH_4^+	
	(d) As a base and as an acid			(c) NH_2OH	(d) N_2H_4	
32.	Aqueous solution of CuSO ₄ .5H		46.	Correct statement is	2 4	[CPMT 1985]
	red due to	[CPMT 1979; MP PMT 1989]	•	(a) NH_4Cl gives alkaline solu	ution in water	
	(a) Presence of Cu^{++} ions			(b) CH ₃ COONa gives acid		or .
	(b) Presence of $SO_4^{}$ ions			(c) CH_3COOH is a weak a		-
	(c) Hydrolysis taking place			_		
	(d) Reduction taking place			(d) NH_4OH is a strong bas		
33.	In the following reaction		47.	pK_a of a weak acid is defined	as	[JIPMER 1999]
	$HC_2O_4^- + PO_4^{} \rightleftharpoons HPO_4^-$	$+C_2O_4^{-1}$		(a) $\log_{10} K_a$	(b) $\frac{1}{\log_{10} K_a}$	
	Which are the two Bronsted bases	[MP PMT 1991]		(*) *810 a		
	(a) $HC_2O_4^-$ and $PO_4^{}$			(c) $\log_{10} \frac{1}{K_a}$	(d) $-\log_{10} \frac{1}{K}$	<u>-</u>
	(c) $HC_2O_4^-$ and $HPO_4^{}$	(d) $PO_4^{}$ and $C_2O_4^{}$	48.	A salt X' is dissolved in water	er(nH=7) th	a e resulting solution
34.	Which of the following is the weak	est acid [CPMT 2001]	40.	becomes alkaline in nature. The		e resulting solution
		(b) <i>HCl</i>				[CPMT 1983]
35.	(c) <i>HBr</i> The degree of dissociation in a wea	(d) HI		(a) A strong acid and strong b		
JJ.	The degree of dissociation in a wea	[CBSE PMT 1989; MP PMT 1997]		(b) A strong acid and weak base(c) A weak acid and weak base		
	(a) On increasing dilution	(b) On increasing pressure		(d) A weak acid and strong ba		
	(c) On decreasing dilution	(d) None of these	49.	Which one is not an acid salt		[MNR 1984]
36.	$H^{^{+}}$ is a	[MADT Bihar 1983]		(a) NaH_2PO_2	(b) NaH_2P	O_3
	* /	(b) Lewis base		(c) NaH_2PO_4	(d) None	
		(d) None of the above	50.	A white substance was alkaline	in solution. Whi	ch of the following
37.	Dissociation of H_3PO_4 takes place		•	substances could it be		[CPMT 1989]
	(a) 1	[CPMT 1976; NCERT 1987] (b) 2		(a) Fe_2O_3	(b) Na_2CO_2	3
		(d) 4		(c) NH ₄ Cl	(d) NaNO ₃	
38.	The aqueous solution of disodium		51.	An aqueous solution of ammoni		
	(a) Acidic	[MADT Bihar 1982] (b) Neutral	0			[MP PMT 1989]
		(d) None		(a) Weakly acidic	(b) Weakly ba	nsic
39.	Which of the following is a conjuga	-		(c) Strongly acidic	(d) Neither a	
		[MADT Bihar 1984; DPMT 2001]	52.	100 <i>ml</i> of 0.2 $M H_2 SO_4$	is added	to 100 <i>ml</i> of
	(a) HCl, NaOH	(b) NH_4Cl , NH_4OH		0.2 M NaOH. The resulting	solution will be	[BHU 1996]
	(c) H_2SO_4 , HSO_4	(d) KCN, HCN		(a) Acidic	(b) Basic	
40.	The solution of strong acid and we	ak base $(FeCl_3)$ is		(c) Neutral	(d) Slightly be	asic
	[/	MADT Bihar 1981; CPMT 1979, 83, 84]	53.	H_3BO_3 is		[IIT Screening 2003]
		(b) Basic		(a) Monobasic and weak Lewis	s acid	
		(d) None of the above		(b) Monobasic and weak Brons		
41.	The conjugate acid of HPO_3^{2-} is	[EAMCET 1989]		(c) Monobasic and strong Lew(d) Tribasic and weak Bronste		
		(b) H_3PO_3		· ,		
	(c) $H_2PO_3^-$	(d) PO_4^{3-}	54.	In the reaction $SnCl_2 + 2Cl^-$	$\rightarrow SNCl_4$, Lewi	
42.	What name is given to the reac	, ,		() G G	(1) CI-	[EAMCET 1987]
	hydroxyl ion (a) Hydrogenation	[MP PMT 1990] (b) Hydroxylation		(a) $SnCl_2$	(b) <i>Cl</i> ⁻	
		(d) Neutralization		(c) $SnCl_4$	(d) None of t	hese
43.	Among the following, the weakest	Lewis base is	55.	Lewis base is		[RPMT 1997]
		[NCERT 1981]		(a) CO_2	(b) SO_3	
		(b) <i>OH</i> ⁻		(c) SO ₂	(d) ROH	
	` '	(d) HCO_3^-	56.	$10 \ ml \ \text{of} \ 1 \ M \ H_2SO_4 \ \text{will}$	completely neutra	lise
44.	The pKa for acid A is greater the	•	3	(a) 10 ml of 1 M NaOH		
	acid is (a) Acid <i>B</i>	[DPMT 2000] (b) Acid <i>A</i>		(a) 10 mi oi 1 M NuO Π	SOIGHOIT	
	\·/ · · · · · · · · · · · · · · · · · ·	(-) · · ·				

354 Ionic Equilibrium 10 ml of 2 M NaOH solution 5 ml of 2 M KOH solution (d) 5 ml of 1 M Na₂CO₃ solution Which of the following compounds are diprotic 57. [Pb. PMT 2000] (a) H_2PO_5 (b) H_2S 71. (c) HClO₂ (d) H_2PO_2 When 100 ml of 1M NaOH solution is mixed with 10 ml of 10 M 58. $H_2SO_4, \ \mbox{the resulting mixture will be} \ [\mbox{AMU 2002}]$ (a) Acidic (c) Neutral (d) Strongly alkaline The pH indicators are [KCET 1996] 59. (a) Salts of strong acids and strong bases (b) Salts of weak acids and weak bases (c) Either weak acids or weak bases (d) Either strong acids or strong bases Which of the following is not Lewis acid [BHU 1997] 60. (a) BF_3 (b) AlCl₃ (c) FeCl₃ (d) PH_3 A solution of sodium acetate in water will 61. [MNR 1979] (a) Turn red litmus blue (b) Turn blue litmus red (c) Not effect litmus (d) Decolourises litmus 62. ${\it Cl}^-$ is the conjugate base of [NCERT 1979; CPMT 1976; MP PET/PMT 1988] (a) $HClO_{4}$ (b) HCl HOCl (d) HClO₃ Which of the following behaves as both Lewis and Bronsted base 63. (a) BF_3 (b) Cl^- (c) CO (d) None of these The conjugate acid of a strong base is a [EAMCET 1979] 64. (a) Strong acid (b) Weak acid (d) Weak base (c) Strong base Which one is the weakest acid 65. [DPMT 2002] (a) HNO_3 (b) $HClO_{4}$ (c) H_2SO_4 (d) HBr Conjugate base of HPO_4^{2-} is [MP PMT 1995] 66. (a) PO_4^{3-} (b) $H_2PO_4^-$ (c) H_3PO_4 (d) H_4PO_3 Which of the following is not Lewis acid [RPET/PMT 2002] 67. (a) FeCl₃ (b) $AlCl_3$ (c) BCl_3 (d) NH_3 68. (i) A strong acid has a weak conjugate base

(ii) An acid is an electron pair acceptor The above statements (i) and (ii)

(i) Correct and (ii) Wrong

(i) Wrong and (ii) Correct

The pH is less than 7, of the solution of

[Pb. PMT 2002; MP PMT 2003]

(b) NaCN

(c) $Cl_2B - PH_2$

83.

Which of the following statement is true

(a) Correct

(b) Wrong

 $FeCl_3$

69.

(c) NaOH (d) NaCl In the reaction $I_2 + I^- \rightarrow I_3^-$, the Lewis base is 70. [CPMT 1997; RPMT 2002; BCECE 2005] (b) *I*⁻ (a) I_2 (c) I_3 (d) None of these The strength of an acid depends on its tendency to [UPSEAT 2001] (b) Donate protons (a) Accept protons (c) Accept electrons (d) Donate electrons 72. In Lewis acid-base theory, neutralization reaction may be considered NCERT 1977 Formation of salt and water (a) Competition for protons by acid and base (b) Oxidation reduction Coordinate covalent bond formation The salt that forms neutral solution in water is 73. [EAMCET 1981] (a) $NH_{\perp}Cl$ (b) NaCl (c) Na_2CO_3 (d) K_3BO_3 Which of the following cannot act as a Lewis or Bronsted acid (a) BF_3 (b) $AlCl_3$ (c) SnCl_A (d) CCl₄ Which one of the following salts gives an acidic solution in water 75. (a) CH₃COONa (b) $NH_{\perp}Cl$ (c) NaCl (d) CH_3COONH_4 76. Which of the anhydrous salts when come in contact with water turns blue
(a) Ferrous sulphate [AMU 1981, 82] (b) Copper sulphate (c) Zinc sulphate (d) Cobalt sulphate The species among the following, which can act as an acid and a [AIEEE 2002; KCET 2005] base is (a) HSO_4^- (b) SO_4^2 (c) H_3O^+ (d) Cl^{-} The strongest base from the following species is [KCET 1996] (a) NH^{2-} OH^- (b) Q^{2-} S^{2-} (c) Which one is Lewis acid [CPMT 1997] (a) $Cl^ Ag^{+}$ S^{2-} (c) C_2H_5OH The conjugate acid of $H_2PO_4^-$ is [MP PET 1990] (a) H_3PO_4 (b) H_2PO_4 (c) PO_4^{3-} (d) H_3O^+ The conjugate acid of $S_2O_8^{2-}$ is 81. [EAMCET 1984] (a) $H_2S_2O_8$ (b) H_2SO_4 (c) HSO_4^- (d) $HS_2O_8^-$ In the reaction $BCl_3 + PH_3 \rightarrow Cl_3B - PH_3$, Lewis base is 82. [EAMCET 1986] (b) *PH*₃ (a) BCl_3

(d) None of these

[MP PMT 1996]

	(a) The conjugate base of a strong acid is a strong base(b) The conjugate base of a weak acid is a strong base	97.	In th	ne reaction $HCl + H_2O$	$\Rightarrow H_3C$) ⁺ + <i>Cl</i> ⁻ [NCERT 1978; EAA	ICET 1982, 89]
	(c) The conjugate base of a weak acid is a weak base(d) The base and its conjugate acid react to form a neutr	al solution	(a)	$\boldsymbol{H}_2\boldsymbol{O}$ is the conjugate b	ase of <i>H</i>	-	.02. 1902, 091
84.	What is the conjugate base of OH^- [AIEEE 2005]		(b)	${\it Cl}^-$ is the conjugate base	e of HC	$\mathcal{C}l$ acid	
	(a) O_2 (b) H_2O		(c)	Cl^- is the conjugate acid	d of H_2	O base	
	(c) O^- (d) O^{2-}		(d)	H_3O^+ is the conjugate 1	base of 1	HCl	
35.	Which of the following is a Lewis base [BHU 1995]	98.	Acco	ording to Lewis concept, a			·h
	(a) CH_4 (b) C_2H_5OH					•	31; NCERT 1981;
	(c) Acetone (d) Secondary amine		(a)	Accepts protons		CPM1 1980;	MP PMT 1987]
86.	The correct order of acid strength is [CBSE PMT 2005]			Donates protons			
	$(a) HClO < HClO_2 < HClO_3 < HClO_4$		(c)	Accepts a lone pair of ele			
	(b) $HClO_4 < HClO < HClO_2 < HClO_3$	99.	(d) Wat	Donates a lone pair of ele er is a	ectrons		[KCET 2002]
	(c) $HClO_2 < HClO_3 < HClO_4 < HClO$	55.		Amphoteric acid	(b)	Aprotic solvent	[]
	(d) $HClO_4 < HClO_3 < HClO_2 < HClO$		(c)	Protophobic solvent	(d)	None of these	
3 7.	·	PMT 2000]	Con	jugate base of NH_3 is			[RPMT 2002]
	(a) $H_3 As O_4$ (b) $H_3 As O_3$	-	(a)	NH_{4}^{\oplus}	(b)	NH_2^{\oplus}	
	(c) H_3PO_3 (d) H_3PO_4		(c)	NH_{2}^{Θ}	(d)	N_2	
88.		orkee 2000] 101.		ch of the following specie		=	onjugate base
	(a) $C_2H_5^-$ (b) $C_2H_5COO^-$	•	_	nother acid			[NCERT 1981]
			(a)	HSO_4^-	(b)	H_2SO_4	
-	(c) $C_2H_5O^-$ (d) OH^-		(c)	OH^-	(d)	H_3O^+	
89.	The aqueous solution of which one of the following is basi	PMT 2001] 102.	Whi	ch of the following is Lewi	is acid		
	(a) HOCl (b) NaHSO ₄			[978; EAMCET 1987	_
	(c) NH_4NO_3 (d) $NaOCl$		()	DE		/T 1990; AFMC 199	7; KPMT 1999]
90.	Which of the following is the weakest base	[IIT 1980]	(a)	BF_3	(b)	Cl^-	
, 0.	(a) $NaOH$ (b) $Ca(OH)_2$		(c)	H_2O		NH_3	1.1.5.
		103.		ording to Bronsted-Lowry A proton donor	concept,	base is a substar	ce which is[NCER
21	(c) NH_4OH (d) KOH The suitable indicator for strong acid and weak base is		(b)	An electron pair acceptor	•		
91.	[RPMT 1997; UP	SEAT 2002]	(c)	A proton acceptor			
	(a) Methyl orange (b) Methyl red	-	` '	An electron pair donor ch of the following is know	aa bu	duanium ian	
	(c) Phenol red (d) Phenolphthalein	104.	VVIII	cii di the following is know	wii as iiy	aromam ion	[NCERT 1976]
92.	Among the following acids, the weakest one is	CERT 1984]	(a)	H^{+}	(b)	H_2O^+	
	(a) HF (b) HCl	CB((1904)	. ,	H_3O^+		$H_2O_2^+$	
	(c) HBr (d) HI	105.	(c)	H_3O equeous solution of alumin			,
93.	The compound HCl behaves as in the	reaction,	All c	iqueous solution of alumni	num sun	onate would show	[NCERT 1977]
	$HCl + HF \rightarrow H_2^+Cl + F^-$	PMER 2001]	` '	An acidic reaction			
	(a) Weak base (b) Weak acid		(b) (c)	A neutral reaction A basic reaction			
	(c) Strong base (d) Strong acid		` '	Both acidic and basic rea	ction		
94.	The conjugate base of a strong acid is a [EA/ (a) Strong base (b) Strong acid	MCET 1978] 106.		aqueous solution of alumi		loride is acidic dı	ie to
	(c) Weak acid (d) Weak base		(2)	Cation hydrolysis		[MNR 1986, 88]
95.	Which among the following is strongest acid	[BHU 2005]	(a) (b)	Anion hydrolysis			
	(a) H(ClO)O (b) H(ClO)O		(c)	Hydrolysis of both anion	and cati	on	
	(c) <i>H</i> (<i>ClO</i>) <i>O</i> (d) <i>H</i> (<i>ClO</i>)		(d)	Dissociation			
96.	In the reaction $2H_2O \rightleftharpoons H_3O^+ + OH^-$, water is	107.	HS	O_4^- is the conjugate base	of		[NCERT 1977]
		P PET 1989]	(a)	H^{+}	(b)	H_2SO_3	
	(a) A weak base (b) A weak acid		(c)	SO_4^{2-}		H_2SO_4	
	(c) Both a weak acid and a weak base	108.		acid is a compound which			v concept)[FAMC
	(d) Neither an acid nor a base	100.	/ 111 6	.e.a is a compound wintin		(DI ONSICH-LOWI	, concept/[LANC

	CORER	356 Ionic Equilibr	rium							
	(a)	An electron	(b)	A proton		(d)	None of these			
	(c)	An electron and a proton	(d)	None of the above	122.	Whi	ch shows weak ionisation i	in water	[MH CET 200	1]
9.	The o	conjugate base of sulphuric	acid i	S		(a)	H_2SO_4	(b)	NaCl	
				[EAMCET 1974]		(c)	HNO_3	(d)	NH_3	
		Sodium hydroxide		Hydrochloric acid	123.	. ,	organic dye, cosine used			of precipitation
	` '	Bisulphate ion	(d)	Barium hydroxide	123.		tion by adsorption is called		ct end point	or precipitation
).	Whic	ch is strongest Lewis base		[CPMT 1994]			, ,			[MH CET 1999]
	(a)	SbH_3	(b)	AsH_3		(a)	Absorption indicator	(b)	Adsorption i	ndicator
	(c)	PH_3	(d)	NH_3		(c)	Chemical indicator	()	None of thes	
١.	Acco	rding to Bronsted principl	le. an	aqueous solution of HNO_3	124.		indicator used in the sulphate is	titratio	n of iodine	against sodium [AFMC 2002]
		contain	-, -	[MP PMT/PET 1988]			Starch	(b)	$K_3 Fe(CN)$	•
	(2)	NO_2^-	(L)	NO-		()				5
	(a)	1002		NO_3^-		(c)	K_2CrO_4	(d)	Potassium	
	(c)	NO_2^+	(d)	NO^+	125.		nolphthalein does not ac	ct as ar	indicator f	
2.	Aque	eous solution of an acid is cl	haract	erised by the presence of		betv		277		[Pb. PMT 2002]
				[NCERT 1977]		(a)	NaOH and CH ₃ COC			
	(a)	H^+ ions	(b)	H_2^+ ions		(b)	$H_2C_2O_4$ and $KMnO_4$			
	()	W 0 ⁺ :				(c)	$Ba(OH)_2$ and HCl			
	(c)	H_3O^+ ions	(d)	H_4O^+ ions		(d)	KOH and H_2SO_4			
3.		nonium ion is		[RPMT 1999; KCET 2002]	126.		ch is not example of Brons	stad Law	mı thaamı	
	. ,	Neither an acid nor base	(b)		120.	vviii	cii is not example of brons	sted Low	ly theoly	[AIEEE 2003]
		A conjugate acid	(d)	A conjugate base		(a)	$AlCl_3$	(b)	H_2SO_4	[· ···=== == •0]
4.	Aque	eous solution of $AlCl_3$ is		[RPMT 2002]			-		= :	
	(a)	Acidic	(b)	Basic			SO ₂		HNO_3	
5.		Amphoteric species which acts as a Lewi		None of these but not a Bronsted acid is [MP P	127. MT 1999;	Kuruk	aqueous solution of sodiun onate is a salt of shetra CET 2002 Weak acid and weak base	[MP	ate is alkaline PET 2002]	because sodium
	(a)	NH_{2}^{-}	(b)	O^{2-}		(a)	Strong acid and weak base			
	()	D.E.	(1)	OH^-		. ,	Weak acid and strong bas			
	(c)	BF_3	(d)	OH^-		(d)	Strong acid and strong be			
6.	Amo	ng the following, the weakes	st base	e is [MP PMT 2002]	128.	The	acid that results when a b		ots a proton i	s called
	(a)	H^-	(b)	CH_3^-					[K	erala (Med.) 2002]
	(a)	CH_3O^-	(4)	Cl^-		(a)	Conjugate base of the aci	id		
			`.			(b)	Conjugate protonated bas	se		
7.	Whic	ch of the following is not lev	wis ba				Lewis base			
	()	NIII	(1.)	[EAMCET 1975; RPMT 2002]		(d)	Conjugate acid of the bas	se		
	(a)	NH_3	(b)	PH_3		(e)	None of these			
	(c)	$(CH_3)_3 N$	(d)	HN_3	129.	Amr	nonia gas dissolves in wate	er to for	m NH_4OH	. In this reaction
8.	pK_a	value of the strongest acid	amon	g the following is			er acts as		-	(Engg./Med.) 1999]
				[MP PMT 1990]			A conjugate base		A non-polar	solvent
	(a)	3.0	(b)	4.5		` '	An acid	. ,	A base	
	(c)	1.0	(d)	2.0	130.	The	conjugate base in the follo	owing rea	ection	
9.	The 1	most acidic compound in w	ater is	[CBSE PMT 2001]		H_2	$SO_4 + H_2O \rightleftharpoons H_3O^+$	+ HSO	-	[DCE 1999]
	(a)	$AlCl_3$	(b)	$BeCl_2$		(2)	н о	(L)	HCO-	
	(-)	F ₂ Cl	(L)	N		(a)	H_2O	(b)	HSO_4^-	
	(c)	$FeCl_3$	(d)	None of these		(c)	H_3O^+	(d)	SO_2	
Ю.	BF_3	is used as a catalyst in sev	eral ir	dustrial processes due to its	131.	An a	[Kerala (Med.) 2002] equ c ous solution of alumin	ium sulp	hate shows	
	(a)	Strong reducing agent			-		-	'		[DPMT 2001]
	(b)	Weak reducing agent				(a)	A basic nature			
	(c)	Strong Lewis acid nature				(b)	An acidic nature			
		Weak Lewis acid character				(c)	A neutral nature			
1.	` '	aqueous solution of $AlCl_3$	is aci	dic due to the hydrolysis of	100	(d)	Both acidic and basic nat		nga imaga-1-11	, magusta : 1
		Aluminium ion	is act	are due to the hydrolysis of	132.		tral [LIPSEAT 300] 11 02] cid w luction of	icn a b	ise invariably	results in the [CPMT 1983]
	(a)	AIUIIIIIIIIIII 1011								

(a) H_3O^+

(b) OH^-

(a) Aluminium ion

 $(c) \quad \text{Both aluminium and chloride ion} \quad$

(b) Chloride ion

	(c) H_2O	(d)	$H^{^+}$ and OE	H^-		(a)	CH_3^-	(b)	F^{-}	
133.	The conjugate acid of HPO_4^{2-}	is				(c)	NH_2^-	(d)	OH^-	
	, ,		PMT 1987, 90, 9); EAMCET 1993]	146.		aqueous solution of <i>CuSO</i>	. ,	011	[CPMT 1985]
	(a) $H_2PO_4^-$	(b)	PO_4^{3-}		140.	(a)	Acidic	(b)	Basic	[CFM1 1905]
	(c) H_3PO_4	(d)	H_3PO_3			(c)	Neutral	(d)	Amphoteri	ic
134.	Which of the following is not u		-		147.	The	acid having the highest pK_0	_a valı	ie among th	e following is
				[MP PET 2000]		(a)	НСООН	(b)	CH_3COC	
	(a) $SnCl_4$	(b)	$FeCl_3$			(c)	ClCH ₂ COOH	(d)	FCH ₂ CC	
	(c) KCl	(d)	BF_3		148.	. ,	indicator used in the tit		-	
135.	Orthoboric acid in aqueous me	dium is	[AMU 2000]				huric acid is			[DPMT 2001]
	(a) Monobasic	` '	Dibasic			(a)	Phenolphthalein			
136.	(c) Tribasic According to Lewis concept wh	` '	All are correct of the followin		PET/PM	` '	Methyl orange			
	(a) <i>OH</i> ⁻		H_2O	.g	,		Potassium ferricynide			
	,		_		149.	Acco	ording to Bronsted law, water	r is a/	an	
105	(c) Ag^+	(d)	<i>NH</i> ₃			(a)	Base	(b)	Acid	[MP PET/PMT 1988]
137.	The aqueous solution of ammo	nium ci	nioriae is	[CPMT 1987]		(a) (c)	Acid and base both	(d)	Salt	
	(a) Neutral	(b)	Basic		150.	Whi	ch of the following can give	base	OH^-	
_	(c) Acidic	` ,	Amphoteric		.0					[MP PET/PMT 1988]
138.	In the process $BCl_3 + PH_3$ –	$\rightarrow BCl_3$	$_3:PH_3$ The Lo			(a)	H_2O	(b)	H_3O^+	
	(a) PH_3	(b)	BCl_3	[RPMT 2000]		(c)	H_2	(d)	HCl	
	(c) Both	(d)	None		151.		jugate base of <i>HBr</i> is	,		[MP PET/PMT 1988]
139.	The conjugate acid of NH_3 is	()	···one		-0	(a)	H_2Br^+	(b)	H^{+}	[
	, 0	_	HU Varanasi 199	9; Pb. PMT 2004]		. ,	_	. ,		
	(a) NH_3	(b)	NH_4^+		150	(c)	Br^-	(d)	Br^+	IC1 · ·
	(c) N_2H_4	(d)	NH_2OH		152.		ar heat of neutralization of nat of KOH with HNO_3 i			in comparison
140.	Which halide of nitrogen is leas	st basic				(a)	Less		More	
	(a) NBr_3	(b)	NI_3			(c)	Equal	. ,	Depends o	n pressure
	(c) NCl ₃	(d)	NF_3		153.	Whi	ch of the following is not a L	ewis	acid	[J & K 2005]
141.	When $FeCl_3$ gets soluble in	ı water	, then its solu	tion represents		(a)	BF_3	(b)	$AlCl_3$	
	which of the characteristics	[MP	PET/PMT 1988]			(c)	HCl	(d)	$LiAlH_4$	
	(a) Amphoteric(c) Basic		Acidic		154.	11	solvent which neither acce	epts p	oroton nor	
142.	Lewis acid are those substances		Neutral	[MP PMT 1987]		(a)	a Amphoteric	(b)	Noutral	[RPMT 2000]
	(a) Which accept electron pai	r				(a) (c)	Aprotic	(d)	Neutral Amphipro	tic
	(b) Which provide H^+ ion in	the sol	ution		155.		the reaction in aqueous so	. ,	•	
	(c) Which give electron pair						is greatest when X is	ideioii	210 12	[Pb. PMT 1998]
	(d) Which accept OH^- ion						•	(1)		[
143.	The conjugate base of HCO_3^-	is				(a)	F^-	(b)	NO_3^-	
	(a) H_2CO_3	(b)	CO_3^{2-}			(c)	ClO_4^-	(d)	I^{-}	
	(c) CO ₂		H_2O		156.		are strong acids generally titrations	used	as standard	l solutions in acid- [Pb. PMT 1998]
144.	In the reaction $NH_3 + BF_3 =$	⇒ NH	$_3 \rightarrow BF_3, BF_3$	is		(a)	The pH at the equivalence	e poir	nt will alway	s be 7
			[MP PMT 19	89; MHCET 2001]		(b)	They can be used to titrate	both	strong and	weak bases
	(a) Lewis acid					(c)	Strong acids form more sta			weak acids
	(b) Lewis base(c) Neither Lewis acid nor Le	wis has	e			(d)	The salts of strong acids do			C .1.
	(d) Lewis acid and Lewis base				157.	For	an aqueous solution, the cha	racter	istic species	of acid is [RPMT 1999]
145.	The strongest Lewis base in the	e follow	-			()	<i>U</i> ⁺ :	(1.)	и о+.	•
			[M	P PET/PMT 1988]		(a)	H^+ ion	(b)	H_3O^+ ior	1

SELF SCORER
(c)

- H_2^+ ion
- (d) H_4O^+ ion
- Which is a Lewis base 158.

[CPMT 1988; JEE Orissa 2004]

- (a) B_2H_6
- (b) LiAlH₄
- (c) AlH₃
- (d) NH_3
- 159. For a weak acid, the incorrect statement is

(c) It is partially dissociated

(a) lonic product

(a) $2.0 \times 10^{-6} M$

(c) $1.6 \times 10^{-4} M$

constant for electrolyte is known as [CPMT 1983] (b) Solubility product

(b) $1.0 \times 10^{-4} M$

(d) $4.0 \times 10^{-10} M$

- (a) Its dissociation constant is low (b) Its pK_a is very low
- (d) Solution of its sodium salt is alkaline in water

5.

Boron halides behave as Lewis acids, because of their 160.

[CBSE PMT 1996; BHU 2004]

- (a) lonic nature
- (b) Acidic nature
- (c) Covalent nature
- (d) Electron deficient nature
- 161. Would gaseous HCl be considered as an Arrhenius acid

[UPSEAT 2004]

[Pb. PMT 2004]

- (b) No
- (c) Not known
- (d) Gaseous HCl does not exist
- Which one of the following is called amphoteric solvent

[UPSEAT 2004]

- (a) Ammonium hydroxide
- (b) Chloroform
- (c) Benzene
- (d) Water
- 163. Strongest conjugate base is

[DPMT 2004]

- (a) Cl^-
- (b) Br^{-}
- (c) F

- 164. The conjugate base of $H_2PO_4^-$ is

[AIEEE 2004]

- (a) H_3PO_4
- (b) P_2O_5
- (c) PO_{4}^{3-}
- (d) HPO_4^{2-}
- Conjugate base of HSO_4^- is 165.

[MH CET 2004]

- (a) SO_4^{2-}
- (b) H_2SO_4
- (c) $H_3SO_4^+$
- (d) None of these

Common ion effect, Isohydric solutions, Solubility product, Ionic product of water and Salt hydrolysis

- The expression for the solubility product of $Al_2(SO_4)_3$ is 1.

 - (a) $K_{sp} = [Al^{3+}] (SO_4^{2-}]$ (b) $K_{sp} = [Al^{3+}]^2 (SO_4^{2-}]^3$
 - (c) $K_{sp} = [Al^{3+}]^3 (SO_4^{2-}]^2$ (d) $K_{sp} = [Al^{3+}]^2 (SO_4^{2-}]^2$
- On addition of ammonium chloride to a solution of ammonium [CPMT 1976, 80, 81, 99; hydroxide NCERT 1976, 77; MP PMT 1989, 99; DPMT 1983]
 - (a) Dissociation of NH 4 OH increases
 - (b) Concentration of OH^- increases
 - (c) Concentration of OH decreases
 - (d) Concentration of NH_4^+ and OH^- increases
- The solubility product of a salt having general formula MX_2 , in 3. water is : 4×10^{-12} . The concentration of M^{2+} ions in the aqueous solution of the salt is [AIEEE 2005]

In a saturated solution of electrolyte, the ionic product of their

concentration are constant at constant temperature and this

- (c) lonization constant
- (d) Dissociation constant

 $25^{\circ}C$ is 1.0×10^{-11} , the solubility of the salt in *mole litre* at this temperature will be [RPMT 2000]

If the solubility product K_{sp} of a sparingly soluble salt MX_2 at

- (a) 2.46×10^{14}
- (b) 1.36×10^{-4}
- (c) 2.60×10^{-7}
- (d) 1.20×10^{-10}
- The unit of ionic product of water K_w are

[UPSEAT 2001, 02]

- (a) $Mol^{-1}L^{-1}$
- (c) $Mol^{-2}L^{-1}$
- (d) Mol^2L^{-2}
- A solution which is $10^{-3}M$ each in $Mn^{2+}, Fe^{2+}, Zn^{2+}$ and Hg^{2+} is treated with $10^{-16}M$ sulphide ion. If K_{sp} of MnS, FeS, ZnS and HgS are $10^{-15}, 10^{-23}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first

[IIT Screening 2003]

- (a) FeS
- (b) MgS
- (c) HgS
- (d) ZnS
- Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its [AIEEE 2002]
 - (a) $4x^3$
- (b) $108x^5$
- (c) $27x^4$
- (d) 9x
- The solubility product of $BaSO_4$ at $25^{\circ}C$ is 1.0×10^{-9} . What would be the concentration of H_2SO_4 necessary to precipitate ${\it BaSO}_4$ from a solution of $0.01\,{\it M\,Ba}^{2^+}$ ions

[RPMT 1999]

- (a) 10^{-9}
- (b) 10^{-8}
- (c) 10^{-7}
- (d) 10^{-6}
- The solubility in water of a sparingly soluble salt AB_2 is 10. $1.0 \times 10^{-5} \, mol \, l^{-1}$. Its solubility product number will be

[AIEEE 2003]

- (a) 4×10^{-15}
- (b) 4×10^{-10}
- (c) 1×10^{-15}
- (d) 1×10^{-10}
- The solubility of CaF_2 is a *moles/litre*. Then its solubility product [Orissa JEE 2002] is
 - (a) s^2
- (b) $4s^3$
- (c) $3s^2$
- (d) s^3
- On passing a current of HCl gas in a saturated solution of NaCl, 12. the solubility of NaCl

[CPMT 1989; CBSE PMT 1989]

- (a) Increases
- (b) Decreases
- (c) Remains unchanged
- (d) NaCl decomposes
- Which is the correct representation of the solubility product [NCERT 1974, 75] constant of Ag₂CrO₄
 - (a) $[Ag^+]^2 [CrO_4^{-2}]$
- (b) $[Ag^+][CrO_4^{-2}]$

- (c) $[2Ag^+][CrO_4^{-2}]$
- (d) $[2Ag^+]^2 [CrO_4^{-2}]$
- The solubility of CaF_2 is 2×10^{-4} moles/litre Its solubility 14. product (K_{sn}) is [NCERT 1981; BHU 1983, 86;

MP PET 1992; CBSE PMT 1999]

- (a) 2.0×10^{-4}
- (b) 4.0×10^{-3}
- 8.0×10^{-12}
- (d) 3.2×10^{-11}
- Solubility product of a sulphide MS is 3×10^{-25} and that of another 15. sulphide NS is 4×10^{-40} . In ammoniacal solution

[NCERT 1981]

- (a) Only NS gets precipitated
- (b) Only MS gets precipitated
- (c) No sulphide precipitates
- (d) Both sulphides precipitate
- Which of the following salts when dissolved in water will get 16. hydrolysed

[MNR 1985; CPMT 1989; CBSE PMT 1989; MP PET 1999]

- (a) NaCl
- (b) NH_4Cl
- KCl (c)
- (d) Na_2SO_4
- The aqueous solution of $FeCl_3$ is acidic due to 17.

[CPMT 1972, 79, 83, 84;

MP PET/PMT 1988; RPMT 2000]

- (a) Acidic impurities
- (b) lonisation
- (c) Hydrolysis
- (d) Dissociation
- A precipitate of AgCl is formed when equal volumes of the 18. following are mixed. $[K_{sp}]$ for $AgCl = 10^{-10}$]
 - $10^{-4} \, M \, AgNO_3$ and $10^{-7} \, M \, HCl$
 - $10^{-5} M \, AgNO_{2}$ and $10^{-6} M \, HCl$
 - (c) $10^{-5} M AgNO_2$ and $10^{-4} M HCl$
 - (d) $10^{-6} M AgNO_3$ and $10^{-6} M HCl$
- The solubility of silver chromate in 0.01 M K_2CrO_4 is 19. $2 \times 10^{-8} \, mol \, dm^{-3}$. The solubility product of silver chromate will [MH CET 2000]
 - 8×10^{-24} (a)
- (b) 16×10^{-24}
- 1.6×10^{-18}
- (d) 16×10^{-18}
- Some salts although containing two different metallic elements give 20. test for only one of them in solution. Such salts are [MNR 1979]
 - (a) Double salts
- (b) Normal salts
- Complex salts
- (d) Basic salts
- What is the $\,pH\,$ value of $\,\frac{N}{1000}\,KOH\,$ solution 21.

[CPMT 1975; MNR 1986, 91; Pb. CET 2004]

- (a) 10^{-11}
- (b) 3

(c) 2

- (d) 11
- Mohr's salt is a 22.
- Acid salt
- (a) Normal salt (c) Basic salt
- (d) Double salt
- 23. Aqueous solution of sodium acetate is

[MNR 1978; CPMT 1971, 80, 81; MADT Bihar 1982; MP PMT 1985;]

[MNR 1986]

- Neutral
- (b) Weakly acidic
- (c) Strongly acidic
- (d) Alkaline

- 24. Which is the correct alternate for hydrolysis constant of NH4CN [CBSE PMT

- Which of the following salts undergoes hydrolysis 25.

[CPMT 1972, 74, 78; DPMT 1985]

- (a) CH₃COONa
- (b) KNO_3
- (c) NaCl
- (d) K_2SO_4
- What will happen if CCl_4 is treated with $AgNO_3$ 26.

[DPMT 1983]

- (a) A white ppt. of AgCl will form
- (b) NO_2 will be evolved
- (c) CCl_4 will dissolve in $AgNO_3$
- (d) Nothing will happen
- The correct representation for solubility product of SnS_2 is 27.

[CPMT 1977; MP PET 1999;RPMT 2000]

- (a) $[Sn^{4+}][S^{2-}]^2$
- (b) $[Sn^{2+}][S^{2-}]^2$
- (c) $[Sn^{2+}][2S^{2-}]$
- (d) $[Sn^{4+}][2S^{2-}]^2$
- A precipitate of calcium oxalate will not dissolve in 28.

[CPMT 1971, 89; IIT 1986]

- (a) HCl
- (b) HNO_3
- (c) Aquaregia
- CH_3COOH
- Baking soda is 20.
- (b) Acidic salt
- (a) Basic salt (c) Complex salt
- (d) Double salt
- Which one of the following substances will be a mixed salt 30.

[DPMT 1982; CPMT 1972]

[RPMT 2000]

- (a) NaHCO₂
- (b) Ca(OCl)Cl
- (c) $K_2SO_4 Al_2(SO_4)_3.24H_2O$
- (d) Mg(OH)Br
- Solubility product of $BaCl_2$ is 4×10^{-9} . Its solubility in moles/litre would be

[AFMC 1982; Roorkee 1990; BHU 2000]

- (a) 1×10^{-3}
- (b) 1×10^{-9}
- (c) 4×10^{-27}
- (d) 1×10^{-27}
- Which hydroxide will have lowest value of solubility product at 32. normal temperature (25°C) [IIT 1990; RPMT 1997]
 - (a) $Mg(OH)_2$
- (b) $Ca(OH)_2$
- (c) $Ba(OH)_2$
- (d) $Be(OH)_2$
- Which will not be hydrolysed 33.
- Potassium nitrate Potassium cyanide
- Potassium succinate
- (d) Potassium carbonate 34. Which pair will show common ion effect

[MP PMT 1990, 99; Pb. PMT 2001]

- (a) $BaCl_2 + Ba(NO_3)_2$
- (b) NaCl + HCl
- (c) $NH_4OH + NH_4Cl$
- (d) AgCN + KCN
- Which is least soluble in water 35.
- [UPSEAT 1999]

[MP PMT 1989]

- (a) AgCl
- (b) AgF
- (c) AgI
- (d) Ag_2S
- **36.** A white salt is readily soluble in water and gives a colourless solution with a pH of about 9. The salt would be

[Pb. PMT 1998]

- (a) NH_4NO_3
- (b) CH₃COONa
- (c) CH₃COONH₄
- (d) $CaCO_3$
- 37. If acetic acid mixed with sodium acetate, then H^+ ion concentration will be [Roorkee 1995]
 - (a) Increased
- (b) Decreased
- (c) Remains unchanged
- (d) pH decreased
- **38.** Solubility of AgCl will be minimum in

[CBSE PMT 1995]

- (a) $0.001 M AgNO_3$
- (b) Pure water
- (c) $0.01 M CaCl_2$
- (d) 0.01 M NaCl
- 39. In absence of formation of complex ions by the addition of a common ion, the solubility of a given salt is [BHU 1979]
 - (a) Increased
 - (b) Decreased
 - (c) Unaffected
 - (d) First increased and then decreased
- **40.** At 298 K, the solubility product of $PbCl_2$ is 1.0×10^{-6} . What will be the solubility of $PbCl_2$ in moles/litre

[MP PMT 1990; CPMT 1985, 96]

- (a) 6.3×10^{-3}
- (b) 1.0×10^{-3}
- (c) 3.0×10^{-3}
- (d) 4.6×10^{-14}
- 41. Solubility product is

- [CET Pune 1998]
- (a) The ionic product of an electrolyte in its saturated solution
 - (b) The product of the solubilities of the ions of the electrolyte
 - (c) The product of solubilities of the salts
 - (d) The product of the concentration of the ions
- 42. lonic product of water increases, if

[AMU 1983; MP PET 1986; MP PET/PMT 1988; [IPMER 2002]

- (a) Pressure is reduced
- (b) H^+ is added
- (c) OH^- is added
- (d) Temperature increases [DPMT 1985]
- **43.** Which one is a mixed salt (a) $NaHSO_4$
- (b) $NaKSO_4$
- (c) $K_4 Fe(CN)_6$
- (d) Mg(OH)Cl
- **44.** If K_{sp} for $HgSO_4$ is 6.4×10^{-5} , then solubility of the salt is
 - [AFMC 1997; KCET 2000; CPMT 2000; JIPMER 2001]
 - (a) 8×10^{-3}
- (b) 8×10^{-6}
- (c) 6.4×10^{-5}
- (d) 6.4×10^{-3}
- **45.** The solubility of $BaSO_4$ in water is $2.33 \times 10^{-3} \ gm/litre$ Its solubility product will be (molecular weight of $BaSO_4 = 233$) [AIIMS 1998].
 - (a) 1×10^{-5}
- (b) 1×10^{-10}
- (c) 1×10^{-15}
- (d) 1×10^{-20}
- **46.** The solubility of AgCl in 0.2~M~NaCl solution $(K_{sp}$ for

 $AgCl = 1.20 \times 10^{-10}$) is

[MP PET 1996]

56.

- (a) 0.2 M
- (b) $1.2 \times 10^{-10} M$
- (c) $0.2 \times 10^{-10} M$
- (d) $6.0 \times 10^{-10} M$

- 47. The solubility of AgI in NaI solution is less than that in pure water because [UPSEAT 2001]
 - (a) Agl forms complex with Nal
 - (b) Of common ion effect
 - (c) Solubility product of Agl is less than that of Nal
 - (d) The temperature of the solution decreases
- **48.** The solubility product of $BaSO_4$ is 1.5×10^{-9} . The precipitation in a 0.01 M Ba^{2+} solution will start, on adding H_2SO_4 of concentration [CPMT 1988]
 - (a) $10^{-9} M$
- (b) $10^{-8} M$
- (c) $10^{-7} M$
- (d) $10^{-6} M$
- **49.** At 20° C, the Ag^{+} ion concentration in a saturated solution of $Ag_{2}CrO_{4}$ is 1.5×10^{-4} mole/litre At 20° C, the solubility product of $Ag_{2}CrO_{4}$ would be

[MP PET 1997; MP PMT 1999]

- (a) 3.3750×10^{-12}
- (b) 1.6875×10^{-10}
- (c) 1.6875×10^{-12}
- (d) 1.6875×10^{-11}
- **50.** The solubility of $PbCl_2$ is

[MP PMT 1995; DCE 1999]

- (a) $\sqrt{K_{sp}}$
- (b) $\sqrt[3]{K_{sp}}$
- (c) $\sqrt[3]{\frac{K_{sp}}{4}}$
- (d) $\sqrt{8K_{sp}}$
- The solubility product of AgCl is 1.44×10^{-4} at $100^{o}\,C$. The solubility of silver chloride in boiling water may be

[MP PMT 1994; Bihar MEE 1998]

- (a) $0.72 \times 10^{-4} M$
- (b) $1.20 \times 10^{-2} M$
- (c) $0.72 \times 10^{-2} M$
- (d) $1.20 \times 10^{-4} M$
- **52.** If the solubility of a sparingly soluble salt of the type BA_2 (giving three ions on dissociation of a molecule) is x moles per litre, then its solubility product is given by **[BHU 1987]**
 - (a) x^2
- (b) $2x^3$
- (c) $4x^2$
- (d) $4x^3$
- The solubility product of Ag_2CrO_4 is 32×10^{-12} . What is the concentration of CrO_4^- ions in that solution

[BHU 1997; DPMT 2004]

- (a) $2 \times 10^{-4} \ m / s$
- (b) $16 \times 10^{-4} \ m / s$
- (c) $8 \times 10^{-4} \ m / s$
- (d) $8 \times 10^{-8} \ m / s$
- The addition of HCl will not suppress the ionization of [MP PET 1993]
- (a) Acetic acid
- (b) Benzoic acid
- (c) H_2S
- (d) Sulphuric acid

On the addition of a solution containing ${\it CrO_4}^{2^-}$ ions to the solution of ${\it Ba}^{2^+}$, ${\it Sr}^{2^+}$ and ${\it Ca}^{2^+}$ ions, the precipitate obtained first will be of

- (a) $CaCrO_4$
- (b) $SrCrO_{4}$
- (c) BaCrO₄
- (d) Mixture of (a), (b), (c)

The solubility product of a sparingly soluble salt AB at room temperature is 1.21×10^{-6} . Its molar solubility is

[CPMT 1987; MP PET 2001]

- (a) 1.21×10^{-6}
- (b) 1.21×10^{-3}

- (c) 1.1×10^{-4}
- (d) 1.1×10^{-3}
- 57. The precipitation occurs if ionic concentration is

[AFMC 1995;] & K 2005]

- (a) Less than solubility product
- (b) More than solubility product
- (c) Equal to solubility product
- (d) None of these
- If S and K_{sp} are respectively solubility and solubility product of a 58. sparingly soluble binary electrolyte, then

[CPMT 1988; MP PMT 1999]

- (a) $S = K_{sp}$
- (b) $S = K_{sp}^2$
- (c) $S = \sqrt{K_{sp}}$
- (d) $S = \frac{1}{2} K_{sp}$
- 59. Any precipitate is formed when

[AIIMS 1982; DPMT 1985; KCET 1999; MP PMT 2004]

- Solution becomes saturated
- The value of ionic product is less that than the value of solubility product
- The value of ionic product is equal than the value of solubility product
- The value of ionic product is greater than the value of solubility product
- The solubility product of AgCl is 4.0×10^{-10} at 298 K. The 60. solubility of AgCl in 0.04 m $CaCl_2$ will be

[KCET 1996]

- (a) $2.0 \times 10^{-5} m$
- (b) $1.0 \times 10^{-4} m$
- (c) $5.0 \times 10^{-9} m$
- (d) $2.2 \times 10^{-4} m$
- Hydrolysis of sodium acetate will give 61.
- [MNR 1978]

- (a) Acidic solution (c) Neutral solution
- (b) Basic solution (d) Normal solution
- If the solubility product of $BaSO_4$ is 1.5×10^{-9} in water, its 62. solubility in moles per litre, is

[BHU 1995; MP PET 1995; UPSEAT 204]

- (a) 1.5×10^{-9}
- (b) 3.9×10^{-5}
- (c) 7.5×10^{-5}
- (d) 1.5×10^{-5}
- On passing H_2S gas through a highly acidic solution containing 63.

 Cd^{2+} ions, CdS is not precipitated because

- (a) Of common ion effect
- (b) The solubility of CdS is low
- Cd^{2+} ions do not form complex with H_2S
- The solubility product of CdS is low
- Which of the following will occur if a 0.1 M solution of a weak acid 64. is diluted to 0.01M at constant temperature

[UPSEAT 2001, 02]

- (a) $[H^+]$ will decrease to 0.01 M
- pH will decrease
- (c) Percentage ionization will increase
- (d) K_a will increase
- If solubility of calcium hydroxide is $\sqrt{3}$, then its solubility product 65.
 - (a) 27

(c) 9

(d) $12\sqrt{3}$

When NH_4Cl is added to NH_4OH solution, the dissociation of 66. ammonium hydroxide is reduced. It is due to

[MP PMT 1993]

- (a) Common ion effect
- (b) Hydrolysis
- (c) Oxidation
- (d) Reduction
- At 298 K, the solubility of $PbCl_2$ is $2 \times 10^{-2} mol/lit$, then $k_{sp} =$ 67. [RPMT 2002]
 - (a) 1×10^{-7}
- (b) 3.2×10^{-7}
- (c) 1×10^{-5}
- (d) 3.2×10^{-5}
- The solubility product of silver sulphide is 3.2×10^{-11} . Its solubility 68. at the experimental temperature is
 - 2×10^{-4} moles per litre
 - (b) 6×10^{-6} moles per litre
 - 1.2×10^{-5} moles per litre
 - (d) 8×10^{-4} moles per litre
- The solubility of $CaCO_3$ in water is $3.05 \times 10^{-4} moles/litre$ lts 69. solubility product will be [MP PMT 1997]
 - (a) 3.05×10^{-4}
- (b) 10
- (c) 6.1×10^{-4}
- (d) 9.3×10^{-8}
- Solubility of BaF_2 in a solution $Ba(NO_3)_2$ will be represents by 70. the concentration term

[UPSEAT 2001, 02; CPMT 2002]

- (a) $[Ba^{++}]$
- (c) $\frac{1}{2}[F^{-}]$
- (d) $2[NO_3^-]$
- The solubility of $PbCl_2$ at $25^{\circ}C$ is 6.3×10^{-3} mole/litre. Its 71. solubility product at that temperature is

[NCERT 1979; CPMT 1985]

- (a) $(6.3 \times 10^{-3}) \times (6.3 \times 10^{-3})$
- (b) $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})$
- (c) $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})^2$
- (d) $(12.6 \times 10^{-3}) \times (12.6 \times 10^{-3})$
- Which of the following cannot be hydrolysed 72.

[MP PMT 1996]

- (a) A salt of weak acid and strong base
- (b) A salt of strong acid and weak base
- (c) A salt of weak acid and weak base
- (d) A salt of strong acid and strong base
- pH of water is 7. When a substance Y is dissolved in water, the 73. pH becomes 13. The substance Y is a salt of

[MP PMT 1997]

- (a) Strong acid and strong base
- (b) Weak acid and weak base
- Strong acid and weak base
- (d) Weak acid and strong base
- 74. Which is a basic salt

[MP PMT 1985]

- (a) PbS
- (b) $PbCO_3$
- (c) $PbSO_{\Lambda}$
- (d) $2PbCO_3.Pb(OH)_2$
- The saturated solution of Ag_2SO_4 is $2.5 \times 10^{-2} M$. Its solubility 75. product (K_{sp}) is [NCERT 1980]

- (a) 62.5×10^{-6}
- (b) 6.25×10^{-4}
- (c) 15.625×10^{-6}
- (d) 3.125×10^{-6}
- **76.** K_{sp} for sodium chloride is $36 \ mol^2 / litr \hat{e}$. The solubility of sodium chloride is [BHU 1981]
 - (a) $\frac{1}{36}$
- (b) $\frac{1}{6}$

(c) 6

- (d) 3600
- 77. Sodium chloride is purified by passing hydrogen chloride gas in an impure solution of sodium chloride. It is based on

[MP PMT 1996]

85.

87.

89.

91.

92.

95.

- (a) Buffer action
- (b) Common ion effect
- (c) Association of salt
- (d) Hydrolysis of salt
- **78.** If the concentration of lead iodide in its saturated solution at $25^{\circ} C$ be 2×10^{-3} moles per litre, then its solubility product is [CPMT 1984]
 - (a) 4×10^{-6}
- (b) 8×10^{-12}
- (c) 6×10^{-9}
- (d) 32×10^{-9}
- **79.** The precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) is obtained when equal volumes of the following are mixed

[IIT 1992; UPSEAT 2000]

- (a) $10^{-4} M Ca^{2+} + 10^{-4} M F^{-}$
- (b) $10^{-2} M Ca^{2+} + 10^{-3} M F^{-}$
- (c) Both
- (d) None of these
- **80.** In the reaction: $H_2S \rightleftarrows 2H^+ + S^{--}$, when NH_4OH is added, then **[KCET (Med.) 1999; AFMC 2000]**
 - (a) S^{--} is precipitate
 - (b) No action takes places
 - (c) Concentration of S^{--} decreases
 - (d) Concentration of S^{--} increases
- 81. What is the minimum concentration of SO_4^{2-} required to precipitate $BaSO_4$ in a solution containing $1.0\times10^{-4}mol~Ba^{2+}$? (K_{sp} for $BaSO_4$ is 4×10^{-10})

[MP PMT 2000]

- (a) $4 \times 10^{-10} M$
- (b) $2 \times 10^{-7} M$
- (c) $4 \times 10^{-6} M$
- (d) $2 \times 10^{-3} M$
- **82.** Solubility product for salt AB_2 is 4×10^{-12} . Calculate solubility [RPET 2003]
 - (a) $1 \times 10^{-3} gm \ mol/litre$
 - (b) 1×10^{-5} gm mol/litre
 - (c) $1 \times 10^{-4} gm \ mol / litre$
 - (d) $1 \times 10^{-2} gm \ mol/litre$
- **83.** Solubility product of a salt AB is 1×10^{-8} in a solution in which concentration of A is $10^{-3}M$. The salt will precipitate when the concentration of B becomes more than

[MP PET 1990; KCET 2003]

- (a) $10^{-4} M$
- (b) $10^{-7} M$
- (c) $10^{-6} M$
- (d) $10^{-5} M$
- **84.** At equilibrium, if to a saturated solution of NaCl, HCl is passed, NaCl gets precipitated because [RPMT 1999]
 - (a) HCl is a strong acid
 - (b) Solubility of NaCl decreases

- (c) Ionic product of NaCl becomes greater than its K_{vn}
- (d) HCl is a weak acid

The solubility product of $BaSO_4$ is 1.3×10^{-9} . The solubility of this salt in pure water will be **[MP PET 2002]**

- (a) $1.69 \times 10^{-9} \, mol \, litre^{-1}$
- (b) $1.69 \times 10^{-18} \, mol \, litre^{-1}$
- (c) $3.6 \times 10^{-18} \, mol \, litr \, \bar{e}^{1}$
- (d) $3.6 \times 10^{-5} mol \, litre^{-1}$

The solubility product of AgCl under standard conditions of temperature is given by [Kerala (Med.) 2003]

- (a) 1.6×10^{-5}
- (b) 1.5×10^{-8}
- (c) 3.2×10^{-10}
- (d) 1.5×10^{-10}

An aqueous solution of CH_3COONa will be

[MP PET 2001]

- (a) Acidic
- (b) Alkaline
- (c) Neutral
- (d) None of these

In which of the following salt hydrolysis takes place

[CPMT 1974, 78]

- (a) KCl
- (b) $NaNO_3$
- (c) CH₃COOK
- (d) K_2SO_4

At 90° C pure water has $[H_3O^+] = 10^{-6}$ M, the value of K_w at this temperature will be

[IIT 1981; MNR 1990; CBSE PMT 1993; UPSEAT 1999]

- (a) 10^{-6}
- (b) 10^{-12}
- (c) 10^{-14}
- (d) 10^{-8}

Solubility of MX_2 type electrolyte is $0.5 \times 10^{-4} mole/litre$. The value of K_{sp} of the electrolyte is [CBSE PMT 2002]

- (a) 5×10^{-13}
- (b) 25×10^{-10}
- (c) 1.25×10^{-13}
- (d) 5×10^{12}

According to the reaction $PbCl_2 = Pb^2 + 2Cl^-$, the solubility coefficient of $PbCl_2$ is [MP PET/PMT 1988]

- (a) $[Pb^{2+}][Cl^{-}]^{2}$
- (b) $[Pb^{2+}][Cl^{-}]$
- (c) $[Pb^{2+}]^2[Cl^-]$
- (d) None of these

 K_{sp} value of $Al(OH)_3$ and $Zn(OH)_2$ are 8.5×10^{-23} and 1.8×10^{-14} respectively. If NH_4OH is added in a solution of Al^{3+} and Zn^{2+} , which will precipitate earlier

[MP PMT 1989; CPMT 1989]

- (a) $Al(OH)_3$
- (b) $Zn(OH)_2$
- (c) Both together
- (d) None

Why pure NaCl is precipitated when HCl gas is passed in a saturated solution of NaCl

[NCERT 1977; MP PMT 1987; CPMT 1974, 78, 81]

- (a) Impurities dissolves in $\ensuremath{\mathit{HCl}}$
- (b) The value of $[Na^+]$ and $[Cl^-]$ becomes smaller than K_{sp} of NaCl
- (c) The value of $[Na^+]$ and $[Cl^-]$ becomes greater than K_{sp} of NaCl
- (d) HCl dissolves in the water

Pure NaCl is prepared by saturating a cold saturated solution of common salt in water with HCl gas. The principle used is

- (a) Le Chatelier principle
- (b) Displacement law
- (c) Common ion effect
- (d) Fractional distillation
- What is the solubility of calcium fluoride in a saturated solution, if its solubility product is 3.2×10^{-11}

[CPMT 1997]

- (a) $2.0 \times 10^{-4} \ mole / litre$ (b) $12.0 \times 10^{-3} \ mole / litre$
- 0.2×10^{-4} mole / litre
- (d) 2×10^{-3} mole / litre
- The following equilibrium exists in an aqueous solution of hydrogen 96. sulphide:

$$H_2S \rightleftharpoons H^+ + HS^-$$

If dilute HCl is added to an aqueous solution of H_2S without any change in temperature [NCERT 1989]

- (a) The equilibrium constant will change
- (b) The concentration of HS will increase
- (c) The concentration of undissociated H_2S will decrease
- (d) The concentration of HS will decrease
- Solubility of a salt M_2X_3 is $y \mod dm^{-3}$. The solubility product 97. of the salt will be

[IIT 1990, 97; AFMC 1991; RPMT 1999; MP PET 2001; MP PMT 2003; Orissa JEE 2005]

- $6y^4$ (a)
- (b) $64v^4$
- (c) 36v⁵
- (d) $108v^5$
- 98. Which one of the following is most soluble

[CBSE PMT 1994; RPMT 2000]

- (a) $CuS(K_{sp} = 8 \times 10^{-37})$ (b) $MnS(K_{sp} = 7 \times 10^{-16})$
- $Bi_2S_3(K_{sp} = 1 \times 10^{-70})$ (d) $Ag_2S(K_{sp} = 6 \times 10^{-51})$
- The solubility product of $PbCl_2$ at $20^{\circ}C$ is 1.5×10^{-4} . 99. Calculate the solubility [Bihar CEE 1995; BHU 2002]
 - (a) 3.75×10^{-4}
- 3.34×10^{-2}
- (c) 3.34×10^2
- (d) None of these
- 100. Which one of the following compounds is a Lewis acid

[EAMCET 1997]

- (a) PCl₃
- (b) BCl_3
- (c) NCl₂
- (d) CHCl₂
- Which one of the following salt is most acidic in water 101.

[IIT 1995]

- (a) NiCl₂
- (b) $BeCl_2$
- (c) FeCl₂
- (d) $AlCl_2$
- 102. Which of the following aqueous solution will have a pH less than 7.0 [MP PMT 1991, 92]
 - (a) KNO_3
- (b) NaOH
- (c) FeCl₂
- (d) NaCN
- Hydrolysis constant for a salt of weak acid and weak base would be 103.
 - (a) $K_h = \frac{K_w}{K_a}$
- (b) $K_h = \frac{K_w}{K_L}$
- (c) $K_h = \frac{K_w}{K_a K_b}$
- (d) None of these
- Which salt will give basic solution on hydrolysis 104.

[RPMT 1997]

114.

115.

- (a) KCN
- (b) KCl
- (c) NH₄Cl
- (d) CH₃COONH₄
- Which of the following sulphides has the lowest solubility product[KCET 1996] 105.
 - (a) FeS
- (b) MnS
- PbS
- (d) ZnS
- The concentration of which ion is to be decreased, when NH_3 106 solution is added [RPMT 1997]

- (a) OH^-
- NH_4^+ (b)
- (c) H_3O^+
- (d) O_2^-

The compound insoluble in acetic acid is

[IIT 1986]

- Calcium oxide
- Calcium carbonate (b)
- Calcium oxalate
- Calcium hydroxide
- A saturated solution of Ag_2SO_4 is 2.5×10^{-2} M; The value of its 108. solubility product is
 - (a) 62.5×10^{-6}
- (b) 6.25×10^{-4}
- (c) 15.625×10^{-6}
- (d) 3.125×10^{-6}
- Solubility product of AgCl is 1×10^{-6} at 298 K. Its solubility in 109. mole $litre^{-1}$ would be [Pb.CET 2001]
 - (a) $1 \times 10^{-6} mol/litre$
 - (b) $1 \times 10^{-3} mol/litre$
 - (c) $1 \times 10^{-12} mol/litre$
 - (d) None of these
- A litre of solution is saturated with AgCl. To this solution if 110. 1.0×10^{-4} mole of solid *NaCl* is added, what will be the $[Ag^+]$, assuming no volume change [UPSEAT 2004]
 - (a) More
- (b) Less
- (c) Equal
- (d) Zero
- The concentration of KI and KCI in certain solution containing both 111. is 0.001M each. If 20 ml of this solution is added to 20 ml of a saturated solution of Ag1 in water? What will happen [MP PMT 2004]
 - (a) AgCl will be precipitated
 - (b) AgI will be precipitated
 - (c) Both AgCl and Agl will be precipitated
 - (d) There will be no precipitated
 - The solubility product of a sparingly soluble salt AX_2 is 3.2×10^{-11} . Its solubility (in moles / litres) is

[CBSE PMT 2004]

- (a) 2×10^{-4}
- (b) 4×10^{-4}
- (c) 5.6×10^{-6}
- (d) 3.1×10^{-4}
- 0.5 M ammonium benzoate is hydrolysed to 0.25 percent, hence its hydrolysis constant is [MH CET 2004]
- (a) 2.5×10^{-5}
- (b) 1.5×10^{-4}
- 3[RPMT>1999]6
- (d) 6.25×10^{-4}

The solubility of Sb_2S_3 in water is $1.0\times10^{-5}\,\mathrm{mol}$ / litre at 298 K. What will be its solubility product [CPMT 2004]

- (a) 108×10^{-25}
- (b) 1.0×10^{-25}
- (c) 144×10^{-25}
- (d) 126×10^{-24}

The ionic product of water at 25° C is 10^{-14} . The ionic product at $90^{\circ}C$ will be [CBSE PMT 1996]

- (a) 1×10^{-20}
- (b) 1×10^{-12}
- (c) 1×10^{-14}
- (d) 1×10^{-16}

In hydrolysis of a salt of weak acid and strong base, $A^- + H_2O \;
ightharpoons 200$ $HA + OH^-$, the hydrolysis constant (K_h) is equal to...

(2)	K_w
(a)	$\overline{K_a}$

(c)
$$\sqrt{\frac{K_a}{C}}$$

Hydrogen ion concentration- pH scale and **Buffer solution**

The pH of blood does not appreciably change by a small addition of an acid or a base because blood

[CBSE PMT 1995]

- (a) Contains serum protein which acts as buffer
- (b) Contains iron as a part of the molecule
- (c) Can be easily coagulated
- (d) It is body fluid
- The pH of a 0.001MNaOH will be 2.

[MP PMT 1995; UPSEAT 2001]

(b) 2

- (c) 11
- (d) 12
- pH value of a solution, whose hydronium ion concentration is 3. $6.2 \times 10^{-9} mol/l$, is [AFMC 1999; AIIMS 2000]
 - (a) 6.21
- (b) 7.21
- (c) 7.75
- (d) 8.21
- 0.1 mole of CHNH ($K = 5 \times 10^{-1}$) is mixed with 0.08 mole of HCl and diluted to one litre. What will be the H concentration in the solution? [IIT 2005]
 - (a) $8 \times 10^{-1} M$
- (b) $8 \times 10^{-1} M$
- (c) 1.6×10^{-1} M
- (d) $8 \times 10^{-3} M$
- What will be the sum of pH and pOH in an aqueous solution?
 - (a) 7

- (b) *pk*_w
- (c) Zero
- Hydrogen ion concentration in mol/L in a solution of pH = 5.4[AIEEE 2005]
 - (a) 3.98×10^8
- (b) 3.88×10^6
- (c) 3.68×10^{-6}
- (d) 3.98×10^{-6}
- 7. When solid potassium cyanide is added in water then

[CPMT 2002; BHU 2002]

- (a) pH will increase
- (b) pH will decrease
- (c) pH will remain the same
- (d) Electrical conductivity will not change
- pH of a $10^{-3}M$ solution of hydrochloric acid will be 8.

[MP PET 2000]

(a) 1.3

- (b) 2.0
- (c) 3.0

- The pH of water at $25^{\circ}C$ is nearly

[CPMT 1986, 89, 90, 93; CBSE PMT 1989;

MADT Bihar 1995]

(a) 2

(b) 7

- (d) 12
- pH of a solution is 5. Its hydroxyl ion concentration is 10.

[JIPMER 1999]

(a) 5

(b) 10

- (c) 10^{-5}
- (d) 10^{-9}
- 11. The pH of a solution in which the $[H^+] = 0.01$, is

[MADT Bihar 1980]

(a) 2 (c) 4

12.

- (b) 1 (d) 3
- At 25°C, the dissociation constant of a base *BOH* is 1.0×10^{-12} The concentration of Hydroxyl ions in 0.01 M aqueous solution of

the base would be [CBSE PMT 2005]

- (a) $2.0 \times 10^{-6} \, mol \, L^{-1}$
- (b) $1.0 \times 10^{-5} \, mol \, L^{-1}$
- (c) $1.0 \times 10^{-6} \, mol \, L^{-1}$
- (d) $1.0 \times 10^{-7} \, mol \, L^{-1}$
- Aqueous solution of HCl has the pH = 4. Its molarity would be 13.
- (b) 0.4 M
- (c) 0.0001 M
- (d) 10 M
- Which is a buffer solution 14.

[CPMT 1985, 88; AlIMS 1980; MP PMT 1994; AFMC 2004]

- $CH_3COOH + CH_3COONa$
- $CH_3COOH + CH_3COONH_4$
- $CH_3COOH + NH_4Cl$
- (d) NaOH + NaCl
- The addition of solid sodium carbonate to pure water causes

[NCERT 1973]

- (a) An increase in hydronium ion concentration
- (b) An increase in alkalinity
- (c) No change in acidity
- (d) A decrease in hydroxide ion concentration
- 16. The aqueous solution of which of the following salt has the lowest [CBSE PMT 2002] pH
 - (a) Nampleet/PMT 1998]
- (b) NaClO₂
- NaClO₂
- (d) NaClO₄
- The pH of a $10^{-10} M NaOH$ solution is nearest to 17.

[UPSEAT 2001, 02]

(a) 10

(b) 7

(c) 4

- (d) -10
- Which will have maximum pH
- [NCERT 1979]
 - (a) Distilled water
 - (b) $1 M NH_3$
 - (c) 1 M NaOH
 - (d) Water saturated by chlorine
- pH of a solution is 9.5. The solution is [MH CET 2000] 19.
 - (a) Neutral
- (b) Acidic
- (c) Basic

(a) Zero

- (d) Amphoteric
- The pH of a $10^{-9}M$ solution of HCl in water is 20.

[UPSEAT 2000, 02]

[NCERT 1975]

[NCERT 1971, 73]

- (a) 8
- (b) 8
- (c) Between 7 and 8
- (d) Between 6 and 7
- pH + pOH equal to
- (b) Fourteen
- (c) A negative number
- (d) Infinity
- Which of the following 0.1M solution will contain the largest 22. concentration of hydronium ions

 - (a) NaHCO₃
- (b) $NH_{\perp}Cl$

[MP PMT 2003]

(b) 5

(d) 7

(c) HCl (d) NH_{2} pH values of HCl and NaOH solutions each of strength 32. Which one has pH 12 23. [Roorkee 1995] will be respectively [MP PMT 1999] (a) 0.01*M KOH* (b) 1 N KOH ml (a) 2 and 2 (b) 2 and 12 (c) 12 and 2 (d) 2 and 10 (c) 1 N NaOH ml (d) $1 N Ca(OH)_2 ml$ When rain is accompained by a thunderstorm, the collected rain 33. What is the correct relationship between the pHs of isomolar 24. water will have a pH value [AIEEE 2003] solutions of sodium oxide (pH_1) , sodium sulphide (pH_2) , sodium (a) Slightly lower than that of rain water without thunderstorm selenide (pH_2) and sodium telluride (pH_4) ? [CBSE PMT 2005] Slightly higher than that when the thunderstorm is not there Uninfluenced by occurrence of thunderstorm (a) $pH_1 > pH_2 = pH_3 > pH_4$ Which depends on the amount of dust in air (b) $pH_1 < pH_2 < pH_3 < pH_4$ Which of the following is the buffer solution of strong acidic nature 34. [MP PET 2002] (c) $pH_1 < pH_2 < pH_3 = pH_4$ (a) $HCOOH + HCOO^{-}$ (d) $pH_1 > pH_2 > pH_3 > pH_4$ (b) $CH_3COOH + CH_3COO^-$ Given pH of a solution A is 3 and it is mixed with another solution 25. B having pH 2. If both mixed then resultant pH of the solution will (c) $H_2C_2O_4 + C_2O_4^{2-}$ [BHU 2005] be (d) $H_3BO_3 + BO_3^{3-}$ 3.2 (b) 1.9 (a) (d) 3.5 (c) 3.4 The dissociation constant of an acid HA is 1×10^{-5} . The pH of 35. 26. On adding solid potassium cyanide to water 0.1 molar solution of the acid will be [MP PMT 1989] [KCET (Engg./Med.) 1999] (a) pH will increase (a) Five Four pH will decrease (c) Three (d) One pH will not change Electrical conductance will not change The *pH* value of $1.0 \times 10^{-8} M HCl$ solution is less than 8 because 27. A is an aqueous acid; B is an aqueous base. They are diluted HCl is completely ionised at this concentration [KCET 2002] separately, then The ionization of water is negligible pH of A increases and pH of B decreases The ionization of water cannot be assumed to be negligible in pH of A increases and pH of B decreases till pH in each comparison with this low concentration of HCl case is 7 The pH cannot be calculated at such a low concentration of pH of A and B increase 37. What is the pH for a neutral solutions at the normal temperature of pH of B and A decrease [IIPMER 2000] the human body The compound whose 0.1 M solution is basic is 28. (a) 7.2 (b) 14.0 [IIT 1986; MP PMT 1991] (c) 6.8 (d) 6.0 (a) Ammonium acetate 38. 1 M NaCl and 1 M HCl are present in an aqueous solution. The (b) Calcium carbonate solution is [AIEEE 2002] (c) Ammonium sulphate (a) Not a buffer solution with pH < 7Sodium acetate (b) Not a buffer solution with pH > 7The following reaction is known to occur in the body $CO_2 + H_2O$ 29. A buffer solution with pH < 7 $=H_2CO_3=H^++HCO_3^-$. If CO_2 escapes from the system[NCERT 1973; RPMT 1997] buffer solution with pH>7(a) pH will decrease A solution has pH=5 , it is diluted 100 times, then it will become [NCERT 197 (b) Hydrogen ion concentration will decrease (a) Neutral (b) Basic (c) H_2CO_3 concentration will be unaltered (c) Unaffected (d) More acidic (d) The forward reaction will be promoted 0.02 M monobasic acid dissociates 2% hence, pH of the solution is For preparing a buffer solution of pH 6 by mixing sodium acetate 30. [MH CET 2000] and acetic acid, the ratio of the concentration of salt and acid should 0.3979 (b) 1.3979 (c) 1.699 (d) 3.3979 be $(K_a = 10^{-5})$ [MP PET 1997] Components of buffer solution 0.1 M HCN 41. (a) 1:10 (b) 10:1 $0.2\,M\,NaCN$. What is the pH of the solution [RPET 2000] (c) 100:1 (d) 1:100 (a) 9.61 (b) 6.15 Which is incorrect for buffer solution [CPMT 1985] 31. (c) 2.0 (d) 4.2 (a) It contains weak acid and its conjugate base pH of a solution of 10ml. 1N sodium acetate and 50ml 2N acetic 42. (b) It contains weak base and its conjugate acid acid ($K_a = 1.8 \times 10^{-5}$), is approximately In this there is very less change is pH value when very less

(a) 4

(c) 6

amount of acid and base is mixed

None of the above

SELF	366 Ionic Equil				() -	/ 1\		
43.	By adding $20ml$ $0.1NH$				(c) 7	` '	14.2	
	<i>pH</i> of the obtained solution (a) 2	will be (b) 1.3	[KCET 2000]	57.	<i>pH</i> of completely dissoc	ciated 0.005 A	H_2SO_4 is	
	(a) 2 (c) 0	(d) 7			(a) 3	(b)	4	[RPET 2003]
14.	The pH of the solution cont	. , -	a 0.1 <i>N NaOH</i> and		(a) 3 (c) 2	(d)		
• •	$10ml$ of $0.05N$ H_2SO_2	_		58.	The pK_a of a weak			be the ratio of
	10.000 01 0100 11 11 20 0 2	, would be	[Pb. PMT 2002, 04]	00.	[Acid]/[Salt] of a buffer			
	(a) 1	(b) o	[, e, , , , , , , , , , , , , , , , , ,		[/teld]/[Salt] of a buller	n p11 – 3.0	is required	[MP PET 2003]
	(c) 7	(d) > 7			(a) 10	(b)	0.1	[121 2003]
. 5.	The pH of $10^{-7}MNaOH$	H is	[MP PMT 2001]		(c) 1	(d)	2	
	(a) 7.01	(b) Between	n 7 and 8	59.	Which of the following	salt is acidic		
	(c) Between 9 and 10	(d) Greater					-	; NCERT 1979, 81; 90; JIPMER 2002]
6.	The hydrogen ion con-	centration of (0.1N solution of		(a) Na_2SO_4	(b)		190; JIFMEN 2002]
	CH ₃ COOH, which is 30%	6 dissociated, is	[JIPMER 2002]			(b)	NaHSO ₃	
	(a) 0.03	(b) 3.0			(c) Na_2SO_3	(d)	Na_2S	
	(c) 0.3	(d) 30.0		60.	20ml of 0.5N HCl	and 35 <i>ml</i>	of 0.1N Nac	OH are mixed.
7.	What is the pH of $0.1 M N$	H_3	[RPET 2000]		The resulting solution v	will		[KCET 2005]
	(a) 11.27	(b) 11.13			(a) Be neutral			
_	(c) 12.0	(d) 9.13	1 6.1 1 66		(b) Be basic			
8.	By adding a strong acid to t solution	the buffer solution,	the <i>pH</i> of the buffer [DPMT 1996]		(c) Turn phenolphtha	•	nk	
	(a) Remains constant	(b) Increase	•		(d) Turn methyl orang			
	(c) Decreases	(d) Become	s zero	61.	The pH of a 0.02 M s	solution of hydi	rochloric acid is	
9.	The pH of $0.1 M NaOH$ is	s	[MP PET 2003]		() 22	(1)		[MP PMT 1993]
	(a) 11	(b) 12			(a) 2.0	` '	1.7	
	(c) 13	(d) 14		_	(c) 0.3	` '	2.2	
).	pH of human blood is 7.4. T	hen $H^{\scriptscriptstyle +}$ concentr	ation will be	62.	A sample of Na ₂ C			
			[RPMT 2002]		100 ml of 0.1 N	$(NH_4)_2SO_4$	solution. Wha	
	(a) 4×10^{-8}	(b) 2×10	-8		resulting solution	4.		[BHU 1997]
	(c) 4×10^{-4}	(d) 2×10	-4		(a) Acidic	()	Neutral	
1.	Assuming complete ionisati	. ,			(c) Basic	` '	None of these	
	molarity of H_2SO_4 with the	•		63.	The <i>pH</i> of the solution solution in <i>mol/litre</i> is			
	moderity of 11 ₂ 50 ₄ with the	sallic <i>μπ</i> 18	[DL DMT coos]					[4.5411 2000]
	(a) 0.1	(b) 0.2	[Pb. PMT 2002]		(a) 9.5		10^{-4}	
	(c) 0.05	(d) 2.0			(c) 10^4	(d)	10^{-2}	
2.	Highest <i>pH</i> 14 is given by	(-)	[DCE 1999]	64.	$NaOH_{(aq)}, HCl_{(aq)}$	and $NaCl_{(aq)}$	concentration	on of each is
	(a) $0.1 M H_2 SO_4$	(b) 0.1 <i>M</i>	NaOH		$10^{-3} M$. Their pH will	l be respectively	v	[BHU 2003]
	(c) 1 <i>N NaOH</i>	(d) 1 <i>N H</i> ((a) 10, 6, 2	•	, 11, 3, 7	[5.14 2003]
					(c) 10, 2, 6	(d)	3, 4, 7	
3.	What will be the pH of a 1	$0^{-8} M HCl$ solution	tion	65.	The pH of $10^{-5}M$ as	queous solutior	of <i>NaOH</i> is	
			PET 1999;MP PMT 2000]					[MP PET 1996]
	(a) 8.0 (c) 6.98	(b) 7.0			(a) 5	(b)	-	
		(d) 14.0			(c) 9	(d)	11	

When 10 ml of 0.1 M acetic acid ($pK_a = 5.0$) is titrated against 10

ml of 0.1M ammonia solution $(pK_b = 5.0)$, the equivalence point

Which on reaction with water will have pH less than 7

A solution of $MgCl_2$ in water has pH

(b) 6.0

(d) 9.0

(b) *CaO*

(d) P_2O_5

(b) > 7

54.

55.

56.

occurs at pH

(a) 5.0

(c) 7.0

(a) BaO

(c) Na_2O

(a) < 7

66.

67.

68.

[AIIMS 2005]

[MH CET 2001]

[MP PMT 2002]

(a) +1

(c) 5.00

(b) -1

(d) -2

(b) 4.75

(d) 5.25

A buffer solution contains $0.1\ M$ of acetic acid and $0.1\ M$ of

sodium acetate. What will be its $\ pH$, if $\ pK_a$ of acetic acid is 4.75

To obtain a buffer which should be suitable for maintaining a

pH of about 4-5, we need to have in solution, a mixture of

The pH of 0.05 M solution of dibasic acid is

(a) A strong base + its salt with a weak acid

(b) A weak base + its salt with a strong acid

(c) A strong acid + its salt with a weak base

[MH CET 2002]

	(d) A weak acid + its salt with a strong base	79.	pH of a solution can be expressed as
59.	The concentration of $NaOH$ solution is $10^{-8}~M$. Find out the		[CPMT 1999; UPSEAT 2001]
	(OH ⁻) concentration [CPMT 1993]		(a) $-\log_e(H^+)$ (b) $-\log_{10}(H^+)$
	(a) 10^{-8}		(c) $\log_e(H^+)$ (d) $\log_{10}(H^+)$
	(b) Greater than 10^{-6}	80.	The solution of sodium carbonate has <i>pH</i> [MP PET 2000]
	(c) 10^{-6}		(a) Greater than 7 (b) Less than 7
	(d) Lies between 10^{-6} and 10^{-7}	01	(c) Equal to 7 (d) Equal to zero The pH of $10^{-7} NHCl$ is [RPMT 2000]
70.	The pH of $0.0001~N$ solution of KOH will be	81.	The pH of $10^{-7} NHCl$ is [RPMT 2000] (a) 6.0 (b) 6.97
	[BHU 1997; CET Pune 1998]		(a) 0.0 (b) 0.97 (c) 8.0 (d) 10.0
	(a) 4 (b) 6 (c) 10 (d) 12	82.	If the pH of a solution is 2, its normality will be
71.	Given that the dissociation constant for H_2O is $K_w = 1 \times 10^{-14}$		[MADT Bihar 1982; MP PET 2000]
•			(a) $2N$ (b) $\frac{1}{2}N$
	· · · · · · · · · · · · · · · · · · ·		(c) 0.01 N (d) None of these
	0.001 <i>molar KOH</i> solution [MP PET 1995; MP PET/PMT 1998]	83.	
	(a) 10^{-11} (b) 3		to 1 ml dilute HCl , then the pH of buffer solution [NCERT 1976, 77]
	(a) 10 (b) 3 (c) 14 (d) 11		(a) Converts to 7 (b) Does not change
72.	An acidic buffer solution can be prepared by mixing solution of [MNR 198	3]	(c) Converts to 2 (d) Changes to 10
	(a) Ammonium acetate and acetic acid(b) Ammonium chloride and hydrochloric acid	84.	•
	(b) Ammonium chloride and hydrochloric acid(c) Sulphuric acid and sodium sulphate		value[NCERT 1977; DPMT 1985; MP PMT 1994] (a) Decreases
	(d) Acetic acid and sulphuric acid		(b) Increases
	(e) NaCl and NaOH		(c) Remains unchanged
3.	Which of the following mixtures forms an acid buffer [MP PMT 1993; IIT 1981; CPMT 1989; CBSE PMT 1989]		(d) (a) and (b) both are correct
	(a) NaOH + HCl	85.	•
	(b) $CH_3COOH + CH_3COONa$		[MP PMT 1987] (a) 6 (b) 10
	(c) $NH_4OH + NH_4Cl$		(c) 8 (d) 14
	(d) $H_2CO_3 + (NH_4)_2CO_3$	86.	In a solution of $pH = 5$, more acid is added in order to reduce the
4 .	A buffer solution has equal volumes of $0.2M NH_4OH$ and		pH=2. The increase in hydrogen ion concentration is [MP PET 1989; CPM
4.	$0.02M NH_4Cl$. The pK_b of the base is 5. The pH is		(a) 100 times (b) 1000 times
	[CBSE PMT 1989; KCET 2005]		(c) 3 times (d) 5 times
	(a) 10 (b) 9	87.	Which solution contains maximum number of H^+ ion
	(c) 4 (d) 7		(a) 0.1 M HCl (b) 0.1 M NH_4Cl
75 .	The pH of a simple sodium acetate buffer is given by		(c) 0.1 M NaHCO ₃ (d) 0.1 M
	$pH = pK_a + \log \frac{[Salt]}{[Acid]}$		•
		88.	•
	K_a of acetic acid = 1.8×10^{-5}		HX . The K_b for X^- is 10^{-10} . The pH of the buffer is
	If [Salt] = [Acid] = 0.1 M , the pH of the solution would be about [BHU 19]	987]	[IIT 1984; RPMT 1997; CPMT 1996; DPMT 2004]
	(a) 7 (b) 4.7		(a) 4 (b) 7 (c) 10 (d) 14
76.	(c) 5.3 (d) 1.4 Amongst the following solutions, the buffer solution is	89.	, , , , , , , , , , , , , , , , , , , ,
٠.	[MP PMT 1999]	о _Э .	1
	(a) $NH_4Cl + NH_4OH$ solution		(a) $pH = \log \frac{1}{[H^+]}$ (b) $pH = \log[H^+]$
	(b) $NH_4Cl + NaOH$ solution		
	(c) $NH_4OH + HCl$ solution		(c) $pH = -\log \frac{1}{[H^+]}$ (d) $pH = -\log^{[H^+]}$
	(d) $NaOH + HCl$ solution	_	
77.	The pH of solution having $[OH^-] = 10^{-7}$ is [AllMS 1996]	90.	
	(a) 7 (b) 14		added to 10 ml dilute HCl [NCERT 1975]
	(c) Zero (d) -7		(a) 5 ml pure water (b) 20 ml pure water
78.	$50 \; ml$ water is added to a $50 \; ml$ solution of $\textit{Ba}(OH)_2$ of		(c) 10 ml HCl (d) Same 20 ml dilute HCl
	strength $0.01~M.$ The pH value of the resulting solution will be [MP ${ m F}$	M911•199	ggg]A compound whose aqueous solution will have the highest pH
	(a) 8 (b) 10		[CPMT 1974, 75, 78; MP PET 1996; DPMT 1982, 83]
	(c) 12 (d) 6		

$NaCl$ NH_4Cl $80^o C$, distilled water has 10^{-6} $mole/litre$ The value 1×10^{-6} 1×10^{-12} pH value of $0.1 \ M \ Ne$ 1×10^{-12} 13×10^{-12} 13×10^{-12} 14×10^{-12} 15×10^{-12} 16×10^{-12} 17×10^{-12} 18×10^{-12} $19 \times$	we of K_w at this ten AFMC 2001; AIIM (b) 1×10^{-9} (d) 1×10^{-15} (d) 1×10^{-15} (d) 1×10^{-15} (e) 1×10^{-15} (f) [CPMT 1997] (b) 1×10^{-15} (d) 1×10^{-15}	nperature will be[CBS	103. SE PMT 19 104. 105.	(d) Acetoacetic acid (pK) In a mixture of a weak acid acid to salt is increased ten 994; RPMT 2000; (a) Decreases by one (c) Increases by one When an acid or alkali is buffer solution (a) Not changes (c) Increases How much sodium acetate	d and its salt, the ratio of concentration of the solution (b) Increases by one-tenth (d) Increases ten-fold mixed with buffer solution, then [CPN (b) Changes slightly (d) Decreases should be added to a $0.1 \ m$ solution of $pH = 5.5 \ (pha)$	<i>pH</i> of //T 1997] ution of
80° C, distilled water has 10^{-6} mole/litre. The value 1×10^{-6} 1×10^{-12} pH value of 0.1 M Note that 10^{-12} pH value of 10^{-12} pH value of 10^{-12} pH value of 10^{-12} pH value of 10^{-12} Naclo Naclo Naclo 10^{-12} of 10^{-12} M is	(H_3O^+) concerse of K_w at this tends o	nperature will be[CBS	SE PMT 19	In a mixture of a weak acid acid to salt is increased ten 1994; RPMT 2000; (a) Decreases by one (c) Increases by one When an acid or alkali is buffer solution (a) Not changes (c) Increases How much sodium acetate CH_3COOH to give	d and its salt, the ratio of concentration of the solution (b) Increases by one-tenth (d) Increases ten-fold mixed with buffer solution, then [CPN (b) Changes slightly (d) Decreases should be added to a $0.1 \ m$ solution of $pH = 5.5 \ (pha)$	<i>pH</i> of //T 1997] ution of
$10^{-6} \ mole/litre$ The value 1×10^{-6} 1×10^{-12} pH value of $0.1 \ M$ Non reaction $[H^+][OH^-] = 10$ 13 11 13 11 14 15 17 18 19 19 19 19 19 19 19 19	we of K_w at this ten AFMC 2001; AIIM (b) 1×10^{-9} (d) 1×10^{-15} AOH solution is (0) 0^{-15}) [CPMT 1997] (b) 12 (d) 2 1 pH [CPMT 1997] (b) $NaClO_2$	nperature will be[CBS	SE PMT 19	acid to salt is increased ten 994; RPMT 2000; (a) Decreases by one (c) Increases by one When an acid or alkali is buffer solution (a) Not changes (c) Increases How much sodium acetate CH_3COOH to give	n-fold. The pH of the solution (b) Increases by one-tenth (d) Increases ten-fold mixed with buffer solution, then [CPA (b) Changes slightly (d) Decreases should be added to a $0.1 \ m$ solution of $pH = 5.5 \ (pha)$	<i>pH</i> of //T 1997] ution of
$10^{-6} \ mole/litre$ The value 1×10^{-6} 1×10^{-12} pH value of $0.1 \ M$ Non reaction $[H^+][OH^-] = 10$ 13 11 13 11 14 15 17 18 19 19 19 19 19 19 19 19	we of K_w at this ten AFMC 2001; AIIM (b) 1×10^{-9} (d) 1×10^{-15} AOH solution is (0) 0^{-15}) [CPMT 1997] (b) 12 (d) 2 1 pH [CPMT 1997] (b) $NaClO_2$	nperature will be[CBS	104.	(a) Decreases by one (b) Increases by one When an acid or alkali is buffer solution (c) Not changes (d) Increases How much sodium acetate $CH_3COOH \text{ to give}$	(b) Increases by one-tenth (d) Increases ten-fold mixed with buffer solution, then [CPN (b) Changes slightly (d) Decreases should be added to a $0.1\ m$ solution of $pH = 5.5\ (phase)$	<i>pH</i> of /T 1997] ution of
1×10^{-6} 1×10^{-12} pH value of 0.1 M No in reaction $[H^+][OH^-] = 1$ 13 11 13 11 14 15 17 18 19 19 19 19 19 19 19 19	AFMC 2001; AIIM (b) 1×10^{-9} (d) 1×10^{-15} aOH solution is (0) 0^{-15}) [CPMT 1997] (b) 12 (d) 2 1 pH [CPMT 1997] (b) $NaClO_2$	IS 2002; BHU 2002]	104.	(c) Increases by one When an acid or alkali is buffer solution (a) Not changes (c) Increases How much sodium acetate CH_3COOH to give	(d) Increases ten-fold mixed with buffer solution, then [CPN (b) Changes slightly (d) Decreases should be added to a $0.1 \ m$ solution of $pH = 5.5 \ (p.0.1)$	<i>pH</i> of /T 1997] ution of
1×10^{-12} pH value of 0.1 M Na in reaction $[H^+][OH^-] = 10$ 13 11 13 11 13 11 13 11 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(b) 1×10^{-9} (d) 1×10^{-15} aOH solution is (0^{-15}) [CPMT 1997] (b) 12 (d) 2 1 pH [CPMT 1997] (b) $NaClO_2$		·	When an acid or alkali is buffer solution (a) Not changes (c) Increases How much sodium acetate CH_3COOH to give	mixed with buffer solution, then [CPN (b) Changes slightly (d) Decreases should be added to a $0.1 m$ solution of $pH = 5.5 (p.0.1)$	/T 1997] ution of
1×10^{-12} pH value of 0.1 M Na in reaction $[H^+][OH^-] = 10$ 13 11 13 11 13 11 13 11 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(d) 1×10^{-15} aOH solution is 0^{-15}) [CPMT 1997] (b) 12 (d) 2 (d) 2 (e) pH [CPMT 1997] (b) $NaClO_2$	(when there is a	·	buffer solution (a) Not changes (c) Increases How much sodium acetate CH_3COOH to give	(b) Changes slightly (d) Decreases should be added to a $0.1\ m$ solution of $pH=5.5\ (pha)$	/T 1997] ution of
pH value of 0.1 M Na in reaction $[H^+][OH^-]=1$ 13 11 13 11 14 15 16 has maximum $NaClO$ $NaClO_3$ 17 of $HCl(10^{-12} M)$ is	aOH solution is (0^{-15}) [CPMT 1997] (b) 12 (d) 2 1 pH [CPMT 1997] (b) $NaClO_2$	(when there is a	105.	(c) Increases How much sodium acetate CH_3COOH to give	(b) Changes slightly (d) Decreases should be added to a $0.1 \ m$ solution of $pH = 5.5 \ (pha)$	ution of
n reaction $[H^+][OH^-] = 1$ 13 11 11 13 11 11 13 10 11 12 13 10 11 11 12 13 10 11 11 12 13 11 11 11 12 13 11 11	0^{-15}) [CPMT 1997] (b) 12 (d) 2 1 pH [CPMT 1997] (b) $NaClO_2$	when there is a	105.	How much sodium acetate CH_3COOH to give	should be added to a $0.1 m$ solution of $pH = 5.5 (p_s)$	
13 11 13 ch oxychloride has maximum $NaClO$ $NaClO_3$ 2 of $HCl(10^{-12} M)$ is	(b) 12 (d) 2 n pH [CPMT 1997] (b) NaClO ₂		105.	CH_3COOH to give	a solution of $pH = 5.5 (pA)$	
the characteristic of the control o	(d) 2 n pH [CPMT 1997] (b) NaClO ₂					K_a of
ich oxychloride has maximum $NaClO$ $NaClO_3$ of $HCl(10^{-12}M)$ is	pH [CPMT 1997] (b) NaClO ₂			$CH_3COOH = 4.5$)	[VCI	**
$NaClO$ $NaClO_3$ $MaClO_3$ $MaclO_1 = M$ of $MCl(10^{-12} M)$ is	(b) NaClO ₂			,	ĮKCI	ET 1996]
$NaClO_3$ of $HCl(10^{-12}M)$ is	. ,			(a) 0.1 <i>m</i>	(b) 0.2 <i>m</i>	
of $HCl(10^{-12}M)$ is	(d) $NaClO_4$			(c) 1.0 <i>m</i>	(d) 10.0 <i>m</i>	
			106.	The pH of the aqueous s	solution containing $0.49 gm$ of E	I_2SO_4
12	[CPMT 1997;	Pb. PET/PMT 1999]		in one litre is		ET 1997]
	(b) -12			(a) 2 (c) 1.7	(b) 1 (d) 0.3	
≈ 7	(d) 14		107.	Which of the following solu	-	
ch one is buffer solution		[CPMT 1997]			[JIPMI	ER 1997]
$[PO_4^{}][[HPO_4^{}]$	(b) $[PO_3^{3-}][[H$	$H_2PO_4^{}$]		(a) 0.1 molar aq. NaCl	$OOH + 0.1 - 1 - N_{\pi}OH$	
$[HPO_4^{}][[H_2PO_4^{}]]$	(d) All of these				OOH + 0.1 molar NaOH	
en $100 \ ml$ of $M/10 \ l$	NaOH solution	and 50 <i>ml</i> of		(c) 0.1 molar aq. ammonit(d) None of the above	um acetate	
/5 HCl solution are mixe	ed, the pH of r	esulting solution	108.	()	ion obtained by mixing 50 i	nl of
ld be		[RPMT 1997]		0.4 N HCl and 50 ml	of 0.2 N NaOH is [KCI	ET 1996]
0	(b) 7			(a) -log2	(b) -log0.2	
Less than 7	(d) More than 7			(c) 1.0	(d) 2.0	
			109.	Which of the following is a		
	(1.)	in nyarogen ion		•	•	iu 1995]
	1.2				/11u	
	· / -	constant of acid		- · ·		
be					o o vivi	
	` '				•	
	. ,		110.		ent in 1 <i>litre</i> solution, then its pH	will be
1		-		(a) 6	(b) 13	
-	_			(c) 18	(d) 24	
, ,			111.	•		ll be
1 M CH ₃ COOH	(b) 5 $M CH_3$	СООН		(a) 10^{-2}	(b) 10^{-10}	
5 M HCl	(d) $1 M NH_4$	OH		(c) 10^{-8}	(d) 10^{-4}	
pH value of decinormal so	olution of NH_4OR	H which is 20%	112.			diluted [785]
sed, is	(1)	[CBSE PMT 1998]			<u>-</u>	J-0]
	` '			(b) H^+ ion concentration	n increases	
ال.،⊿،	. ,	nH = 3.58 that		(c) OH ⁻ ion concentration	on increases	
hysician wishes to prepare a		-		(d) H^+ ion concentration	n remain unaltered	
			113.	What is the pH of $Ba(O)$		
1	are $150 \ ml$ of a solution v 3.0 9.3 pH of 0.1 M acetic acid is be 1.0×10^{-4} 1.0×10^{-3} pH of a buffer CH_3COONa and $25 \ ml$ of a ceciably affected by $5 \ ml$ of $1 \ M \ CH_3COOH$ $5 \ M \ HCl$ pH value of decinormal solution is $13.3012.30hysician wishes to prepare a giently resists changes in$	are $150 \ ml$ of a solution which is $0.30 \ M$ is 3.0 (b) 7.5 (d) 30 pH of $0.1 \ M$ acetic acid is 3, the dissociation be 1.0×10^{-4} (b) 1.0×10^{-5} 1.0×10^{-3} (d) 1.0×10^{-8} pH of a buffer solution contains CCH_3COONa and $25 \ ml$ of $1 \ M \ CH_3$ reciably affected by $5 \ ml$ of $1 \ M \ CH_3$ reciably affected by $5 \ ml$ of $1 \ M \ CH_3$ $1 \ M \ CH_3 \ COOH$ (b) $1 \ M \ CH_3 \ COOH$ (c) $1 \ M \ MH_4 \ M \ MH_4 \ M \ MH_5 \ M \ MCI (d) 1 \ M \ MH_4 \ M \ MH_5 \ M \ MCI (d) 1 \ M \ MH_4 \ M \ MH_5 \ M \ MCI (d) 1 \ M \ MH_5 \ M \ MCI \ M \ MCI (d) 1 \ M \ MH_5 \ M \ MCI \ MI \ MI \ MI \ MI \ MI \ MI$	9.3 (d) 30 pH of 0.1 M acetic acid is 3, the dissociation constant of acid be $1.0\times10^{-4} \qquad \qquad \text{(b)} \qquad 1.0\times10^{-5} \\ 1.0\times10^{-3} \qquad \qquad \text{(d)} \qquad 1.0\times10^{-8} \\ pH \qquad \text{of a buffer solution containing} \qquad 25ml \text{ of} \\ CH_3COONa \qquad \text{and} \qquad 25ml \text{ of} \qquad 1MCH_3COOH \qquad \text{will be reciably affected by 5}ml \text{ of} \qquad \text{[CPMT 1987]} \\ 1MCH_3COOH \qquad \qquad \text{(b)} \qquad 5MCH_3COOH \qquad \\ 5MHCl \qquad \qquad \text{(d)} \qquad 1MNH_4OH \qquad \\ pH \text{ value of decinormal solution of} \qquad NH_4OH \qquad \text{which is 20\% sed, is} \qquad \qquad \text{[CBSE PMT 1998]} \\ 13.30 \qquad \qquad \text{(b)} \qquad 14.70$	pare $150 \ ml$ of a solution which is $0.30 \ M$ in hydrogen ion $3.0 \ DH$ of 0.1 M acetic acid is 3, the dissociation constant of acid be $1.0 \times 10^{-4} \ DH$ of $1.0 \times 10^{-5} \ DH$ of a buffer solution containing $25 \ ml$ of $1.0 \times 10^{-8} \ DH$ of a buffer solution containing $25 \ ml$ of $1.0 \ DH$	pare 150 ml of a solution which is 0.30 M in hydrogen ion 3.0 (b) 7.5 (a) $NaOH + CH_3COC$ 5.5 (b) $NaOH + CH_3COC$ 6.6 (c) $K_2SO_4 + H_2SO_4$ (d) $NaOH + CH_3COC$ 6.6 (e) $NaOH + CH_3COC$ 6.7 (e) $NaOH + CH_3COC$ 7.0 $NaOH + CH_3COC$ 8.7 (e) $NaOH + CH_3COC$ 8.7 (f) $NaOH + CH_3COC$ 8.7 (f) $NaOH + CH_3COC$ 8.8 (f) $NaOH + CH_3COC$ 8.9 (f) $NaOH + CH_3COC$ 8.0 (f) $NaOH + CH_3COC$ 8.1 (ii) $NaOH + CH_3COC$ 8.1 (iii) $NaOH + CH_3C$	The properties of the polynomials of the polynomia

(a) 4 (c) 7

(a) m - chlorobenzoic acid ($pK_a = 3.98$) (b) p- chlorocinnamic acid $(pK_a=4.41)$ [CPMT 1996]

(b) 10 (d) 9

114.	What will be the pH of a	solution formed by mixing 40 ml of		(a) Basic	(b) Acid	
	0.10 M HCl with 10 ml	of 0.45 <i>M NaOH</i>		(c) Neutral	(d) Both (a) and (b)	
		[Manipal MEE 1995]	128.	The pH of a solu	ntion is increased from 3 to 6.	Its H^+ ion
	(a) 12	(b) 10		concentration will be	[I	EAMCET 1998
	(c) 8	(d) 6		(a) Reduced to half		
115.	The pH of a solution having	$g[H^+] = 10 \times 10^{-4} \ moles / litre \text{ will}$		(b) Doubled	A diamana	
	be [BHU 1981]			(c) Reduced by 1000 (d) Increased by 100		
	(a) 1	(b) 2	129.	. ,	a vessel and it remains exposed to	atmospheric
	(c) 3	(d) 4	5.	•	ped, then its pH will be	acmoophene
116.		nt in 1 <i>litre</i> solution, then its pH will		- 2	[MADT Bihar 1984	: DPMT 2002
	be	[CPMT 1985; BHU 1980]		(a) Greater than 7	[water emailing	, 5,,,,,,
	(a) 2	(b) 10		(b) Less than 7		
117	(c) 11 Which of the following is not	(d) 12 a Bronsted acid [BHU 1997]		(c) 7		
117.		•		(d) Depends on ioni	c product of water	
	(a) $CH_3NH_4^+$	(b) CH_3COO^-	130.	The pH of a solution	n is 2. If its pH is to be raised to	o 4, then the
	(c) H_2O	(d) HSO_4^-		$[H^{^{+}}]$ of the original	solution has to be	MP PET 1994
118.	pH of 0.005 M H_2SO_4 so	olution will be [NCERT 1980]		(a) Doubled		
	(a) 0.005	(b) 2		(b) Halved		
	(c) 1	(d) 0.01		(c) Increased hundr	ed times	
119.	A buffer solution is a mixture	` '		(d) Decreased hundi	red times	
	(a) Strong acid and strong		131.	Which of the followin	g solutions cannot act as a buffer	
	(b) Weak acid and weak bas				[E	AMCET 1998]
	(c) Weak acid and conjugate	e acid		(a) $NaH_2PO_4 + H$	H_3PO_4	
	(d) Weak acid and conjugate	e base		(b) <i>CH</i> ₃ <i>COOH</i> +	CH.COONa	
120.	When pH of a solution decr	reases, its hydrogen ion concentration		[MADT Bihar 19	181]	
	(a) Decreases	(b) Increases		(c) $HCl + NH_4Cl$		
	(c) Rapidly increases	(d) Remains always constant		(d) $H_3PO_4 + Na_2$	HPO_4	
121.	If the pH of a solution is	4.0 at $25^{\circ}C$, its pOH would be	132.	Assuming complete i	conisation, the pH of $0.1MH$	<i>ICl</i> is 1. The
	$(K_w = 10^{-14})$	[MP PMT 1989]	-0		with the same pH is	
	(a) 4.0	(b) 6.0		molarity of 11 ₂ 50 ₄	with the same pit is	[KCET 1998]
	(c) 8.0	(d) 10.0		(a) 0.2	(b) 0.1	[KCE1 1996]
122.	An aqueous solution whose p	`_		(c) 2.0	(d) 0.05	
122.	All aqueous solution whose p	[CPMT 1976; DPMT 1982]	133.	The pH of blood is	(d) 0.03	
	(a) Alkaline	(b) Acidic	133.	*	(L) 62	
	(c) Neutral	(d) Amphoteric		(a) 5.2	(b) 6.3	
	()	•		(c) 7.4	(d) 8.5	
123.	solution will be	centration is $10^{-10} M$. The <i>pH</i> of this	134.	The pH of 10^{-8} mola	ar aqueous solution of HCl is	
	(a) 8	(b) 6		70.0	[CPMT 1988; MNR 1983, 90; MP PMT	
	(c) Between 6 and 7	(d) Between 3 and 6			u 1995; AFMC 1998; MP PET 1989, 99;	BCECE 2005
10.4	The concentration of hydronia			(a) -8		
124.	The concentration of hydronic			(b) 8		
		[CET Pune 1998]		(c) $6 > 7$ (Between	n 6 and 7)	
	(a) Zero	(b) 1×10^7 gm ion/litre		(d) $7 > 8$ (Between	n 7 and 8)	
	(c) 1×10^{-14} gm ion/litr	e (d) 1×10^{-7} gm $ion/litre$	135.	As the temperature in	ncreases, the pH of a KOH solu	ıtion
125.	A solution whose <i>pH</i> value is	()			_	UPSEAT 2001
123.	(a) Basic	(b) Acidic		(a) Will decreases		•
	(c) Neutral	(d) Buffer		(b) Will increases		
126.		is 2, the hydrogen ion concentration in		(c) Remains constan	t	
120.	moles per litre is	2, the hydrogen fon concentration in		(d) Depends upon c	oncentration of KOH solution	
		[NCERT 1973; MNR 1979]	100			5 × 10 ⁻⁴ ±
	(a) 1×10^{-14}	(b) 1×10^{-2}	136.	The hydrogen ion cor pH will be	ncentration in a given solution is	5 × 10 . Its E AMCET 1978]
	7	()			4.5	
	(c) 1×10^{-7}	(d) 1×10^{-12}		(a) 6	(b) 4	
127.		yields a solution with a hydroxide ion		(c) 3.22	(d) 2	
	concentration of 0.05 mol li	tre^{-1} . The solution is [AFMC 1997]				

ЩV	IVERSAL
SEL	F SCORER

137.	The pH of $\frac{N}{100}$ HCl would be approximately	150.	pH value of $N/10$ $NaOH$ solution is
.57.	100 Test would be approximately		[CBSE PMT 1996;Pb. CET 2001; Pb. PMT 2002]
	[CPMT 1971; DPMT 198 MP PMT 1991; Bihar MEE		(a) 10 (b) 11 (c) 12 (d) 13
	(a) 1 (b) 1.5	151.	A solution of sodium borate has a pH of approximately
	(c) 2 (d) 2.5		[JIPMER 2001]
138.	A solution which is resistant to change of pH upon the additi	ion of	(a) < 7 (b) > 7
130.	an acid or a base is known as [BHU 1979]	1011 01	(c) = 7 (d) Between 4 to 5
	(a) A colloid (b) A crystalloid	152.	If pH of A , B , C and D are 9.5, 2.5, 3.5 and 5.5 respectively,
	(c) A buffer (d) An indicator		then strongest acid is [AFMC 1995]
139.	$10^{-6}M\ HCl$ is diluted to 100 times. Its $\ pH$ is		(a) A (b) C
		1984]	(c) D (d) B
	(a) 6.0 (b) 8.0	153.	At $25^{\circ}C$ the pH value of a solution is 6. The solution is
	(c) 6.95 (d) 9.5		[AFMC 2001]
140.	The pH of a 10^{-10} molar HCl solution is approximately		(a) Basic (b) Acidic
	[NCERT	` 1977]	(c) Neutral (d) Both (b) and (c)
	(a) 10 (b) 7	154.	A certain buffer solution contains equal concentration of X^- and
	(c) 1 (d) 14		$H\!X$. The K_a for $H\!X$ is 10^{-8} . The pH of the buffer is
141.	The H^+ ion concentration is 1.0×10^{-6} mole/litre in a solution	on. Its	[UPSEAT 2001]
	pH value will be [MP PMT 1985; AFMC	1082	(a) 3 (b) 8
	(a) 12 (b) 6	. 1902]	(c) 11 (d) 14
	(c) 18 (d) 24	155.	The dissociation constant of <i>HCN</i> is 5×10^{-10} . The pH of the
142.	The pH of a solution is the negative logarithm to the base 10	of its	solution prepared by mixing 1.5 mole of HCN and 0.15 moles of KCN
	hydrogen ion concentration in		in water and making up the total volume to $0.5 dm^3$ is
	[Manipal MEE	1995]	(a) 7.302 (b) 9.302
	(a) Moles per litre (b) Millimoles per litre (c) Micromoles per litre (d) Nanomoles per litre		(c) 8.302 (d) 10.302
		156.	Which buffer solution out of the following will have $pH > 7$
143.	When 10^{-8} mole of HCl is dissolved in one litre of water	r, the	[MP PET 2001]
	pH of the solution will be [CPMT 1973, 94; DPMT	1082	(a) $CH_3COOH + CH_3COONa$
	(a) 8 (b) 7	1902]	(b) $HCOOH + HCOOK$
	(c) Above 8 (d) Below 7		(c) CH_3COONH_4
144.	The pH of the solution containing 10 ml of 0.1 N $NaOH$ a	and 10	
	ml of 0.05 N H_2SO_4 would be		(d) $NH_4OH + NH_4Cl$
	[CPMT 1987; Pb. PMT 20	_{02,04]} 157.	The pK_a of equimolecular sodium acetate and acetic acid mixture
	(a) 0 (b) 1		is 4.74. If pH is [DPMT 2001]
	(c) > 7 (d) 7		(a) 7 (b) 9.2
145.	The pH of 0.001 molar solution of HCl will be		(c) 4.74 (d) 14
	[MP PET 1986; MP PET/PMT 1988; CBSE PMT	^{Г 1991]}	pH of $NaCl$ solution is [CET Pune 1998]
	(a) 0.001 (b) 3 (c) 2 (d) 6		(a) 7 (b) Zero
146.	Which salt can be classified as an acid salt [CPMT]	1989]	(c) > 7 (d) < 7
	(a) Na_2SO_4 (b) $BiOCl$	159.	A solution of sodium chloride in contact with atmosphere has a
	() 2 4	.05.	pH of about [NCERT 1972, 77]
	· · · · · · · · · · · · · · · · · · ·	1	(a) 3.5 (b) 5
147.	Given a $0.1M$ solution of each of the following. Which solution the lowest pH	n nas 1 1987]	(c) 7 (d) 1.4
	(a) $NaHSO_4$ (b) NH_4Cl	160.	Which would decrease the pH of $25 cm^3$ of a $0.01 M$ solution
	(c) HCl (d) NH_3		of hydrochloric acid [MH CET 2001]
148.	Out of the following, which pair of solutions is not a buffer solu	ıtion	(a) The addition of $25 cm^3 + 0.005 M$ hydrochloric acid
	(a) $NH_4Cl + NH_4OH$		(b) The addition of $25 cm^3$ of $0.02 M$ hydrochloric acid
	(b) $NaCl + NaOH$		
	(c) $Na_2HPO_4 + Na_3PO_4$		(c) The addition of magnesium metal
	(d) $CH_3COOH + CH_3COONa$		(d) None of these
		161.	The condition for minimum change in $\ pH$ for a buffer solution is
149.	If the dissociation constant of an acid HA is 1×10^{-5} , the p		(a) Isoelectronic species are added
	a 0.1 molar solution of the acid will be approximately (a) Three (b) Five	1979]	(b) Conjugate acid or base is added
	(c) One (d) Six		

	(c) $pH = pK_a$		(a) Increase by one (b) Remains unchanged
	(d) None of these		(c) Decrease by one (d) Increase by 10
162.	A buffer solution with pH 9 is to be prepared by mixing NH_4Cl	172.	The gastric juice in our stomach contains enough HCl to make the
	and NH_4OH . Calculate the number of moles of NH_4Cl that		hydrogen ion concentration about 0.01 mole/litre The pH of gastric juice is [NCERT 1974]
	should be added to one litre of $1.0MNH_4OH$.		(a) 0.01 (b) 1
	$[K_b = 1.8 \times 10^{-5}]$ [UPSEAT 2001]		(c) 2 (d) 14
	(a) 3.4 (b) 2.6	173.	Addition of which chemical will decrease the hydrogen ion
	(c) 1.5 (d) 1.8		concentration of an acetic acid solution [MP PMT 1990]
163.	The ionization constant of a certain weak acid is 10^{-4} . What		(a) NH_4Cl (b) $Al_2(SO_4)_3$
100.	should be the [salt] to [acid] ratio if we have to prepare a buffer with $pH = 5$ using this acid and one of the salts [CPMT 2000; KCET 2000	o; P I 974 <u>C</u> ET	(c) $AgNO_3$ (d) HCN
	(a) 1:10 (b) 10:1		(a) Distilled water
	(c) 5:4 (d) 4:5		(b) NH_3 solution in water
164.	Which solution has the highest <i>pH</i> value [JIPMER 2000]		(c) NH_3
	(a) 1 <i>M KOH</i>		(d) Water saturated with Cl_2
	(b) $1MH_2SO_4$	175.	The solution of Na_2CO_3 has pH [AMU 1988]
	(c) Chlorine water	173.	(a) Greater than 7 (b) Less than 7
	(d) Water containing carbon dioxide		(c) Equal to 7 (d) Equal to zero
165.	One weak acid (like CH_3COOH) and its strong base together	176.	Which is not a buffer solution [CPMT 1990]
	with salt (like CH_3COONa) is a buffer solution. In which pair		(a) $NH_4Cl + NH_4OH$
	this type of characteristic is found [AllMS 1982; CPMT 1994; MP PET 1994]		(b) $CH_3COOH + CH_3COONa$
	(a) HCl and NaCl (b) NaOH and NaNO ₃		(c) CH_3COONH_4
	•		(d) Borax + Boric acid
	(c) KOH and KCl (d) NH ₄ OH and NH ₄ Cl	177.	What will be hydrogen ion concentration in moles $litre^{-1}$ of a
166.	If the <i>pH</i> of a solution of an alkali metal hydroxide is 13.6, the concentration of hydroxide is [JIPMER 2000]		solution, whose pH is 4.58 [UPSEAT 2001]
	(a) Between 0.1 M and 1 M		(a) 2.63×10^{-5} (b) 3.0×10^{-5}
	(b) More than 1 M		(c) 4.68 (d) None of these
	(c) Less than 0.001 <i>M</i>	178.	Assuming complete dissociation, the pH of a 0.01 \emph{M}
	(d) Between 0.01 M and 1 M		NaOH solution is equal to
167.	The pK_a of acetylsalicylic acid (aspirin) is 3.5. The pH of gastric		[NCERT 1975; CPMT 1977; DPMT 1982; BHU 1997]
	juice in human stomach is about 2-3 and the pH in the small intestine is about 8. Aspirin will be		(a) 2.0 (b) 14.0 (c) 12.0 (d) 0.01
	[IIT 1988; KCET 2003]	179.	50 ml of 2 N acetic acid mixed with $10ml$ of 1 N sodium
	(a) Unionized in the small intestine and in the stomach		acetate solution will have an approximate pH of
	(b) Completely ionized in the small intestine and in the		[MP PMT/PET 1988]
	stomach		(a) 4 (b) 5
	(c) lonized in the stomach and almost unionized in the small	180.	(c) 6 (d) 7 The hydrogen ion concentration of 0.001 M $NaOH$ solution is
	intestine (d) Ionized in the small intestine and almost unionized in the	100.	
	stomach		(a) $1 \times 10^{-2} mole/litre$ (b) $1 \times 10^{-11} mole/litre$
168.	The concentration of hydrogen ion in water is	101	(c) $1 \times 10^{-14} mole / litre$ (d) $1 \times 10^{-12} mole / litre$ A weak monoprotic acid of 0.1 M , ionizes to 1% in solution. What
	[MP PET 1990]	181.	will be the pH of solution [MNR 1988]
	(a) 8 (b) 1×10^{-7}		(a) 1 (b) 2
	(c) 7 (d) 1/7		(c) 3 (d) II
169.	pH of a 10 M solution of HCl is [CBSE PMT 1995]	182.	pH of a solution is 4. The hydroxide ion concentration of the solution would be
	(a) Less than 0 (b) 2		[NCERT 1981; CBSE PMT 1991; MP PMT 1994]
170	(c) 0 (d) 1 The nH of 1 N H O is [CDMT 1988]		(a) 10^{-4} (b) 10^{-10}
170.	The pH of $1 N H_2 O$ is [CPMT 1988]		(c) 10^{-2} (d) 10^{-12}
	(a) 7 (b) >7 (c) <7 (d) 0	183.	The pH of an aqueous solution containing $[H^+] = 3 \times 10^{-3} M$ is
	(-)		[MP PET 2001,04]

(a) 2.471

(c) 3.0

 $\begin{array}{ll} (b) & 2.523 \\ (d) & -3 \end{array}$

If H^+ ion concentration of a solution is increased by 10 times its pH will be $\cite{DCE 2000}$

171.

-	The state of the s					
184.	pH of blood is maintained of	constant l	by mechanism	of	197.	Which of the following statement(s) is(are) correct
	() C · · · · · · · · ·	(1.)	D (f)	[MH CET 2002]		[1] (1998)
	(a) Common ion effect(c) Solubility	(b)	Buffer All of these			(a) The pH of $1.0 \times 10^{-8} M$ solution of HCl is 8
185.	The <i>pH</i> of normal <i>KOH</i> is			[MP PET 1990]		(b) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
	(a) 1	(b)				(c) Autoprotolysis constant of water increases with temperature
	(c) 14	()	7			(d) When a solution of a weak monoprotic acid is titrated against
186.	The concentration of hydroge	n ion $[H]$	in 0.01 <i>M</i>			a strong base, at half neutralization point $pH = \frac{1}{2} pK_a$
			_	[EAMCET 1979]	198.	An aqueous solution of sodium carbnate has a pH greater than 7
	(a) 10^{12}	(b)	10^{-2}			becaue [DCE 2003]
	(c) 10^{-1}	(d)	10^{-12}			(a) It contains more carbonate ions than H_2O molecules
187.	A solution of weak acids is			qual volume of		(b) Contains more hydroxide ions than carbonate ions
	water. Which of the following	will not	change	[1171.477]		•
	(a) Strength of the acid			[JIPMER 1997]		(c) Na ⁺ ions react with water
	(b) The value of $[H_3O^+]$					(d) Carbonate ions react with H_2O
	(c) pH of the solution				199.	A <i>pH</i> of 7 signifies [CPMT 1974; DPMT 1982]
	(d) The degree of dissociation	on of acid				(a) Pure water (b) Neutral solution
188.	Ka of H_2O_2 is of the order			[DCE 2004]		(c) Basic solution (d) Acidic solution
100.			14	[DCL 2004]	200.	Assuming complete dissociation, which of the following aqueous solutions will have the same pH value
	(a) 10^{-12}	(b)	10^{-14}			·
	(c) 10^{-16}	(d)	10^{-10}			[Roorkee Qualifying 1998]
189.	Equivalent weight of an acid	. 1 1		[UPSEAT 2004]		(a) $100 \ ml$ of $0.01 \ M$ HCl
	(a) Depends on the reaction(b) Depends upon the number			cent		(b) $100 \ ml$ of $0.01 \ M \ H_2 SO_4$
	(c) Is always same	Dei oi oxy	gen atoms pres	sent		(c) 50 ml of 0.01 M HCl
	(d) None of the above			[1170717		(d) Mixture of 50 ml of $0.02~M~H_2SO_4$ and $50~ml$ of
190.	pH scale was introduced by	(1.)	C	[UPSEAT 2004]		0.02 <i>M NaOH</i>
	(a) Arrhenius (c) Lewis	(p)	Sorensen		201.	A buffer solution can be prepared from a mixture of
191.	(c) Lewis Buffer solution is prepared by	(d)	•	1	201.	[IIT 1999; KCET 1999; MP PMT 2002]
191.	(a) Strong acid + its salt of s	_	-	J		(a) Sodium acetate and acetic acid in water
	(b) Weak acid + its salt of w	•	30			(b) Sodium acetate and hydrochloric acid in water
	(c) Strong acid + its salt of		2			(c) Ammonia and ammonium chloride in water
	(d) Weak acid + its salt of st					(d) Ammonia and sodium hydroxide in water
192.	The <i>p</i> H of millimolar <i>HCl</i> is			[MH CET 2004]	202.	Which of the following will not function as a buffer solution
	(a) 1	(b)	3			[Roorkee 2000]
	(c) 2	(d)	4			(a) NaCl and NaOH
193.	Which of the following is a Lo	ewis base	[CPMT 2004]			(b) $NaOH$ and NH_4OH
	(a) NaOH	(b)	NH_3			(c) CH_3COONH_4 and HCl
	(c) BCl_3	(d)	All of these			(d) Borax and boric acid
194.	What will be the pH value o	. ,		ution	203.	Which one of the following statements is not true
134.	what will be the pil value o	1 0.03 777	Du(O11)2 son	[CPMT 2004]		[AIEEE 2003]
	(a) 12	(b)	13	[CIMII 2004]		(a) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
	(c) 1	` '	12.96			(b) $pH + pOH = 14$ for all aqueous solutions
195.	In a mixing of acetic acid	d and s	odium acetate	the ratio of		(c) The pH of $1 \times 10^{-8} MHCl$ is 8
	concentration of the salts to	the acid	is increased t	_		(d) 96,500 coulombs of electricity when passed through a
	the <i>pH</i> of the solution	(1.)	D 1	[KCET 2004]		${\it CuSO}_4$ solution deposits 1 ${\it gram}$ equivalent of copper at the
	(a) Increase by one	. ,	Decreases by			cathode
196.	(c) Decrease ten fold	/	Increases ten		204.	The pH value of $0.1MHCl$ is approximately 1. What will be the
190.	The rapid change of <i>p</i> H near the stoichiometric point of an acid-base titration is the basis of indicator detection. <i>p</i> H of the solution is					approximate pH value of 0.05 MH_2SO_4
	related to ratio of the concent	trations o	of the conjugate	e acid (<i>HIn</i>) and		[MP PMT 1991]
	base (In^-) forms of the indicate	•	·			(a) 0. \PhiBSE PMT 2004] (b) 0.5 (c) 1 (d) 2
	(a) $\log \frac{[HIn]}{[In^-]} = pH - pK_I$,, (b)	$\log \frac{[In^-]}{}=$	$pH - pK_{r}$	205.	The K_{sp} of $Mg(OH)_2$ is $1\times10^{-12}, 0.01MMg(OH)_2$ will
	$[In^-]$	in (-)	[HIn]	. r m		precipitate at the limiting pH [DPMT 2005]
	[<i>In</i> ⁻]		[HIn]			(a) 3 (b) 9
	(c) $\log \frac{[In^-]}{[HIn]} = pK_{In} - pI$	H (d)	$\log \frac{[I_{\nu}]}{[I_{\nu}]} =$	$pK_{In} - pH$		(c) 5 (d) 8
	[11111]		$\lfloor In \rfloor$			• •

- 206. The pH of an aqueous solution having hydroxide ion concentration
 - as 1×10^{-5} is

[MP PMT 1991]

- (a) 5
- (c) 4.5

(b) 9 (d) 11

Critical Thinking

Objective Questions

The K_{SP} of AgI is 1.5×10^{-16} . On mixing equal volumes of the 1. following solutions, precipitation will occur only with

[AMU 2000]

- (a) $10^{-7} M A g^+$ and $10^{-19} M I^-$
- (b) $10^{-8} M A g^+$ and $10^{-8} M I^-$
- (c) $10^{-16} M A g^+$ and $10^{-16} M T^-$
- (d) $10^{-9} M A g^+$ and $10^{-9} M \Gamma$
- The strongest Bronsted base in the following anion is 2.

[IIT 1981; MP PET 1992, 97; MP PMT 1994; RPMT 1999; KCET 2000; AllMS 2001; UPSEAT 2002; AFMC 2002; Pb. CET 2004]

- (a) ClO^{-}
- ClO_2
- (c) ClO₃
- (d) ClO_4^-
- Which one of the following compound is not a protonic acid 3.

- (a) $SO_2(OH)_2$
- (b) $B(OH)_3$
- (c) $PO(OH)_2$
- (d) $SO(OH)_2$
- Calculate the hydrolysis constant of the salt containing NO_2 . Given the K_a for $HNO_2 = 4.5 \times 10^{-10}$

[UPSEAT 2001]

- (a) 2.22×10^{-5}
- (b) 2.02×10^5
- (c) 4.33×10^4
- (d) 3.03×10^{-5}
- The molar solubility ($mol L^{-1}$) of a sparingly soluble salt MX_4 is 5. $\,{}^{\backprime}s^{\backprime}$. The corresponding solubility product is $\,K_{sp}$. $\,{}^{\backprime}s^{\backprime}$ is given in [AIEEE 2004] terms of K_{sp} by the relation
 - (a) $s = (256K_{sp})^{1/5}$
- (b) $s = (128K_{sp})^{1/4}$
- (c) $s = (K_{sp}/128)^{1/4}$
- (d) $s = (K_{sp}/256)^{1/5}$
- Electrophiles are 6.

[RPET 2000]

- (a) Lewis acids
- (b) Lewis base
- (c) Bronsted acid
- (d) Bronsted base
- Total number of moles for the reaction $2HI \rightleftharpoons H_2 + I_2$. if α is 7. degree of dissociation is [CBSE PMT 1996]
 - (a) 2

(b) $2-\alpha$

(c) 1

- (d) $1-\alpha$
- Which one is a Lewis acid 8.

[RPMT 1997]

- (a) ClF_3
- (b) H_2O
- (c) NH₃
- (d) None of these
- Heat of neutralisation of weak acid and strong base is less than the 9. heat of neutralisation of strong acid and strong base due to

- Energy has to be spent for the total dissociation of weak acid
- Salt of weak acid and strong base is not stable
- Incomplete dissociation of weak acid
- (d) Incomplete neutralisation of weak acid
- pK_a values of two acids A and B are 4 and 5. The strengths of 10 these two acids are related as [KCET 2001]
 - (a) Acid A is 10 times stronger than acids B
 - (b) Strength of acid A: strengtha of acid B = 4:5
 - The strengths of the two acids can not be compared
 - (d) Acid B is 10 times stronger than acid A
 - The dissociation constant of two acids HA_1 and HA_2 are 3.14×10^{-4} and 1.96×10^{-5} respectively. The relative strength of the acids will be approximately [RPMT 2000]
 - (a) 1:4
- (b) 4:1
- (c) 1:16
- (d) 16:1
- 12. An aqueous solution of ammonium acetate is

[NCERT 1980, 81; RPMT 1999]

- (a) Faintly acidic
- (b) Faintly basic
- (c) Fairly acidic
- (d) Almost neutral
- The dissociation constant of a weak acid is 1.0×10^{-5} , the equilibrium constant for the reaction with strong base is

[MP PMT 1990]

- (a) 1.0×10^{-5}
- (b) 1.0×10^{-9}
- (c) 1.0×10^9
- (d) 1.0×10^{14}
- The pH of 0.1~M solution of the following salts increases in the 14. [IIT 1999]
 - (a) $NaCl < NH_{\perp}Cl < NaCN < HCl$
 - (b) $HCl < NH_4Cl < NaCl < NaCN$
 - (c) $NaCN < NH_{\perp}Cl < NaCl < HCl$
 - (d) $HCl < NaCl < NaCN < NH_{\perp}Cl$
- Which of the following is the strongest acid

[AMU 1999; MH CET 1999, 2002]

- (a) $SO(OH)_2$
- (b) $SO_2(OH)_2$
- (c) $ClO_2(OH)$
- (d) $PO(OH)_2$
- 16. The strongest of the four acids listed below is

[NCERT 1984]

- (a) HCOOH
- (b) CH3COOH
- (c) ClCH2COOH
- (d) FCH2COOH
- Which equilibrium can be described as an acid-base reaction using the Lewis acid-base definition but not using the Bronsted-Lowry
 - (a) $2NH_3 + H_2SO_4 \rightleftharpoons 2NH_4^+ + SO_4^{2-}$
 - (b) $NH_3 + CH_3COOH \rightleftharpoons NH_4^+ + CH_3COO^-$
 - (c) $H_2O + CH_3COOH \rightleftharpoons H_3O^+ + CH_3COO^-$
 - (d) $[Cu(H_2O)_A]^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_A]^{2+} + 4H_2O$
- The hydride ion H^- is stronger base than its hydroxide ion OH^- . 18. Which of the following reaction will occur if sodium hydride (NaH) is dissolved in water [CBSE PMT 1997]
 - (a) $H^-(aq) + H_2O \rightarrow H_2O$
 - $H^{-}(aq) + H_2O(l) \rightarrow OH^{-} + H_2$ [KCET 2002]

UNIVERSAL SELF SCORER

374 Ionic Equilibrium

- (c) $H^- + H_2O \rightarrow \text{No reaction}$
- (d) None of these
- 19. Dissociation constant of a weak acid is 1×10^{-4} . Equilibrium constant of its reaction with strong base is [UPSEAT 2003]
 - (a) 1×10^{-4}
- (b) 1×10^{10}
- (c) 1×10^{-10}
- (d) 1×10^{14}
- 20. Arrange the acids (I) H_2SO_3 (II) $H\!\!\!/\!\!\!PO_1$ and (III) $H\!\!\!/\!\!\!ClO_2$ in the decreasing order of acidity [UPSEAT 2001]
 - (a) 1 > 111 > 11
- (b) 1 > 11 > 111
- (c) 11 > 111 > 1
- (d) 111 > 1 > 11
- **21.** Self-ionisation of liquid ammonia occurs as, $2NH_3 \rightleftharpoons NH_4^+ + NH_2^-; K = 10^{-10}$. In this solvent, an acid might be **[JIPMER 2001**]
 - (a) NH_4^+
 - (b) NH_3
 - (c) Any species that will form NH_4^+
 - (d) All of these
- 22. $\Delta H_f(H_2O) = X$; Heat of neutralisation of CH_3COOH and NaOH will be [BHU 2003]
 - (a) Less than 2X
- (b) Less than X

(c) X

- (d) Between X and 2X
- 23. Which of the following oxides will not give OH^- in aqueous solution [NCERT 1980]
 - (a) Fe_2O_3
- (b) *MgO*
- (c) *Li*₂*O*
- (d) K_2O
- 24. A precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) will be obtained when equal volume of the following are mixed

[MP PMT 1990, 95; IIT 1982; MNR 1992]

- (a) $10^{-4} M Ca^{2+}$ and $10^{-4} M F^{-}$
- (b) $10^{-2} M Ca^{2+}$ and $10^{-3} M F^{-}$
- (c) $10^{-5} M Ca^{2+}$ and $10^{-3} M F^{-}$
- (d) $10^{-3} M Ca^{2+}$ and $10^{-5} M F^{-}$
- **25.** The degree of hydrolysis of a salt of weak acid and weak base in its 0.1 *M* solution is found to be 50%. If the molarity of the solution is 0.2 *M*, the percentage hydrolysis of the salt should be [AMU 1999]
 - (a) 50%
- (b) 35%
- (c) 75%
- (d) 100%
- **26.** The pH of 0.1 M solution of a weak monoprotic acid 1% ionized is [UPSEAT 2001; Pb. PMT 2001]
 - (a) 1
- (b) 2

- (c) 3
- (d) 4
- **27.** Which one is the strongest acid

[MH CET 1999; AMU 1999,2000; Pb.CET 2001,03; MP PET 2001]

- (a) HClO
- (b) $HClO_2$
- (c) H_2SO_4
- (d) $HClO_4$
- 28. Which of the following is Lewis acid [Pb. CET 2000]
 - (a) S

- (b) : *CH*₂
- (c) $(CH_3)_3 B$
- (d) All of these

29. The solubility product of $Mg(OH)_2$ is 1.2×10^{-11} . The solubility of this compound in gram per $100 \, cm^3$ of solution is

[Roorkee 2000]

- (a) 1.4×10^{-4}
- (b) 8.16×10^{-4}
- (c) 0.816
- (d) 1.4
- **30.** What is $[H^+]$ of a solution that is 0.01M in HCN and 0.02M in NaCN

 $(K_a \text{ for } HCN = 6.2 \times 10^{-10})$

[MP PMT 2000]

[DPMT 2001; RPMT 2002]

- (a) 3.1×10^{10}
- (b) 6.2×10^5
- (c) 6.2×10^{-10}
- (d) 3.1×10^{-10}
- . Which is neucleophile
- (b) NH₃
- (a) BF_3 (c) $BeCl_2$
- (d) H_2O
- 32. The solubility of CuBr is $2\times 10^{-4} mol/l$ at $25^{\circ}C$. The K_{sp} value for CuBr is [AIIMS 2002]
 - (a) $4 \times 10^{-8} mol^2 l^{-2}$
- (b) $4 \times 10^{-11} mol^2 L^{-1}$
- (c) $4 \times 10^{-4} mol^2 l^{-2}$
- (d) $4 \times 10^{-15} mol^2 l^{-2}$
- 33. A 0.004 M solution of Na_2SO_4 is isotonic with a 0.010 M solution of glucose at same temperature. The apparent degree of disociation of Na_2SO_4 is

[IIT JEE Screening 2004]

- (a) 25%
- (b) 50%
- (c) 75%
- (d) 85%
- **34.** K_{sp} for $Cr(OH)_3$ is 2.7×10^{-31} . What is its solubility in *moles / litre*. [JEE Orissa 2004]
 - (a) 1×10^{-8}
- (b) 8×10^{-8}
- (c) 1.1×10^{-8}
- (d) 0.18×10^{-8}
- **35.** pK_a of acetic acid is 4.74 . The concentration of CH_3COONa is 0.01 M. The pH of CH_3OONa is

[Orissa JEE 2004]

- (a) 3.37
- (b) 4.37
- (c) 4.74
- (d) 0.474
- **36.** If the solubility product of $AgBrO_3$ and Ag_2SO_4 are 5.5×10^{-5} and 2×10^{-5} respectively, the relationship between the solubilities of these can be correctly represented as **[EAMCET 1985]**
 - (a) $S_{AgBrO_3} > S_{Ag_2SO_4}$
- (b) $S_{AgBrO_3} < S_{Ag_2SO_4}$
- $(c) \quad S_{AgBrO_3} = S_{Ag_2SO_4}$
- (d) $S_{AgBrO_3} \approx S_{Ag_2SO_4}$
- 37. The ionisation constant of phenol is higher than that of ethanol because [JIPMER 2002]
 - (a) Phenoxide ion is bulkier than ethanoxide
 - (b) Phenoxide ion is stronger base than ethanoxide
 - (c) Phenoxide ion is stabilised through delocalisation
 - $(d) \quad \hbox{Phenoxide ion is less stable than ethoxide} \\$
- **38.** A weak acid HX has the dissociation constant $1 \times 10^{-5} M$. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is

[IIT JEE Screening 2004]

- (a) 0.0001%
- (b) 0.01%
- (c) 0.1%
- (d) 0.15%

- **39.** In the equilibrium $A^- + H_2O = HA + OH^-$ ($K_a = 1.0 \times 10^{-5}$). The degree of hydrolysis of 0.001 M solution of the salt is [AMU 1999]
 - (a) 10^{-3}
- (b) 10^{-4}
- (c) 10^{-5}
- (d) 10^{-6}
- **40.** The sulphide ion concentration $[S^{2-}]$ in saturated H_2S solution is 1×10^{-22} . Which of the following sulphides should be quantitatively precipitated by H_2S in the presence of dil. HCl

Sulphide Solubility Product

(1)

 1.4×10^{-16}

(11)

 1.2×10^{-22}

(111)

 8.2×10^{-46}

(IV)

- 5.0×10^{-34}
- (a) 1, 11
- (b) 111, 1V
- (c) 11, 111, 1V
- (d) Only 1
- **41.** When equal volumes of the following solutions are mixed, precipitation of $AgCl(K_{sp}=1.8\times 10^{-10})$ will occur only with

[IIT 1988; CBSE PMT PMT 1992; DCE 2000]

- (a) $10^{-4} M A g^+$ and $10^{-4} M C l^-$
- (b) $10^{-5} M A g^+$ and $10^{-5} M C l^-$
- (c) $10^{-6} M A g^+$ and $10^{-6} M C l^-$
- (d) $10^{-10} M Ag^+$ and $10^{-10} M Cl^-$
- **42.** K_{sp} of an electrolyte AB is 1×10^{-10} . $[A^+] = 10^{-5} M$, which concentration of B^- will not give precipitate of AB

[BHU 2003]

- (a) 5×10^{-6}
- (b) 1×10^{-5}
- (c) 2×10^{-5}
- (d) 5×10^{-5}
- **43.** One litre of water contains 10^{-7} mole hydrogen ions. The degree of ionization in water will be [CPMT 1985, 88, 93]
 - (a) $1.8 \times 10^{-7}\%$
- (b) $0.8 \times 10^{-9}\%$
- (c) $3.6 \times 10^{-7}\%$
- (d) $3.6 \times 10^{-9}\%$
- 44. If the solubility products of AgCl and AgBr are 1.2×10^{-10} and 3.5×10^{-13} respectively, then the relation between the solubilities (denoted by the symbol 'S') of these salts can correctly be represented as [MP PET 1994]
 - (a) S of AgBr is less than that of AgCl
 - (b) S of AgBr is greater than that of AgCl
 - (c) S of AgBr is equal to that of AgCl
 - (d) S of AgBr is 10^6 times greater than that of AgCl
- **45.** If the solubility product of lead iodide (Pbl_2) is 3.2×10^{-8} , then its solubility in moles/litre will be [MP PMT 1990]
 - (a) 2×10^{-3}
- (b) 4×10^{-4}
- (c) 1.6×10^{-5}
- (d) 1.8×10^{-5}
- **46.** Calculate the solubility of AgCl (s) in 0.1 M NaCl at $25^{\circ}C$.
 - $K_{sp}(AgCl) = 2.8 \times 10^{-10}$

[UPSEAT 2001]

- (a) $3.0 \times 10^{-8} ML^{-1}$ (c) $2.8 \times 10^{-9} ML^{-1}$
- (b) $2.5 \times 10^{-7} ML^{-1}$ (d) $2.5 \times 10^{7} ML^{-1}$

- **47.** The solubility product of a binary weak electrolyte is 4×10^{-10} at $298\,K$. Its solubility in mol dm^{-3} at the same temperature is **[KCET 2001]**
 - (a) 4×10^{-5}
- (b) 2×10^{-5}
- (c) 8×10^{-10}
- (d) 16×10^{-20}
- **48.** Solubility of AgCl at $20^{\circ}C$ is 1.435×10^{-3} gm perlitre. The solubility product of AgCl is

[CPMT 1989; BHU 1997; AFMC 2000; CBSE PMT 2002]

- (a) 1×10^{-5}
- (b) 1×10^{-10}
- (c) 1.435×10^{-5}
- (d) 108×10^{-3}
- **49.** pK_a value for acetic acid at the experimental temperature is 5. The percentage hydrolysis of 0.1~M sodium acetate solution will be
 - (a) 1×10^{-4}
- (b) 1×10^{-2}
- (c) 1×10^{-3}
- (d) 1×10^{-5}
- **50.** At 30° C, the solubility of Ag_2CO_3 ($K_{sp} = 8 \times 10^{-12}$) would be greatest in one litre of [MP PMT 1990]
 - (a) $0.05 \, M \, Na_2 CO_3$
- (b) $0.05 M AgNO_3$
- (c) Pure water
- (d) $0.05 \, M \, NH_3$
- 51. The values of K_{sp} for CuS, Ag_2S and HgS are $10^{-31}, 10^{42}$ and 10^{-54} respectively. The correct order of their solubility in water is [MP PMT 2003]
 - (a) $Ag_2S > HgS > CuS$
- (b) $HgS > CuS > Ag_2S$
- (c) $HgS > Ag_2S > CuS$
- (d) $Ag_2S > CuS > HgS$
- **52.** The pH of a soft drink is 3.82. Its hydrogen ion concentration will be [MP PET 1990]
 - (a) $1.96 \times 10^{-2} \ mol/l$
- (b) $1.96 \times 10^{-3} \ mol/l$
- (c) $1.5 \times 10^{-4} \ mol/l$
- (d) $1.96 \times 10^{-1} \ mol/l$
- **53.** The pH of a solution at $25^{\circ}C$ containing 0.10m sodium acetate and 0.03m acetic acid is $(pK_a \text{ for } CH_3COOH = 4.57)$ [AIIMS 2002; BHU
 - (a) 4.09
- (b) 5.09
- (c) 6.10
- (d) 7.09
- **54.** A weak acid is 0.1% ionised in 0.1 M solution. Its pH is
 - (a) 2

(b) 3

(c) 4

- (d) 1
- **55.** The solubility product of As_2S_3 is 2.8×10^{-72} . What is the solubility of As_2S_3 [Pb. CET 2003]
 - (a) $1.09 \times 10^{-15} \ mole/litre$
 - (b) 1.72×10^{-15} mole / litre
 - (c) 2.3×10^{-16} mole / litre
 - (d) 1.65×10^{-36} mole/litre
- **56.** For a weak acid HA with dissociation constant 10^{-9} , pOH of its 0.1 M solution is [CBSE PMT 1989]
 - (a) 9

- (b) 3
- (c) 11

- (d) 10
- **57.** The dissociation of water at 25^{o} C is $1.9 \times 10^{-7}\%$ and the density of water is $1.0 \text{ g}/\text{cm}^{3}$. The ionisation constant of water is [IIT 1995]
 - (a) 3.42×10^{-6}
- (b) 3.42×10^{-8}
- (c) 1.00×10^{-14}
- (d) 2.00×10^{-16}
- **58.** What is the *p*H of 0.01 *M* glycine solution? For glycine, $Ka_1 = 4.5 \times 10^{-3}$ and $Ka_2 = 1.7 \times 10^{-10}$ at 298 *K*

[AllMS 2004]

[BVP 2004]

	VERSAL 376 Ionic Equilibrium		
	(a) 3.0 (b) 10.0 (c) 6.1 (d) 7.2	68.	The number of moles of hydroxide (OH^-) ion in 0.3 <i>litre</i> of 0.005
59.	The concentration of $[H^+]$ and concentration of $[OH^-]$ of a 0.1 aqueous solution of 2% ionised weak acid is		M solution of $Ba(OH)_2$ is [JIPMER 2001] (a) 0.0050 (b) 0.0030 (c) 0.0015 (d) 0.0075
	[lonic product of water = 1×10^{-14}] [DPMT 2004; CBSE PMT 1999] (a) 2×10^{-3} M and 5×10^{-12} M	69.	The pH of pure water or neutral solution at $50^{\circ}C$ is $(pK_w = 13.26 = 13.26$ at $50^{\circ}C)$
	(b) $1 \times 10^3 \ M$ and $3 \times 10^{-11} \ M$		[Pb. PMT 2002; DPMT 2002] (a) 7.0 (b) 7.13
	(c) $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$	70.	(c) 6.0 (d) 6.63 pH of 0.1 M solution of a weak acid (HA) is 4.50. It is neutralised
. .	(d) $3 \times 10^{-2} M$ and $4 \times 10^{-13} M$,	with $NaOH$ solution to decrease the acid content to half pH of the resulting solution [JIPMER 2002]
60.	If solubility product of $HgSO_4$ is 6.4×10^{-5} , then its solubility is [BHU 2004]		(a) 4.50 (b) 8.00 (c) 7.00 (d) 10.00
	(a) $8 \times 10^{-3} mole/litre$ (b) $6.4 \times 10^{-5} mole/litre$	71.	If $50ml$ of $0.2MKOH$ is added to $40ml$ of
61.	(c) $6.4 \times 10^{-3} mole/litre$ (d) $2.8 \times 10^{-6} mole/litre$ At 298K a 0.1 M CH_3COOH solution is 1.34% ionized. The		0.5MHCOOH, the pH of the resulting solution is
01.	ionization constant K_a for acetic acid will be		$(K_a = 1.8 \times 10^{-4})$ [MH CET 2000]
	[AMU 2002; AFMC 2005]		(a) 3.4 (b) 7.5
	(a) 1.82×10^{-5} (b) 18.2×10^{-5}	72.	(c) 5.6 (d) 3.75 The Bronsted acids in the reversible reaction are
	(c) 0.182×10^{-5} (d) None of these	•	$HCO_3^-(aq.) + OH^-(aq.) \rightleftharpoons CO_3^{2-}(aq.) + H_2O$ [DPMT 2002]
62.	Hydrogen ion concentration of an aqueous solution is $1\times10^{-4}M$. The solution is diluted with equal volume of water. Hydroxyl ion		(a) OH^- and CO_3^{2-}
	concentration of the resultant solution in terms of $mol\ dm^{-3}$ is [KCET	2001]	(b) OH^- and H_2O
	(a) 1×10^{-8} (b) 1×10^{-6}		(c) HCO_3^- and H_2O
60	(c) 2×10^{-10} (d) 0.5×10^{-10}		(d) HCO_3^- and CO_3^{2-}
63.	Which one of the following is not a buffer solution [AlIMS 2003] (a) $0.8MH_2S+0.8MK\!HS$	73.	A 0.1N solution of an acid at room temperature has a degree of ionisation 0.1. The concentration of OH^- would be [MH CET 1999]
	_		(a) $10^{-12}M$ (b) $10^{-11}M$
	(b) $2MC_6H_5NH_2 + 2MC_6H_5NH_3Br$		(c) $10^{-9}M$ (d) $10^{-2}M$
	(c) $3MH_2CO_3 + 3MKHCO_3$	74.	Increasing order of acidic character would be [RPMT 1999]
	(d) $0.05 M KClO_4 + 0.05 M HClO_4$		(a) $CH_3COOH < H_2SO_4 < H_2CO_3$
64.	The hydrogen ion concentration of a $0.006M$ benzoic acid		(b) $CH_3COOH < H_2CO_3 < H_2SO_4$
	solution is $(K_a = 6 \times 10^{-5})$ [MP PET 1994]		(c) $H_2CO_3 < CH_3COOH < H_2SO_4$
	(a) 0.6×10^{-4} (b) 6×10^{-4}		$(d) H_2SO_4 < H_2CO_3 < CH_3COOH$
- -	(c) 6×10^{-5} (d) 3.6×10^{-4}	75.	The correct order of increasing $\left[H_3O^+\right]$ in the following aqueous
65.	Calculate the amount of $(NH_4)_2SO_4$ in grams which must be added to 500 ml of $0.200MNH_3$ to yield a solution with		solutions is [UPSEAT 2000] (a) 0.01 <i>M H_iS</i> < 0.01 <i>M H_iSO</i> < 0.01 <i>M NaCl</i>
	$pH = 9.35 (K_b \text{ for } NH_3 = 1.78 \times 10^{-5})$ [UPSEAT 2001]		< 0.01 <i>M NaNO</i> 2
	(a) 10.56 gm (b) 15 gm (c) 12.74 gm (d) 16.25 gm		(b) 0.01 <i>M NaCl</i> < 0.01 <i>M NaNO</i> < 0.01 <i>M H.S</i> < 0.01 <i>M H.SO</i>
66.	pH of a solution produced when an aqueous solution of pH 6 is		(c) 0.01 <i>M NaNO</i> <0.01 <i>M NaCl</i> < 0.01 <i>M HS</i>
	mixed with an equal volume of an aqueous solution of pH 3 is about [KCET 2001]		< 0.01 M HSO (d) 0.01 M HS < 0.01 M NaNO < 0.01 M NaCl
	(a) 3.3 (b) 4.3 (c) 4.0 (d) 4.5	76.	A base dissolved, in water, yields a solution with a hydroxyl ion concentration of $0.05mollitre^{-1}$. The solution is

(a) Basic

77.

(c) Neutral

(a) Acidic

(c) Amphoteric

In the given reaction,

 $4Na + O_2 \rightarrow 2Na_2O$

 $\begin{bmatrix} Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$

[CBSE PMT 2000]

(b) Acid

(b) Basic

(d) Neutral

(d) Either (b) or (c)

the oxide of sodium

[Orissa JEE 2002]

Calculate the $H^{\scriptscriptstyle +}$ ion concentration in a 1.00~(M)~HCN~litre

[Bihar CEE 1995]

67.

solution $(K_a = 4 \times 10^{-10})$

(a) 4×10^{-14} mole / litre

(b) 2×10^{-5} mole/litre

(d) None of these

(c) 2.5×10^{-5} mole/litre

78. What is the pH of a 1M CH_3COOH a solution K_a of acetic acid

$$=1.8 \times 10^{-5}$$
.

$$K = 10^{-14} \, mol^2 litr\bar{e}^2$$

[DPMT 2002]

- (a) 9.4
- (b) 4.8
- (c) 3.6
- (d) 2.4