Amorphous substances show		(c) Pseudo solids (d) Molecular solids
(A) Short and long range order	22.	To get a <i>n</i> - type semiconductor, the impurity to be added to silicon
(B) Short range order		should have which of the following number of valence electrons [KC
(C) Long range order		(a) 1 (b) 2 (l) \tilde{z}
(D) Have no sharp M.P.		$ \begin{array}{cccc} (c) & 3 \\ (c) & (d) & 5 \\ (c) & (c) & (c) & (c) \\ (c) & (c) & (c) \\ (c) & (c) & (c) \\ (c) &$
(a) A and C are correct (b) B and C are correct	23.	Which of the following is non-crystalline solid
(c) C and D are correct (d) B and D are correct		(a) CsCl (b) NaCl
The characteristic features of solids are [AMU 1994]		(c) CaF_2 (d) Glass
(a) Definite shape	24.	The lustre of a metal is due to [AFMC 1998
(b) Definite size		(a) Its high density (b) Its high polishing
(c) Definite shape and size		(c) Its chemical inertness (d) Presence of free electrons
(d) Definite shape, size and rigidity	25.	A crystalline solid have [DCE 2001
Which one of the following is a good conductor of electricity		(a) Long range order (b) Short range order
[MP PMT 1994; AFMC 2002]		(c) Disordered arrangement (d) None of these
(a) Diamond (b) Graphite	26.	Crystalline solids are [Pb. PMT 1999
(c) Silicon (d) Amorphous carbon		(a) Glass (b) Rubber
A crystalline solid [Kerala CET (Med.) 2003]		(c) Plastic (d) Sugar
(a) Changes abruptly from solid to liquid when heated	27.	Davy and Faraday proved that [Kerala CET (Med.) 2002
(b) Has no definite melting point		(a) Diamond is a form of carbon
(c) Undergoes deformation of its geometry easily		(b) The bond lengths of carbon containing compounds are always
(d) Has an irregular 3-dimensional arrangements		equal
(e) Softens slowly		(c) The strength of graphite is minimum compared to platinum
Diamond is an example of		(d) Graphite is very hard
[MP PET/PMT 1998; CET Pune 1998]	28.	Which one of the following metal oxides is antiferromagnetic in
(a) Solid with hydrogen bonding		nature [MP PET 2002
(b) Electrovalent solid		(a) MnO_2 (b) TiO_2
(c) Covalent solid		
(d) Glass		(c) VO_2 (d) CrO_2
The solid <i>NaCl</i> is a bad conductor of electricity since [AIIMS 1980]	29.	In graphite, carbon atoms are joined together due to
		[AFMC 2002
		(a) Ionic bonding (b) Vander Waal's forces
(b) Solid <i>NaCl</i> is covalent		(c) Metallic bonding (d) Covalent bonding
(c) In solid <i>NaCl</i> there is no velocity of ions	30.	Which of the following is not correct for ionic crystals
(d) In solid $NaCl$ there are no electrons		Orissa JEE 2002
		()
The existence of a substance in more than one solid modifications is		(a) They possess high melting point and boiling point
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures		• •
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called		(a) They possess high melting point and boiling point
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures		(a) They possess high melting point and boiling point(b) All are electrolyte
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999]	31.	(a) They possess high melting point and boiling point(b) All are electrolyte(c) Exhibit the property of isomorphism
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism	31.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism	31.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called Image: Ima		 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature	31. 32.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature (b) Solids have high density and low compressibility		 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (b) Sodium silicate
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature (b) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces	32.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (b) Sodium silicate (c) Silicon carbide (d) Silicon
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature (b) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (b) Phosphorus (b) Phosphorus		 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature (b) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride	32.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature (b) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride	32.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature (b) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride Dulong and Petit's law is valid only for [KCET 2004] (a) Metals (b) Non-metals	32. 33.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature [MP PET 1995] (a) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride Dulong and Petit's law is valid only for [KCET 2004] (a) Metals (b) Non-metals (c) Gaseous elements (d) Solid elements	32.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity [RPET 2000 (a) Ionic (b) Covalent (c) Metallic (d) Molecular Which of the following is an example of covalent crystal solid
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature [MP PET 1995] (a) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride Dulong and Petit's law is valid only for [KCET 2004] (a) Metals (b) Non-metals (c) Gaseous elements (d) Solid elements Which of the following is an example of metallic crystal solid	32. 33.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature [MP PET 1995] (a) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride Dulong and Petit's law is valid only for [KCET 2004] (a) Metals (b) Non-metals (c) Gaseous elements (d) Solid elements	32. 33.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity [RPET 2000 (a) Ionic (b) Covalent (c) Metallic (d) Molecular Which of the following is an example of covalent crystal solid
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called [MP PMT 1993; MP PET 1999] (a) Polymorphism (b) Isomorphism (c) Allotropy (d) Enantiomorphism Which is not a property of solids [MP PET 1995] (a) Solids are always crystalline in nature [MP PET 1995] (a) Solids have high density and low compressibility (c) The diffusion of solids is very slow (d) Solids have definite volume Which solid will have the weakest intermolecular forces (a) Ice (b) Phosphorus (c) Naphthalene (d) Sodium fluoride Dulong and Petit's law is valid only for [KCET 2004] (a) Metals (b) Non-metals (c) Gaseous elements (d) Solid elements Which of the following is an example of metallic crystal solid	32. 33.	 (a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) NaCl (c) Graphite (d) Ice Quartz is a crystalline variety of (pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity [RPET 2000 (a) Ionic (b) Covalent (c) Metallic (d) Molecular Which of the following is an example of covalent crystal solid (a) Si (b) NaF
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called[MP PMT 1993; MP PET 1999](a) Polymorphism(b) Isomorphism(c) Allotropy(d) EnantiomorphismWhich is not a property of solids[MP PET 1995](a) Solids are always crystalline in nature(b) Solids have high density and low compressibility(c) The diffusion of solids is very slow(d) Solids have definite volumeWhich solid will have the weakest intermolecular forces(a) Ice(b) Phosphorus(c) Naphthalene(d) Sodium fluorideDulong and Petit's law is valid only for[KCET 2004](a) Metals(b) Non-metals(c) Gaseous elements(d) Solid elementsWhich of the following is an example of metallic crystal solid(a) C(b) Si(c) W(d) AgCl	32. 33. 34.	(a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) $NaCl$ (c) Graphite (d) Ice Quartz is a crystalline variety of [Pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity [RPET 2000 (a) Ionic (b) Covalent (c) Metallic (d) Molecular Which of the following is an example of covalent crystal solid (a) Si (b) NaF (c) Al (d) Ar
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called[MP PMT 1993; MP PET 1999](a) Polymorphism(b) Isomorphism(c) Allotropy(d) EnantiomorphismWhich is not a property of solids[MP PET 1995](a) Solids are always crystalline in nature(b) Solids have high density and low compressibility(c) The diffusion of solids is very slow(d) Solids have definite volumeWhich solid will have the weakest intermolecular forces(a) Ice(b) Phosphorus(c) Naphthalene(d) Sodium fluorideDulong and Petit's law is valid only for[KCET 2004](a) Metals(b) Non-metals(c) Gaseous elements(d) Solid elementsWhich of the following is an example of metallic crystal solid(a) C(b) Si(c) W(d) AgClUnder which category iodine crystals are placed among the following	32. 33. 34.	(a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) $NaCl$ (c) Graphite (d) Ice Quartz is a crystalline variety of [Pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity [RPET 2000 (a) Ionic (b) Covalent (c) Metallic (d) Molecular Which of the following is an example of covalent crystal solid (a) Si (b) NaF (c) Al (d) Ar Which of the following is an example of ionic crystal solid (a) Diamond (b) LiF
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called[MP PMT 1993; MP PET 1999](a) Polymorphism(b) Isomorphism(c) Allotropy(d) EnantiomorphismWhich is not a property of solids[MP PET 1995](a) Solids are always crystalline in nature(b) Solids have high density and low compressibility(c) The diffusion of solids is very slow(d) Solids have definite volumeWhich solid will have the weakest intermolecular forces(a) Ice(b) Phosphorus(c) Naphthalene(d) Sodium fluorideDulong and Petit's law is valid only for[KCET 2004](a) Metals(b) Non-metals(c) Gaseous elements(d) Solid elementsWhich of the following is an example of metallic crystal solid(a) C(b) Si(c) W(d) AgClUnder which category iodine crystals are placed among the following(a) Ionic crystal(b) Metallic crystal	32. 33. 34. 35.	(a) They possess high melting point and boiling point(b) All are electrolyte(c) Exhibit the property of isomorphism(d) Exhibit directional properties of the bondWhich of the following is a molecular crystal(a) SiC (b) $NaCl$ (c) Graphite(d) IceQuartz is a crystalline variety of[Pb. PMT 2000(a) Silica(b) Sodium silicate(c) Silicon carbide(d) SiliconWhich type of solid crystals will conduct heat and electricity[RPET 2000(a) Ionic(b) Covalent(c) Metallic(d) MolecularWhich of the following is an example of covalent crystal solid(a) Si (b) NaF (c) Al (d) Ar Which of the following is an example of ionic crystal solid(a) Diamond(b) LiF (c) Li (d) Silicon
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called[MP PMT 1993; MP PET 1999](a) Polymorphism(b) Isomorphism(c) Allotropy(d) EnantiomorphismWhich is not a property of solids[MP PET 1995](a) Solids are always crystalline in nature(b) Solids have high density and low compressibility(c) The diffusion of solids is very slow(d) Solids have definite volumeWhich solid will have the weakest intermolecular forces(a) Ice(b) Phosphorus(c) Naphthalene(d) Sodium fluorideDulong and Petit's law is valid only for[KCET 2004](a) Metals(b) Non-metals(c) Gaseous elements(d) Solid elementsWhich of the following is an example of metallic crystal solid(a) C(b) Si(c) W(d) AgClUnder which category iodine crystals are placed among the following(a) Ionic crystal(b) Metallic crystal(c) Molecular crystal(d) Covalent crystal	32. 33. 34.	(a) They possess high melting point and boiling point (b) All are electrolyte (c) Exhibit the property of isomorphism (d) Exhibit directional properties of the bond Which of the following is a molecular crystal (a) SiC (b) $NaCl$ (c) Graphite (d) Ice Quartz is a crystalline variety of [Pb. PMT 2000 (a) Silica (b) Sodium silicate (c) Silicon carbide (d) Silicon Which type of solid crystals will conduct heat and electricity [RPET 2000 (a) Ionic (b) Covalent (c) Metallic (d) Molecular Which of the following is an example of covalent crystal solid (a) Si (b) NaF (c) Al (d) Ar Which of the following is an example of ionic crystal solid (a) Diamond (b) LiF (c) Li (d) Silicon Which one is an example of amorphous solid
The existence of a substance in more than one solid modifications is known as or Any compound having more than two crystal structures is called[MP PMT 1993; MP PET 1999](a) Polymorphism(b) Isomorphism(c) Allotropy(d) EnantiomorphismWhich is not a property of solids[MP PET 1995](a) Solids are always crystalline in nature(b) Solids have high density and low compressibility(c) The diffusion of solids is very slow(d) Solids have definite volumeWhich solid will have the weakest intermolecular forces(a) Ice(b) Phosphorus(c) Naphthalene(d) Sodium fluorideDulong and Petit's law is valid only for[KCET 2004](a) Metals(b) Non-metals(c) Gaseous elements(d) Solid elementsWhich of the following is an example of metallic crystal solid(a) C(b) Si(c) W(d) AgClUnder which category iodine crystals are placed among the following(a) Ionic crystal(b) Metallic crystal	32. 33. 34. 35.	(a) They possess high melting point and boiling point(b) All are electrolyte(c) Exhibit the property of isomorphism(d) Exhibit directional properties of the bondWhich of the following is a molecular crystal(a) SiC (b) $NaCl$ (c) Graphite(d) IceQuartz is a crystalline variety of[Pb. PMT 2000(a) Silica(b) Sodium silicate(c) Silicon carbide(d) SiliconWhich type of solid crystals will conduct heat and electricity[RPET 2000(a) Ionic(b) Covalent(c) Metallic(d) MolecularWhich of the following is an example of covalent crystal solid(a) Si (b) NaF (c) Al (d) Ar Which of the following is an example of ionic crystal solid(a) Diamond(b) LiF (c) Li (d) Silicon

Solid state 209

UNIVERSAL SELF SCORER

		Semiconductor Conductor	. ,	Insulator None of these		7.	How many space systems
38.	()	n of the follow	. ,				(a) 7
•	incorr		8	· · · · · · · · · · · · ·	[KCET 2004]		(c) 32
	(a) 1	They melt over a	range of tempe	erature		8.	Example of
	(b) T	They are anisotro	opic				$a \neq b \neq c, \alpha =$
		There is no orde		•			(a) Calcite
	• •	They are rigid ar	•				(c) Rhombic sul
39.	struct	bility of a giver ure is called			more crystalline [DCE 2004]	9.	In a face-centered many unit cells
	· · ·	Amorphism Polymorphism		lsomorphism			(a) 8
40.	Glass		(d)	lsomerism		10.	(c) 2 The maximum ra
40.		is Supercooled liqu	id (b)	Crystalline sol	lid	10.	hole of cubical clo
	• •	Amorphous solid		Liquid crystal			(a) 0.732 <i>r</i>
		•					(c) 0.225 <i>r</i>
		Crystall	ography a	nd Lattice		11.	The unit cell of a
		Crystan	ography a				(a) Is body cent
1.		orrect statement		•	[MP PET 1997]		(c) Has 4 <i>NaC</i>
	(a) 1	The ionic crystal	of AgBr has	Schottky defect		12.	For tetrahedral co
	(b) 1	The unit cell	having cryst	al parameters,	$a = b \neq c$,		
	,	$\alpha = \beta = 90^{\circ},$	$\gamma = 120^{\circ}$ is here	exagonal			(a) $0.732 - 1.0$
					17		(c) $0.225 - 0.$
		n ionic compoi	unds having Fr	enkel defect the	e ratio $\frac{\gamma_+}{\gamma}$ is	13.	What type of latt
		nigh					(a) Face centred
	(d) 7	The coordinatior	number of <i>Na</i>	a^+ ion in $NaCl$	is 4		(c) Simple cubi
2.	Which	n of the followin Crystal	g is correct Axial distance	Axial angles	[DPMT 1997] Examples	14.	The three dimens for the whole latt
	(a)	system Cubic	. 1	0	Cu, KCl		(a) Space lattice
	(d)	Cubic	$a \neq b = c$	$\alpha = \beta \neq \gamma =$ 90 [.]	<i>Cu, KCi</i>		(c) Unit cell
	(b)	Monoclinic	a≠ b=c	$\alpha = \beta = \gamma =$	PbCrO,	15.	Crystals can be c
	(0)		$d \neq D = C$	α = μ = γ = 90 [.]	PbCrO		(a) 3
	(c)	Rhombohedra	a = b = c	<i>α</i> = β = γ ≠	CaCO, HgS		(c) 14
	(-)	1		α = p = γ ≠ 90 [.]		16.	How many molec
	(d)	Triclinic	a = b = c	$\alpha \neq \beta = \gamma \neq$	KCrO,		(a) 2
	()			90 ⁻	CuSO.		(c) 6
	_				5HO	17.	In a crystal, the a
3.					dimensions[MP PM	T 1993]	(a) Maximum P
	(a)	a = b = c and	$\alpha = \beta = \gamma = 9$	90°			(c) Zero P.E.
	(b)	$a = b \neq c$ and	$\alpha = \beta = \gamma = \beta$	90 [°]		18.	The total number
		$a \neq b \neq c$ and					is (a) 3
							(c) 8
	(d)	$a = b \neq c$ and	$\alpha = \beta = 90^{\circ},$	$\gamma = 120^{\circ}$		19.	Monoclinic crysta
4.		bic sulphur has	the following st	ructure			(a) $a \neq b \neq c$,
	. ,	Open chain					(b) $a = b = c, a$
	. ,	Fetrahedral					(c) $a = b \neq c, d$
		Puckered 6-mem					(d) $a \neq b \neq c$,
		Puckered 8-mem					· · · · · · ·
-		lattice of CaF			[MP PMT 1993]	20.	The low solubility
5.		Face centred cub Body centred cul					(a) Uirth latting
5.	()		DIC				(a) High lattice (c) Low lattice
5.	(b) E						
5.	(b) E (c) S	Simple cubic	packing			21.	Bravais lattices ar
5.	(b) E (c) S (d) H			idius ratio is		21.	Bravais lattices ar (a) 8 types
	(b) E (c) S (d) F For cu	Simple cubic Hexagonal closed			14	21.	Bravais lattices ar (a) 8 types (c) 14 types

		1	
svet	v many space lattices are obt	tainai	ble from the different crystal
	ems		IP PMT 1996; MP PET/PMT 1998]
(a)	7	• •	14
(c) Exar	32 mple of unit cell wit	(d) •b	230 emetallographic dimensions
	•		crystallographic dimensions
	$b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 9$		is [AFMC 1998]
(a)	Calcite	• •	Graphite
• • •	Rhombic sulphur face-centered cubic lattice, a		Monoclinic sulphur cell is shared equally by how
	y unit cells	unit	[CBSE PMT 2005]
(a)		(b)	
(c)	2	(d)	6
The	maximum radius of sphere th	hat c	an be fitted in the octahedral
	of cubical closed packing of s		
(a) (c)	0.732 <i>r</i> 0.225 <i>r</i>	(b) (d)	0.414 <i>r</i> 0.155 <i>r</i>
. ,	unit cell of a <i>NaCl</i> lattice	(u)	
		(b)	Has $3Na^+$ ions
(a) (c)			Has 31Va ions Is electrically charged
()		. ,	
For	tetrahedral coordination numb	oer, t	he radius ratio $\frac{r_{c^+}}{c^+}$ is[KCET 2000]
			r_a
(a)	0.732 - 1.000	(b)	0.414 - 0.732
(c)	0.225 - 0.414	(d)	0.155-0.225
. ,	at type of lattice is found in po	• •	
	,, ·····		[MP PMT 1996]
(a)	Face centred cubic	(b)	Body centred cubic
(c)	Simple cubic	(d)	Simple tetragonal
			Simple cellagonal
	three dimensional graph of la the whole lattice is called	. ,	
for	the whole lattice is called Space lattice	(b)	points which sets the pattern Simple lattice
for (a) (c)	the whole lattice is called Space lattice Unit cell	(b) (d)	points which sets the pattern Simple lattice Crystal lattice
for (a) (c)	the whole lattice is called Space lattice	(b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits
for (a) (c) Crys	the whole lattice is called Space lattice Unit cell stals can be classified into	(b) (d) basic	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994]
for (a) (c)	the whole lattice is called Space lattice Unit cell	(b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7
for (a) (c) Crys (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14	(b) (d) basic (b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4
for t (a) (c) Crys (a) (c) How (a)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2	(b) (d) basic (b) (d) the u (b)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 unit cell of sodium chloride [MP PMT 4
for t (a) (c) Crys (a) (c) How (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2 6	(b) (d) basic (b) (d) the u (b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 unit cell of sodium chloride [MP PMT 4 8
for (a) (c) (c) (a) (c) How (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2	(b) (d) basic (b) (d) the u (b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 unit cell of sodium chloride [MP PMT 4 8 he position of
for (a) (c) (c) (a) (c) How (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2 6	(b) (d) basic (b) (d) the u (b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 unit cell of sodium chloride [MP PMT 4 8
for t (a) (c) Crys (a) (c) How (a) (c) In a (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E.	(b) (d) (d) (d) (d) (d) (d) (d) (d) at the (b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 unit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E.
for 1 (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E.	(b) (d) (d) (d) (d) (d) (d) (d) (d) at the (b) (d)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. ints in different crystal systems
for t (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 v many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang	(b) (d) basic (b) (d) (d) (d) (d) (d) (d) (d) (d) gemen	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. Infinite P.E. infinite P.E. Infinite C.E. Minimum States (KCET (Engg.) 2001]
for (a) (c) (c) (c) How (a) (c) In a (a) (c) The is (a)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 v many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E.	(b) (d) basic (b) (d) (d) (d) (d) (d) (d) (d) (d) gemen (b)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. Infinite P.E. infinite P.E. Infinite P.E. 10 (KCET (Engg.) 2001] 7
for 1 (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3	(b) (d) bassic (b) (d) (d) (d) (d) (d) (d) (d) (d) (emen (b)	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. Infinite P.E. infinite P.E. Infinite C.E. Minimum States (KCET (Engg.) 2001]
for 1 (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is (a) (c)	the whole lattice is called Space lattice Unit cell stals can be classified into 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8	(b) (d) basic (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite D.E. Infinite D.E.
for t (a) (c) (c) (c) (c) (c) (c) (a) (c) The is (a) (c) Mor	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 noclinic crystal has dimension	(b) (d) basic (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite D.E. Infinite D.E.
for (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is (a) (c) Mor (a) (b)	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 noclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$	(b) (d) (b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite D.E. Infinite D.E.
for + (a) (c) Cryy: (a) (c) How (a) (c) The is (a) (c) Mor (a) (b)	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 moclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$ $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite D.E. Infinite D.E.
for f (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is (a) (c) Mor (a) (b) (c) (d)	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 noclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$ $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$	(b) (d) (b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. nts in different crystal systems [KCET (Engg.) 2001] 7 14 [DCE 2000] o
for f (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is (a) (c) Mor (a) (b) (c) (d) The	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 noclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$ $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$ low solubility of $BaSO_4$ in	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. nts in different crystal systems [KCET (Engg.) 2001] 7 14 [DCE 2000] o r can be attributed to [CBSE PMT 1991]
for f (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) The is (a) (c) Mor (a) (b) (c) (d) The (a)	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 noclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$ $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$ low solubility of $BaSO_4$ in High lattice energy	(b) (d) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. nts in different crystal systems [KCET (Engg.) 2001] 7 14 [DCE 2000] o r can be attributed to [CBSE PMT 1991] Dissociation energy
for f (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) Mor (a) (c) (d) The (a) (c) (d) The (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 moclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$ $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$ low solubility of $BaSO_4$ in High lattice energy Low lattice energy	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. nts in different crystal systems [KCET (Engg.) 2001] 7 14 [DCE 2000] o r can be attributed to [CBSE PMT 1991] Dissociation energy lonic bond
for f (a) (c) Crys (a) (c) How (a) (c) In a (a) (c) Mor (a) (c) (d) The (a) (c) (d) The (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	the whole lattice is called Space lattice Unit cell stals can be classified into 1 3 14 w many molecules are there in 2 6 crystal, the atoms are located Maximum P.E. Zero P.E. total number of lattice arrang 3 8 noclinic crystal has dimension $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta =$ $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$ low solubility of $BaSO_4$ in High lattice energy	(b) (d) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d	points which sets the pattern Simple lattice Crystal lattice crystal habits [MP PMT 1994] 7 4 anit cell of sodium chloride [MP PMT 4 8 ne position of [AMU 1985] Minimum P.E. Infinite P.E. nts in different crystal systems [KCET (Engg.) 2001] 7 14 [DCE 2000] o r can be attributed to [CBSE PMT 1991] Dissociation energy

IF SCORER 210 Solid state

22.		imilar to <i>CsCl</i> . What would be the
	radius ratio in <i>TlCl</i>	
	(a) $0.155 - 0.225$	(b) $0.225 - 0.414$
	(c) $0.414 - 0.732$	(d) $0.732 - 1.000$
23.	Structure similar to zinc blend	de is found in
	(a) $AgCl$	(b) NaCl
	(c) CuCl	(d) $TlCl$
24.	The structure of Na_2O crys	tal is
	(a) CsCl type	(b) NaCl type
	(c) ZnS type	(d) Antifluorite
25.	Structure of ZnS is	
-	(a) Body centred cubic	(b) Face centred cubic
	(c) Simple cube	(d) Fluorite structure
26.	The crystal system of a c	ompound with unit cell dimensions
	$a{=}0.387$, $b{=}0.387$ an	d $c = 0.504 nm$ and $\alpha = \beta = 90^{\circ}$
	and $\gamma = 120^o$ is	[AIIMS 2004]
	(a) Cubic	(b) Hexagonal
	(c) Orthorhombic	(d) Rhombohedral
27.	The number of tetrahedral ve cubic lattice of similar atoms	oids in the unit cell of a face centered is [Kerala PMT 2004]
	(a) 4	(b) 6
	(c) 8	(d) 10
28.	An fcc unit cell of aluminium	m contains the equivalent of how many
	atoms	[DCE 2003]
	(a) 1	(b) 2
	(c) 3	(d) 4
	Crystal	packing
1.	If 'Z is the number of stor	ns in the unit cell that represents the
••		-A B C A B C, the number
	of tetrahedral voids in the uni	
		[AllMS 2005]
	(a) <i>Z</i>	(b) 2 Z
	(c) Z/2	(d) Z/4
2.	The close packing represents	
	(a) Body centred cubic pack	

(a) Body centred cubic packing

 $(b) \quad {\sf Face \ centred \ cubic \ packing}$

 $(c) \quad \text{Simple cubic packing} \\$

(d) Hexagonal cubic closed packing

3. The arrangement ABC ABC ABC is referred as

	0	
		[MP PET 2001]
	(a) Octahedral close packing	(b) Hexagonal close packing
	(c) Tetragonal close packing	(d) Cubic close packing
4.	The number of close neighbour identical sphere is	IT in a body-centred cubic lattice of [MP PET 2001]
	(a) 8	(b) 6
	(c) 4	(d) 2
5.	The number of equidistant op chloride crystal is	ppositely charged ions in a sodium [MP PET 2001]
	(a) 8	(b) 6
	(c) 4	(d) 2

6. Na and Mg crystallize in *BCC* and *FCC* type crystals respectively, then the number of atoms of Na and Mg present in the unit cell of their respective crystal is

		-			[AIEEE 200	2]
(a)	4 and 2		(b)	9 and 14		

	(c) 14 and 9	(d) 2 and 4
•	An AB_2 type structure is four	nd in [AIIMS 2002]
	(a) NaCl	(b) Al_2O_3
	(c) CaF_2	(d) N_2O
3.	Potassium crystallizes with a	[MP PET/PMT 1998]
	(a) Face-centred cubic lattice	
	(b) Body-centred cubic lattice	
	(c) Simple cubic lattice	
	(d) Orthorhombic lattice	
).		mit in a crystal is 2, the structure of
	crystal is (a) Octahedral	
	(b) Body centred cubic <i>bcc</i>	
	(c) Face centred cubic fcc	
	(d) simple cubic	
0.	•	<i>LiAg</i> crystallizes in cubic lattice in have coordination number of eight.
		[CBSE PMT 1997]
	(a) Simple cube	(b) Body-centred cube
	(c) Face-centred cube	(d) None of these
	The number of octahedral sites	s per sphere in a <i>fcc</i> structure is [MP PM
	(a) 8	(b) 4
	(c) 2	(d) 1
	Hexagonal close packed arrange	ement of ions is described as [MP PMT 1994]
	(a) ABC ABA	(b) ABC ABC
	(c) ABABA	(d) ABBAB
	An example of a body cube is	[AllMS 1996]
	(a) Sodium	(b) Magnesium
	(c) Zinc	(d) Copper
	An example of fluorite structure	re is
	(a) NaF	(b) SrF_2
	(c) $AlCl_3$	(d) SiF_4
5.	.,	ystals alternate tetrahedral voids are
	occupied?	[IIT 2005]
	(a) NaCl	(b) ZnS
	(c) CaF_{a}	(d) Na _O
	Which of the following contains	s rock salt structure
	(a) SrF_2	(b) MgO
	(c) Al_2O_3	(d) All
7.	In the fluorite structure, the co	ordination number of Ca^{2+} ion is
	(a) 4	(b) 6
	(c) 8	(d) 3
•	The ratio of close-packed aton packing is	ns to tetrahedral holes in cubic close [Pb. PMT 1998]
	(a) 1:1	(b) 1:2
	(c) 1:3	(d) 2:1
€.	A solid is made of two elemen	nts X and Z . The atoms Z are in
		atom X occupy all the tetrahedral
	sites. What is the formula of th	•
	(a) XZ	[UPSEAT 2004] (b) XZ ₂
	()	
	(c) X_2Z	(d) X_2Z_3

(c) $X_2 Z$ (d) $X_2 Z_3$

Solid state 211

20.	corners of a cube and <i>B</i> id	a unit cell consisting of <i>A</i> ions at the ons on the centres of the faces of the cube. this compound would be [CBSE PMT 2004; A	IEEE <u>8</u> 005]		ned (i) in one body centred cubic unit
	(a) <i>AB</i>	(b) A_2B		cell and (ii) in one face centred (a) In (i) 2 and in (ii) 4	
	(c) AB_3	(d) A_3B		(a) In (i) 2 and In (ii) 4 (c) In (i) 4 and in (ii) 2	(b) In (i) 3 and in (ii) 2 (d) In (i) 2 and in (ii) 3
21.	The vacant space in the b	(4)	7.		ure. It has an edge length of 4.3 Å .
	(a) 32% (c) 26%	(b) 23%(d) None of these	7.		
22.		al voids in a unit cell of a cubical closest			e between Cs^+ and Br^- ions is[11T 1995]
	packed structure is			(a) 1.86 Å	(b) 3.72 Å
	(a) 1 (c) 4	(b) 2 (d) 8		(c) 4.3 Å	(d) 7.44 <i>Å</i>
23.		ucture of a metallic lattice, the number of	8.	In octahedral holes (voids)	
	nearest neighbours of a m			(a) A simple triangular void su	
	(a) Twelve	(b) Four		(b) A bi-triangular void surrou(c) A bi-triangular void surrou	
	(c) Eight	(d) Six		•	
24.		the number of formula units per unit cell	9.	(d) A bi-triangular void surrouBragg's law is given by the equal	
	is equal to	(b) 2	5.	(a) $n\lambda = 2\theta \sin\theta$	(b) $n\lambda = 2d\sin\theta$
	(a) 1 (c) 3	(b) 2 (d) 4			
25.		s found in crystal lattice of		(c) $2n\lambda = d\sin\theta$	(d) $n\frac{\theta}{2} = \frac{a}{2}\sin\theta$
-0.		[MH CET 2002]			
	(a) <i>Na</i>	(b) <i>Mg</i>	10.) g of an fcc crystal with density
	(c) <i>Al</i>	(d) None of these		$d = 10 g / cm^3$ and cell edge	e equal to $100 \ pm$, is equal to [CBSE PMT 1994]
26.	Which ion has the largest	radius from the following ions		(a) 4×10^{25}	(b) 3×10^{25}
	(a) <i>Na</i> ⁺	(b) Mg^{2+}		(c) 2×10^{25}	(d) 1×10^{25}
	(c) Al^{3+}	(d) Si^{4+}	11.	In the crystals of which of the f expect maximum distance betw	following ionic compounds would you een centres of cations and anions[CBSE PMT 19
		voie of explicitly evolutions and		(a) LiF	(b) <i>CsF</i>
		ysis of cubic system and		(c) CsI	(d) LiI
	Bragę	g's equation	12.	The number of unit cells in 58	8.5 g of NaCl is nearly
1.	The formula for determin	ation of density of unit cell is			[MP PMT 2000, 01]
••		-		(a) 6×10^{20}	(b) 3×10^{22}
	(a) $\frac{d^2 + d^2 \sigma}{N \times M} g \ cm^{-3}$	(b) $\frac{N \times M}{a^3 \times N_o} g cm^{-3}$		(c) 1.5×10^{23}	(d) 0.5×10^{24}
			13.		ent in a cube-shaped ideal crystal of
	(c) $\frac{a^3 \times M}{N \times N_o} g \ cm^{-3}$	(d) $\frac{M \times N_o}{a^3 \times N} g \ cm^{-3}$	13.		The masses: $Na = 23, Cl = 35.5$ [AIEEE 2003]
2.		<i>laCl</i> type structure. What is the distance		(a) 2.57×10^{21} unit cells	(b) 5.14×10^{21} unit cells
	between K^+ and F^- ion	·		(c) 1.28×10^{21} unit cells	(d) 1.71×10^{21} unit cells
	(a) $2a \ cm$	(b) $a/2 cm$	14.	In the Bragg's equation	for diffraction of X-rays, n
	(c) $4a \ cm$	(d) $a/4 cm$		represents for	[MP PMT 2000]
3.	An element occurring in t cells. The total number of	the bcc structure has 12.08×10^{23} unit fatoms of the element in these cells will be[A	AP PET 1994	(a) Quantum number4](c) Avogadro's numbers	(b) An integer(d) Moles
	(a) 24.16×10^{23}	(b) 36.18×10^{23}	15.	In a face centred cubic cell, an	atom at the face contributes to the
	(c) 6.04×10^{23}	(d) 12.08×10^{23}		unit cell	
A	If an atom is present in t	he centre of the cube, the participation of		-	(b) 1/8 part
4.	that atom ner unit call in			(a) 1/4 part(c) 1 part	(b) $1/8$ part
4.	that atom per unit cell is				(a) = 1/2 part
4.	that atom per unit cell is (a) $\frac{1}{4}$	(b) 1	16.		(d) 1/2 part um chloride crystal will be
4.	(a) $\frac{1}{4}$	1	16.	The interionic distance for cesit	um chloride crystal will be
4.	. 1	(b) 1 (d) $\frac{1}{8}$	16.		· · · · · · · · · · · · · · · · · · ·
4 . 5 .	(a) $\frac{1}{4}$ (c) $\frac{1}{2}$ For an ionic crystal of the	(d) $\frac{1}{8}$ ne general formula AX and coordination	16.		um chloride crystal will be
	(a) $\frac{1}{4}$ (c) $\frac{1}{2}$	(d) $\frac{1}{8}$ ne general formula AX and coordination	16.	The interionic distance for cesin (a) a $\sqrt{3}a$	um chloride crystal will be [MP PET 2002] (b) $\frac{a}{2}$ 2a
	(a) $\frac{1}{4}$ (c) $\frac{1}{2}$ For an ionic crystal of the	(d) $\frac{1}{8}$ ne general formula AX and coordination dius ratio will be	16.	The interionic distance for cesit	um chloride crystal will be [MP PET 2002]

Sodium metal crystallizes as cell edge 4.29 Å. What is the	a body centred cubic lattice with the radius of sodium atom	(Crys	tal structure an	d Coor	dination number
	[A11MS 1999]		1	1.1 Las a structure in		W' atoms are located at the
(a) $1.857 \times 10^{-8} cm$	(b) $2.371 \times 10^{-7} cm$	1.				s at the centre of edges and
	(d) $9.312 \times 10^{-7} cm$		'Na			cube. The formula for the [KCET 1996]
, ,	pe AB , the value of (limiting) radius			NaWO ₂	(b)	NaWO ₃
	sts that the crystal structure should be			-	(d)	NaWO.
(a) Octahedral	(b) Tetrahedral	_				
	(d) Plane triangle ture with nearest neighbour distance	2.		ber of potassium in pot		
4.52 Å. Its atomic weight is	s 39. Its density (in $kgm^{-3})$ will be [A	IIMS 1991]	(a)	0	(b)	[KCEE 1993]
(a) 454	(b) 804		(c)		(d)	
(c) 852	(d) 908	3.	• • •	centered cubic lattice	()	
	(r_c)		-			[AIIMS 1996; MP PMT 2002]
If the value of ionic radiu	is ratio $\left(\frac{r_c}{r_a}\right)$ is 0.52 in an ionic		(a)		(b)	
	rangement of ions in crystal is		(c)		(d)	
(a) Tetrahedral	(b) Planar	4.		•		A and B. This crystallizes in
(c) Octahedral	(d) Pyramidal					e the corners of the cube and
	cules contained in one face centred			pounds is	or the bod	y. The simplest formula of the
cubic unit cell of a monoatom	iic substance is 1989, 94; CBSE PMT 1989, 96; NCERT 1990;			•	CET 1993; C	BSE PMT 2000; Kerala PMT 2002]
[cimi	MP PET 1993; KCET 1999]		(a)	AB	(b)	AB_2
(a) 1	(b) 2		(c)	A_2B	(d)	AB_4
(c) 4	(d) 6	_		-		
	cules contained in one body centered	5.	(a)	rdination number for <i>C</i>	. <i>u</i> is (b)	[AMU 1982]
cubic unit cell is (a) 1	(b) 2		(c)		(d)	
(c) 4	(d) 6	6.	• • •		()	eighbours of each <i>Cs</i> ion are[M
	c^+ and Cl^- ions in sodium chloride			Six chloride ions		Eight chloride ions
	f the edge of the unit cell is [KCET 2004]		. ,	Six Cs ions	. ,	Eight <i>Cs</i> ions
(a) 4X pm	(b) X/4 pm	7.	· · /		. ,	which is made from X and Y ,
(c) X/2 pm	(d) 2X pm					f the cube and Y at the face
The edge of unit cell of FCC	Xe crystal is $620 \ pm$. The radius of					mula of the compound is [AIIMS
Xe atom is	[MP PET 2004]		(a)	X_2Y	(b)	X_3Y
(a) 219.25 Pm	(b) 235.16 Pm		(c)	XY_2	(d)	XY_3
(c) 189.37 Pm	(d) 209.87 Pm	8.	Ferr	ous oxide has a cubic st	tructure an	d each edge of the unit cell is
In orthorhombic, the value	e of a, b and c are respectively		5.0	Å. Assuming density o	of the oxid	e as $4.0g - cm^{-3}$, then the
4.2Å, 8.6Å and 8.3Å. give	ven the molecular mass of the solute is		num	ber of Fe^{2+} and O^{2-}	ions pres	ent in each unit cell will be [MP
$155 \ emmod l^{-1}$ and that of	density is $3.3 gm/cc$, the number of		(a)	Four Fe^{2+} and four	O^{2-}	
formula units per unit cell is			• • •	Two Fe^{2+} and four		
	[Orrisa JEE 2005]		. ,			
(a) 2	(b) 3		• • •	Four Fe^{2+} and two (
(c) 4	(d) 6		(d)	Three Fe^{2+} and three	$O^{2^{-}}$	
A metal has bcc structure a $3.04 $	nd the edge length of its unit cell is unit cell in cm^3 will be	9.		ch of the following s cture	statements	is not true about <i>NaCl</i> [DCE 2001]
(a) $1.6 \times 10^{21} cm^3$	[Orrisa JEE 2005] (b) $2.81 \times 10^{-23} cm^3$		(a)	Cl^- ions are in <i>fcc</i> arr		
(c) $6.02 \times 10^{-23} \text{ cm}^3$	(d) $6.6 \times 10^{-24} cm^3$		(b)	Na^+ ions has coordinated as a second state of the second state	ation numb	per 4
			(c)	Cl^- ions has coordinate	tion numbe	er 6
In face centred cubic unit cell			(d)	Each unit cell contains	4 NaCl	molecules
(a) $\frac{4}{\sqrt{3}}r$	(b) $\frac{4}{\sqrt{2}}r$	10.	. ,	<i>CsCl</i> structure, the coo		
(c) 2 <i>r</i>	(d) $\frac{\sqrt{3}}{2}r$		(a)	Equal to that of Cl^- ,	that is 6	
(*) 21	^(a) 2		(b)	Equal to that of Cl^- ,	that is 8	
			. /			

Solid state 213 (a) 6 (b) 8 (d) Not equal to that of Cl^{-} , that is 8 (c) 1 (d) 4 11. In a solid 'AB having the NaCl structure, 'A' atoms occupy the corners of the cubic unit cell. If all the face-centered atoms along In CsCl lattice the coordination number of Cs^+ ion is 24. one of the axes are removed, then the resultant stoichiometry of the (a) 2 (b) 4 solid is [IIT Screening 2001] (c) 8 (d) 12 (a) AB_2 (b) *A*₂*B* Crystal structure of NaCl is [NCERT 1982; BHU 1995] 25. (c) $A_4 B_3$ (d) $A_3 B_4$ (a) fcc (b) *bcc* In solid CsCl each Cl is closely packed with how many Cs [MP PET 2003] 12. (c) Both (a) and (b) (d) None (b) 6 (a) 8 In NaCl lattice the coordination number of Cl^- ion is 26. (d) 2 (c) 10 (a) 2 (b) 4 In A^+B^- ionic compound, radii of A^+ and B^- ions are $180\ pm$ 13. (d) 8 (c) 6 and 187 pm respectively. The crystal structure of this compound In zinc blende structure the coordination number of Zn^{2+} ion is 27. will be (b) 4 (a) 2 (b) CsCl type (a) NaCl type (c) 6 (d) 8 (c) ZnS type (d) Similar to diamond Coordination number of Na^+ ion in rock salt is 28. In which of the following substances the carbon atom is arranged in 14. [BVP 2004] [NCERT 1978] a regular tetrahedral structure (a) 12 (b) 4 (a) Diamond (b) Benzene (c) Graphite (d) Carbon black (d) 6 (c) 8 The coordination number of a metal crystallizing in a hexagonal 15. The number of Cl^- ions around one Na^+ in NaCl crystal 29. close packed structure is [MP PET 1996; BVP 2004] lattice is [NCERT 1978; IIT 1999] (a) 12 (b) 4 (a) 4 (b) 12 (c) 8 (d) 6 (c) 8 (d) 6 The number of atoms present in unit cell of a monoatomic 30. 16. The structure of MgO is similar to NaCl. What would be the substance of simple cubic lattice is [Pb. PMT 2004] coordination number of magnesium (a) 6 (b) 3 (a) 2 (b) 4 (c) 2 (d) 1 (c) 6 (d) 8 The coordination number of a metal crystallizing in a hexagonal 31. 17. How many chloride ions are there around sodium ion in sodium close packed chep structure is [MP PMT 2004] [NCERT 1979, 80; CPMT 1988; chloride crystal (a) 12 (b) 8 BHU 1982, 87; MP PET 1995, 99] (d) 6 (c) 4 (b) 8 (a) 3 Which of the following statement(s) is(are) correct 32. (d) 6 (c) 4 [IIT 1998] Most crystals show good cleavage because their atoms, ions or 18. The coordination number of each type of ion in CsCl crystal (a) [CBSE PMT 1991] molecules are is 8 (a) Weakly bonded together (b) A metal that crystallizes in *bcc* structure has a coordination (b) Strongly bonded together number of 12 (c) Spherically symmetrical A unit cell of an ionic crystal shares some of its ions with other (c)(d) Arranged in planes unit cells An example of a non-stoichiometric compound is 19. (d) The length of the unit cell in NaCl is 552 pm[NCERT 1983] $(r_{Na^+} = 95 \ pm; \ r_{Cl^-} = 181 \ pm)$ (a) Al_2O_3 (b) Fe_3O_4 The co-ordination number of Na^+ in NaCl is 33. (d) *PbO* (c) NiO_2 [Orrisa IEE 2005] If the radius ratio is in the range of 0.731-1, then the 20. (a) 6 (b) 8 coordination number will be (d) 1 (c) 4 (a) 2 (b) 4 In the calcium fluoride structure the co-ordination number of the 34. (d) 8 (c) 6 cation and anions are respectively [] & K 2005] If the radius ratio is in the range of 0.414 - 0.732, then the (a) 6, 6 (b) 8, 4 21. (c) 4, 4 (d) 4, 8 coordination number will be (a) 2 (b) 4 **Defects in crystal** (c) 6 (d) 8 22. What is the coordination number of sodium in Na_2O Certain crystals produce electric signals on application of pressure. [AIIMS 2003] This phenomenon is called [BHU 2005] (a) 6 (b) 4 (a) Pyroelectricity (b) Ferroelectricity (c) 8 (d) 2 (c) Peizoelectricity (d) Ferrielectricity The ratio of cationic radius to anionic radius in an ionic crystal is 23. Which defect causes decrease in the density of crystal greater than 0.732. Its coordination number is [KCET 2000, 05]

[KCET 2003]

(a) Frenkel

(b) Schottky

3000			
	(c) Interstitial (d) <i>F</i> – centre		(a) Increases (b) Decreases
	The correct statement regarding $F-$ centre is		(c) Does not change (d) Changes
	(a) Electron are held in the voids of crystals	14.	Point defects are present in [MP PMT 1997]
	•		(a) Ionic solids (b) Molecular solids
	(b) F – centre produces colour to the crystals		(c) Amorphous solids (d) Liquids
	 (c) Conductivity of the crystal increases due to F - centre (d) All 	15.	If a non-metal is added to the interstitial sites of a metal then the metal becomes [DCE 2001]
	Doping of silicon (Si) with boron (B) leads to		(a) Softer (b) Less tensile
	[UPSEAT 2004]		(c) Less malleable (d) More ductile
	(a) n -type semiconductor (b) p -type semiconductor	16.	In $AgBr$ crystal, the ion size lies in the order $Ag^+ << Br^-$. The
	(c) Metal (d) Insulator		AgBr crystal should have the following characteristics
	If $NaCl$ is doped with $10^{-3}mol \% SrCl_2$, then the		(a) Defectless (perfect) crystal
	concentration of cation vacancies will be		(b) Schottky defect only
	(a) $1 \times 10^{-3} mol\%$ (b) $2 \times 10^{-3} mol\%$		(c) Frenkel defect only
			(d) Both Schottky and Frenkel defects
	(c) $3 \times 10^{-3} mol\%$ (d) $4 \times 10^{-3} mol\%$	17.	Frenkel and Schottky defects are [BHU 2003]
	In the laboratory, sodium chloride is made by burning the sodium in		(a) Nucleus defects (b) Non-crystal defects
	the atmosphere of chlorine which is yellow in colour. The cause of	-0	(c) Crystal defects (d) None of these
	yellow colour is	18.	Which one of the following is the most correct statement
	(a) Presence of Na^+ ions in the crystal lattice		(a) Brass is an interstitial alloy, while steel is a substitutional alloy
			(b) Brass is a substitutional alloy, while steel is an interstitial alloy
	(b) Presence of Cl^- ions in the crystal lattice		(c) Brass and steel are both substitutional alloys
	(c) Presence of electron in the crystal lattice		(d) Brass and steel are both interstitial alloys
	(d) Presence of face centered cubic crystal lattice	19.	The flame colours of metal ions are due to [KCET 2003]
	Frenkel defect is caused due to [MP PET 1994]		(a) Frenkel defect (b) Schottky defect
	(a) An ion missing from the normal lattice site creating a vacancy		(c) Metal deficiency defect (d) Metal excess defect
	(b) An extra positive ion occupying an interstitial position in the	20.	Which one of the following crystals does not exhibit Frenkel defect [MP
	lattice		(a) AgBr (b) AgCl
	(c) An extra negative ion occupying an interstitial position in the		(c) KBr (d) ZnS
	lattice	21.	In a solid lattice the cation has left a lattice site and is located at an
	(d) The shift of a positive ion from its normal lattice site to an		interstitial position, the lattice defect is
	interstitial site		[AlIMS 1982, 1991; DCE 2002; J & K 2005]
	Which one of the following has Frenkel defect		(a) Interstitial defect (b) Valency defect
	[MP PMT 2000]		(c) Frenkel defect (d) Schottky defect
	(a) Sodium chloride (b) Graphite	22.	When electrons are trapped into the crystal in anion vacancy, the defect is known as [BHU 2005]
	(c) Silver bromide (d) Diamond		defect is known as [BHU 2005] (a) Schotky defect (b) Frenkel defect
	Schottky defect generally appears in [DCE 2004]		(c) Stoichiometric defect (d) F-centres
		23.	Schottky defect defines imperfection in the lattice structure of a [AIIMS]
		43.	(a) Solid (b) Liquid
	(c) <i>CsCl</i> (d) All of these		(c) Gas (d) Plasma
	Schottky defect in crystals is observed when		
	[CBSE PMT 1998; KCET 2002]		
	(a) Density of crystal is increased		Critical Thinking
	(b) Unequal number of cations and anions are missing from the		Critical Thinking
	lattice		
	(c) An ion leaves its normal site and occupies an interstitial site		Objective Questions
	(d) Equal number of cations and anions are missing from the		-
	lattice	1.	Amorphous solids are
	Ionic solids, with Schottky defects, contain in their structure		(a) Solid substance in real sense
	[CBSE PMT 1994]		(b) Liquid in real sense
	(a) Equal number of cation and anion vacancies		(c) Supercooled liquid
	(b) Anion vacancies and interstitial anions		(d) Substance with definite melting point
	(c) Cation vacancies only	2.	Silicon is found in nature in the form of [MH CET 2002]
	(d) Cation vacancies and interstitial cations		(a) Body centered cubic structure
	The following is not a function of an impurity present in a crystal[MP I	PET 10051	(b) Hexagonal close-packed structure
		<u>.</u>	(c) Network solid
			(d) Face centered cubic structure
	(b) Having tendency to diffuse	3.	A match box exhibits [MP PET 1993, 95]
	(c) Contributing to scattering		(a) Cubic geometry (b) Monoclinic geometry
	(d) Introducing new electronic energy levels		(c) Orthorhombic geometry (d) Tetragonal geometry
	Due to Frenkel defect, the density of ionic solids	4.	Which has no rotation of symmetry [Orrisa JEE 2004]
	· · · · · · · · · · · · · · · · · · ·		

UNIVERSAL SELF SCORE

5. Which of the following molecules has three-fold axis of symmetry[UPSEAT 2004] (a) NH_3 (b) C_2H_4 (c) CO_2 (d) SO_2 6. Which one possess a antifluorite structure (a) Na_2O (b) MgO (c) Fe_2O_3 (d) Al_2O_3 7. Which one of the following is the biggest ion [MP PET 1993] (a) Al^{+3} (b) Ba^{+2} 18. (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	$Na^{+} Cl^{-} Na^{+} Cl^{-} Na^{+} Cl^{-}$ $Cl^{-} \Box Cl^{-} Na^{+} \Box Na^{+}$ $Na^{+} Cl^{-} \Box Cl^{-} Na^{+} Cl^{-}$ $Cl^{-} Na^{+} Cl^{-} Na^{+} \Box Na^{+}$ (a) Interstitial defect (b) Schottky defect (c) Frenkel defect (d) Frenkel and Schottky defects Which of the following is a three dimensional silicate [MHCET 200 (a) Mica (b) Spodumene
(a) NH_3 (b) C_2H_4 (c) CO_2 (d) SO_2 6. Which one possess a antifluorite structure (a) Na_2O (b) MgO (c) Fe_2O_3 (d) Al_2O_3 7. Which one of the following is the biggest ion [MP PET 1993] (a) Al^{+3} (b) Ba^{+2} [18. (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	Na^+ $Cl^ \Box$ $Cl^ Na^+$ Cl^- $Cl^ Na^+$ $Cl^ Na^+$ \Box Na^+ (a) Interstitial defect (b) Schottky defect (c) Frenkel defect (d) Frenkel and Schottky defects Which of the following is a three dimensional silicate [MHCET 200
(a) IMI_3 (b) C_2II_4 (c) CO_2 (d) SO_2 6. Which one possess a antifluorite structure (a) Na_2O (b) MgO (c) Fe_2O_3 (d) Al_2O_3 7. Which one of the following is the biggest ion [MP PET 1993] (a) Al^{+3} (b) Ba^{+2} [18. (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	Na^+ $Cl^ \Box$ $Cl^ Na^+$ Cl^- $Cl^ Na^+$ $Cl^ Na^+$ \Box Na^+ (a) Interstitial defect (b) Schottky defect (c) Frenkel defect (d) Frenkel and Schottky defects Which of the following is a three dimensional silicate [MHCET 200
6. Which one possess a antifluorite structure (a) Na_2O (b) MgO (c) Fe_2O_3 (d) Al_2O_3 7. Which one of the following is the biggest ion [MP PET 1993] (a) Al^{+3} (b) Ba^{+2} [18. (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	$Cl^ Na^+$ $Cl^ Na^+$ \square Na^+ (a) Interstitial defect (b) Schottky defect (c) Frenkel defect (d) Frenkel and Schottky defects Which of the following is a three dimensional silicate [MHCET 200
6. Which one possess a antihubbric structure(a) Na_2O (b) MgO (c) Fe_2O_3 (d) Al_2O_3 7. Which one of the following is the biggest ion[MP PET 1993](a) Al^{+3} (b) Ba^{+2} (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is[CBSE PMT 1998](a) 285 pm(b) 398 pm	 (a) Interstitial defect (b) Schottky defect (c) Frenkel defect (d) Frenkel and Schottky defects Which of the following is a three dimensional silicate
(c) Fe_2O_3 (d) Al_2O_3 7. Which one of the following is the biggest ion [MP PET 1993] (a) Al^{+3} (b) Ba^{+2} (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	 (c) Frenkel defect (d) Frenkel and Schottky defects Which of the following is a three dimensional silicate [MHCET 200
7.Which one of the following is the biggest ion[MP PET 1993](a) AI^{+3} (b) Ba^{+2} 18.(c) Mg^{+2} (d) Na^{+} 8.The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is[CBSE PMT 1998](a) 285 pm(b) 398 pm	(d) Frenkel and Schottky defects Which of the following is a three dimensional silicate [MHCET 200
(a) AI^{+3} (b) Ba^{+2} (c) Mg^{+2} (d) Na^{+} 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	Which of the following is a three dimensional silicate [MHCET 200
(a) At (b) Ba (c) Mg^{+2} (d) Na^+ 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm	[MHCET 200
 8. The edge length of face centred unit cubic cell is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is [CBSE PMT 1998] (a) 285 pm (b) 398 pm 	(a) Mica (b) Spodumene
radius of the cation is 110 <i>pm</i> , the radius of the anion is [CBSE PMT 1998] (a) 285 <i>pm</i> (b) 398 <i>pm</i>	(c) Zeolite (d) None of these
(a) 285 pm (b) 398 pm	(c) Zeolite (d) None of these (e) 12
(a) 285 pm (b) 398 pm	
(c) $144 \ pm$ (d) $618 \ pm$	Assertion & Reason
	For AIIMS Aspirant.
9. An element (atomic mass $100g/mol$) having <i>bcc</i> structure has unit cell edge 400 <i>pm</i> . Then density of the element is	
	the assertion and reason carefully to mark the correct option out ptions given below :
	If both assertion and reason are true and the reason is the corre
$()$ 7 000 $($ $)^3$ $()$ 0 144 $($ $)^3$	explanation of the assertion.
	If both assertion and reason are true but reason is not the corre explanation of the assertion.
I , If the pressure on a <i>IVUCL</i> structure is increased, then its	If assertion is true but reason is false.
(a) Increase (b) Decrease (d)	If the assertion and reason both are false.
(c) Remain the same (d) Entier (b) or (c)	If assertion is false but reason is true.
	Assertion : Diamond is a precious stone.
	Reason : Carbon atoms are tetrahedrally arranged
$2.178 \times 10^3 kg m^{-3}$. The fraction of unoccupied sites in sodium chloride crystal is [CRSE PMT 2003] 2.	diamond. [AIIMS 1994 Assertion : In crystal lattice, the size of the cation is larger
chloride crystal is [CBSE PMT 2003] 2. (a) 5.96×10^{-3} (b) 5.96	a tetrahedral hole than in an octahedral hole.
(a) 5.96×10^{-2} (b) 5.96×10^{-1}	Reason : The cations occupy more space than anions
\mathbf{r} with fill the set of $C_{\alpha}D_{\alpha}$	crystal packing. [A11MS 1996] Assertion : Crystalline solids have short range order.
	Assertion : Crystalline solids have short range order. Reason : Amorphous solids have long range order.
(a) It is a covalent compound	[AllMS 199
(b) It contains Cs^{3+} and Br^{-} ions 4.	Assertion : In any ionic solid (MX) with Schottky defects, the
(c) It contains Cs^+ and Br_3^- ions	number of positive and negative ions are same.
(d) It contains Cs^+, Br^- and lattice Br_2 molecule	Reason : Equal number of cation and anion vacancies a present.
13. In which compound 8 : 8 coordination is found	[IIT Screening 200
-	Assertion : Space or crystal lattice differ in symmetry of the
(a) $CsCl$ (b) MgO	arrangement of points.
· · · · · · · · · · · · · · · · · · ·	Reason : $n\lambda = 2d \sin\theta$, is known as Bragg's equation.
14. If the coordination of Ca^{2+} in CaF_2 is 8, then the coordination 6.	Assertion : In close packing of spheres, a tetrahedral void surrounded by four spheres whereas a
number of F^- ion would be	octahedral void is surrounded by six spheres.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reason : A tetrahedral void has a tetrahedral sha whereas an octahedral void has an octahedr
15. For some crystals, the radius ratio for cation and anion is 0.525, its	shape.
coordination number will be 7.	Assertion : Cyclic silicates and chain silicates have the sam
(a) 2 (b) 4 (c) 6 (d) 8	general molecular formula.
16. The basic building unit of all silicates is [UPSEAT 2002]	Reason : In cyclic silicates, three corners of each SiO
(a) SiO_4 square planar (b) $[SiO_4]^{4-}$ tetrahedron	tetrahedron are shared while in chain silicat only two are shared with other tetrahedra.
(c) SiO_4 octahedron (d) SiO_4 linear 8.	Assertion : The presence of a large number of Schott
17. What type of crystal defect is indicated in the diagram below	defects in <i>NaCl</i> lowers its density.
[AIEEE 2004]	defects in <i>TvaCi</i> lowers its defisity.

NIVERSAL 216 Solid state

	Reason	:	In NaCl , there are approximately 10^6
			Schottky pairs per cm^3 at room temperature.
9.	Assertion	:	Anion vacancies in alkali halides are produced by heating the alkali halide crystals with alkali metal vapour.
	Reason	:	Electrons trapped in anion vacancies are referred to as F -centres.
10.	Assertion	:	Electrical conductivity of semiconductors increases with increasing temperature.
	Reason	:	With increase in temperature, large number of electrons from the valence band can jump to the conduction band.
11.	Assertion	:	On heating ferromagnetic or ferrimagnetic substances, they become paramagnetic.
	Reason	:	The electrons change their spin on heating.
12.	Assertion	:	Lead zirconate is a piezoelectric crystal.
	Reason	:	Lead zirconate crystals have no dipole moment.

Answers

Type of solid and Their properties

1	a	2	b	3	a	4	a	5	b
6	c	7	C	8	b	9	d	10	d
11	b	12	а	13	С	14	C	15	a
16	а	17	а	18	d	19	C	20	С
21	b	22	d	23	d	24	d	25	a
26	d	27	а	28	а	29	d	30	d
31	d	32	а	33	C	34	а	35	b
36	а	37	a	38	b	39	C	40	ac

Crystallography and Lattice

1	b	2	C	3	b	4	d	5	a
6	а	7	b	8	d	9	d	10	b
11	С	12	C	13	a	14	C	15	b
16	b	17	b	18	b	19	а	20	а
21	С	22	d	23	C	24	d	25	b
26	b	27	C	28	d				

Crystal packing

1	b	2	b	3	d	4	а	5	b
6	d	7	C	8	b	9	b	10	b
11	d	12	C	13	a	14	b	15	b
16	b	17	C	18	b	19	C	20	C
21	a	22	C	23	a	24	d	25	b
26	a								

Mathematical analysis of cubic system and Bragg's equation

1	b	2	b	3	a	4	b	5	b
6	а	7	b	8	C	9	b	10	а
11	C	12	c	13	а	14	b	15	d
16	c	17	a	18	b	19	d	20	c
21	c	22	b	23	d	24	а	25	c
26	b	27	b						

Crystal structure and Coordination number

1	b	2	d	3	b	4	а	5	d
6	b	7	d	8	а	9	b	10	b
11	d	12	а	13	b	14	а	15	b
16	с	17	d	18	d	19	b	20	d
21	с	22	b	23	b	24	c	25	а
26	с	27	b	28	d	29	d	30	d
31	а	32	acd	33	а	34	b		

Defects in crystal

1	c	2	b	3	d	4	d	5	a
6	C	7	d	8	C	9	d	10	d
11	a	12	a	13	C	14	а	15	b
16	c	17	с	18	с	19	d	20	c
21	C	22	d	23	а				

Critical Thinking Questions

1	С	2	С	3	c	4	d	5	a
1 6 11 16	а	7	b	8	C	9	b	10	a
11	а	12	С	13	а	14	b	15	с
16	b	17	b	18	C				

Assertion & Reason

1	b	2	d	3	d	4	а	5	b
6	C	7	с	8	b	9	b	10	a
11	a	12	C						