

0.	H_2S reacts with halogens, the halogens [JIPMER 2000]	21.	When Sn^{2+} changes to Sn^{4+} in a reaction [CPMT 1981]
	(a) Form sulphur halides (b) Are oxidised		(a) It loses two electrons (b) It gains two electrons
	(c) Are reduced (d) None of these		(c) It loses two protons (d) It gains two protons
1.	H_2O_2 reduces $K_4Fe(CN)_6$ [MP PMT 1985]	22.	Oxidation of thiosulphate $(S_2O_3^{2-})$ ion by iodine gives
	(a) In neutral solution (b) In acidic solution		[NCERT 1976]
	(c) In non-polar solvent (d) In alkaline solution		(a) SO_3^{2-} (b) SO_4^{2-}
2.	Max. number of moles of electrons taken up by one mole of NO_3^-		
	when it is reduced to [DPMT 2002]		(c) $S_4 O_6^{2-}$ (d) $S_2 O_6^{2-}$
	(a) NH_3 (b) NH_2OH	23.	$Zn^{2+}(aq) + 2e \to Zn(s)$. This is [CPMT 1985]
	(c) NO (d) NO_2		(a) Oxidation (b) Reduction
פו	In the reaction $3Mg + N_2 \rightarrow Mg_3N_2$ [MP PMT 1999]		(c) Redox reaction (d) None of these
3.	(a) Magnesium is reduced (b) Magnesium is oxidized	24.	One gas bleaches the colour of flowers by reduction while the other by oxidation [EAMCET 1980]
	(c) Nitrogen is oxidized (d) None of these		(a) CO and Cl_2 (b) SO_2 and Cl_2
4.	When sodium metal is dissolved in liquid ammonia, blue colour		
	solution is formed. The blue colour is due to		(c) H_2S and Br_2 (d) NH_3 and SO_2
	[NCERT 1981]	25.	Reduction involves NCERT 1972]
	(a) Solvated Na^+ ions (b) Solvated electrons		(a) Loss of electrons (b) Gain of electrons
	(c) Solvated NH_2^- ions (d) Solvated protons		(c) Increase in the valency of positive part
5.	Following reaction describes the rusting of iron		(d) Decrease in the valency of positive part
	$4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$	26.	In a reaction between zinc and iodine, in which zinc iodide is
	Which one of the following statement is incorrect		formed, what is being oxidised [NCERT 1975]
	[NCERT 1981; MNR 1991; AIIMS 1998]		(a) Zinc ions (b) lodide ions
	(a) This is an example of a redox reaction		(c) Zinc atom (d) lodine
	(b) Metallic iron is reduced to Fe^{3+}	27.	Which one of the following reactions does not involve either oxidation or reduction [EAMCET 1982]
	 (c) Fe³⁺ is an oxidising agent (d) Metallic iron is a reducing agent 		(a) $VO_2^+ \rightarrow V_2O_3$ (b) $Na \rightarrow Na^+$
6.	$SnCl_2$ gives a precipitate with a solution of $HgCl_2$. In this process		(c) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$ (d) $Zn^{2+} \rightarrow Zn$
0.	$HgCl_2$ is [CPMT 1983]	28.	In the following reaction,
	(a) Reduced	20.	· · · · · · · · · · · · · · · · · · ·
	(b) Oxidised		$3Br_2 + 6CO_3^{2-} + 3H_2O = 5Br^{-} + BrO_3^{-} + 6HCO_3$
	(c) Converted into a complex compound containing both Sn and		[MP PMT 1994, 95] (a) Bromine is oxidised and carbonate is reduced
	Hg		(b) Bromine is reduced and water is oxidised
	(d) Converted into a chloro complex of Hg		(c) Bromine is neither reduced nor oxidised
7.	Oxidation involves [NCERT 1971, 81; CPMT 1980, 82, 83;		(d) Bromine is both reduced and oxidised
	MP PMT 1983]	29.	In the following reaction,
	(a) Loss of electrons		$4P + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$ [Pb. PMT 2002]
	(b) Gain of electrons(c) Increase in the valency of negative part		(a) P is oxidized as well as reduced
	(c) Increase in the valency of negative part(d) Decrease in the valency of positive part		(b) P is reduced only
8.	Incorrect statement regarding rusting is [MP PET 2000]		(c) P is oxidised only(d) None of these
	(a) Metallic iron is oxidised to Fe^{3+} ions	30.	(d) None of these In the following reaction
	(b) Metallic iron is reduced to Fe^{2-} ions	30.	
	(c) Oxygen gas is reduced to oxide ion		$Cr_2O_7^- + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 3H_2O + 3I_2$
	(d) Yellowish – brown product is formed		Which element is reduced [CPMT 1976]
9.	When copper turnings are added to silver nitrate solution, a blue	_	(a) Cr (b) H
	coloured solution is formed after some time. It is because, copper[CPMT	Г 1974, 79	(d) I
	(a) Displaces silver from the solution (b) Forms a blue coloured complex with AgNO	31.	The conversion of sugar $C_{12}H_{22}O_{11} \rightarrow CO_2$ is
	(b) Forms a blue coloured complex with $AgNO_3$		(a) Oxidation
	(c) Is oxidised to Cu^{2+}		(b) Reduction
	(d) Is reduced to Cu^{2+}		(c) Neither oxidation nor reduction
20.	Solution of sodium metal in liquid ammonia is strongly reducing due to the presence of the following in the solution		(d) Both oxidation and reduction
	[NCERT 1977; KCET (Med.) 2000]	32.	Which halide is not oxidised by MnO_2
	(a) Sodium atoms (b) Solvated electrons		[MNR 1985; JIPMER 2000]
	(c) Sodium hydride (d) Sodium amide		(a) F (b) Cl

- 33. (a) It loses an electron
- When Fe^{2+} changes to Fe^{3+} in a reaction
- (b) It gains an electron
- (c) It loses a proton
- (d) It gains a proton
- In acid solution, the reaction $MnO_4^- \rightarrow Mn^{2+}$ involves 34.

[MP PMT 1989]

- (a) Oxidation by 3 electrons
- (b) Reduction by 3 electrons
- (c) Oxidation by 5 electrons
- (d) Reduction by 5 electrons
- When iron or zinc is added to $CuSO_4$ solution, copper is 35. precipitated. It is due to [CPMT 1974, 79]
 - (a) Oxidation of Cu^{+2}
- (b) Reduction of Cu^{+2}
- Hydrolysis of CuSO 4
- (d) Ionization of CuSO 4
- In the reaction, $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ which of the 36. following statement is incorrect [UPSEAT 2001, 02]
 - (a) A Redox reaction
 - (b) Metallic iron is a reducing agent
 - Fe^{3+} is an oxidising agent
 - (d) Metallic iron is reduced to Fe^{3+}
- Which of the following is redox reaction [CBSE PMT 1997] 37.
 - (a) H_2SO_4 with NaOH
 - (b) In atmosphere, O_3 from O_2 by lightning
 - (c) Evaporation of H_2O
 - Nitrogen oxides form nitrogen and oxygen by lightning

Oxidizing and Reducing agent

Equation $H_2S + H_2O_2 \rightarrow S + 2H_2O$ represents

[UPSEAT 2001]

- (a) Acidic nature of H_2O_2
- (b) Basic nature of H_2O_2
- (c) Oxidising nature of H_2O_2
- (d) Reducing nature of H_2O_2
- In the reaction 2.

$$C_2O_4^{2-} + MnO_4^{-} + H^{+} \rightarrow Mn^{2+} + CO_2 + H_2O_4$$

the reductant is

[EAMCET 1991]

- (a) $C_2 O_4^{2-}$
- (b) MnO_4^-
- (c) Mn^{2+}
- (d) H^+
- A reducing agent is a substance which can 3.

[CPMT 1971, 74, 76, 78, 80; NCERT 1976]

- (a) Accept electron
- (b) Donate electrons
- (c) Accept protons
- (d) Donate protons
- Which of the following is the most powerful oxidizing agent

[MNR 1990; CPMT 2003]

- (a) F_2
- (b) *Cl*₂
- (d) I_2
- Of the four oxyacids of chlorine the strongest oxidising agent in 5. dilute aqueous solution is [MP PET 2000]
 - (a) HClO₄
- (b) $HClO_3$

- (c) $HClO_2$
- (d) HOCl
- 6. Identify the correct statement about H_2O_2

[AIIMS 1996]

- (a) It acts as reducing agent only
- (b) It acts as both oxidising and reducing agent
- (c) It is neither an oxidiser nor reducer
- (d) It acts as oxidising agent only
- Several blocks of magnesium are fixed to the bottom of a ship to [AIEEE 2003]
 - (a) Keep away the sharks
 - (b) Make the ship lighter
 - (c) Prevent action of water and salt
 - (d) Prevent puncturing by under-sea rocks
- Which of the following behaves as both oxidising and reducing agents
 - (a) H_2SO_4
- (b) SO_2
- (c) H_2S
- (d) HNO_3
- The reaction $H_2S + H_2O_2 \rightarrow 2H_2O + S$ shows

[JIPMER 2001]

- (a) Oxidizing action of H_2O_2
- (b) Reducing action of H_2O_2
- (c) Alkaline nature of H_2O_2
- (d) Acidic nature of H_2O_2
- Which of the following is not a reducing agent

[EAMCET 1987]

- (a) $NaNO_2$
- (b) $NaNO_3$
- (c) *HI*
- (d) $SnCl_2$
- Which of the following cannot work as oxidising agent

[CPMT 1996]

[CPMT 1994]

- (a) O_2
- (b) $KMnO_A$

(c) I_2

- (d) None of these
- H_2O_2 is used as
 - (a) An oxidant only (b) A reductant only

 - (c) An acid only
 - (d) An oxidant, a reductant and an acid
- In $C + H_2O \rightarrow CO + H_2$, H_2O acts as [AFMC 1988]
 - (a) Oxidising agent
- (b) Reducing agent
- (c) (a) and (b) both
- (d) None of these
- Strongest reducing agent is

- BHU 1984, 96; MP PET 1990; AMU 1999]
- (a) F^-

15.

- (b) *Cl*⁻ (d) I^-
- (c) Br
- A solution of sulphur dioxide in water reacts with H_2S precipitating sulphur. Here sulphur dioxide acts as

[NCERT 1980]

MNR 1982

[NCERT 1979; CPMT 1988]

[CPMT 1977;

- (a) As oxidising agent
- (b) A reducing agent
- (c) An acid
- (d) A catalyst Which of these substances is a good reducing agent
- (a) NaOCl
- (b) *HI* (d) KBr
- (c) FeCl₃ The strongest reducing agent is
- (a) HNO_2
- (b) H_2S

					Redox Redections 353
	(c) H ₂ SO ₃	(d)	$SnCl_2$		[JEE Orissa 2004
18.	Which one is an oxidising age	nt	[DPMT 1996]		(a) HCl (b) $HClO_2$
	(a) $FeSO_4$				(c) $HOCl$ (d) None of these
	(b) HNO_3			29.	
	(c) $FeSO_4.(NH_4)_2SO_4.$	$6H_2O$			$Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O + O_2$, the H_2O_2 acts as
	(d) H_2SO_4				[BHU 2004
19.	In which of the following reac	tions H	C_0O_0 is a reducing agent		(a) Reducing agent (b) Oxidising agent (c) Bleaching agent (d) None of the above
			PMT 1981; NCERT 1981; BHU 1999]	30.	
	(a) $2FeCl_2 + 2HCl + H_2$	•	- · · · · · · · · · · · · · · · · · · ·	0	$HAsO_2 + Sn^{2+} \rightarrow As + Sn^{4+} + H_2O$ oxidising agent is
	(b) $Cl_2 + H_2O_2 \rightarrow 2HCl_2$	$l + O_2$	J 2		$IIA3O_2 + Sh \longrightarrow AS + Sh \longrightarrow II_2O$ oxidising agent is [BVP 2004]
	(c) $2HI + H_2O_2 \rightarrow 2H_2O_2$	-			(a) Sn^{2+} (b) Sn^{4+}
	(d) $H_2SO_3 + H_2O_2 \rightarrow H$	_	$H \cap$		(a) Sh (b) Sh (c) As (d) $HAsO_2$
20	When $NaCl$ is dissolved in		2	01	Which of the following substances acts as an oxidising as well as a
20.	when wact is dissolved in	water tn	[NCERT 1976]	31.	reducing agent [UPSEAT 2004; DCE 2004
	(a) Oxidised	(b)	Reduced		(a) Na_2O (b) $SnCl_2$
	(c) Hydrolysed	(d)	,		(c) Na_2O_2 (d) $NaNO_2$
21.	Strongest reducing agent is (a) K	(b)	[MNR 1984, 89] Mg	32.	
	(c) Al	(d)	Br		$P + NaOH \rightarrow PH_3 + NaH_2PO_2$ [MP PET 2004]
	(e) Na	(u)	Di		(a) P is oxidised only
22.	()	as a rec	ducing agent in the following		(b) <i>P</i> is reduced only
	reaction				(c) P is oxidized as well as reduced
	$14H^+ + Cr_2O_7^{2-} + 3Ni \rightarrow$	$2Cr^{3+}$	$+7H_2O + 3Ni^{2+}$		(d) Na is reduced
			MT 1994; AFMC 2000; DPMT 2001]		Oxidation number and Oxidation state
	(a) H_2O	(b)	Ni		Oxidation number and Oxidation state
	(c) H^+	(d)	$Cr_2O_7^{2-}$	1.	The oxidation number of C in CO_2 is [MP PET 2001
23.	Which of the following act complex forming properties	id posse	esses oxidising, reducing and [MNR 1985]		(a) -2 (b) $+2$ (c) -4 (d) $+4$
	(a) HNO_3	(b)	H_2SO_4	2.	The oxidation number of As is [RPMT 1997
	(c) HCl	(d)	HNO_2		(a) + 2 and + 3 (b) + 3 and + 5
24.	Which one is oxidising substan	nce	[CPMT 1997]	3.	(c) $+ 3$ and $+ 4$ (d) None of these The oxidation number of Ba in barium peroxide is
	(a) $C_2H_2O_2$	(b)	CO	J.	[Pb. PMT 2002
	(c) H_2S	(d)	CO_2		(a) +6 (b) +2 (c) 1 (d) +4
25.	The compound that can work	both a	s oxidising and reducing agent	4.	HNO_2 acts both as reductant and oxidant, while HNO_3 acts only
	is		[CPMT 1986; MP PET 2000]	•	as oxidant. It is due to their [AIIMS 2000
	(a) $KMnO_4$	(b)	H_2O_2		(a) Solubility ability
	(c) BaO_2	(d)	$K_2Cr_2O_7$		(b) Maximum oxidation number (c) Minimum oxidation number
26.	Which one is oxidising agent i				(d) Minimum number of valence electrons
	$2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-}$	$+H_2C$	(CPMT 1997)	5.	Chlorine is in +1 oxidation state in [MP PMT 1981; NCERT 1974; CPMT 1971, 78
	(a) H^+	(b)	$Cr_2O_4^-$		(a) HCl (b) $HClO_4$
		. ,			· · ·

(c) Cr++

(d) None of these

Which is the best description of the behaviour of bromine in the 27. reaction given below

 $H_2O+Br_2 \to HOBr+HBr$

[CBSE PMT 2004]

(a) Oxidised only

(b) Reduced only

(c) Proton acceptor only

 $(d) \quad Both \ oxidised \ and \ reduced$

28. What is the oxidising agent in chlorine water

(d) Cl_2O

The valency of Cr in the complex $\left[\mathit{Cr}(H_2O)_4\,\mathit{Cl}_2\right]^+$

[MP PMT 2000]

(a) 1

(b) 3

(c) 5

(d) 6

In the conversion $Br_2 \rightarrow BrO_3^-$, the oxidation state of bromine 7. changes from

[EAMCET 1990; AMU 1999; RPMT 2002]

(a) -1 to -1

 $(b)\quad 0\ to-1$

(c) 0 to + 5

(d) 0 to -5

100000						
8.	In the chemical reaction Cl	$H_2 + H_2 S \rightarrow 2HCl + S$, the oxidation		(a) + 1	(b) o	
	number of sulphur changes f	rom [MP PMT 1999]		(c) + 2	(d) - 2	
	(a) 0 to 2	(b) 2 to 0	23.	Maximum oxidation state		[RPMT 2002
	(c) -2 to 0	(d) -2 to -1		(a) 3	(b) 4	
9.	Oxidation number of cobalt i	n $K[Co(CO)_4]$ is	24	(c) 6	(d) 7	notal bas sons
		[KCET 1996]	24.	oxidation state	ing compound transition n	netai nas zero 1 999; BHU 2000
	(a) + 1	(b) + 3		(a) CrO_5	(b) $NH_2.NH_2$.,,,,,
	(c) – 1	(d) -3				
10.	When $K_2Cr_2O_7$ is conver	ted to K_2CrO_4 , the change in the		(c) NOClO ₄	(d) $[Fe(CO)_5]$	
	oxidation state of chromium	is [NCERT 1981]	25.	Carbon is in the lowest or		
	(a) 0	(b) 6			•	9; MH CET 1999
	(c) 4	(q) 3		(a) CH_4	(b) CCl_4	
11.	The oxidation number of chlo	and the second s		(c) CF_4	(d) CO_2	
	(a) -1	(b) 0	26.	Oxidation number of carb	on in $H_{\circ}C_{\circ}O_{\circ}$ is	
	(c) + 1	(d) + 2		Oxidation named of care	1120204	[CPMT 1982
12.	Oxidation number of S in S			(a) + 4	(b) + 3	[CIMI 1902]
	(a) – 2	(b) 0		(c) + 2	(d) - 2	
	(c) - 6	(d) + 2		. ,	D4: [D4C II \Cl 1=:	
13.	Oxidation number of N in	$(NH_4)_2 SO_4$ is [CPMT 1996]	27.	The oxidation number of	Pt in $[Pt(C_2H_4)Cl_3]^-$ is	_
	(a) -1/3	(b) – 1			4.)	[MNR 1993
	(c) + 1	(d) - 3		(a) + 1	(b) + 2	
14.	In which compound, oxidatio			(c) + 3	(d) + 4	
		[MP PMT 1989]	28.	The oxidation number of	carbon in CH_2Cl_2 is	
	(a) <i>NO</i>	(b) N_2O			[CPMT 1976; Pb. PET 19	99; AFMC 2004
	(c) NH_2OH	(d) N_2H_4		(a) 0	(b) + 2	
		- ·		(c) -2	(d) + 4	
15.	Oxidation number of nickel in		29.	The oxidation states of ph	osphorus vary from	_
		[AllMS 1984; MNR 1985; CPMT 1997;		()	(1)	[CPMT 1976
	(a) 0	MP PET/PMT 1998; AMU 2000; 01]		(a) -3 to $+5$	(b) -1 to +1	
	(c) -4	(b) + 4 (d) + 2	30.	(c) - 3 to +3 The process in which evide	(d) - 5 to +1 stion number increases is known	m ae
			30.	The process in which oxida	tion number increases is know	(CPMT 1976
16.	The oxidation number of sulp			(a) Oxidation	(b) Reduction	[13,1
	() 2	[CPMT 1979Pb. CET 2002]		(c) Auto-oxidation	(d) None of the al	oove
	(a) - 2	(b) + 2 (d) + 6	31.	The oxidation number of	S in $H_2S_2O_8$ is	[MP PET 2002
177	(c) + 4	()		(a) + 2	(b) + 4	•
17.	Oxidation state of chlorine in	[EAMCET 1989]		(c) + 6	(d) + 7	
	(a) – 1	(b) 0	32.	The oxidation state of nitr	() -	
	(c) - 7	(d) + 7	3	The omation state of the	•	NCERT 1977, 81
18.	Oxidation number of N in			1		[NCERT 1977, 01]
	Oxidation number of 17 in	[BHU 1997]		(a) $+\frac{1}{3}$	(b) + 3	
	(a) - 3.5	(b) + 3.5		3	1	
	(c) -3 , $+5$	(d) + 5		(c) -1	(d) $-\frac{1}{3}$	
			00	Which of the fellowing st	3	[ATMC 1007
19.	The oxidation number of M_{ij}		33.	Which of the following sta		[AFMC 1997
	(a) + 7	(b) – 5		.,,,	tion number -1 and $+1$	
	(c) + 6	(d) + 5			electronegativity as halogens	
20.		a reaction. What will be the oxidation		(c) Hydrogen will not be		. 1
	number of tin after the react				ionization potential as alkali	metais
	(a) + 2	(b) Zero	34.	The oxidation state of <i>Cr</i>	r in $\left[Cr(NH_3)_4 Cl_2\right]^+$ is	
	(c) + 4	(d) – 2				[AIEEE 2005
21.	The oxidation state of Mn i	M_2MnO_4		(a) +3	(b) +2	
		[CPMT 1982, 83, 84; DPMT 1982;		(c) +l	(d) 0	
		NCERT 1973; AMU 2000]	35.	Sulphur has highest oxida	tion state in	[EAMCET 1991
	(a) + 2	(b) + 7		(a) SO_2	(b) H_2SO_4	LEANICE I 1991
	(c) - 2	(d) + 6			_ ·	
22.	Oxidation number of oxygen	in O_2 molecule is		(c) $Na_2S_2O_3$	(d) $Na_2S_4O_6$	
		[CPMT 1984]	36.	The oxidation number of	Fe and S in iron pyrites	are

	[RPMT 1997]		(d) Fe_2O		
	(a) 4, -2 (b) 2, -1		(e) $K_2 FeO_4$		
	(c) $3, -1.5$ (d) $3, -1$	52.	The oxidation number of hy	drogan in MH is	
37.	The oxidation number of nitrogen in NO_3^- is	J2.	The oxidation number of hy		CPMT 1976]
	[CPMT 1982]		(a) + 1	(b) – 1	CF/WIT 1970]
	(a) -1 (b) +2 (c) +3 (d) +5		(c) + 2	(d) - 2	
38.	Oxidation state of elemental carbon is [MNR 1983]	53.	Oxidation number of iodine		CPMT 1982]
	(a) 0 (b) 1		(a) - 1 to +1	(b) -1 to +7	
	(c) 2 (d) 3		(c) +3 to +5	(d) -1 to +5	
39.	The sum of the oxidation numbers of all the carbons in	54.		through acidic solution of	
	C_6H_5CHO is [EAMCET 1986]		of chromium is	n sulphate is formed. Change آ	nn valency CPMT 1979]
	(a) + 2 (b) 0		(a) +4 to +2	(b) +5 to +3	
40.	(c) $+4$ (d) -4 Which one of the following has the highest oxidation number of		(c) $+6$ to $+3$	(d) +7 to +2	
,	iodine [CPMT 1982]	55.		e most electronegative elem	
	(a) KI_3 (b) KI		products of the reaction of	BaO_2 with dilute H_2SO_4 a	
	(c) IF_5 (d) KIO_4		(-) 0 1 1	[IIT 1991; CBSE PMT 1992	; BHU 2000]
			(a) 0 and — 1 (c) — 2 and 0	(b) - 1 and - 2 (d) - 2 and + 1	
41.	The oxidation number of N in $N_2H_5^+$ [Pb. PMT 2001]	56.	The highest oxidation state of	* *	
	(a) -3 (b) (-2)	00.	The inglicat axidation state of	[MNR 1983;	RPMT 1999]
40	(c) -1 (d) +2		(a) K_2MnO_4	(b) $KMnO_4$	
42.	In which of the following compounds the oxidation number of carbon is maximum		(c) MnO_2	(d) Mn_2O_2	
	(a) HCHO (b) CHCl ₃		(e) <i>MnO</i>	· / 2 2	
	(c) CH_3OH (d) $C_{12}H_{22}O_{11}$	57.	The oxidation number of car	rhon in $CH_{\bullet}O$ is	
42		37.		982; EAMCET 1985; MNR 1990; L	IPSEAT 2001
43.	The oxidation state of chlorine in $KClO_4$ is [CPMT 1985] (a) -1 (b) $+1$		[1997, 2004]
	(a) -1 (b) +1 (c) +7 (d) -7		(a) - 2	(b) + 2	
44.	The oxidation state of I in $H_4IO_6^-$ is [CBSE PMT 1994]	-0	(c) 0	(d) + 4	
т т•	(a) +7 (b) +5	58.	Oxidation state of oxygen in	DPMT 1984; 91; CPMT 1988	- MNR 1994
	(c) $+1$ (d) -1			UPSEAT 2001; RPMT 2002; JEE (
45 .	An element which never has a positive oxidation number in any of		(a) – 1	(b) + 1	
	its compounds [AIIMS 1981] (a) Boron (b) Oxygen		(c) 0	(d) – 2	
	(c) Chlorine (d) Fluorine	59.	The oxidation number of C	= = '	
46.	In an oxidation process, oxidation number [CPMT 1976]		-	99; CPMT 1981, 85, 90, 93, 99) BHU 1988, 98; AFMC 1991, 99; EA	
	(a) Decreases		•	MP PMT 1996, 99, 2002; MP PE	
	(b) Increases (c) Does not change			Bihar CEE 1995;	RPET 2000]
	(d) First increases then decreases		(a) +6	(b) - 7	
47.	If HNO_3 changes into N_2O , the oxidation number is changed by [BI-	iu 1887;	(c) +2 AFMC 2001 of the following co	(d) - 2	n oxidation
	(a) + 2 (b) -1	•••	state zero		ICERT 1982]
_	(c) 0 (d) + 4	_	(a) $[Co(NH_3)_6]Cl_2$	(b) $[Fe(H_2O)_6SO_4]$	
48.	The characteristic oxidation number of atoms in free metals is [NCERT 1 (a) Minus one (b) Any number	975]	(c) $[Ni(CO)_4]$	(d) $[Fe(H_2O)_3](OH)$),
	(c) One (d) Zero	61.	Oxidation number of osmiui		. 2
49.	In which one of the following changes there are transfer of five	0	Oxidation number of ostinui		A11MS 1999]
	electrons [NCERT 1982]		(a) + 4	(b) + 6	/ (III/IIO 1999)
	(a) $MnO_4^- \rightarrow Mn^{2+}$ (b) $CrO_4^2 \rightarrow Cr^{3+}$		(c) + 7	(d) + 8	
	(c) $MnO_4^{2-} \to MnO_2$ (d) $Cr_2O_7^{2-} \to 2Cr^{3+}$	62.	_	element which shows the oxid	
50.	Oxidation number of C in $C_6H_{12}O_6$ is [KCET 1992]		of + 3 is (a) 13	(b) 32	NT 1989, 94]
•	(a) $+ 6$ (b) $- 6$		(c) 33	(d) 17	
	(c) 0 (d) + 4	63.	` '	on in the compound $K_4[Fe]$	$(N)_6$ is
51.	In which of the following compounds iron has lowest oxidation state[MI	NR 1984]		[NCERT 1976; MNR 1986;	
	$(a) FeSO_4.(NH_4)_2SO_4.6H_2O$		(a) + 6	(b) + 4	
	(b) $K_4 Fe(CN)_6$		(c) + 3	(d) + 2	
	(c) $Fe(CO)_5$				

(COO)			
64.	The brown ring complex compound is formulated as $[Fe(H_2O)_5NO]SO_4$. The oxidation state of iron is		(a) $+4;1s^22s^22p^63s^2$
	[EAMCET 1987; ITT 1987; MP PMT 1994;		(b) + 2; $1s^2 2s^2 2p^6 3s^2 3p^2$
	AliMS 1997; DCE 2000]		(c) $+3$; $1s^2 2s^2 2p^6 3s^2 3p^1$
	(a) 1 (b) 2 (c) 3 (d) 0		(d) + 6; $1s^2 2s^2 2p^6$
65.	Oxidation state of oxygen in F_2O is	-0	
٠,,	[BHU 1982; UPSEAT 2001; MH CET 2002]	78.	The oxidation number of Mn in $KMnO_4$ is
	(a) +1 (b) +2		[CPMT 1982, 83; EAMCET 1992, 93; RPET 1999] (a) + 7 (b) - 7
	(c) -1 (d) -2		(c) $+1$ (d) -1
66.	Phosphorus has the oxidation state of +3 in	79.	Oxidation number of As atoms in H_3AsO_4 is
	[NCERT 1982; RPMT 1999] (a) Orthophosphoric acid (b) Phosphorus acid		[DPMT 2001]
	(c) Metaphosphoric acid (d) Pyrophosphoric acid		(a) -3 (b) +4
67.	Oxidation number of P in $Mg_2P_2O_7$ is	_	(c) +6 (d) +5
	[CPMT 1989; MP PMT 1995]	80.	In XeO_3 and XeF_6 the oxidation state of Xe is
	(a) +3 (b) +2		[MP PET 2003] (a) + 4 (b) + 6
68.	(c) +5 (d) -3 The oxidation state of nitrogen is highest in		(a) $+4$ (b) $+6$ (c) $+1$ (d) $+3$
00.	[MP PMT 2001; BHU 2002]	81.	Oxidation number of carbon in $CH_3 - Cl$ is
	(a) N_3H (b) NH_2OH		[MP PET 2000]
	(c) N_2H_4 (d) NH_3		(a) -3 (b) -2
69.	Oxidation number of P in KH_2PO_2 is		(c) -1 (d) 0
	[CPMT 1987; MH CET 1999]	82.	The oxidation state of Cr in $Cr_2O_7^{2-}$ is
	(a) +1 (b) +3		[BHU 2000; CPMT 2000]
	(c) +5 (d) -4		(a) 4 (b) -6
70.	The most common oxidation state of an element is -2. The number of electrons present in its outermost shell is	90	(c) 6 (d) -2
	[BHU 1983; NCERT 1974; CPMT 1977]	83.	Oxidation state of 'S in H_2SO_3 [RPET 2003]
	(a) 4 (b) 2		(a) +3 (b) +6 (c) +4 (d) +2
71.	(c) 6 (d) 8 Sulphur has lowest oxidation number in	84.	Oxidation numbers of two <i>Cl</i> atoms in bleaching powder,
•	[EAMCET 1993]	- •-	$CaOCl_2$ are
	(a) H_2SO_3 (b) SO_2		(a) $-1, -1$ (b) $+1, -1$
	(c) H_2SO_4 (d) H_2S		(c) $+1, +1$ (d) $0, -1$
72.	The oxidation number and covalency of sulphur in the sulphur	85.	Select the compound in which chlorine is assigned the oxidation
	molecule (S_8) are respectively [NCERT 1977]		number +5 [NCERT 1984, 94] (a) $HClO_4$ (b) $HClO_2$
	(a) 0 and 2 (b) 6 and 8		
=0	(c) 0 and 8 (d) 6 and 2		(c) $HClO_3$ (d) HCl
73.	In ferrous ammonium sulphate oxidation number of Fe is [CPMT 1988]	86.	When KMnO_4 is reduced with oxalic acid in acidic solution, the
	(a) +3 (b) +2		oxidation number of <i>Mn</i> changes from
	(c) $+1$ (d) -2		[MNR 1987; MP PET 2000; CBSE PMT 2000; UPSEAT 2000, 02; BHU 2003; AMU 2002]
74.	The oxidation number of nitrogen in $\ensuremath{N\!H}_2OH$ is		(a) 7 to 4 (b) 6 to 4
	[NCERT 1981]		(c) 7 to 2 (d) 4 to 2
	(a) +1 (b) -1 (c) -3 (d) -2	87.	Oxygen has oxidation states of +2 in the
75.	The oxidation number of phosphorus in $Ba(H_2PO_2)_2$ is		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
70.	[Kurukshetra CEE 1998; DCE 2004]		
	(a) -1 (b) +1		(c) H_2O (d) OF_2
	(c) + 2 (d) + 3	88.	The element exhibiting most stable $+2$ oxidation state among the
76.	A compound is in its low oxidation state. Then its will be		following is [IIT 1995]
	[DCE 2001] (a) Highly acidic		(a) Ag (b) Fe
	(b) Highly basic		(c) Sn (d) Pb
	(c) Highest oxidising property	89.	Oxidation number of sulphur in $S_2O_3^{2-}$ is [CPMT 1979]
	(d) Half acidic, half basic		(a) -2 (b) $+2$
77.	The oxidation number and the electronic configuration of sulphur in	90.	(c) + 6 (d) 0 Carbon has zero oxidation number in
	H_2SO_4 is [KCET 2002]	3 0.	[Kurukshetra CEE 2002]

(c) $-\frac{1}{2}$ (d) - 2Oxidation number of S in S_2Cl_2 is 92. (b) -1(c) + 6(d) o What is the oxidation number of sulphur in $Na_2S_4O_6$ 93. [AIIMS 1998; DCE 1999] When $CuSO_A$ reacts with KI, the oxidation number of Cu94. changes by [BHU 1997] (a) 0 (b) -1(c) 1 (d) 2 The oxidation number of N in NH_ACl is 95. (c) -5(d) - 396. In which reaction there is a change in valency [NCERT 1971; CPMT 1971] (a) $2NO_2 \rightarrow N_2O_4$ (b) $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$ (c) $NH_4OH \rightarrow NH_4^+ + OH^-$ (d) $CaCO_3 \rightarrow CaO + CO_2$ Oxidation state of Fe in Fe_3O_4 is 97. [CBSE PMT 1999; AlIMS 2002] (c) 98. Nitrogen show different oxidation states in the range [Kerala (Med.) 2003] (b) -3 to +5(a) 0 to +5 (c) -5 to + 3(d) -3 to +3Oxidation number of Mn in K_2MnO_4 and $MnSO_4$ are 99. respectively [CPMT 1997] (a) + 7, + 2 (b) + 6, + 2(c) + 5, + 2(d) + 2, + 6100. Identify the element which can have highest oxidation numbers[AIIMS 1996] (b) O (c) Cl (d) *C* What is the oxidation number of Co in $[Co(NH_3)_4 ClNO_2]$ 101. [BHU 1999] (b) + 3 (a) + 2(c) + 4(d) + 5The oxidation number of nickel in $K_4[Ni(CN)_4]$ is 102.

(b) -1

(d) 0

The oxidation number of fluorine in F_2O is

(b) CH_{4}

(b) -1

Oxidation state of oxygen atom in potassium superoxide is

(d) CH_3Cl

[MNR 1988; NCERT 1980]

[IIPMER 1999]

[CPMT 1982; BHU 1982; EAMCET 1986]

(a) *CO*

(a) - 2

(c) + 2

103.

91.

(c) CH_2Cl_2

(a) -1 (b) + 1 (d) - 2 (c) + 2 Oxidation number of Fe in $K_3[Fe(CN)_6]$ is [AMU 1988] (b) + 3 (d) + 4(c) + 1Oxidation number of N in NH_2 is 105. [CPMT 1979; Pb CET 2004] (b) + 3 (a) -3(c) 0 (d) + 5What is the net charge on ferrous ion [AFMC 2004] 106 (a) + 2 (b) + 3(d) + 5Which of the following elements never show positive oxidation 107. (a) O (b) *Fe* (c) *Ga* (d) F The oxidation state shown by silicon when it combines with strongly [MH CET 2004] electropositive metals is (b) - 4 (a) - 2 (d) - 2(c) + 4The oxidation number of sulphur in H_2S is 109. [Pb. CET 2002] (a) - 2 (b) + 3(c) + 2(d) - 3Oxidation number of nitrogen in $NaNO_2$ is 110. [Pb. CET 2000] (b) + 3(c) + 4(d) - 3Oxidation number of S in SO_4^2 111. BCECE 2005 (b) + 3(c) + 2(d) - 2The oxidation state of chromium in the final product formed by the 112. reaction between KI and acidified potassium dichromate solution is [AIEEE 2005] (b) +6 (d) +3The oxidation state of 1 in IPO_4 is [Orissa JEE 2005] 113. (a) +1 (b) +3 (c) +5Redox reaction and Method for balancing Redox reaction The value of x in the partial redox equation $MnO_4^- + 8H^+ + xe$ $\Rightarrow Mn^{2+} + 4H_2O$ is $C_2H_6(g) + nO_2 \rightarrow CO_2(g) + H_2O(l)$ In this equation, the ratio of the coefficients of CO_2 and H_2O is [KCET 1992] (b) 2:3 (c) 3:2 (d) 1:3 The number of electrons involved in the reduction of $Cr_2O_7^{2-}$ in acidic solution to Cr^{3+} is [EAMCET 1983] (a) 0 (b) 2 (d) 5 (c) 3

When $KMnO_4$ acts as an oxidising agent and ultimately forms

 $[MnO_4]^{-2}$, MnO_2 , Mn_2O_3 , Mn^{+2} then the number of electrons

[AIEEE 2002]

transferred in each case respectively is

6.

558 Redox Reactions

- 4, 3, 1, 5
- (b) 1, 5, 3, 7
- (c) 1, 3, 4, 5
- (d) 3, 5, 7, 1
- Starch paper is used to test for the presence of

[NCERT 1979]

- (b) Oxidising agent
- (c) lodide ion
- (d) Reducing agent
- How many moles of $K_2Cr_2O_7$ can be reduced by 1 mole of Sn^{2+} [MP PMT 2003]_{a, b, c} and d respectively correspond to

- (b) 1/6
- (c) 2/3
- (d) 1
- $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. reaction Z is [RPMT 2002]
 - (a) Mn^{+2}
- (b) Mn^{+4}
- (c) MnO_2
- (d) *Mn*
- What the following 8. reaction $2Fe^{3+}_{(aq)} + Sn^{2+}_{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + A$ [MP PET 2003]
 - (a) $Sn^{3+}_{(aa)}$
- (b) $Sn^{4+}_{(aa)}$
- (c) $Sn^{2+}_{(aa)}$
- (d) Sn
- 9. For the redox reaction

$$MnO_4^- + C_2O_4^{-2} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$$

the correct coefficients of the reactants for the balanced reaction are [IIT 1988, 92; RPMT 1999; DCE 2000; MP PET 2003]

	MnO_4^-	$C_2 O_4^{2-}$	$H^{\scriptscriptstyle +}$
(a)	2	5	16
(b)	16	5	2
(c)	5	16	2
(d)	2	16	5
w/h;	ab of the followin	a ic a raday rasa	tion

10. Which of the following is a redox reaction

[AIEEE 2002]

- (a) $NaCl + KNO_3 \rightarrow NaNO_3 + KCl$
- (b) $CaC_2O_4 + 2HCl \rightarrow CaCl_2 + H_2C_2O_4$
- (c) $Mg(OH)_2 + 2NH_4Cl \rightarrow MgCl_2 + 2NH_4OH$
- (d) $Zn + 2AgCN \rightarrow 2Ag + Zn(CN)_2$
- Which of the following reaction is a redox reaction 11.

[MP PMT 2003]

- (a) $P_2O_5 + 2H_2O \rightarrow H_4P_2O_7$
- (b) $2AgNO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2$
- (c) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$
- (d) $Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$
- Which of the following reactions involves oxidation-reduction 12.

[NCERT 1972; AFMC 2000; Pb. CET 2004; CPMT 2004]

- (a) $NaBr + HCl \rightarrow NaCl + HBr$
- (b) $HBr + AgNO_3 \rightarrow AgBr + HNO_3$
- (c) $H_2 + Br_2 \rightarrow 2HBr$
- (d) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
- Which of the following is the strongest oxidising agent 13.

[Pb. CET 2000]

- (a) $BrO_3^-/Br^{2+}, E^o = +1.50$
- (b) $Fe^{3+}/Fe^{2+}, E^o = +0.76$

(d) $Cr_2O_7^{2-}/Cr^{3+}, E^o = +1.33$ In the balanced chemical reaction,

(c) $MnO_4^-/Mn^{2+}, E^o = +1.52$

- $IO_{3}^{-} + a I^{-} + b H^{+} \rightarrow c H_{2}O + d I_{2}$
 - (a) 5, 6, 3, 3
- (b) 5, 3, 6, 3
- (c) 3, 5, 3, 6
- (d) 5, 6, 5, 5
- The number of moles of $KMnO_4$ reduced by one mole of

KI in alkaline medium is:

[CBSE PMT 2005]

[AIIMS 2005]

- (a) One fifth
- (b) five
- (c) One
- (d) Two

Auto oxidation and Disproportionation

In the equation $H_2S + 2HNO_3 \rightarrow 2H_2O + 2NO_2 + S$

The equivalent weight of hydrogen sulphide is

[BVP 2003]

(a) 16

- (b) 68
- (c) 34

- (d) 17
- BHU.19956 PANET JP97 is place 1.12 litre hydrogen at normal temperature and pressure ,equivalent weight of metal would be [DPMT 2001]

- (c) 1.2 ÷11.2
- (d) 1.2×11.2
- Which one of the following nitrates will leave behind a metal on 3. strong heating [AIEEE 2003]
 - (a) Ferric nitrate
- (b) Copper nitrate
- (c) Manganese nitrate
- (d) Silver nitrate
- To prevent rancidification of food material, which of the following is 4. [CPMT 1996] added
 - (a) Reducing agent
- (b) Anti-oxidant
- (c) Oxidising agent
- (d) None of these
- Prevention of corrosion of iron by zinc coating is called

[MP PMT 1993; CPMT 2002]

- (a) Galvanization
- (b) Cathodic protection
- (c) Electrolysis
- (d) Photo-electrolysis
- 6. The metal used in galvanizing of iron is
 - [MP PET 1985, 96]
 - (a) *Pb*
- Zn(b)
- Sn
- In which of the following reactions there is no change in valency [NCERT 1974; C 7.
 - (a) $4KClO_3 \rightarrow 3KClO_4 + KCl$
 - (b) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$
 - (c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
 - (d) $2BaO + O_2 \rightarrow 2BaO_2$
- The equivalent weight of phosphoric acid (H_3PO_4) in the reaction 8. $NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$ is

[AIIMS 1999]

- (a) 25

(c) 59

- (d) 98
- What is the equivalent mass of IO_4^- when it is converted into I_2 9. in acid medium [Kerala PMT 2004]

- (a) M/6
- (b) M/7
- (c) M/5
- (d) M/4
- (e) None of these
- 10. For decolourization of 1 mole of KMnO_4 , the moles of H_2O_2 required is [AIIMS 2004]
 - (a) 1/2
- (b) 3/2
- (c) 5/2

- (d) 7/2
- 11. In the reaction $I_2+2S_2O_3^{--}\to 2I^-+S_4O_6^{--}$ equivalent weight of iodine will be equal to [MP PET 2004]
 - (a) 1/2 of molecular weight
 - (b) Molecular weight
 - (c) 1/4 of molecular weight
 - (d) None
- 12. The equivalent weight of KIO_3 in the reaction $2Cr(OH)_3 + 4OH + KIO_3 \rightarrow 2CrO_4^{2-} + 5H_2O + KI \text{ is}$

[MP PMT 2004]

- (a) Mole wt.
- (b) $\frac{\text{Mol.wt.}}{6}$
- (c) $\frac{\text{Mol.wt.}}{2}$
- (d) $\frac{\text{Mol.wt}}{3}$
- 13. The product of oxidation of I^- with MnO_4^- in alkaline medium is [IIT-JEE Screening 2004]
 - (a) IO_3^-
- (b) I_2
- (c) *IO*
- (d) IO_4^-
- 14. In alkaline medium ClO_2 oxidize H_2O_2 in O_2 and reduced itself in Cl^- then how many mole of H_2O_2 will oxidize by one mole of ClO_2 [Kerala CET 2005]
 - (a) 1.0
- (b) 1.5
- (c) 2.5
- (d) 3.5

(e) 5.0

Critical Thinking

Objective Questions

 In which of the following acid, which acid has oxidation reduction and complex formation properties

[UPSEAT 2001]

- (a) HNO_3
- (b) H_2SO_4
- (c) HCl
- (d) HNO_2
- The compound which could not act both as oxidising as well as reducing agent is [IIT Screening 1991]
 - (a) SO_2
- (b) MnO_2
- (c) Al_2O_3
- (d) CrO
- 3. H_2S acts only as a reducing agent while SO_2 can act both as a reducing and oxidizing agent because [AMU 1999]
 - (a) S in H_2S has -2 oxidation state
 - (b) S in SO_2 has oxidation state + 4
 - (c) Hydrogen in H_2S more +ve than oxygen
 - (d) Oxygen is more ve in SO_2

Of all the three common mineral acids, only sulphuric acid is found to be suitable for making the solution acidic because

[Kurukshetra CEE 2002]

- (a) It does not react with KMnO_4 or the reducing agent
- (b) Hydrochloric acid reacts with $KMnO_4$
- (c) Nitric acid is an oxidising agent which reacts with reducing agent
- (d) All of the above are correct
- 5. For H_3PO_3 and H_3PO_4 the correct choice is

[IIT Screening 2003]

- (a) H_3PO_3 is dibasic and reducing
- (b) H_3PO_3 is dibasic and non-reducing
- (c) H_3PO_4 is tribasic and reducing
- (d) H_3PO_3 is tribasic and non-reducing
- **6.** Match List 1 with List 11 and select the correct answer using the codes given below the lists

List 1 (Compound)

List II (Oxidation state of N)

- (A) NO_2
- (1) + 5
- $(B) \quad \mathit{HNO}$
- (2) 3
- (C) NH_3
- (3) + 4
- (D) N_2O_5
- (4) + 1

Codes:

- (a) A B C D
 - 2 3 4 1
- (0) / 2 2
 - 3 1 2 4
- (c) A B C E
 - 3 4 2 1
- (d) A B C D
 - 2 3 1 4
- 2 3 · 4
- 7. M^{+3} ion loses $3e^-$. Its oxidation number will be

[CPMT 2002]

(a) 0

- (b) + 3
- (c) + 6
- (d) 3
- 8. In the reaction $Zn + 2H^+ + 2Cl^- \rightarrow Zn^{2+} + 2Cl^- + H_2$, the spectator ion is [AlIMS 2001]
 - (a) Cl^-
- (b) Zn^{2+}
- (c) H^+
- (d) All of these
- 9. The oxidation number of sulphur in $H_2S_2O_7$ and iron in $K_4Fe(CN)_6$ is respectively [AIIMS 2000]
 - (a) + 6 and + 2
- (b) + 2 and + 2
- (c) + 8 and + 2
- (d) + 6 and + 4
- 10. Oxidation number of oxygen in potassium super oxide (KO_2) is [UPSEAT 1999,
 - (a) 2
- (b) -1
- $\begin{pmatrix} c \end{pmatrix} \quad \, 1/2$
- (d) -1/4
- 11. One mole of N_2H_4 loses 10 mol of electrons to form a new compound Y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of N_2 in Y? (There is no change in the oxidation state of hydrogen)

[IIT 1981; Pb. PMT 1998]

(a) + 3

(b) - 3

(c) -1

(d) + 5

UNIVERSAL SELF SCORER

560 Redox Reactions

- Amongst the following identify the species with an atom in + 6 oxidation state [IIT Screening 2000]
 - (a) MnO_4^-
- (b) $Cr(CN)_{6}^{3}$
- (c) NiF_6^{2-}
- (d) CrO_2Cl_2
- 13. In which of the following compounds, is the oxidation number of iodine is fractional [BVP 2003]
 - (a) *IF*₃
- (b) *IF*₂

(c) I_3^-

- (d) *IF*₇
- **14.** The compound $YBa_2Cu_3O_7$ which shows superconductivity has copper in oxidation state Assume that the rare earth element Yttrium is in its usual +3 oxidation state

[IIT 1994]

(a) 3/7

(b) 7/3

(c) 3

- (d) 7
- **15.** The oxidation number of sulphur in S_8, S_2F_2, H_2S respectively, are [11T 1999]
 - (a) 0, +1 and -2
- (b) + 2, +1 and -2
- (c) 0, +1 and +2
- (d) -2, +1 and -2
- **16.** Which one of the following reactions is not an example of redox reaction [Kurukshetra CEE 1998]
 - (a) $Cl_2 + 2H_2O + SO_2 \rightarrow 4H^+ + SO^{4-} + 2Cl^-$
 - (b) $Cu^{++} + Zn \rightarrow Zn^{++} + Cu$
 - (c) $2H_2 + O_2 \rightarrow 2H_2O$
 - (d) $HCl + H_2O \rightarrow H_3O^- + Cl^-$
- 17. For the reactions, $C + O_2 \rightarrow CO_2$; $\Delta H = -393J$
 - $2 Zn + O_2 \rightarrow 2 ZnO; \Delta H = -412J$

[AIEEE 2002]

- (a) Carbon can oxidise Zn
- (b) Oxidation of carbon is not feasible
- (c) Oxidation of Zn is not feasible
- (d) Zn can oxidise carbon
- 18. In the reaction $B_2H_6 + 2KOH + 2X \rightarrow 2Y + 6H_2$, X and Y are respectively [EAMCET 2003]
 - (a) H_2 , H_3BO_3
- (b) HCl, KBO_3
- (c) H_2O , KBO_3
- (d) H_2O , KBO_2
- 19. In a balanced equation $H_2SO_4 + x\,HI \rightarrow H_2S + y\,I_2 + z\,H_2O$, the values of $x,\,y,\,z$ are [EAMCET 2003]
 - (a) x = 3, y = 5, z = 2
 - (b) x = 4, y = 8, z = 5
 - (c) x = 8, y = 4, z = 4
 - (d) x = 5, y = 3, z = 4
- 20. Which of the following can act as an acid and as a base

[AMU 1999]

3.

Reason

- (a) $HClO_3^-$
- (b) $H_2PO_4^-$
- (c) HS
- (d) All of these

- **21.** MnO_4^{2-} (1 *mole*) in neutral aqueous medium is disproportionate to [AIIMS 2003]
 - (a) 2/3 mole of MnO_4^- and 1/3 mole of MnO_2
 - (b) 1/3 mole of MnO_4^- and 2/3 mole of MnO_2
 - (c) 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
 - (d) 2/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
- 22. The conductivity of a saturated solution of $BaSO_4$ is $3.06\times10^{-6}\ ohm^{-1}\ cm^{-1} \quad \text{and its equivalent conductance is}$ $1.53\ ohm^{-1}\ cm^{-1}\ equivalent^{-1}\ . \ \text{The}\ \ K_{sp} \quad \text{of the}\ \ BaSO_4 \quad \text{will}$ be
 - (a) 4×10^{-12}
- (b) 2.5×10^{-9}
- (c) 2.5×10^{-13}
- (d) 4×10^{-6}
- 23. When MnO_2 is fused with KOH, a coloured compound is formed, the product and its colour is [IIT Screening 2003]
 - (a) K_2MnO_4 , purple green
 - (b) $KMnO_4$, purple
 - (c) Mn_2O_3 , brown
 - (d) Mn_3O_4 black

Assertion & Reason

For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion : SO_2 and Cl_2 both are bleaching agents.
 - Reason : Both are reducing agents. [AIIMS 1995]
 Assertion : Fluorine exists only in -1 oxidation state.
- **2.** Assertion : Fluorine exists only in –1 oxidation state.
 - Reason : Fluorine has $2s^2 2p^5$ configuration.

[AllMS 2001]

- Assertion : Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride to mercury.
 - : Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride does not
- **4.** Assertion : $HClO_4$ is a stronger acid than $HClO_3$.
 - Reason : Oxidation state of Cl in HClO_4 is +VII and in
 - $HClO_3$ +V. [AIIMS 2004] Assertion : In a reaction $Zn(s) + CuSO_4(aq) \rightarrow$
 - $ZnSO_4(aq) + Cu(s)$, Zn is a reductant but
 - itself get oxidized.

UNIVERSAL SELF SCORER

Reason : In a redox reaction, oxidant is reduced by accepting electrons and reductant is oxidized by

losing electrons.

6. Assertion : Oxidation number of carbon in ${\it CH}_2{\it O}$ is zero.

Reason : CH_2O formaldehyde, is a covalent compound.

 Assertion : The oxidation numbers are artificial, they are useful as a 'book-keeping' device of electrons in

reactions.

Reason : The oxidation numbers do not usually represent

real charges on atoms, they are simply conventions that indicate what the maximum charge could possibly be on an atom in a molecule.

moiecule.

8. Assertion : H_2SO_4 cannot act as reducing agent.

Reason : Sulphur cannot increase its oxidation number

beyond + 6.

9. Assertion : Equivalent weight of NH_3 in the reaction

 $N_{\,2} \rightarrow N\!H_{\,3}\,$ is 17/3 while that of $\,N_{\,2}\,$ is 28/6.

Reason : Equivalent weight

Molecularweight

number of e^{-1} lostor gained

Answers

Oxidation, Reduction

1	b	2	b	3	С	4	С	5	С
6	а	7	b	8	b	9	а	10	С
11	b	12	а	13	b	14	b	15	b
16	а	17	а	18	b	19	С	20	b
21	а	22	С	23	b	24	b	25	b
26	С	27	С	28	d	29	а	30	а
31	а	32	a	33	а	34	d	35	b
36	d	37	d						

Oxidizing and Reducing agent

1	С	2	а	3	b	4	а	5	d
6	b	7	С	8	b	9	а	10	b
11	С	12	d	13	а	14	d	15	а
16	b	17	b	18	bd	19	b	20	d
21	а	22	b	23	d	24	d	25	b
26	d	27	d	28	С	29	а	30	d
31	d	32	С						

Oxidation number and Oxidation state

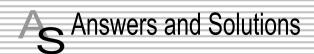
1	d	2	b	3	b	4	b	5	d
	b	7	С	8	С	9	С	10	а
11	С	12	а	13	d	14	b	15	а
16	d	17	d	18	d	19	а	20	С
21	d	22	b	23	С	24	d	25	a

									SEATING SOLUTION
26	b	27	b	28	а	29	а	30	а
31	С	32	d	33	а	34	а	35	b
36	а	37	d	38	а	39	d	40	d
41	b	42	b	43	С	44	а	45	d
46	b	47	d	48	d	49	а	50	С
51	С	52	b	53	b	54	С	55	b
56	b	57	С	58	а	59	а	60	С
61	d	62	а	63	d	64	b	65	b
66	b	67	С	68	а	69	а	70	С
71	d	72	а	73	b	74	b	75	b
76	С	77	d	78	а	79	d	80	b
81	b	82	С	83	С	84	b	85	С
86	С	87	d	88	d	89	b	90	С
91	С	92	а	93	d	94	С	95	d
96	b	97	d	98	b	99	b	100	С
101	а	102	d	103	а	104	b	105	а
106	а	107	d	108	b	109	а	110	b
111	а	112	d	113	b				

Redox reaction and Method for balancing Redox reaction

1	а	2	b	3	С	4	С	5	а
6	а	7	а	8	b	9	а	10	d
11	d	12	С	13	С	14	а	15	d

Auto oxidation and Disproportionation


1	d	2	а	3	d	4	b	5	а
					d		b	10	С
11	а	12	d	13	а	14	С		

Critical Thinking Questions

1	d	2	С	3	a,b	4	d	5	а
6	С	7	С	8	а	9	а	10	С
11	а	12	d	13	С	14	b	15	а
16	d	17	d	18	d	19	С	20	d
21	а	22	d	23	а				

Assertion & Reason

1	С	2	b	3	е	4	b	5	а
6	b	7	а	8	а	9	а		

Oxidation, Reduction

1. (b)
$$2MnO_4^\Theta + 5H_2O_2 + 6H^+ \rightarrow Mn^{2+} + 5O_2 + 8H_2O$$
.

2. (b)
$$S + 2e^- \rightarrow S^{2-}$$

$$\textbf{4.} \qquad \text{(c)} \quad \stackrel{0}{P_4} + 3\,NaOH + 3\,H_2O \rightarrow 3\,NaH_2PO_2 + \stackrel{-3}{P}H_3 \ . \\ \stackrel{\text{Sodium}}{\text{hypophosph ite}}$$

It shows oxidation and reduction (Redox) properties.

- **6.** (a) In this reaction H_2S is oxidised because the oxidation state of 'S' change from -2 to 0.
- 7. (b) $\stackrel{_{+4}}{PbO_2} \rightarrow \stackrel{_{+2}}{Pb(NO_3)_2}$. In this reaction reduction occurs.
- **8.** (b) Any substance which is capable of oxidising other substances and is capable of accepting/gaining electron during oxidation is called oxidising agent or oxidant.