UNIVERSAL SELF SCORER

160 Solution and Colligative properties

Tips & Tricks

A supersaturated solution is metastable.

- **\checkmark** Dissolution of gases in liquid is always exothermic because $\Delta S = -ve$ (non favourable factor) and in order to have $\Delta G = -ve$ (spontaneous process), ΔH has to be -ve.
- 1 M aqueous solution is more concentrated than 1 m aqueous solution.
- Substances having high V.P. (e.g., petrol) evaporate more quickly than substances having low V.P. (e.g., motor oil).
- Babo's law : The lowering in vapour pressure of a solution caused by addition of an non-volatile solute is called as Babo's law.
- Konowaloff's rule : In case of a binary solution, at a fixed temperature, the vapour phase is richer in that component whose addition causes increase in total vapour pressure of the solution i.e., vapour phase is always richer in the more volatile component.
- When a non-volatile solute is added to the solvent, V.P. decrease, B.P. increase, F.P. decrease.
- Æ Ethylene glycol is commonly added to car radiators to depress the freezing point of water. It is known as antifreeze.
- \bigstar NaCl or $CaCl_2$ (anhydrous) are used to clear snow on roads. It depresses the freezing point of water and reduce the temperature at which ice is expected to be formed.
- Plasmolysis : When a plant cell is placed in a hypertonic solution, the fluid from the plant cell comes out and the cell shrinks. This phenomenon is called plasmolysis and is due to osmosis.
- **\mathscr{I}** Gelatinous $Cu_2[Fe(CN)_6]$ and gelatinous $Ca_3(PO_4)_2$ are artificial semipermeable membranes.
- **\mathscr{E}** Semipermeable membrane of $Cu_2[Fe(CN)_6]$ dose not work in non aqueous solutions because it get dissolved in non aqueous solvents.
- Cosmotic coefficient (g) is the ratio of van't Hoff factor (i) to the no. of ions furnished by one molecule of the electrolyte (N). i.e., g = i / N.

Grdinary Thinking

Objective Questions

Solubility

- The solubility of a gas in water depends on[MP PET 2002](a) Nature of the gas(b) Temperature
 - $(c) \quad \mbox{Pressure of the gas} \qquad \qquad (d) \quad \mbox{All of the above} \\$
 - Which of the following is not correct for D_2O
 - (a) Boiling point is higher than H_2O

[Orissa JEE 2002]

- (b) D_2O reacts slowly than H_2O
- (c) Viscosity is higher than H_2O at 25°
- (d) Solubility of *NaCl* in it is more than H_2O
- The statement " The mass of a gas dissolved in a given mass of a solvent at any temperature is proportional to the pressure of the gas above the solvent" is [AMU 2002]
 - (a) Dalton's Law of Partial Pressures
 - $(b) \quad \text{Law of Mass Action} \\$
 - (c) Henry's Law

1.

2.

4.

- (d) None of these
- Which is correct about Henry's law [KCET 2002]
- (a) The gas in contact with the liquid should behave as an ideal gas
- $(b) \;\;$ There should not be any chemical interaction between the gas and liquid
- (c) The pressure applied should be high
- (d) All of these
- 5. The statement "If 0.003 moles of a gas are dissolved in 900 g of water under a pressure of 1 atmosphere, 0.006 *moles* will be dissolved under a pressure of 2 atmospheres", illustrates [JIPMER 1999]
 - (a) Dalton's law of partial pressure
 - (b) Graham's law
 - (c) Raoult's law(d) Henry's law
- 6. The solution of sugar in water contains [BHU 1973]
 - (a) Free atoms (b) Free ions
 - (c) Free molecules (d) Free atom and molecules

Method of expressing concentration of solution

1.	25 ml	l of	$3.0 M HNO_3$	are	mixed	with	75 ml	of
	4.0 M	1 HNO	3 . If the volumes	s are ado	ditive, the	molari	ty of the t	final
	mixtur	e would	be		[DPA	AT 1986;	MH CET 2	:001]
	(a) 3	3.25 M		(b)	4.0 M			
	(c) 3	3.75 M		(d)	3.50 <i>M</i>			
2.	The ar	nount o	f anhydrous N	a_2CO_3	present	in 250	<i>ml</i> of 0.2	5 M
	solutio	n is					[DPMT 2	2001]
	(a) 6	.225 g		(b)	66.25 g			
	(c) 6	.0 g		(d)	6.625 g			
3.	Dilute	one lit	re 1 molar H_2	SO_4 s	olution b	y 5 lit	re water,	the
	norma	lity of tl	nat solution is				[DPMT I	983]
	(a) ().2 <i>N</i>		(b)	5 N			
	(c) 1	0 N		(d)	0.33 N			

4. If 5.85 gms of *NaCl* are dissolved in 90 gms of water, the mole fraction of *NaCl* is

[CMC Vellore 1991; MP PMT 1994; AFMC 1998]

- (a) 0.1 (b) 0.2
- (c) 0.3 (d) 0.01
- (e) 0.0196

. The molarity of 0.006 mole of *NaCl* in 100*ml* solution is

5.

					S	olution and Collig	ative	pro	perties 161	UNIVERSAL SELF SCORER
			[Bihar MEE 1996]		(a)	Normality		(b)	Molarity	
	(a) 0.6	(b)	0.06		(c)	Mole fraction		(d)	Mass percentage	2
	(c) 0.006	(d)	0.066		(e)	Molality		. ,		
	(e) None of these			20	The	normality of 2.3 M H	SO.	olut	ion is	[KCET 2000]
6.	$9.8g$ of H_2SO_4 is pr	esent in 2 <i>lit</i>	<i>res</i> of a solution. The molarity	20.	()		2004	(1)		[Rep1 2000]
	of the solution is		[EAMCET 1991; MP PMT 2002]		(a)	2.3 N		(b)	4.6 N	
	(a) $0.1M$	(b)	0.05 <i>M</i>		(c)	0.46 N		(d)	0.23 N	
	(c) $0.2M$	(d)	0.01 <i>M</i>	21.	The	molarity of a solution	made l	oy m	ixing 50 <i>ml</i> of co	nc. $H_2 SO_4$
7.	What will be the molarit	v of a soluti	on containing 5g of sodium		(36	<i>N</i>) with 50 <i>ml</i> of water	is	[MP	PMT 2001]	
	by drovide in $250 ml$ sol	ution			(a)	36 M		(b)	18 <i>M</i>	
	nydroxide in 250mi sol	[MD	DET 1999. DUIL 1999. KCET 1999		(c)	9 M		(d)	6 <i>M</i>	
		[/wr	AllMS 2000: Pb. CET 2000]	22.	171	g of cane sugar (C_{12})	$H_{22}O_{11}$) is	dissolved in 1 /	<i>itre</i> of water.
	(a) 0.5	(b)	1.0		The	molarity of the solution	n is	[MP	PMT 2001]	
	(c) 2.0	(d)	0.1		(a)	2.0 M		(b)	1.0 <i>M</i>	
8.	The normality of $0.3M$	phosphorus a	acid $(H_2 P O_2)$ is		(c)	0.5 <i>M</i>		(d)	0.25 M	
	5		[1]T 1999: AIIMS 2000]	23.	The	volumes of 4 N HCl	and 1	0 N	HCl required t	o make 1 litre
	(a) 0.1	(b)	0.9		of	6 N HCl are			[Ker	ala PMT 2004]
	(c) 0.3	(d)	0.6		(a)	0.75 litre of 10 N HCl	and on	or 1:4	no of A N HCl	
9.	Which of the following ha	ıs maximum ı	number of molecules		(a) (b)	0.75 litre of 10 N HCL	and 0.2	-5 III 1:+-	ne of 10 N HCl	
			[CBSE PMT 2002]		(\mathbf{D})	0.25 litro of 4 N HCl	and 0.7	ວ 1:+-		
	(a) 16 gm of O_2	(b)	16 gm of NO_2		(d)	0.07 litre of $4 \times HCl$	and 0.3	3 110 0 1i+	re of 10 N HCl	
	(c) $7 em \text{ of } N_2$	(d)	$2 \text{ gm of } H_2$		(u) (a)	0.50 litre of $4 \times HCl$	and 0.2	o lit	re of 10 N HCl	
10	Molarity is expressed as	(-)		~ ~	(e) 11/1		1	0 110		.
10.	(a) Gram/litre	(b)	Moles/litre	24.	wn	ich statement is true fo	r solutio	511 0	$10.020 \text{ //} H_2 SC$	4
	(c) Litre/mole	(d)	Moles/1000 gms							[DPMT 2001]
11.	20ml of <i>HCl</i> solution	n requires 1	9.85 ml of $0.01 M NaOH$		(a)	2 <i>litre</i> of the solution	contain	s 0.0	20 <i>mole</i> of SO_4^2	2-
	solution for complete neu	ıtralization. T	he molarity of <i>HCl</i> solution		(b)	2 <i>litre</i> of the solution	contain	s 0.0	080 <i>mole</i> of H_3	\mathcal{O}^+
	1S (-) 0.0000	(L)	[MP PMT 1999]		(\mathbf{c})	1 <i>litre</i> of the solution of	contain	. 0 0	20 mole $H_{*}O^{+}$	
	(a) 0.0099	(d)	0.099		(1)		containt	, 0.0	20 mole 1130	
	(c) 0.99	(u)	3.9		(d)	None of these			m 1 .:	c
12.	How much of <i>NaOH</i> is <i>HCl (</i> At. <i>wt</i> . of <i>Na</i> =23)	required to n	eutralise 1500 <i>cm</i> ² of 0.1 <i>N</i> [KCET 2001]	25.	io / will	<i>itre</i> solution of urea con be	ntains 2	240 <i>g</i>	urea. The active	[KCET 2000]
	(a) $4 g$	(b)	6 g		(a)	0.04		(b)	0.02	
	(c) $40 g$	(d)	60 g		(c)	0.4		(d)	0.2	
13.	the solution is made up to	ular weight 5	(58.5) is dissolved in water and molarity of the solution will be	26.	5 <i>п</i> РЬ РМ	n/ of <i>N HCl</i> , 20 <i>ml</i> of /	V/2 H ₂	SO	4 and 30 <i>ml</i> of	N/3 HNO, are
	(a) 0.2	(b)	0.4	ana 1999,	mix	ed together and volume	e made	to	one litre. The no	rmally of the
	(c) 1.0	(d)	0.1		resu	ilting solution is			[Kerala CE	Г (Med.) 2003]
14.	A mixture has 18g wate	r and $414g$ e	thanol. The mole fraction of		(a)	N		(b)	N	
	water in mixture is (assur	ne ideal beha	viour of the mixture)		(-)	5[MP PMT 2000]		(-)	10	
	(a) 0.1	(b)	0.4		(-)	Ν		(L)	Ν	
15	(c) 0.7 The number of melocules	(a)	0.9		(C)	$\frac{20}{100}$		(u)	40	
19.	The number of molecules	III 4.25 g 01				N				
	(a) 0.5×10^{25}	(b)	1.5×10^{23}		(e)	25				
	(c) 3.5×10^{23}	(d)	2.5×10^{23}	27.	The	amount of $K_2Cr_2O_7$	(<i>eq.</i> v	vt. 4	9.04) required to	prepare 100
16.	The largest number of mol	ecules is in	[Kurukshetra CEE 1998]		ml	of its 0.05 N solution is	.,	[]]PA	IER 2002]	• •
	(a) $25g$ of CO_2	(b)	$46g$ of C_2H_5OH		(a)	2.9424 g		(b)	0.4904 g	
	(c) $36a \text{ of } HO$	(d)	54a of NQ		(c)	1.4712 g		(d)	0.2452 g	
	(c) $50g$ of H_2O	(u)		28.	Wit	h increase of temperatu	ire, whi	ch o	f these changes	
17.	If 1 <i>M</i> and 2.5 <i>litre NaOF</i> 3 <i>litre NaOH</i> solution, the	an molarity of	The resultant solution will be[C	BSE PMT 2	2 002]	Molality				[AIEEE 2002]
	(a) 1.0 <i>M</i>	(b)	0.73 <i>M</i>		(b)	Weight fraction of sol	ute			
	(c) $0.80 M$	(d)	0.50 M		(c)	Fraction of solute pres	sent in	wate	r	
18.	When a solute is present is used	in trace quar	itities the following expression [Kerala CET (Med.) 2002]		(d)	Mole fraction	1 1		1	.1 1
	(a) Gram per million	(b)	Milligram percent	29.	25 <i>n</i>	n/ of a solution of barit	ım hyd acid ar	roxic	le on titration wi	th a 0.1molar $35 ml$ The
	(c) Microgram percent	(d)	Nano gram percent		mol	arity of barium hvdroxi	de solui	tion	was	зэ <i>нн</i> . тпе
	(e) Parts per million					,			-	[AIEEE 2003]
19.	When the concentration	is expressed	as the number of moles of a		(a)	0.07		(b)	0.14	,
	solute per litre of solution	it known as	[Karala CET (Mad) 2000]		(c)	0.28		(d)	0.35	

Carles and the

٦.

SO.	2.0 molar solution is obtained, when 0.5 <i>mole</i> solute is dissolved in	43	Molar stan PriPMTranonal 1 mole of	solute present in	
,	(a) 250 m/solvent (b) 250 g solvent	-10-		[BCECE 200	05]
	(c) 250 <i>ml</i> solution (d) 1000 <i>ml</i> solvent		(a) 1000 <i>g</i> of solvent	(b) 1 litre of solvent	
1.	How many gram of HCl will be present in $150 ml$ of its 0.52 M		(c) 1 litre of solution	(d) 1000g of solution	
	solution [RPET 1999]	44.	What will be the molality of a so	olution having $18g$ of glucose (m	nol.
	(a) 2.84 gm (b) 5.70 gm		wt. = 180) dissolved in $500g$ o	of water	
	(c) 8.50 gm (d) 3.65 gm		[MP PET/P	PMT 1998; CBSE PMT 2000; JIPMER 20	001]
2.	The number of moles present in 2 <i>litre</i> of 0.5 M NaOH is		(a) 1 <i>m</i>	(b) 0.5 <i>m</i>	
	[MH CET 2001]		(c) $0.2m$	(d) $2m$	
	(a) 0.5 (b) 0.1	45	A solution of $AI(SO)$ $[d =$	1.253 gm/ml contain 22% calt	h.,
2	(c) 1 (d) 2 26 g water and 828 g athyl algebra form an ideal solution. The mole	43.	A solution of $Al_2(SO_4)_3$ $(u - weight The melarity permality$	and molality of the solution is	by
j .	fraction of water in it, is [MP PMT 2003]		(a) $0.805 \ M \ 4.82 \ N \ 0.825 \ M$	and molanty of the solution is	
	(a) 1.0 (b) 0.7		(a) $0.805 M, 4.83 N, 0.825 M$ (b) $0.825 M 482 N 0.805 M$		
	(c) 0.4 (d) 0.1				
ļ .	What will be the normality of a solution containing 4.9 g. H_3PO_4		(c) 4.03 n , 4.03 n , 4.03 n		
	dissolved in 500 <i>ml</i> water [MP PMT 2003]	46	Which of the following show	uld be done in order to prope	
	(a) 0.3 (b) 1.0	40.	0.40M NaCl starting with 1	00 ml of $0.30 M Na Cl$ (moly)	are
	(c) 3.0 (d) 0.1		af NaCl = 58.5		
	3.0 molal <i>NaOH</i> solution has a density of 1.110 g/ml . The molarity of		$\frac{1}{1000}$		92]
	the solution is [BVP 2003]		(a) Add 0.585 g NaCl	(b) Add $20 ml$ water	
	(a) 3.0504 (b) 3.04		(c) Add 0.010ml NaCl	(d) Evaporate $10ml$ water	
	(c) 3.05 (d) 2.9732 Which of the following modes of expressing concentration is	47.	Which of the following solutions	s has the highest normality	
•	independent of temperature [IIT 1988; CPMT 1999;			[JIPMER 19	91]
	CBSE PMT 1992, 95; MP PMT 1992; AIIMS 1997, 2001]		(a) 8 gm of KOH / litre	(b) N phosphoric acid	
	(a) Molarity (b) Molality		(c) 6 gm of $NaOH$ / 100 ml	(d) $0.5 M H_2 SO_4$	
	(c) Formality (d) Normality	48.	What volume of $0.8 M$ solution	on contains 0.1 mole of the solute	
•	The molality of a solution is [MP PMT 1996]		(a) $100ml$	(b) $125 ml$	
	(a) Number of moles of solute per $1000 ml$ of the solvent		(c) $500 ml$	(d) 62.5 ml	
	(b) Number of moles of solute per $1000 gm$ of the solvent			(d) 02.5 <i>mi</i>	
	(c) Number of moles of solute per $1000 ml$ of the solution	49.	Hydrochloric acid solution A	A and B have concentration	of
			B required to make 2 litras of	A = A = A = A = A = A = A = A = A = A =	ina
	(d) Number of gram equivalents of solute per $1000 ml$ of the		D required to make 21111es o		021
	solution		(a) $0.51 \text{ of } A + 1.51 \text{ of } B$		93]
	The number of molecules in $16gm$ of methane is				
	[MP PET/PMT 1998]		(b) $1.5l$ of $A + 0.5l$ of B		
	(a) 3.0×10^{23} (b) 6.02×10^{23}		(c) $1.0l$ of $A + 1.0l$ of B		
	(c) $\frac{16}{10} \times 10^{23}$ (d) $\frac{16}{10} \times 10^{23}$		(d) $0.75l$ of $A + 1.25l$ of A	В	
	6.02 (d) 3.0	50.	Conc. H_2SO_4 has a density of	of 1.98 gm/ml and is 98% H_2SO	\mathcal{D}_{4}
•	The number of moles of a solute in its solution is 20 and total		by weight. Its normality is	[MP PET 200	02]
	number of moles are 80. The mole fraction of solute is		(a) 2 <i>N</i>	(b) 19.8 N	-
	[MP PMT 1997]		(c) 39.6 <i>N</i>	(d) 98 N	
	(a) 2.5 (b) 0.25	51.	The mole fraction of the solute i	in one molal aqueous solution is [C	CBSE PM
	The normality of a solution of sodium hydroxide 100 <i>ml</i> of which		(a) 0.027 (c) 0.018	(d) 0.009	
	contains 4 grams of <i>NaOH</i> is [CMC Vellore 1991]				
	(a) 0.1 (b) 40	52.	With 63 gm of oxalic acid how	many <i>litres</i> of $\frac{10}{10}$ solution can	be
	(c) 1.0 (d) 0.4		prepared	[RPET 199	99]
	Two solutions of a substance (non electrolyte) are mixed in the		(a) 100 <i>litre</i>	(b) 10 <i>litre</i>	
	tollowing manner 480 m / of 1.5 M first solution + 520 mL of 1.2 M		(c) 1 <i>litre</i>	(d) 1000 <i>litre</i>	
	(a) 120 M (b) 150 M	53.	Molarity of $0.2NH_2SO_4$ is	[KCET 200	05]
	(c) $1344 M$ (d) $270 M$		(a) 0.2	(b) 0.4	
	(u) 2.70 m The normal amount of diverse in 100ml of blood (8 in b	<u> </u>	(c) 0.6	(d) 0.1	
	after a meal) is [BHU 1981]	54.	10.6 grams of a substance of m	notecular weight 106 was dissolved	in ml
	(a) $8mg$ (b) $80mg$		flask and made up to the mark w	n was pipetted out into a 1000 <i>n</i> with distilled water. The molarity of t	nı the
			resulting solution is	[EAMCET 1998]	
	(c) $200mg$ (d) $800mg$		-	$(1) 10^{-2}$	

(a) 1.0M (b) $10^{-2}M$

			Solution and Colligative properties 163
	(.) $10^{-3}M$ (1) $10^{-4}M$		[EAMCET 1987]
E	(c) $10 M$ (d) $10 M$ The mole fraction of water in 2004 accuracy solution of $U O$		(a) $0_{11}M_{12}$ (b) $0.2M$
э.	The mole fraction of water in 20% aqueous solution of $H_2 O_2$ is		(c) $0.3M$ (d) $0.4M$
	(a) $\frac{77}{2}$ (b) $\frac{68}{2}$	66.	Which of the following concentration factor is affected by change in
	68 77		temperature [DCE 2002]
	20 80		(a) Molarity (b) Molality
	(c) $\frac{1}{80}$ (d) $\frac{1}{20}$	e	(c) Mole fraction (d) Weight fraction
c		67.	The distribution law is applied for the distribution of basic acid
э.	Mole fraction (X) of any solution is equal to		Detween [UPSEAT 2001]
	(a) No. of moles of solute		(a) Water and entry alcohol
	Volume of solutionin litre		(b) Water and amyl alconol
	No. of gram equivalent of solute		(d) Water and liquer ammenia
	(b) Volume of solutionin litre	69	(d) water and inquor animonia Which is heaviest [CPSE DAT 1001]
		00.	(a) 25 gm of moreum
	(c) $\frac{NO.01 \text{ moles of solute}}{NO.01 \text{ moles of solute}}$		(a) 25 girl of mercury (b) 2 moles of water
	Mass of solventin kg		(b) 2 moles of water
	No. of moles of any constituent		(c) 2 moles of carbon dioxide
	(d) Total no. of moles of all constituents		(d) 4 gm atoms of oxygen
,	When W an solute (molecular mass M) dissolves in W an	69.	The molarity of a solution of Na_2CO_3 having $10.6g/500ml$ of
•	when $w_B g m$ solute (molecular mass w_B) dissolves in $w_A g m$		solution is [AFMC 1992; DCE 2000]
	solvent. The molality M of the solution is		(a) 0.2 <i>M</i> (b) 2 <i>M</i>
	(a) $\frac{W_B}{W_B} \times \frac{M_B}{W_B}$ (b) $\frac{W_B}{W_B} \times \frac{1000}{W_B}$		(c) $20M$ (d) $0.02M$
	$W_A = 1000$ $W_B = W_A$		2 U
	$W_{\star} = 1000$ $W_{\star} \times M_{P}$	70.	On passing H_2S gas through a solution of Cu^2 and Zn^{22} ions,
	(c) $\frac{M}{W} \times \frac{M}{M}$ (d) $\frac{M}{W} \times 1000$		CuS is precipitated first because [AMU 2001]
_	$W_B = W_B = W_B \times 1000$		(a) Solubility product of CuS is equal to the ionic product of ZnS
3.	Normality (N) of a solution is equal to		(b) Solubility product of <i>CuS</i> is equal to the solubility product of
	(a) No. of moles of solute		ZnS
	(d) Volume of solutionin litre		(c) Solubility product of <i>CuS</i> is lower than the solubility product cf_{abc}
	No. of gram equivalent of solute		of ZRS
	(b) $\frac{10000 \text{ grain equivalent of solution}}{Volume of colutionia litra$		(a) Solubility product of CuS is greater than the solubility product of ZuS
	volume of solutionin intre	-71	The number of moles of colute nor by of a solution is called it-
	(c) $\frac{\text{No. of moles of solute}}{\text{No. of moles of solute}}$	76	(a) Molarity (b) Normality
	Mass of solventin kg		(c) Molar fraction (d) Molality
	(d) None of these	72	10 gm of pure calcium carbonate was found to require 50 ml of
э.	The volume strength of $1.5NH_2O_2$ solution is	,	dilute HCl for complete reaction The strength of the HCl
	[CBSE PMT 1997; BHU 2002]		solution is given by [CPMT 1986]
	(a) 4.8 (b) 5.2		(a) $4N$ (b) $2N$
	(c) 8.8 (d) 8.4		(c) $0.4 N$ (d) $0.2 N$
).	How many gm of H_2SO_4 is present in $0.25gm$ mole of	73.	Molecular weight of glucose is 180. A solution of glucose which
			contains 18 gms per litre is [AFMC 1978]
	(a) 245 (b) 245		(a) 2 molal (b) 1 molal
	(a) 24.3 (b) 2.43 (c) 0.25 (d) 0.245		(c) 0.1 molal (d) 18 molal
	20 g of hydrogen is present in 5 <i>litre</i> vessel. The molar	74.	0.5 <i>M</i> of H_2SO_4 is diluted from 1 litre to 10 litre, normality of
	concentration of hydrogen is [DPMT 2000]	-	resulting solution is [AFMC 2005]
	(a) 4 (b) 1		(a) 1 N (b) 0.1 N
	(c) 3 (d) 2		(c) 10 N (d) 11 N
! .	To prepare a solution of concentration of 0.03 g/ml of $AgNO_3$,	75	If one mole of a substance is present in $1k\sigma$ of solvent then
	what amount of $AgNO_2$ should be added in 60 <i>ml</i> of solution [AFM]	C 2005]	
	(a) 18 (b) 0.8		(a) It shows malar concentration
	$ \begin{array}{ccc} (a) & (b) & (b) \\ (c) & 0.18 \\ \end{array} $		(a) it shows molal concentration
ł.	How many grams of dibasic acid (mol. wt. 200) should be present in		(c) It shows normality
	100ml of its aqueous solution to give decinormal strength[AllAC 100	2: CRSF DA	(c) it shows normality AT 1000: AFMC 1000: 1 cm/ cm
	KCET 2000: CPMT 2001	a, CUJE PN	"(a) - "It"shows strength gm/gm
	(a) $1g$ (b) $2g$	76.	The molality of 90% H_2SO_4 solution is
	(-)		[density=1.8 gm/ml] [MP PMT 2004]
	(c) $10g$ (d) $20g$		(a) 1.8 (b) 48.4
ŀ	The weight of pure $NaOH$ required to prepare $250cm^3$ of		(c) 9.18 (d) 94.6
	0.1 <i>N</i> solution is [KCET 1991: Kerala PMT 2004]		
	(a) $4g$ (b) $1g$	77.	The volume of water to be added to $100 cm^3$ of 0.5 N H_2SO_4 to get
	$(-) - 2 \alpha$ (1) 10 -		decinormal concentration is [KCET (Engg.) 2001]
	(c) $\angle g$ (d) $10g$		(a) $400 \ cm^3$ (b) $500 \ cm^3$
5.	If $20ml$ of $0.4NNaOH$ solution completely neutralises $40ml$		
	of a dibasic acid. The molarity of the acid solution is		(c) $450 \ cm^3$ (d) $100 \ cm^3$

UNIVERSAL

78	$\frac{1}{16.25} m \int of 0.25 M N_2 C \int o dw$	tion is diluted with water to a volume		(c) 03	(d) 0.4
	of 500 <i>ml</i> the new concentration	on of the solution is	02	The weight of $H C O$	2HO required to prepare $500ml$ of
		[UPSEAT 2000, 01]	92.	The weight of $H_2 C_2 O_4$.	21120 required to prepare 500ml of
	(a) 0.167 M	(b) $0.0125 M$		0.2N solution is	[EAMCET 1991]
	(c) $0.833 M$	(d) $0.0167 M$		(a) $126g$	(b) 12.6 <i>g</i>
	percent in solution is	feating of granis of a solvent. Its mass		(c) $63g$	(d) $6.3g$
	(a) 0.01	(b) 11.1	93.	In a solution of 7.8 gm	benzene C_6H_6 and $46.0gm$ toluene
	(c) 10	(d) 9		$(C_6H_5CH_3)$, the mole fr	raction of benzene in this solution is
	What is the molality of a solution (C, U, Q) is a solution of the solution	ution which contains 18 g of glucose		(a) 1/6	(b) 1/5
	$(C_6 H_{12} O_6)$ in 250 g of wate	rr [UPSEAT 2001]		(c) $1/2$	(d) $1/3$
	(a) $4.0 m$	(b) $0.4 m$	04	A solution contains	$25\% H_{-}O_{-}^{-}25\% C_{-}H_{-}OH_{-}$ and
	(c) 4.2 <i>m</i> Calculate the molality	(d) $0.8 m$	34.	50% CH COOH by m	$25,011_{2}0,25,002_{2}11_{5}011$ and
	H_2SO_4 (weight/volume). The	e density of the solution is 1.84σ		50% CH $_3$ COOH by ma	ass. The mole fraction of H_2O would be
	/ <i>m</i> / [UPSEAT 2000]			(a) 0.25	(b) 2.5
	(a) 10.43	(b) 20.36		(c) 0.503	(d) 5.03
	(c) 12.05	(d) 14.05	95.	A 5 molar solution of H_2	$_{2}SO_{4}$ is diluted from 1 <i>litre</i> to 10 <i>litres</i> .
	Volume of water needed to m	ix with 10 <i>ml</i> 10 <i>N</i> HNO_3 to get 0.1 <i>N</i>		What is the normality of th $(a) = 0.27$ M	the solution [AFMC 2005] (b) 1 A/
	HNO ₃	[UPSEAT 2003]		(a) $0.25 / v$ (c) $2 N$	(d) 7 N
	(a) 1000 <i>ml</i>	(b) 990 <i>ml</i>	06	Molarity of a solution cont	aining $1 a NaOH$ in 250ml of solution
	(c) 1010 ml	(d) 10 <i>ml</i>	30.	is	
	The sum of the mole fraction	of the components of a solution is		(a) $0.1M$	(b) $1M$
	(a) 0	(b) 1		(a) $0.1M$	(d) 0.001 M
	(c) 2	(d) 4			
	Increasing the temperature of	an aqueous solution will cause	97.	what is molarity of a sol weight of solute and whose	specific gravity is 1.41
	(a) Decrease in molality	(b) Decrease in molarity		weight of boldte and whote	[CPMT 2001; CBSE PMT 2001]
	(c) Decrease in mole fraction	(d) Decrease in % <i>w/w</i>		(a) 15.25	(b) 16.75
	1000 gms aqueous solution	of $CaCO_2$ contains 10 gms of		(c) 18.92	(d) 20.08
	carbonate. Concentration of th	ne solution is [CPMT 1985]	98.	NaClO solution	reacts with H_2SO_3 as,
	(a) 10 <i>ppm</i>	(b) 100 <i>ppm</i>		$NaClO + H_2SO_3 \rightarrow Na$	$ACl + H_2SO_4$. A solution of NaClO
	(c) 1000 <i>ppm</i>	(d) 10000 <i>ppm</i>		used in the above reaction	contained 15g of NaClO per litre. The
	3.65 gms of HCl is dissolved i	n 16.2 <i>gms</i> of water. The mole fraction		normality of the solution w	ould be [AMU 1999]
	of HCI in the resulting solution	(b) 0.2		(a) 0.8	(b) 0.6
	(a) 0.4 (c) 0.2	(d) 0.1		(c) 0.2	(d) 0.33
•	An aqueous solution of gluco	use is 10% in strength. The volume in	99.	A solution contains 1.204	46×10^{24} hydrochloric acid molecules in
	which $1gm$ mole of it is diss	olved will be		one dm^3 of the solution. 7	The strength of the solution is [KCET 2004]
		[AIIMS 1992; Pb. CET 2004]		(a) 6 <i>N</i>	(b) 2 <i>N</i>
	(a) 18 litre	(b) 9 litre		(c) $4 N$	(d) 8 <i>N</i>
	(c) 0.9 litre	(d) 1.8 litre	100.	$10N$ and $\frac{1}{N}$ solution	n is called
•	The concentration of an aq	ueous solution of $0.01M CH_3 OH$		10	
	solution is very nearly equal to	which of the following		(a) De BittSr1992 and decan	normal solution
	(a) $0.01\% CH_3 OH$	(b) $0.01m CH_3 OH$		(b) Normal and decinorma	al solution
	(c) $x_{CH_3OH} = 0.01$	(d) $0.99M H_2O$		(c) inormal and decanorm (d) Decanormal and decin	iai solution
	(e) $0.01N CH_{2}OH$		101	When $71 \text{ am } Na$ CO	(molecular mass 142) dissolves :-
			101.	when $7.1gm 1va_2 SO_4$	(molecular mass 142) dissolves in
•	when $1.80gm$ glucose diss	solve in 90 gm of H_2O , the mole		$100 ml H_2 O$, the molarit	ty of the solution is
	(a) 0.00300	[AFMC 2000]		(a) 20 M	[CBSE PMT 1991; MP PET 1993, 95]
	(c) 0.0199	(d) 0.998		(a) $2.0 M$ (c) $0.5 M$	(d) $0.05 M$
	6.02×10^{20} 1 1 c		102.	Molarity of 4% NaOH so	olution is [EAMCET 1087]
•	0.02×10^{-1} molecules of ure The concentration of urea solu	ea are present in 100 ml of its solution.		(a) $0.1M$	(b) $0.5M$
	(a) 0.02 M	(b) 0.01 M		(c) $0.01M$	(d) $1.0M$
	(c) 0.001 M	(d) 0.1 M	103.	When 6gm urea dissolve	in $180gmH_2O$. The mole fraction of
		$02 \times 10^{23} \text{ mol}^{-1}$		urea is	[CPMT 1988]
	(Avogadro constant, $IV_A = 6$.	02×10 mot)		. 10	10.1
	The number of moles of SO_2	Cl_2 in 13.5 gm is [CPMT 1994]		(a) $\frac{10.1}{10.1}$	(b) $-\frac{10}{10}$
	(a) 0.1	(b) 0.2			-

UNIVERSAL Solution and Colligative properties 165 (c) 0.33 (d) None of these 0.1 10.1 (c) (d) A solution of $CaCl_2$ is 0.5 mol/litre, then the moles of chloride 117. 0.1 10.1 ion in 500*ml* will be 104. The normality of 10% (weight/volume) acetic acid is [MP PMT 1986] [CPMT 1983] (a) 0.25 (b) 0.50 (a) 1 N (b) 10 N (c) 0.75 (d) 1.00 (c) 1.7 N (d) 0.83 N What is the molarity of H_2SO_4 solution, that has a density 1.84 118. Unit of mole fraction is 105. [BHU 1998, 2005] (a) Moles/litre (b) Moles/litre gm/cc at $35^{\circ}C$ and contains solute 98% by weight (c) Moles-litre (d) Dimensionless [AIIMS 2001] (a] 4.18 M Normality of 2M sulphuric acid is (b) 8.14 M 106. (c) 18.4 M (d) 18 M [AIIMS 1991, 92; Pb. CET 2002] (a) 2*N* (b) 4NA certain aqueous solution of $FeCl_3$ (formula mass =162) has a 119. (c) N/2(d) N/4density of 1.1 g/ml and contains $20.0\% FeCl_2$. Molar Molar concentration (M) of any solution = 107. concentration of this solution is [Pb. PMT 1998] (a) 0.028(b) 0.163 No. of moles of solute (a) (c) 1.27 (d) 1.47 Volume of solutionin litre If 0.50 mol of $CaCl_2$ is mixed with 0.20 mol of Na_3PO_4 , the 120. No. of gram equivalent of solute (b) maximum number of moles of $Ca_3(PO_4)_2$ which can be formed, Volume of solutionin litre [Pb. PMT 1998] is No. of moles of solute (a) 0.70 0.50 (c) Mass of solventin kg (c) 0.20 (d) 0.10 No. of moles of any constituent An X molal solution of a compound in benzene has mole fraction 121. (d) Total no. of moles of all constituents of solute equal to 0.2. The value of X is [KCET 1996; DCE 2001] 108. If 5.0 gm of $BaCl_2$ is present in $10^6 gm$ solution, the (a) 14 (b) 3.2 concentration is (d) 2 (c) 4 (a) 1 ppm (b) 5 *ppm* 122. Molecular weight of urea is 60. A solution of urea containing 6g(d) 1000 ppm (c) 50 ppm urea in one litre is [BHU 1996, 99] 109. 1 Molar solution contains [DPMT 2002] (b) 1.5 molar (a) 1 molar (a) 1000*g* of solute (b) 1000g of solvent (c) 0.1 molar (d) 0.01 molar (c) 1 *litre* of solvent (d) 1 *litre* of solution 123. The molar solution of sulphuric acid is equal to To neutralise completely 20 mL of 0.1 M aqueous solution of 110. [MP PET 1999] phosphorous acid (H_3PO_3) , the volume of 0.1 M aqueous KOH N solution (b) 2N solution (a) solution required is [AIEEE 2004] (c) N/2 solution (d) 3N solution (a) 40 mL (b) 20 mL The weight of sodium carbonate required to prepare 500 ml of a (c) 10 *mL* (d) 60 mL 124. semi- normal solution is [JIPMER 1999] 111. On dissolving 1 mole of each of the following acids in 1 litre water, (b) 26.5 g (a) 13.25 g (c) 53 g the acid which does not give a solution of strength 1N is (d) 6.125 g (a) HCl (b) Perchloric acid 200ml of a solution contains 5.85 g dissolved sodium chloride. 125. (c) HNO₃ (d) Phosphoric acid The concentration of the solution will be (Na = 23; Cl = 35.5) [MP PMT 199 112. How many grams of NaOH will be required to neutralize 12.2 (a) 1 molar (b) 2 molar [MP PMT 1999] grams of benzoic acid (c) 0.5 molar (d) 0.25 molar (a) 40 gms (b) 4 gms Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 126. 540 ml solution is [BHU 1999] (c) 16gms (d) 12.2 gms (a) 3.05 M (b) 1.35 M 10ml of conc. H_2SO_4 (18 molar) is diluted to 1 litre. The 113. (c) 2.50 M (d) 4.50 M approximate strength of dilute acid could be [JIPMER 1991] Which one of the following is an extensive property 127. (a) 0.18 N (b) 0.09 N [KCET 1998] (c) 0.36 N (d) 1800 N (a) Molar volume (b) Molarity The normality of 10 lit. volume hydrogen peroxide is 114. (c) Number of moles (d) Mole fraction [Kerala CET (Med.) 2003] 128. Addition of conc. HCl to saturated $BaCl_2$ solution precipitates (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 BaCl₂; because [AMU 2000] (e) 17.8 (a) It follows from Le Chatelier's principle 115. Essential quantity of ammonium sulphate taken for preparation of 1 (b) Of common-ion effect molar solution in 2 litres is lonic product (Ba^{++}) , (Cl^{-}) remains constant in a saturated (b) 264 gm (c) (a) 132 gm solution (c) 198 gm (d) 212 gm (d) At constant temperature, the product (Ba^{2+}) , $(Cl^{-})^2$ remains In a mixture of 1 gm H_2 and 8 gm O_2 , the mole fraction of 116. constant in a saturated solution hydrogen is [Orissa JEE 2002]

(b) 0.5

(a) 0.667

UNIVERSAL SELF SCORER

166 Solution and Colligative properties

129.	How much water is needed to dilute 10 <i>ml</i> of 10 <i>N</i> hydrochloric acid			
	to make it exactly decinorma	(0.1 N)		
	(a) 990 ml	(b) 1000 ml		
	(c) 1010 ml	(d) 100 ml		
130.	The formula weight of H_2S	O_4 is 98. The weight of the acid in		
	400ml of $0.1M$ solution	i is [EAMCET 1987]		
	(a) 2.45 g	(b) 3.92 g		
	(c) $4.90 g$	(d) 9.8 g		
131.	The molarity of pure water is	s		
	[CPM]	۲ 1974, 88, 90; CMC Vellore 1991; RPET 1999;		
	(2) 55 6	NCERT 1974, 76; MP PMT 1999; AMU 2002]		
	(a) 55.0 (c) 100	(d) 18		
132.	The molarity of a $0.2 N Na$	$_2CO_3$ solution will be		
		[MP PMT 1987; Pb. CET 2004]		
	(a) 0.05 M	(b) 0.2 M		
	(c) 0.1 M	(d) 0.4 M		
133.	How many moles of water an	The present in 180 g of water		
	(a) 1 mole	(b) 18 mole		
	(c) 10 mole	(d) 100 mole		
134.	If we take $44g$ of CO_2	and $14g$ of N_2 what will be mole		
	fraction of CO_2 in the mix	ture [KCET 1990]		
	(a) 1/5	(b) 1/3		
	(c) 2/3	(d) 1/4		
135.	What is the volume of 0.1	1 NHCl required to react completely		
	with $1.0g$ of pure calcium	carbonate		
	$(C_{\pi} = 40, C = 12, 1, 0)$	10		
	(Ca = 40, C = 12 and O =	= 16) [KCET 1998]		
	(a) $150 cm^3$	(b) $250 cm^3$ [KCET 1998]		
	(c) 200 cm^3	= 16) [KCET 1998] (b) $250 cm^3$ (d) $100 cm^3$		
136.	(c) $150 cm^{3}$ (c) $200 cm^{3}$ The amount of NaOl	= 16) [KCET 1998] (b) $250 cm^3$ (d) $100 cm^3$ H in gms in $250 cm^3$ of a		
136.	(c) $200 cm^{3}$ (c) $200 cm^{3}$ The amount of <i>NaOI</i> 0.100 M NaOH solution	(b) $250 cm^3$ (d) $100 cm^3$ H in gms in $250 cm^3$ of a would be		
136.	(c) 200 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution (a) 4 gm	(b) $250 cm^3$ (d) $100 cm^3$ <i>H</i> in gms in $250 cm^3$ of a would be (b) $2 gm$		
136.	(c) $150 cm^{3}$ (c) $200 cm^{3}$ The amount of <i>NaOI</i> 0.100 <i>M NaOH</i> solution (a) 4 gm (c) 1 gm	[KCET 1998] (b) 250 cm ³ (d) 100 cm ³ H in gms in 250 cm ³ of a would be (b) 2 gm (d) 2.5 gm		
136. 137.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are compolarity would be	(b) $250 cm^3$ (c) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2 gm$ (g) $2.5 gm$ Intained in one decilitre of solution. Its		
136. 137.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are compolarity would be (a) 4 M	(b) $250 cm^3$ (c) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2 gm$ (g) $2.5 gm$ Intained in one decilitre of solution. Its (b) $2 M$		
136. 137.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution v (a) 4 gm (c) 1 gm 4.0 gm of NaOH are comolarity would be (a) 4 M (c) 1 M	(b) $250 cm^3$ (d) $100 cm^3$ <i>H</i> in gms in $250 cm^3$ of a would be (b) $2 gm$ (d) $2.5 gm$ intained in one decilitre of solution. Its (b) $2 M$ (d) $1.5 M$		
136. 137. 138.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution v (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be	(b) $250 cm^3$ (d) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2.5 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$		
136. 137. 138.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOH 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are composited (a) 4 M (c) 1 M When 90 gm of water is miximumber of moles will be (a) 5	(b) $250 cm^3$ (c) $100 cm^3$ (d) $100 cm^3$ H in gms in $250 cm^3$ of a would be (b) $2 gm$ (d) $2.5 gm$ Intained in one decilitre of solution. Its (b) $2 M$ (d) $1.5 M$ where the solution of a cettic acid. The total (b) 10		
136. 137. 138.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are compolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be (a) 5 (c) 15	(b) $250 cm^3$ (d) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2.5 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$		
136. 137. 138.	(c) $150 cm^3$ (c) $200 cm^3$ The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be (a) 5 (c) 15 A molal solution is one that a	(b) $250 cm^3$ (c) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (d) $2.5 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$		
136. 137. 138. 139.	(c) $150 cm^3$ (c) $200 cm^3$ The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are componentiated (a) 4 M (c) 1 M When 90 gm of water is mixed number of moles will be (a) 5 (c) 15 A molal solution is one that an [NC	(b) $250 cm^3$ (d) $100 cm^3$ H in gms in $250 cm^3$ of a would be (b) $2 gm$ (d) $2.5 gm$ Intained in one decilitre of solution. Its (b) $2 M$ (d) $1.5 M$ we with 300 gm of acetic acid. The total (b) 10 (d) 20 contains one mole of a solute in ERT 1983; DPMT 1983; CPMT 1985; IIT 1986;		
136. 137. 138.	(c) 150 cm^3 (c) 200 cm^3 The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be (a) 5 (c) 15 A molal solution is one that a MP	(b) $250 cm^3$ (d) $100 cm^3$ H in gms in $250 cm^3$ of a would be (b) $2 gm$ (d) $2.5 gm$ intained in one decilitre of solution. Its (b) $2 M$ (d) $1.5 M$ ted with 300 gm of acetic acid. The total (b) 10 (c) 20 contains one mole of a solute in ERT 1983; DPMT 1983; CPMT 1985; IIT 1986; PMT 1987; EAMCET 1990; MP PET 1994, 99]		
136. 137. 138.	(c) $150 cm^3$ (c) $200 cm^3$ The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be (a) 5 (c) 15 A molal solution is one that m [NC MP (a) 1000 gm of the solvent	(b) $250 cm^3$ (d) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2.5 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$		
136. 137. 138.	(c) $200 cm^3$ (c) $200 cm^3$ The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be (a) 5 (c) 15 A molal solution is one that of MP (a) 1000 gm of the solvent (b) One litre of the solvent	(b) $250 cm^3$ (d) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2.5 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$		
136. 137. 138.	(c) $200 cm^3$ (c) $200 cm^3$ The amount of NaOI 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is mix number of moles will be (a) 5 (c) 15 A molal solution is one that [NC MP (a) 1000 gm of the solvent (b) One litre of the solution	(b) $250 cm^3$ (d) $100 cm^3$ H in gms in $250 cm^3$ of a would be (b) $2 gm$ (d) $2.5 gm$ Intained in one decilitre of solution. Its (b) $2 M$ (d) $1.5 M$ ted with 300 gm of acetic acid. The total (b) 10 (d) 20 contains one mole of a solute in ERT 1983; DPMT 1983; CPMT 1985; IIT 1986; PMT 1987; EAMCET 1990; MP PET 1994, 99]		
136. 137. 138. 139.	(c) $200 cm^3$ (c) $200 cm^3$ The amount of NaOH (c) $100 M NaOH$ solution of (a) $4 gm$ (c) $1 gm$ 4.0 gm of NaOH are commolarity would be (a) $4 M$ (c) $1 M$ When 90 gm of water is mix number of moles will be (a) 5 (c) 15 A molal solution is one that models are common to the solution (a) 1000 gm of the solution (b) One litre of the solution (c) 12.4 litres of the solution (d) 22.4 litres of the solution	(b) $250 cm^3$ (d) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2.5 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$ (h) $2.5 gm$ (h) $2.5 gm$ (h) $2.5 gm$ (h) $1.5 M$ (h) $1.5 M$ (h) $1.5 M$ (h) 10 (h) 20 (h) 10 (h) 10 (h) 10 (h) 20 (h) 10 (h) 10 (h) 10 (h) 10 (h) 20 (h) 10 (h) 10 (h) 20 (h) 10 (h) 10 (h) 10 (h) 10 (h) 10 (h) 20 (h) 10 (h) 10 (h) 10 (h) 20 (h) 10 (h) 10		
136. 137. 138. 139.	(c) $200 cm^3$ (c) $200 cm^3$ The amount of NaOH 0.100 M NaOH solution of (a) 4 gm (c) 1 gm 4.0 gm of NaOH are commolarity would be (a) 4 M (c) 1 M When 90 gm of water is miximumber of moles will be (a) 5 (c) 15 A molal solution is one that miximumber of the solution (a) 1000 gm of the solvent (b) One litre of the solvent (c) One litre of the solvent (c) One litre of the solution (d) 22.4 litres of the solution What weight of ferrous am 100 ml of 0.1 normal solution	(b) $250 cm^3$ (c) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2 gm$ (g) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 \text$		
136. 137. 138. 139.	(c) $200 cm^3$ (c) $200 cm^3$ The amount of <i>NaOI</i> 0.100 <i>M NaOH</i> solution of (a) 4 gm (c) 1 gm 4.0 gm of <i>NaOH</i> are commolarity would be (a) 4 <i>M</i> (c) 1 <i>M</i> When 90 gm of water is mixed number of moles will be (a) 5 (c) 15 A molal solution is one that the interval (a) 1000 gm of the solvent (b) One litre of the solvent (c) One litre of the solution (d) 22.4 litres of the solution (d) 20.2 mm	(b) $250 cm^3$ (d) $100 cm^3$ (d) $100 cm^3$ (e) $2 gm$ (f) $2.5 gm$ (g) $2.5 gm$ (h) $2.5 gm$ (k) $2.5 $		

_		
	(c) 1.96 gm (d)	19.6 gm
141.	If 18 gm of glucose $(C_6H_{12}O_6)$	is present in 1000 gm of an
	aqueous solution of glucose, it is said	to be [CPMT 1986]
	(a) 1 molal (b)	1.1 molal
	(c) 0.5 molal (d)	0.1 molal
142.	The number of moles of KCl in 10	000 <i>ml</i> of 3 molar solution is
	(a) 1 (b)	2
	(c) 3 (d)	1.5
143.	The unit of molality is	[Pb. CET 2003]
	(a) Mole per litre (b)	Mole per kilogram
	(c) Per mole per litre (d)	Mole litre
44.	A solution contains 1 mole of water a fraction of water and ethanol will be	nd 4 mole of ethanol. The mole
	(a) 0.2 water + 0.8 ethanol	
	(b) 0.4 water + 0.6 ethanol	
	(c) 0.6 water + 0.8 ethanol	
	(d) 0.8 water + 0.2 ethanol	
-		nortios
_	Comgative pro	
•	The magnitude of colligative propert than solution	ies in all colloidal dispersions is [AMU 1999]
	(a) Lower (b)	Higher
	(c) Both (d)	None
•	Equimolar solutions in the same solve	ent have [AIEEE 2005]
	(a) Same boiling point but different	freezing point
	(b) Same freezing point but differer	t boiling point
	(c) Same boiling and same freezing	points
	(d) Different boiling and different fi	reezing points
	Which of the following is a colligative	property
	[AFMC 1992; CB	SE PMT 1992; MP PMT 1996, 2003]
	(a) Osmotic pressure (b)	Boiling point
	(c) Vapour pressure (d)	Freezing point
•	The colligative properties of a solutio	n depend on
	[CPMT 1984; MP PMT 1	993; UPSEAT 2001; Kerala PMT 2002]
	(a) Nature of solute particles preser	it in it
	(b) Nature of solute particles press	ant in it
	(d) Number of moles of solvent only	
	Which of the following is not a collig	ative property
•	[BHU 1982; CPM	T 1988; DPMT 1985; MP PET 1999]
	(a) Osmotic pressure	
	(b) Elevation in B.P.	
	(c) Vapour pressure	
	(d) Depression in freezing point	
5.	Which of the following is not a collig	ative property
	[MP P	ET 2001; CPMT 2001; Pb. CET 2001]
	(a) Optical activity	
	(b) Elevation in boiling point	
	(c) Osmotic pressure	
	(d) Lowering of vapour pressure	
' .	Colligative properties of a solution de	pends upon
		IMP PMT 1994, 2002

(a) Nature of both solvent and solute

U 199

			Solution and Colligative properties 167
	(b) The relative number of solute and solvent particles		(a) Directly proportional to the mole fraction of the solvent
	(c) Nature of solute only		(b) Inversely proportional to the mole fraction of the solute
	(d) Nature of solvent only		(c) Inversely proportional to the mole fraction of the solvent
8.	Which is not a colligative property		(d) Directly proportional to the mole fraction of the solute
	[CPMT 1984; BHU 1982; Manipal MEE 1995]	7.	When a substance is dissolved in a solvent the vapour pressure of
	(a) Refractive index		the solvent is decreased. This results in
	(b) Lowering of vapour pressure		[NCERT 1981]
	(c) Depression of freezing point		(a) An increase in the b.p. of the solution
	(d) Elevation of boiling point		(b) A decrease in the b.p. of the solvent
9.	Which of the following is a colligative property		(c) The solution having a higher freezing point than the solvent
	[BHU 1990; NCERT 1983; MP PMT 1983; DPMT 1981, 83;		$\left(d\right)$ $% \left(d\right)$ The solution having a lower osmotic pressure than the solvent
	MP PET/PMT 1998; AIIMS 1999; Pb. CET 2000]	8.	If P^{o} and P are the vapour pressure of a solvent and its solution
	(a) Surface tension (b) Viscosity		respectively and N_1 and N_2 are the mole fractions of the solvent
	(c) Osmotic pressure (d) Optical rotation		and solute respectively, then correct relation is
10.	Colligative properties are used for the determination of		(a) $P = P^o N_c$ (b) $P = P^o N_c$
	[Kerala CET (Engg.) 2002]		
	(a) Molar Mass		(c) $P^{o} = P N_{2}$ (d) $P = P^{o} (N_{1} / N_{2})$
	(b) Equivalent weight	9.	An aqueous solution of methanol in water has vapour pressure
	(c) Arrangement of molecules		(a) Equal to that of water
	(d) Melting point and boiling point		(b) Equal to that of methanol
	(d) Both (a) and (b)		(c) More than that of water
n.	What does not change on changing temperature	10	(d) Less than that of water
	[DCE 2001]	10.	equilibrium is called the
	(a) Mole fraction (b) Normality		(a) Limiting vapour pressure
	(c) Molality (d) None of these		(b) Real vapour pressure
			(c) Normal vapour pressure
_	Lowering of vapour pressure		(d) Saturated vapour pressure
		11.	Which solution will show the maximum vapour pressure at 300 K
1.	Vapour pressure of CCl_4 at $25^{\circ}C$ is $143mm$ of $Hg0.5gm$		(a) $1 M C_{12}H_{22}O_{11}$ (b) $1 M CH_3COOH$
	of a non-volatile solute (mol. wt. = 65) is dissolved in		(c) $1 M NaCl_2$ (d) $1 M NaCl_2$
	$100ml CCl_4$. Find the vapour pressure of the solution (Density of	10	The relative lowering of the vancur pressure is equal to the ratio
	$CCl_4 = 1.58 \ g \ / \ cm^2$) [CBSE PMT 1998]	12.	between the number of
	(a) 141.43 <i>mm</i> (b) 94.39 <i>mm</i>		[EAMCET 1991; CBSE PMT 1991]
	(c) 199.34 <i>mm</i> (d) 143.99 <i>mm</i>		(a) Solute moleules and solvent molecules
2.	For a solution of volatile liquids the partial vapour pressure of each		(b) Solute molecules and the total molecules in the solution
	component in solution is directly proportional to		(d) Solvent molecules and the total number of ions of the solution
	(a) Molarity (b) Mole fraction	10	$5cm^3$ of another is added to $100 cm^3$ of water the varian
	(c) Molality (d) Normality	13.	sch of acetone is added to 100 cm of water, the vapour
3.	"The relative lowering of the vapour pressure is equal to the mole		(a) It will be equal to the vapour pressure of pure water
	[MP PET 1997, 2001]		(b) It will be less than the vapour pressure of pure water
	(a) Henry's law (b) Raoult's law		(c) It will be greater than the vapour pressure of pure water
	(c) Ostwald's law (d) Arrhenius's law		(d) It will be very large
4.	The relative lowering of vapour pressure produced by dissolving 71.5	14.	At 300 K , when a solute is added to a solvent its vapour pressure
•	g of a substance in 1000 g of water is 0.00713. The molecular weight		mole fraction of solute will be
	of the substance will be		(a) 0.005 (b) 0.010
	[DPMT 2001]		(c) 0.100 (d) 0.900
	(a) 18.0 (b) 342	15.	A solution has a 1 : 4 mole ratio of pentane to hexane. The vapour
	(c) 60 (d) 180		pressure of the pure hydrocarbons at $20^{\circ}C$ are 440 mmHg for pentane and 120 mmHg for beyond. The mole fraction of pentane in
5.	When mercuric iodide is added to the aqueous solution of potassium		the vapour phase would be
	10010e, the [11 T 1987]		 [CBSE PMT 2005]
	(a) Freezing point is raised		(a) 0.549 (b) 0.200
	(b) Freezing point is lowered		(c) 0.786 (d) 0.478
	(c) Freezing point does not change	10.	vapour pressure of benzene is 75 <i>torr</i> and that of toluene is 22 <i>torr</i> .
	(d) Boiling point does not change		The parial vapour pressure of benzene at $20^{\circ}C$ for a solution
6.	Vapour pressure of a solution is		containing 78 <i>g</i> of benzene and 46 <i>g</i> of toluene in <i>torr</i> is [AIEEE 2005]
	[EAMCET 1988; MP PET 1994]		(a) 50 (b) 25

168 Solution and Colligative properties

	(c)	37.5 (d) 53.5		
17.	The	vapour pressure lowering caused by the	addition of 100 g of 26	8.
	suci	rose(molecular mass = 342) to 1000 g of	water if the vapour	
	pres	ssure of pure water at $25^{\circ}C$ is 23.8 mm l	Hg	
			[RPET 1999]	
	(a)	1.25 <i>mm Hg</i> (b) 0.125 <i>m</i>	m Hg	
	(c)	1.15 <i>mm Hg</i> (d) 00.12 <i>m</i>	m Hg 2	9.
18.	Wh	ich of the following is incorrect	[] & K 2005]	
	(a)	Relative lowering of vapour pressure is ind	lependent	
	(b)	The vapour pressure is a colligative proper	rty	
	(c)	Vapour pressure of a solution is low pressure of the solvent	er than the vapour	
	(d)	The relative lowering of vapour p propertional to the original pressure	ressure is directly	
19.	Am exei	ong the following substances the lowest rted by	vapour pressure is	
	(a)	Water (b) Mercury	,	_
	(c)	Kerosene (d) Rectified	l spirit 30	D.
20.	Acc	ording to Raoult's law the relative lowering	of vapour pressure of	
	a so	olution of volatile substance is equal to		
		[CBS	E PMT 1995; BHU 2001]	
	(a)	Mole fraction of the solvent		
	(b)	Mole fraction of the solute		
	(c)	Weight percentage of a solute	31	l .
	(d)	Weight percentage of a solvent		
21.	Wh	en a substance is dissolved in a solvent, th	e vapour pressure of	
	the	solvent is decreased. This results in	DAT 1999 NCEPT 1991]	
	(a)	An increase in the bailing point of the colu	PMT 1983; NCERT 1981]	
	(a) (b)	A degrasse in the boiling point of the solu		
	(0)	The solution baying a higher freezing point	t than the columnt	
	(d)	The solution having a lower osmotic press	ure than the solvent	
7 7	The	vanour pressure of a liquid depends on		
22.	(a)	Temperature but not on volume	3.	6.
	(b)	Volume but not on temperature		
	(c)	Temperature and volume		
	(d)	Neither on temperature nor on volume		
23.	Whi	ich one of the statements given below cor	cerning properties of	
	solu	itions, describes a colligative effect [AIIMS 2	003]	
	(a)	Boiling point of pure water decreases by the	ne addition of ethanol	
	(b)	Vapour pressure ot pure water decrease nitric acid	s by the addition of	
	(c)	Vapour pressure of pure benzene decreas naphthalene	es by the addition of	
	(d)	Boiling point of pure henzene increases by	the addition 3	3.

- (d) Boiling point of pure benzene increases by the addition of toluene
- 24. The atmospheric pressure is sum of the

[Kerala CET (Med.) 2002]

- (a) Pressure of the biomolecules
- (b) Vapour pressure of atmospheric constituents
- (c) Vapour pressure of chemicals and vapour pressure of volatiles
- (d) Pressure created on to atmospheric molecules
- 25. The vapour pressure of pure liquid A is 0.80 atm. On mixing a nonvolatile B to A, its vapour pressure becomes 0.6 atm. The mole [MP PET 2003] fraction of B in the solution is

(a)	0.150	(b)	0.25
(c)	0.50	(d)	0.75

- Lowering of vapour pressure is highest for 26. [BHU 1997]
 - (b) 0.1M glucose (a) Urea
 - (c) $0.1 M Mg SO_4$ (d) $0.1 M BaCl_2$
- An aqueous solution of glucose was prepared by dissolving 18 g of 27. glucose in 90 g of water. The relative lowering in vapour pressure is [KCET 2002]
 - (a) 0.02 (b) 1

- (d) 180 (c) 20 "Relative lowering in vapour pressure of solution containing nonvolatile solute is directly proportional to mole fraction of solute" Above statement is [AFMC 2004]
 - (a) Henry law (b) Dulong and Petit law
- (c) Raoult's law (d) Le-Chatelier's principle
- An ideal solution was obtained by mixing methanol and ethanol. If the partial vapour pressure of methanol and ethanol are 2.619 kPa and 4.556 kPa respectively, the composition of the vapour (in terms of mole fraction) will be

[Ph. PMT 1998]

- (a) 0.635 methanol, 0.365 ethanol
- (b) 0.365 methanol, 0.635 ethanol

- The vapour pressure of two liquids P and Q are 80 and 600 torr, respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be
 - [CBSE PMT 2005]
 - (a) 140 torr
 - (c) 68 torr
 - The vapour pressure of benzene at a certain temperature is 640 mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600mm of Hg. What is the molecular weight of solid substance

[CBSE PMT 1999; AFMC 1999]

(a)	49.50	(b)	59.6
(c)	69.5	(d)	79.8

Which one of the following is the expression of Raoult's law

(a)
$$\frac{p - p_s}{p} = \frac{n}{n + N}$$
 (b) $\frac{p_s - p}{p} = \frac{N}{N + n}$

(c)
$$\frac{p - p_s}{p_s} = \frac{N}{N - n}$$
 (d) $\frac{p_s - p}{p_s} = \frac{N - n}{N}$

- p = vapour pressure of pure solvent
- p_s = vapour pressure of the solution
- n = number of moles of the solute
- N = number of moles of the solvent

Which has maximum vapour pressure [DPMT 2001]

- (a) *HI* (b) HBr
- (c) HCl (d) *HF*
- When a non-volatile solute is dissolved in a solvent, the relative 34. lowering of vapour pressure is equal to [BHU 1979; IIT 1983]
 - (a) Mole fraction of solute
 - (b) Mole fraction of solvent
 - (c) Concentration of the solute in grams per litre
 - (d) Concentration of the solute in grams 100 ml
- 35. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P_o , the vapour pressure of solution is [DCE 2000] (b) 1.10 P_o (a) 0.10 P_o
 - (d) 0.99 P_o (c) 0.90 P_o
- The vapour pressure of water at $20^{\circ}C$ is 17.54 *mm*. When 20g of 36. a non-ionic, substance is dissolved in 100g of water, the vapour

- (d) 72 torr
- (b) 20 torr
- (c) 0.574 methanol, 0.326 ethanol (d) 0.173 methanol, 0.827 ethanol

			Solution and Colligative properties 169
	pressure is lowered by 0.30 mm. What is the molecular weight of the substances [UPSEAT 2001]	1.	Which of the following liquid pairs shows a positive deviation from Raoult's law
	(a) 210.2 (b) 206.88		[MP PET 1993; UPSEAT 2001; AIEEE 2004]
	(c) 215.2 (d) 200.8		(a) Water-nitric acid (b) Benzene-methanol
37.	In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298 K . The vapour pressure of the solution was found to be 192.5 <i>mm Hg</i> . The molecular weight of the	2.	(c) Water-hydrochloric acid (d) Acetone-chloroform Which one of the following is non-ideal solution
	solute is (vapour pressure of acetone = 195 <i>mm Hg</i>)		(a) Benzene + touene (1) \dots (1) (1) \dots (1)
	[CPMT 200]; CBSE PMT 2001; P6 CET 2002]		(b) n -hexane + n -heptane
	(a) 25.24 (b) 35.24		(c) Ethyl bromide + ethyl iodide
-0	(c) 45.24 $(d) 55.24$		(d) $CCl_4 + CHCl_3$
38.	How many grams of CH_3OH should be added to water to	3.	A non ideal solution was prepared by mixing 30 ml chloroform and
	prepare $150ml$ solution of $2MCH_3OH$ [CBSE PMT 1994]		50 ml acetone. The volume of mixture will be [Pb. CET 2003]
	(a) 9.6 (b) 2.4		(a) > 80 ml (b) < 80 ml
	(c) 9.6×10^3 (d) 2.4×10^3		$(c) = 80 ml \qquad (d) \ge 80 ml$
39.	The vapour pressure of a solvent decreased by $10mm$ of mercury.	4.	Which pair from the following will not form an ideal solution
0.	when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole		(a) $CCl_4 + SiCl_4$ (b) $H_2O + C_4H_9OH$
	fraction of the solvent, if decrease in the vapour pressure is to be		(c) $C_2H_5Br + C_2H_5I$ (d) $C_6H_{14} + C_7H_{16}$
	20 <i>mm</i> of mercury	5.	An ideal solution is that which [MP PMT 1996]
	[CBSE PMT 1998]		(a) Shows positive deviation from Raoult's law
	(a) 0.8 (b) 0.6		(b) Shows negative deviation from Raoult's law
	(c) 0.4 (d) 0.2		(c) Has no connection with Raoult's law
40.	For a dilute solution, Raoult's law states that		(d) Obeys Raoult's law
	[CPMT 1987; BHU 1979; ITT 1985; MP PMT 2004;	6.	Which one of the following mixtures can be separated into pure
	(a) The lowering of vapour pressure is equal to mole fraction of		components by fractional distillation [CPMT 1987] (a) Benzene – toluene (b) Water – ethyl alcohol
	(b) The relative lowering of vanour pressure is equal to male		(c) Water – nitric acid (d) Water – hvdrochloric acid
	fraction of solute	7.	All form ideal solutions except [DPMT 1983: MP PET 1997]
	(c) The relative lowering of vapour pressure is proportional to the amount of solute in solution	,.	(a) C_2H_5Br and C_2H_5I (b) C_6H_5Cl and C_6H_5Br
	$\left(d\right)$ The vapour pressure of the solution is equal to the mole fraction of solvent	0	(c) C_6H_6 and $C_6H_5CH_3$ (d) C_2H_5I and C_2H_5OH
41.	The vapour pressure of a solvent A is 0.80 atm When a non-volatile	0.	[MP DET 2002]
	substance <i>B</i> is added to this solvent its vapour pressure drops to 0.6 <i>atm.</i> What is mole fraction of <i>B</i> in solution		(a) It [MR RATE 2000; 91] as (b) $\Delta H_{mix} = 0$
	(a) 0.25 (b) 0.50		(c) $\Delta V_{min} = 0$ (d) All of these
42.	(c) 0.75 (d) 0.90 Determination of correct molecular mass from Raoult's law is applicable to	9.	When two liquid A and B are mixed then their boiling points becomes greater than both of them. What is the nature of this
	(a) An electrolyte in solution		solution
	(b) A non-electrolyte in a dilute solution		(a) Ideal solution
	(c) A non-electrolyte in a concentrated solution		(b) Positive deviation with non ideal solution
	(d) An electrolyte in a liquid solvent		(d) Normal solution
43.	If two substances A and B have $P_A^0:P_B^0=1:2$ and have mole	10.	In mixture A and B components show $-ve$ deviation as
	fraction in solution 1 : 2 then mole fraction of A in vapours (a) 0.33 (b) 0.25		[DPMT 2005] [AIEEE 2002] (a) $\Delta V_{\rm mix} > 0$
	(c) 0.52 (d) 0.2		(b) $\Delta H_{\rm mix} < 0$
44.	A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water.		 (c) <i>A-B</i> interaction is weaker than <i>A-A</i> and <i>B-B</i> interaction (d) <i>A-B</i> interaction is strong than <i>A-A</i> and <i>B-B</i> interaction
	There is the depression in weight of solution wt by 2.5 gm and in	11.	In which case Raoult's law is not applicable
	of solute IKerala CET 2005		(a) 1 <i>M NaCl</i> (b) 1 M urea
	(a) 50 (b) 180		(c) 1 M glucose (d) 1 M sucrose
	(c) 100 (d) 25	12.	A solution that obeys Raoult's law is [EAMCET 1993]
	(e) 51		(a) Normal (b) Molar
			(c) Ideal (d) Saturated
	Ideal and Non-Ideal solution	13.	An example of near ideal solution is

(a) n -heptane and n -hexane

UNIVERSAL SELF SCORE

15.

170 Solution and Colligative properties

 $CH_{3}COOH + C_{5}H_{5}N$ (b)

- (c) $CHCl_3 + (C_2H_5)_2 O$
- (d) $H_2O + HNO_3$
- A mixture of liquid showing positive deviation in Raoult's law is 14.
 - (a) $(CH_3)_2 CO + C_2 H_5 OH$ (b) $(CH_3)_2 CO + CHCl_3$

(c)
$$(C_2H_5)_2O + CHCl_3$$
 (d) $(CH_3)_2CO + C_6H_5NH_2$

- All form ideal solution except [UPSEAT 2001]
- (a) C_2H_5Br and C_2H_5I (b) C_2H_5Cl and C_6H_5Br
- (c) C_6H_6 and $C_6H_5CH_3$ (d) C_2H_5I and C_2H_5OH
- Formation of a solution from two components can be considered as 16. (i) Pure solvent \rightarrow separated solvent molecules ΔH
 - (ii) Pure solute \rightarrow separated solute molecules ΔH

(iii) Separated solvent and solute molecules \rightarrow solution ΔH Solution so formed will be ideal if

- (a) $\Delta H_{\text{soln}} = \Delta H_3 \Delta H_1 \Delta H_2$
- (b) $\Delta H_{\text{soln}} = \Delta H_1 + \Delta H_2 + \Delta H_3$
- (c) $\Delta H_{\text{soln}} = \Delta H_1 + \Delta H_2 \Delta H_3$
- (d) $\Delta H_{\text{soln}} = \Delta H_1 \Delta H_2 \Delta H_3$
- Identify the mixture that shows positive deviation from Raoult's law [Kerala CET (E(gg.) 2002]enthalpy of mixing is zero 17. (a) $CHCl_3 + (CH_3)_2 CO$ (b) $(CH_3)_2 CO + C_6 H_5 NH_2$
 - (d) $(CH_3)_2 CO + CS_2$ (c) $CHCl_3 + C_6H_6$
 - (e) $C_6H_5N + CH_3COOH$
- When acetone is added to chloroform, then hydrogen bond is 18. formed between them.These liquids show
 - (a) Positive deviation from Raoult's law
 - (b) Negative deviation from Raoult's law
 - (c) No deviation from Raoult's law
 - (d) Volume is slightly increased
- Which of the following is true when components forming an ideal 19. solution are mixed [AMU 2000]

(d) $\Delta H_m = \Delta V_m = 1$

(a)
$$\Delta H_m = \Delta V_m = 0$$
 (b) $\Delta H_m > \Delta V_m$

(c) $\Delta H_m < \Delta V_m$

20.

- The liquid pair benzene-toluene shows [MP PET 1995]
- (a) Irregular deviation from Raoult's law
 - (b) Negative deviation from Raoult's law
 - (c) Positive deviation from Raoult's law
- (d) Practically no deviation from Raoult's law
- The solution which shows negative or positive deviation by Raoult's 21. law, is called
 - (b) Real solution (a) Ideal solution
 - (c) Non-ideal solution (d) Colloidal solution
- Which of the following does not show positive deviation from 22. Raoult's law [MP PMT 2000]
 - (a) Benzene-Chloroform
 - (b) Benzene-Acetone
 - (c) Benzene-Ethanol (d)
- Benzene-Carbon tetrachloride Which of the following mixture shows positive deviation by ideal 23. behaviour
 - (a) $CHCl_3 + (CH_3)_2 CO$ (b) $C_6H_6 + C_6H_5CH_3$
 - (c) $H_2O + HCl$ (d) $CCl_4 + CHCl_3$
- Which property is not found in ideal solution 24.
 - (a) $P_A \neq P_A^o \times X_A$ (b) $\Delta H_{mix} \neq 0$ (c) $\Delta V_{mix} \neq 0$ (d) All of these
- Which of the following is not correct for ideal solution 25

- (a) $\Delta S_{mix} = 0$ (b) $\Delta H_{mix} = 0$
- (d) $\Delta V_{mix} = 0$ (c) It obeys Raoult's law
- Which of the following does not show negative deviation from 26. Raoult's law [MP PMT 2001]
 - (a) Acetone-Chloroform (b) Acetone-Benzene
 - (c) Chloroform-Ether (d) Chloroform-Benzene
- A mixture of benzene and toluene forms [MP PMT 1993] 27.
 - (b) Non-ideal solution (a) An ideal solution
 - Suspension (d) Emulsion
- 28. Which of the following is an ideal solution
 - (a)

(c)

30.

- Water + ethanol [**CBSE PMT 2003**] Chloroform + carbon tetrachloride (b)
- Benzene + toluene (c)
- Water + hvdrochloric acid (d)
- 29. When ethanol mixes in cyclohexane; cyclohexane reduces the intermolecular forces between ethanol molecule. In this, liquid pair shows
 - (a) Positive deviation by Raoult's law
 - Negative deviation by Raoult's law (b)

Liquids A and B form an ideal solution [AIEEE 2003]

- (b) The entropy of mixing is zero
- The free energy of mixing is zero (c)
- (d) The free energy as well as the entropy of mixing are each zero

Azeotropic mixture

- $(b.p.100^{\circ}C)$ 1. The azeotropic mixture of water and $HCl(b.p.85^{\circ}C)$ boils at $108.5^{\circ}C$. When this mixture is distilled it is possible to obtain [IIT 1981]
 - (a) Pure HCl
 - (b) Pure water
 - (c) Pure water as well as pure HCl
 - (d) Neither HCl nor H_2O in their pure states
- An azeotropic solution of two liquids has boiling point lower than 2. either when it [NCERT 1978; IIT 1981]
 - (a) Shows a negative deviation from Raoult's law
 - Shows no deviation from Raoult's law (b)
 - (c) Shows positive deviation from Raoult's law
 - (d) Is saturated
- з. A liquid mixture boils without changing constituent is called
 - [DPMT 1982; CPMT 1987]

[CPMT 1982]

- (a) Stable structure complex
- (b) Binary liquid mixture
- Zeotropic liquid mixture (c)
- (d) Azeotropic liquid mixture
- Azeotropic mixture are 4.
 - (a) Constant temperature boiling mixtures
 - (b) Those which boils at different temperatures
 - Mixture of two solids (c)
 - (d) None of the above
- 5. A mixture of two completely miscible non-ideal liquids which distil as such without change in its composition at a constant temperature as though it were a pure liquid. This mixture is known as
 - (a) Binary liquid mixture (b) Azeotropic mixture

[]IPMER 1997]

No deviation by Raoult's law (c) (d) Decrease in volume

				Solut
	(c) Eutectic mixture	(d) Ideal mixture	10.	Two solu If liquid
0	smosis and Osmotic	pressure of the solution		(a) A is
				(b) A is
1.	If 3 gm of glucose (mol. wt.	180) is dissolved in 60 <i>gm</i> of water at		(c) Bot
	$15^{\circ}C$. Then the osmotic pr	ressure of this solution will be	n.	A 5% s
	(a) 0.34 atm	(b) 0.05 atm		solution
2	(c) 0.57 atm	(u) 5.57 attri		(a) 34.2
	(M = 342) which is isoton	ic with a solution containing $6 gms$ of		(c) 68.
	urea $(M = 60)$ per <i>litre</i> is		12.	Which of
		[Orissa PMT 1989]		(a) Rela
	(a) 3.42	(b) 34.2		(b) Elev
	(c) 5.7	(d) 19		(c) Dep
3.	Osmotic pressure is 0.0821	<i>atm</i> at temperature of $300 K$. Find		(d) Osr
	concentration in mole/litre	[Roorkee 1990]		(e) Ras
	(a) 0.033	(b) 0.066	13.	The aver
	(c) 0.33×10^{-2}	(d) 3		What is t used in t
4.	Osmotic pressure of a solution	on containing 0.1 mole of solute per litre		(a) 0.1
	at $2/3K$ is (in <i>atm</i>)	[CPMT 1988]		(c) 0 f
	(a) $\frac{0.1}{1} \times 0.08205 \times 273$	(b) $0.1 \times 1 \times 0.08205 \times 273$	14	(c) 0.0
	l		14.	dissolving
	(c) $\frac{1}{0.1} \times 0.08205 \times 273$	(d) $\frac{0.1}{1} \times \frac{273}{0.08205}$		pressure
5.	A solution contains non-vo	latile solute of molecular mass M_n .		(a) 6.02
	Which of the following can	be used to calculate molecular mass of		(c) 4.04
	the solute in terms of osmo	otic pressure (m = Mass of solute, V =	15.	Blood ha
	Volume of solution and $\pi =$	Osmotic pressure)		(a) Not
	(a) $Mp = \left(\frac{m}{m}\right) VRT$	(b) $Mp = \left(\frac{m}{m}\right)\frac{RT}{m}$		(D) Sati
	(π)	$(V) \pi$		(d) Sati
	(c) $Mn = \left(\frac{m}{m}\right) \frac{\pi}{m}$	(d) $Mp = \left(\frac{m}{m}\right) \pi RT$	16.	lf 20 g
	(V) RT	$(0) m_{P} (V)$		pressure
6.	The osmotic pressure of a	5% (<i>wt/vol</i>) solution of cane sugar at		then mo
	$150^{\circ}C$ is	[AMU 1999]		()
	(a) 2.45 <i>atm</i>	(b) 5.078 <i>atm</i>		(a) 100
	(c) 3.4 <i>atm</i>	(d) 4 <i>atm</i>	17.	The osm
7.	The relationship between os	motic pressure at $273 K$ when $10g$		a solutio
	glucose $(P_1), 10g$ urea (P_2)) and $10g$ sucrose (P_3) are dissolved		(a) = 1.64
	in 250 <i>ml</i> of water is	[CBSE PMT 1996]		(a) 1.04 (c) 2.06
	(a) $P_1 > P_2 > P_3$	(b) $P_3 > P_1 > P_2$	18.	Blood is
	(c) $P_2 > P_1 > P_3$	(d) $P_2 > P_3 > P_1$		(a) 0.16
8.	In osmosis	[DPMT 1985]		(c) 50
	(a) Solvent molecules mov concentration	e from higher concentration to lower	19.	Which in The cher
	(b) Solvent molecules move	from lower to higher concentration		(a) Cal
	(c) Solute molecules move	from higher to lower concentration		(c) Nic
	(d) Solute molecules move	from lower to higher concentration	20.	The osmo
9.	Semipermeable membrane is	that which permits the passage of [BHU 197	9; CPMT	19(77) 842.90
	(a) Solute molecules only (b) Solvent molecules and		21.	Osmotic
	(D) DOIVENT HOLECULES UNIV		-	· · · ·

- Solute and solvent molecules both (c)
- Neither solute nor solvent molecules (d)

notic pressure t's method rage osmotic pressure of human blood is 7.8 bar at $37^{o}C$. the concentration of an aqueous NaCl solution that could be he blood stream [AIIMS 2004] 6 mol/L(b) 0.32 mol / L 50 mol/L(d) $0.45 \ mol/L$ on of sucrose(molar mass = 342 *g/mol*) is prepared by g 68.4 g of it per *litre* of the solution, what is its osmotic $(R = 0.082 \ lit. \ atm. k^{-1} \ mol^{-1})$ at 273k [UPSEAT 2001] 4.92 *atm* 5.32 atm [CPMT 1994] h GBSE PM Te2002 Ition urated NaCl solution urated KCl solution urated solution of a 1 : 1 mixture of *NaCl* and *KCl* of a solute was dissolved in 500 *ml* of water and osmotic of the solution was found to be 600 mm of Hg at $15^{\circ}C$,

- f the following colligative properties can provide molar mass ns (or polymers or colloids) with greater precision[Kerala PMT 2004] ative lowering of vapour pressure
 - ation of boiling point
 - pression in freezing point

tion and Colligative properties 171

- itions A and B are separated by semi- permeable membrane. flows form A to B then less concentrated than B
 - more concentrated than B

 - h have same concentration

NP 9FM # 958861

olution of canesugar (mol. wt. =342) is isotonic with 1% of a substance X . The molecular weight of X is

- 2 (b) 171.2
- 4 (d) 136.8

\cdot mass M_n .		(a) 6.02 <i>atm</i>	(b) -
cular mass of		(c) 4.04 <i>atm</i>	(d)
of solute, $V =$	15.	Blood has been found to be	e isotonic wit

lecular weight of the solute is 2004]

									[BH	U 200	4]
(a)	1000			(b) 1	200					
(c)	1400			(d	l) 1	1800					
The	osmotic	pressure	of 0.4%	urea	solı	ıtion	is 1.66	5 atm	and.	that	of
							-				

on of suger of 3.42 % is 2.46 atm. When both the solution d then the osmotic pressure of the resultant solution will be[MP PMT 1 (b) 2.46 atm l atm (d) 0.82 atm 6 atm

isotonic with [DCE 2000] M NaCl (b) Conc. NaCl

% NaCl (d) 30 % NaCl

norganic precipitate acts as semipermeable membrane **or** nical composition of semipermeable membrane is[CPMT 1984, 90; MP P (b) Barium oxalate

- cium sulphate kel phosphate
- otic pressure of 1m solution at $27^{\circ}C$ is [CPMT 1999]

6; MPr/PMT 1994]

- (d) Copper ferrocyanide
- - pressure of a solution can be measured quickly and accurately by
 - (a) Berkeley and Hartley's method
- (b) 24.6 atm (d) 12.1 atm
- atm
 - - [JIPMER 1991; CPMT 1983]

ELF SCO

[MH CET 2000]

23.

172 Solution and Colligative properties

Morse's method (b)

- (c) Pfeffer's method
- (d) De Vries method
- The solution in which the blood cells retain their normal form are 22 with regard to the blood [CBSE PMT 1991]
 - (a) lsotonic (b) Isomotic
 - (c) Hypertonic (d) Equinormal

The osmotic pressure of a solution is given by the relation [CPMT 1983, 84, 87, 93, 94]

(b) $P = \frac{CT}{R}$ (a) $P = \frac{RT}{C}$ (c) $P = \frac{RC}{T}$ (d) $\frac{P}{C} = RT$

The osmotic pressure of a solution is directly proportional to 24.

- (a) The molecular concentration of solute
- (b) The absolute temperature at a given concentration
- The lowering of vapour pressure (c)
- All of the above (d)
- 25. What would happen if a thin slice of sugar beet is placed in a concentrated solution of NaCl [CMC Vellore 1986]
 - (a) Sugar beet will lose water from its cells
 - (b) Sugar beet will absorb water from solution
 - (c) Sugar beet will neither absorb nor lose water
 - (d) Sugar beet will dissolve in solution
- 26. The osmotic pressure of a dilute solution is given by

[MP PMT 1987]

(a)
$$P = P_o x$$
 (b) $\pi V = nRT$

(c)
$$\Delta P = P_o N_2$$
 (d) $\frac{\Delta P}{P_o} = \frac{P_o - P}{P_o}$

- Which statement is wrong regarding osmotic pressure (P), volume 27. (V) and temperature (T) [MP PMT 1985]
 - (a) $P \propto \frac{1}{V}$ if T is constant
 - (b) $P \propto T$ if V is constant
 - (c) $P \propto V$ if T is constant
 - (d) PV is constant if T is constant
- 28. Isotonic solutions have
- [DPMT 1984; MP PMT 1986]
- (a) Equal temperature
- (b) Equal osmotic pressure (d) Equal amount of solute
- (c) Equal volume Which of the following associated with isotonic solutions is not
- 29. [AMU 2002] correct
 - (a) They will have the same osmotic pressure
 - (b) They have the same weight concentrations
 - Osmosis does not take place when the two solutions are (c) separated by a semipermeable membrane
 - They will have the same vapour pressure (d)
- Isotonic solution have the same 30.

[EAMCET 1979; JIPMER 1991, 2002; AFMC 1995; MP PMT 2002]

- (a) Density (b) Molar concentration
- (c) Normality (d) None of these
- 31. A 0.6% solution of urea (molecular weight = 60) would be isotonic with [NCERT 1982; DCE 2002]
 - (a) 0.1M glucose (b) 0.1*M KCl*
 - (d) 0.6% KCl solution (c) 0.6% glucose solution
- The value of osmotic pressure of a 0.2 M aqueous solution at 293K32. [AMU 2002] is

- 8.4 *atm*
- (c) 4.8 atm (d) 4.0 *atm*

Diffusion of solvent through a semi permeable membrane is called 33.

(a) Diffusion

(a)

- (d) Plasmolvsis (c) Active absorption
- 34. Solutions having the same osmotic pressure under a given set of conditions are known as [BHU 1979; EAMCET 1979;
 - CPMT 1990; MP PMT 1999; AFMC 1999, 2001]
 - (a) Hypertonic
 - (c) Normal (d) Isotonic
- 35. At low concentrations, the statement that equimolal solutions under a given set of experimental conditions have equal osmotic pressure is [EAMCET 1979: BHU 1979] true for
 - (a) All solutions
 - (h) Solutions of non-electrolytes only
 - Solutions of electrolytes only (c)
 - (d) None of these

36.

- Which one of the following would lose weight on exposure to atmosphere [NCERT 1975]
 - (a) Concentrated H_2SO_4
 - (b) Solid NaOH
 - A saturated solution of CO_2 (c)
 - (d) Anhydrous sodium carbonate
- 37. The molecular weight of NaCl determined by osmotic pressure method will be
 - (a) Same as theoritical value
 - (b) Higher than theoritical value
 - (c) Lower than theoritical value
 - (d) None of these
- 38. The osmotic pressure of solution increases, if
 - Temperature is decreased (a)
 - (b) Solution concentration is increased
 - (c) Number of solute molecules is increased
 - (d) Volume is increased
- 39. At the same temperature, following solution will be isotonic
 - [MP PMT 1985]

[CPMT 2004]

[CPMT 1985, 87, 91]

- 3.24 gm of sucrose per litre of water and 0.18 gm glucose per (a) litre of water
- 3.42 gm of sucrose per litre and 0.18 gm glucose in 0.1 litre (b) water
- 3.24 gm of sucrose per litre of water and 0.585 gm of sodium (c) chloride per litre of water
- (d) 3.42 gm of sucrose per litre of water and 1.17 gm of sodium chloride per litre of water
- The osmotic pressure of a decinormal solution of $BaCl_2$ in water 40. is
 - (a) Inversely proportional to its celsius temperature
 - (b) Inversely proportional to its absolute temperature
 - (c) Directly proportional to its celsius temperature
 - (d) Directly proportional to its absolute temperature
 - Blood cells will remain as such in
 - (a) Hypertonic solution (b) Hypotonic solution
 - (c) Isotonic solution (d) None of these
 - The osmotic pressure of a dilute solution is directly proportional to [MP PMT 1987]
 - (a) Diffusion rate of the solute
 - lonic concentration (b)
 - (c) Elevation of B.P.

41.

42.

the

(b) 0.48*atm*

(b) Osmosis

(b) Hypotonic

Solution an	d Colligative	properties	173

and the second second second	
UNIVERSAL	

40	(d) Flow of solvent from a concentrated to a dilute solution The competie pressure in atmospheres of 10% solution of concentration	52.	If molecular weight of compound is increased then sensitivity is decreased in which of the following methods
43.	60° C		[DCE 2001]
			(a) Elevation in boiling point(b) Viscosity
	(a) 724 (b) 824		(c) Osmosis (d) Dialysis
	(c) 8.21 (d) 7.21	53.	If solubility of $NaCl$ at $20^{\circ}C$ is 35 gm per 100 gm of water.
44.	membrane [NCERT 1978]		Then on adding 50 gm of $NaCl$ to the same volume at same temperature the salt remains undissolved is
	(a) Fructose (b) Glycogen		(a) 15 gm (b) 20 gm
	(c) Haemoglobin (d) Catalase		(c) 50 gm (d) 35 gm
45.	Two solutions of KNO_3 and CH_3COOH are prepared separately.	54.	Which of the following associated with isotonic solution is not
	Molarity of both is $0.1M$ and osmotic pressures are P_1 and P_2		correct
	respectively. The correct relationship between the osmotic pressures is [CPMT 1983, 84; Pb CET 2004]		(a) They will have the same osmotic pressure (b) They have the same weight concentration
	(a) $P_2 > P_1$ (b) $P_1 = P_2$		 (c) Osmosis does not take place when the two solutions are separated by a semipermeable membrane
	(a) $P > P$ (d) $P_1 = P_2$		(d) They will have the same vapour pressure
	(c) $I_1 > I_2$ (d) $\frac{P_1 + P_2}{P_1 + P_2} = \frac{P_1 + P_2}{P_1 + P_2}$	55.	If osmotic pressure of a solution is $2atm$ at $273K$, then at
46.	The osmotic pressure of a dilute solution of a non-volatile solute is		546K [JPPMEBs 1999] pressure is
	(a) Directly proportional to its temperature on the centigrade scale		(a) 0.5 <i>atm</i> (b) 1 <i>atm</i>
	(b) Inversely proportional to its temperature on the Kelvin scale		(c) 2 <i>atm</i> (d) 4 <i>atm</i>
	(c) Directly proportional to its temperature on the Kelvin scale	56.	In osmosis reaction, the volume of solution
	(d) Inversely proportional to its temperature on the centigrade		(a) Decreases slowly (b) Increases slowly
	scale		(c) Suddenly increases (d) No change
47.	Osmotic pressure of a urea solution at $10^{\circ}C$ is 500 mm .	57.	As a result of osmosis the volume of solution
	Osmotic pressure of the solution become 105.3 mm. When it is		[JIPMER 2000]
	diluted and temperature raised to $25^{\circ}C$. The extent of dilution is		(a) Increases (c) Decreases
	(a) 6 Times (b) 5 Times		(c) Remains constant (d) Increases or decreases
18	(c) 7 Times (d) 4 Times If a $0.1M$ solution of glucose (mol. wt. 180) and 0.1 molar	58.	A solution of urea contain 8.6 gm/litre (<i>mol. wt.</i> 60.0). It is isotonic with a 5% solution of a non-volatile solute. The molecular weight of the solute will be [MP PMT 1986]
40.	solution of urea (mol. wt. 60) are placed on the two sides of a		(a) 3489 (b) 3489
	semipermeable membrane to equal heights, then it will be correct to		(c) 3489 (d) 8612
	say [CBSE PMT 1992]	59.	One mole each of urea, glucose and sodium chloride were dissolved
	(a) There will be no net movement across the membrane		in one litre of water Equal osmotic pressure will be produced by
	(b) Glucose will flow across the membrane into urea solution		solutions of [MH CET 1999]
	(c) Urea will flow across the membrane into glucose solution		(b) Urea and glucose
	(d) Water will flow from urea solution into glucose solution		(c) Sodium chloride and urea
49.	At constant temperature, the osmotic pressure of a solution	6.	(d) None of these
	[CPMT 1986]	60.	Which of the following aqueous solutions produce the same osmotic pressure [Roorkee 1999]
	(a) Directly proportional to the concentration		(a) 0.1 <i>M</i> NaCl solution
	(c) Directly proportional to the square of the concentration		(b) 0.1 <i>M</i> glucose solution
	(d) Directly proportional to the square root of the concentration		(c) 0.6 g urea in 100 m/ solution (d) 10 g of a pap electrolyte solute (Y) in 50 ml solution (Molan
50.	The solution containing $4.0gm$ of a polyvinyl chloride polymer in		(d) i.o g of a homenectrolyte solute (X) in 50 m solution (Molar mass of $X = 200$)
•	1 litre of dioxane was found to have an osmotic pressure	61.	Which of the following aqueous solutions are isotonic $(R = 0.082)$
	$6.0\! imes\!10^{-4}$ atmosphere at $300K$, the value of R used is 0.082		atm $K^{-1}mol^{-1}$) [Roorkee Qualifying 1998]
	litre atmosphere $mole^{-1}k^{-1}$. The molecular mass of the polymer		(a) $0.01M$ glucose
	was found to be [NCERT 1978]		(b) $0.01 M NaNO_2$
	(a) 3.0×10^2 (b) 1.6×10^5		(c) $500m/$ solution containing $0.3 g$ upon
	(c) 5.6×10^4 (d) 6.4×10^2		(b) 0.04 MUC
51.	Solvent molecules pass through the semipermeable membrane is		(a) 0.04 /V HCl
	called		Elevation of boiling boint of the solvent
	(a) Electrolysis (b) Electrophoresis		
	(c) Cataphoresis (d) Osmosis	1.	The latent heat of vapourisation of water is $9700 \ Cal / mole$ and

if the $\mathit{b.p.}$ is $100^{\it o}\,\mathit{C}$, ebullioscopic constant of water is

1000	1/4 Solution and Colligative properties	10	
	(a) $0.513^{\circ}C$ (b) $1.026^{\circ}C$	10.	If for a sucrose solution elevation in boiling point is 0.1° <i>C</i> then what will be the boiling point of <i>NaCl</i> solution for same molal concentration [BHU 1908. 2005]
	(c) $10.26^{\circ}C$ (d) $1.832^{\circ}C$		(a) $01^{\circ}C$ (b) $0.2^{\circ}C$
2.	The molal elevation constant of water $= 0.52^{\circ} C$. The boiling point		(c) $0.08^{\circ}C$ (d) $0.01^{\circ}C$
	of 1.0 molal aqueous KCl solution (assuming complete dissociation of	11.	The molal elevation constant is the ratio of the elevation in B.P. to
	KCl), therefore, should be [BHU 1987]		(a) Molarity (b) Molality
	(a) $100.52^{\circ}C$ (b) $101.04^{\circ}C$		(c) Mole fraction of solute (d) Mole fraction of solvent
	(c) $99.48^{\circ}C$ (d) $98.96^{\circ}C$		$(-1)^{-1}$
3.	The rise in the boiling point of a solution containing 1.8 gram of	12.	The molal boiling point constant for water is 0.513 C kg mol.
	glucose in $100g$ of a solvent in $0.1^{o}C$. The molal elevation constant of the liquid is [CPMT 1999]		When 0.1 mole of sugar is dissolved in 200ml of water, the solution boils under a pressure of one atmosphere at
	(a) 0.01 K/m (b) $0.1 K/m$		(a) $100.513^{\circ}C$ (b) $100.0513^{\circ}C$
	(c) $1 K/m$ (d) $10 K/m$		(c) $100.256^{\circ}C$ (d) $101.025^{\circ}C$
4.	If $0.15g$ of a solute dissolved in $15g$ of solvent is boiled at a	13.	Value of gas constant <i>R</i> is [AIEEE 2002]
•-	temperature higher by $0.216^{\circ}C$ than that of the pure solvent		(a) 0.082 <i>litre atm</i> (b) 0.987 <i>cal</i> $mol^{-1}K^{-1}$
	The molecular weight of the substance (molal elevation constant for		(c) 83 $l mol^{-1}K^{-1}$ (d) 83 erg $mol^{-1}K^{-1}$
	the solvent is $2.16^{\circ}C$) is	14.	The temperature, at which the vapour pressure of a liquid becomes
	[CBSE PMT 1999; BHU 1997]		equal to the atmospheric pressure is known as
	(a) 1.01 (b) 10 (c) 10.1 (d) 100		[Pb. PMT 2000]
5	Pressure cooker reduces cooking time for food because		(a) Freezing point (b) Boiling point
	[MP PMT 1987; NCERT 1975; CPMT 1991; AIEEE 2003]		(c) Absolute temperature (d) None of these
	(a) Heat is more evenly distributed in the cooking space	15.	The elevation in boiling point of a solution of 13.44 <i>g</i> of <i>CuCi</i> in <i>lkg</i> of water using the following information will be
	(b) Boiling point of water involved in cooking is increased		(Molecular weight of <i>CuCl</i> = 134.4 and $K = 0.52$ K mola ^(*)
	(c) The higher pressure inside the cooker crushes the food material		[IIT 2005]
	 (d) Cooking involves chemical changes helped by a rise in temperature 		(a) 0.16 (b) 0.05
6.	Which of the following statements is correct for the boiling point of		(c) 0.1 (d) 0.2
	solvent containing a dissolved solid substance	16.	When $10g$ of a non-volatile solute is dissolved in $100 g$ of benzene, it
	[NCERT 1972, 74]		raises boiling point by $1^{\circ}C$ then molecular mass of the solute is (K for barrane -2.52 k m)
	(a) Boiling point of the liquid is depressed		$(\mathbf{x}_{b}^{-}) = 0.02 \text{ m}$ (b) 0.02 m [bit 2002]
	(b) Boiling point of the liquid is elevated		(a) $223 g$ (b) $233 g$ (c) $243 g$ (d) $253 g$
	(c) There is no effect on the boiling point	19	(c) $-35g$ (c) $-35g$
	(d) The change depends upon the polarity of liquid	17.	aqueous solution containing 3 g of glucose in the same volume will
7.	When a substance is dissolved in a solvent, the vapour pressure of solvent decreases. It brings [BHU 2004]		boil at (Molecular weight of urea and glucose are 60 and 180 respectively)
	(a) A decrease in boiling point of solution		[CBSE PMT 2000]
	(b) An increase in boiling point of the solution		(a) $100.75^{\circ}C$ (b) $100.5^{\circ}C$
	(c) A decrease in freezing point of the solution		(c) $100.25^{\circ}C$ (d) $100^{\circ}C$
	(d) An increase in freezing point of the solution	18.	When common salt is dissolved in water
8.	Elevation in boiling point was $0.52^{\circ}C$ when $6gm$ of a		[CBSE PMT 1988; MP PET 1995; DCE 2000]
	compound X was dissolved in $100gm$ of water. Molecular weight		(a) Melting point of the solution increases (b) Boiling point of the solution increases
	of X is $(K_b$ for water is 0.52 per 1000 gm of water)		(c) Boiling point of the solution decreases
	[CPMT 1989]		(d) Both melting point and boiling point decreases
	(a) 120 (b) 60	19.	During the evaporation of liquid [DCE 2003]
	(c) 180 (d) 600		(a) The temperature of the liquid will rise
9.	If the solution boils at a temperature $T_1^{}$ and the solvent at a		(b) The temperature of the liquid will fall
	temperature T_2 the elevation of boiling point is given by		(c) May rise or fall depending on the nature (d) The temperature remains unoffected
	[MP PET 1996]	20.	At higher altitudes the boiling point of water lowers because
	(a) $T_1 + T_2$ (b) $T_1 - T_2$	20.	[NCERT 1972; CPMT 1994; J & K 2005]
			(a) Atmospheric pressure is low
	(c) $I_2 - I_1$ (d) $I_1 \div I_2$		(b) Temperature is low

The elevation in boiling point for one molal solution of a solute in a $= 1.86 \, K \, mole^{-1}$ solvent is called [MH CET 2001] (b) Molal elevation constant (a) Boiling point constant (c) Cryoscopic constant (d) None of these (a) $0.85^{\circ}C$ A solution of 1 molal concentration of a solute will have maximum boiling point elevation when the solvent is (c) $0^{\circ} C$ [MP PMT 2000] If K_f value of H_2O is 1.86. The value of ΔT_f for 0.1m solution 8. (a) Ethyl alcohol (b) Acetone of non-volatile solute is (c) Benzene (d) Chloroform (a) 18.6 Mark the correct relationship between the boiling points of very (c) 1.86 dilute solutions of $BaCl_2(t_1)$ and $KCl(t_2)$, having the same 1% solution of $Ca(NO_3)_2$ has freezing point 9. molarity [CPMT 1984, 93] (a) $t_1 = t_2$ (a) $0^{\circ}C$ (b) $t_1 > t_2$ (c) Greater than $0^{\circ}C$ A solution of urea (mol. mass 56g mol) boils at $100.18^{\circ}C$ at the (c) $t_2 > t_1$ 10. atmospheric pressure. If K_f and K_b for water are 1.86 and 0.512K (d) t_2 is approximately equal to t_1 kg mol respectively the above solution will freeze at [CBSE PMT 2005] (a) $-6.54^{\circ}C$ Depression of freezing point of the solvent (c) $0.654^{\circ}C$ The molar freezing point constant for water is $1.86^{\circ} C mole^{-1}$. If 11. Molal depression constant for water is $1.86^{\circ}C$. The freezing point of a 0.05 molal solution of a non-electrolyte in water is 342 gm of canesugar $(C_{12}H_{22}O_{11})$ are dissolved in 1000 gm of water, the solution will freeze at [MNR 1990; MP PET 1997] [NCERT 1977; CPMT 1989; Roorkee 2000; DCE 2004] (a) $-1.86^{\circ}C$ (b) $-0.93^{\circ}C$ (a) $-1.86^{\circ}C$ (c) $-0.093^{\circ}C$ (d) $0.93^{\circ}C$ (c) $-3.92^{\circ}C$ The amount of urea to be dissolved in 500 ml of water (K = 18.6 KAn aqueous solution of a non-electrolyte boils at $100.52^{\circ}C$. The 12. $mole^{-1}$ in 100g solvent) to produce a depression of $0.186^{\circ}C$ freezing point of the solution will be [MH CET 2000] in freezing point is (a) $0^{o} C$ (b) 6 g (a) 9 g (c) $1.86^{\circ}C$ (d) 0.3 g (c) 3 g The freezing point of one molal NaCl solution assuming NaCl 13. The maximum freezing point falls in [MP PMT 1986] to be 100% dissociated in water is (molal depression constant = 1.86) (a) Camphor (b) Naphthalene [CPMT 1985; BHU 1981; MP PMT 1997; UPSEAT 2001] Benzene (d) Water (c) (a) $-1.86^{\circ}C$ Which one of the following statements is FALSE (c) $+1.86^{\circ}C$ [AIEEE 2004] 14. Heavy water freezes at The correct order of osmotic pressure for 0.01 M aqueous (a) solution of each compound (a) $0^{o} C$ $BaCl_2 > KCl > CH_3COOH >$ sucrose. (c) $38^{\circ}C$ (b) The osmotic pressure (π) of a solution is given by the After adding a solute freezing point of solution decreases to - 0.186. 15. Calculate ΔT_h if $K_f = 1.86$ and $K_h = 0.521$. equation $\pi = MRT$ where M is the molarity of the solution. [Orissa JEE 2002, 04; MP PET/PMT 1998; AIEEE 2000] Raoult's law states that the vapour pressure of a component (c) over a solution is proportional to its mole fraction. (a) 0.521 Two sucrose solutions of same molality prepared in different (c) 1.86 (d) solvents will have the same freezing point depression. Given that ΔT_f is the depression in freezing point of the solvent in 16. Solute when dissolved in water [MADT Bihar 1981] a solution of a non-volatile solute of molality m, the quantity (a) Increases the vapour pressure of water is equal to lim (b) Decreases the boiling point of water Decreases the freezing point of water (c) (d) All of the above (a) Zero The freezing point of a solution prepared from $1.25\,gm$ of a non-(c) Three The freezing point of 1 percent solution of lead nitrate in water will electrolyte and 20 gm of water is 271.9 K. If molar depression 17. be constant is $1.86 Kmole^{-1}$, then molar mass of the solute will be [AFMC 1998; CPMT 1999]

(c) Atmospheric pressure is high

(d) None of these

21.

22.

23.

1.

2.

3

4.

5

6.

[NCERT 1971, 72; CPMT 1972; JIPMER 1991] (a) 105.7 (b) 106.7 (b) $0^{o} C$ (a) Below $0^{\circ}C$ (c) 115.3 (d) 93.9

What is the freezing point of a solution containing 8.1 g HBr in

7.

Solution and Colligative properties 175 ELE SCORE

(b) $-3.53^{\circ}C$

(d) $-0.35^{\circ}C$

(b) 0.186

(d) 0.0186

(b) 6.54°*C*

(d) $-0.654^{\circ}C$

(b) $1.86^{\circ}C$

(d) $2.42^{\circ}C$

(b)

(b)

(d)

 $-1.86^{\circ}C$

 $-3.72^{\circ}C$

 $+3.72^{\circ}C$

(b) $3.8^{\circ}C$

(b) 0.0521 (d) 0.0186

(b) One

(d) None of the above

(d) $-0.38^{\circ}C$

[CPMT 1993]

[IIT 1994; UPSEAT 2001]

(d) None of the above

(b) Less than $0^{\circ}C$

(d) None of the above

[BHU 1981; Pb CET 2004]

[DPMT 1982, 83; CPMT 1977]

100g water assuming the acid to be 90% ionised (K_f for water

UNIVERSAL
CELE COORER

176 Solution and Colligative properties

Celevan								
18	(c) $1^{o}C$ What is the effect of the	(d) $2^{\circ}C$	_	C	Colligative prope	erties o	of electrol	yte
10.	(a) Both boiling point and fi(b) Both boiling point and fi	[Kerala CET (Med.) 2003] reezing point increases	1.	If O. will s	P. of 1 <i>M</i> of the followir show the maximum O.P.	ng in water	· can be measu	ured, which one
	(c) Boiling point increases a	nd freezing point decreases			4 10	INCER	1 1975; CPMT 19	977; JIPMER 2001]
	(d) Boiling point decreases a	nd freezing point increases		(a)	$AgNO_3$	(b)	$MgCl_2$	
9.	During depression of freezing	g point in a solution the following are		(c)	$(NH_4)_3 PO_4$	(d)	Na_2SO_4	
	in equilibrium (a) Liquid solvent, solid solv	[IIT Screening 2003] ent	2.	Whic vapo	ch of the following so our pressure	olution in	water posses	ses the lowest [BHU 1996]
	(b) Liquid solvent, solid solu	te		(a)	0.1(M)NaCl	(b)	0.1(N)BaCl	l_2
	(c) Liquid solute, solid solut	e		(c)	0.1(M)KCl	(d)	None of these	
`	(d) Liquid solute solid solver	solute dissolved in 50 am of benzene	2	W/bi/	ch of the following so	lutions in	water will b	wa tha lowest
	lowered the freezing point of	benzene by 0.40 K. K_{c} for benzene is	з.	vapo	our pressure	iutions in	water win na	[Roorkee 2000]
	5.12 kg mol. Molecular mass	of the solute will be [DPMT 2004]		(a)	0.1 <i>M</i> , <i>NaCl</i>	(b)	0.1 M, Sucrose	2
	(-) 256 amol^{-1}	(b) 256 amol^{-1}		(c)	0.1 <i>M</i> , <i>BaCl</i> ₂	(d)	0.1 M Na_3P	O_4
	(a) 230 g mot	(b) 2.30 g mon	4.	The	vapour pressure will be	lowest for	-	[CPMT 2004]
	(c) $512 \times 10^3 \ g \ mol^{-1}$	(d) $2.56 \times 10^4 \ g \ mol^{-1}$	-	(a)	0.1 M sugar solution	(b)	0.1 M KCl solu	ition
	0.440 g of a substance disso	lved in 22.2 g of benzene lowered the		(c)	0.1 M $Cu(NO_2)_2$ solution	on (d)	0.1 M AgNO	solution
	freezing point of benzene by	$0.567^{o}C$. The molecular mass of the	_	0		1	N-Cl 1	N- 60 -11
	substance $(K_f = 5.12^{\circ} Cm)$	$(2pl^{-1})$	5.	Usm	otic pressure of 0.1 M s	olution of		Na_2SO_4 will
	. ,	[BH11 2001- CPMT 2001]		(\mathbf{a})	Same		[AFMC 1978]	
	(a) 178.9	(b) 177.8		(a) (L)	Ormatia and af	NaCl		h
	(c) 176.7	(d) 175.6		(b)	$Na_{-}SO_{-}$ solution	Nuci s	Solution will	be more than
•	Which of the following aqueo point	us molal solution have highest freezing [UPSEAT 2000, 01, 02; MNR 1988]		(c)	Osmotic pressure of I	Na_2SO_4	solution will	be more than
	(a) Urea	(b) Barium chloride			NaCl			
	(c) Potassium bromide Which will show maximum	(d) Aluminium sulphate depression in freezing point when		(d)	Osmotic pressure of <i>N</i> solution	aSO ₄ wi	ll be less than	that of <i>NaCl</i>
	concentration is 0.1 <i>M</i>		6.	Whic	ch of the following soluti	ions has hi	ghest osmotic	pressure
	[IIT 1989; (a) <i>NaCl</i>	(b) Urea		(a)	1 M NaCl	(b)	1 M urea	
				(c)	1 M sucrose	(d)	1 M glucose	
		(d) $K_2 S O_4$	7.	Whie	ch one has the highest o	smotic pre	ssure	
•	The freezing point of a C	0.01M aqueous glucose solution at 1			Ũ	CBSE PM1	1991; DPMT 19	91; MP PET 1994]
	atmosphere is -0.18 °C. 7 0.002 <i>M</i> glucose solution will of nearly	To it, an addition of equal volume of ; produce a solution with freezing point [AMU 1999]		(a)	<i>M</i> /10 <i>HCl</i>	(b)	M/10 urea	
	(a) $-0.036^{\circ}C$	(b) $-0.108^{\circ}C$		(c)	$M/10BaCl_2$	(d)	M/10 gluco	ose
	(a) 0.030 C	(0) 0.100 C	8.	ln eo	quimolar solution of glu	cose, NaC	Cl and BaCl	2_2 , the order of
	(c) $-0.216^{\circ}C$	(d) $-0.422^{\circ}C$		osmo	otic pressure is as follow			_
•	What should be the freezing $17 am$ of $C H OH$ in 1	point of aqueous solution containing 000 gm of water (water $K = 186$			[CPMT 1988,	93; MP PM	T/PET 1988; MP	PET 1997, 2003]
	$17gm$ of $C_2 II_5 OII$ in 1	$K_f = 1.00$		(a)	Glucose $> NaCl > Ba$	Cl_2		
	$\deg - kg mol^{-1}$	[MP PMT 1986]		(b)	$NaCl > BaCl_2 > Gh$	lcose		
	(a) $-0.69^{\circ}C$	(b) $-0.34^{\circ}C$		(c)	$BaCl_2 > NaCl > G$	lucose		
	(c) $0.0^{\circ} C$	(d) $0.34^{\circ}C$		(d)	Glucose $> BaCl_2 > N$	laCl		
•	In the depression of freezing (a) Vapour pressure of th	point experiment, it is found that the[11T 1 e solution is less than that of pure	999] 9.	The deci-	osmotic pressure of wh molar solution of each 9	ich solutio 0% dissoci	n is maximum iated)	n (consider that
	solvent							[MP PMT 2003]
	(b) Vapour pressure of the solvent	e solution is more than that of pure		(a)	Aluminium sulphate			
	(c) Only solute molecules so	lidify at the freezing point		(b)	Barium chloride			
	(d) Only solvent molecules s	olidify at the freezing point		(d)	A mixture of equal volu	mes of (b)	and (c)	
	Calculate the molal depress	ion constant of a solvent which has	10	Δ+ '	$25^{\circ}C$ the highest as	notic pres	sure is exhibit	ted by $0.1M$
	freezing point $16.6^{\circ}C$ and	latent heat of fusion $180.75Jg^{-1}$.[Orissa	a JEE 200	5]solut	tion of	noue pres	CBSE PMT 19	994; AllMS 2000]
	(a) 2.68	(b) 3.86		(a)	$CaCl_2$	(b)	KCl	

- (b) 3.86
- (c) 4.68 (d) 2.86t6

(a) $CaCl_2$ (b) KCl (c) Glucose (d) Urea

Solution and Colligative properties 177

UNIVERSAL SELF SCORE

				action and company	e p. e		
11.	Which of the following will have the highest boiling point at 1 <i>atm</i> pressure [MP PET/PMT 1998]		(a) .	$AlCl_3 < KNO_3 < Gluco$	se		
	(a) 0.1 <i>M</i> NaCl (b) 0.1 <i>M</i> sucrose		(b)	$Glucose < KNO_3 < Alcose$	7l ₃		
	(c) $0.1MBaCl_2$ (d) $0.1M$ glucose		(c)	Glucose < AlCl ₃ < KNO) ₃		
12.	Which one of the following would produce maximum elevation in		(d)	AlCl ₃ < Glucose< KNC)3		
	boiling point [MP PMT 1985; CPMT 1990; NCERT 1982]	23.	Which	n of the following will have [BHI]	the hi	ighest F.P. at on AP PMT 1987 MP	e atmosphere PET/PMT 10881
	(a) 0.1 M glucose		(a)	0.1 <i>M NaCl</i> solution	(b)	0.1M sugar s	olution
	(c) 0.1 M barium chloride		(c) (0.1MBaCl solution	(d)	$0.1MF_{\theta}Cl$	colution
	(d) 0.1 M magnesium sulphate	74	Which	r_2 of the following will p	(u)	the maximum	depression in
13.	Which of the following solutions will have the highest boiling point[DP / (a) 1% glucose	MT 1991; (CPMT 199 freezii	h] of the following will p ng point of its aqueous sol	ution		depression in
	(a) 1% gluese (b) 1% success (c) 1% $NaCl$ (d) 1% $CaCl_2$						[MP PMT 1996]
14.	Which one of the following aqueous solutions will exhibit highest		(a)	0.1 <i>M</i> glucose			
-	boiling point [AIEEE 2004]		(b) (0.1 <i>M</i> sodium chloride			
	(a) 0.015 M urea (b) $0.01 M KNO_3$		(c) (0.1 <i>M</i> barium chloride			
	(c) $0.01 M Na_2 SO_4$ (d) $0.015 M$ glucose	25	(d) (Which	0.1M magnesium sulphat	e owest	freezing point	
15.	Which of the following aqueous solutions containing 10 gm of solute	43.	which	for the following has the l	owest	freezing point	[UPSEAT 2004]
	(a) <i>NaCl</i> solution (b) <i>KCl</i> solution		(a) C).1 <i>m</i> sucrose	(b)	0.1 <i>m</i> urea	
	(c) Sugar solution (d) Glucose solution	-	(c) (C	0.1 <i>m</i> ethanol	(d)	0.1 <i>m</i> glucose	
16.	0.01 molar solutions of glucose, phenol and potassium chloride were	26.	Which	of the following has mini	mum f	reezing point	[Ph PMT 1000]
	(a) Glucose solution = Phenol solution = Potassium chloride		(a)	$0.1M K_2 Cr_2 O_7$	(b)	0.1 <i>M NH</i> ₄ <i>Cl</i>	[10.11111999]
	(b) Potassium chloride solution > Glucose solution > Phenol		(c) C	D.1 $M BaSO_4$	(d)	0.1 <i>М Al</i> ₂ (<i>SO</i>	$_{4})_{3}$
	solution (c) Phenol solution > Potassium chloride solution > Glucose	27.	Which	of the following 0.10	<i>m</i> aq	ueous solution	will have the
	solution (d) Potassium chloride solution > Phenol solution > Glucose		lowest (a)	$Al_2(SO_4)_3$	(b)	$C_5 H_{10} O_5$	CBSE PMT 1997]
	solution		(c)	KI	(d)	$C_{12}H_{22}O_{11}$	
17.	Which one has the highest boiling point [CBSE PMT 1990] (a) $0.1 N Ma SO$ (b) $0.1 N Ma SO$	28.	For 0.	M solution, the colligative	ve pror	perty will follow	the order
	$(a) 0.1M \text{AL}(SQ) \qquad (b) 0.1M \text{BaSQ}$		(a) .	$NaCl > Na_2SO_4 > Na_2$	PO_4	,	
18	(c) $0.1M A l_2 (SO_4)_3$ (d) $0.1M B a SO_4$ Which of the following solutions hole at the highest temperature		(b)	NaGiusoNa, < Na	PO		
10.	(a) 0.1 <i>M</i> glucose (b) 0.1 <i>M NaCl</i>		(c) (a)	NaCl > Na SO ~ Na	PO		
	(c) 0.1 <i>M BaCl</i> ₂ (d) 0.1 <i>M</i> Urea		(c) .	$\operatorname{NuCl} > \operatorname{Nu}_2 \operatorname{SO}_4 \approx \operatorname{Nu}_3$	$r O_4$		
19.	$0.01M$ solution each of urea, common salt and Na_2SO_4 are		(d)	$NaCl < Na_2SO_4 = Na_3$	PO_4		
	taken, the ratio of depression of freezing point is	29.	Which	t of the following will have	the lo	west vapour pre	essure
	[Roorkee 1990]		(a) (
			(b) (0.1 <i>M</i> urea solution			
20.	Which has the minimum freezing point[CPMT 1991]		(c)	$0.1MNa_2SO_4$ solution			
	(a) One molal $NaCl$ solution		(d)	$0.1MK_4Fe(CN)_6$ soluti	on		
	(b) One molal KCl solution (c) One molal $CaCl$ solution			Abnormal mol	ecul	ar mass	
	(d) One molal urea solution	_					
21.	Which of the following has lowest freezing point	1.	The V	an't Hoff factor will be hig Sodium ablanida	hest fc	or Magnasium ahl	amida
	[NCERT 1981]		(a) (c) S	Sodium phosphate	(d)	llrea	onde
	(a) $0.1M$ aqueous solution of glucose	2.	Which	of the following salt has	the sa	me value of Va	n't Hoff factor
	(b) $0.1 M$ aqueous solution of $NaCl$		<i>i</i> as t	that of $K_3[Fe(CN)_6]$			
	(c) $0.1M$ aqueous solution of $ZnSO_4$					[CBSE PMT 19	94; AIIMS 1998]
	(d) $0.1M$ aqueous solution of urea		(a) .	$Al_2(SO_4)_3$	(b)	NaCl	
22.	The freezing points of equimolar solutions of glucose, $K\!NO_3$ and		(c) .	Na_2SO_4	(d)	$Al(NO_3)_3$	
	AlCl ₃ are in the order of [AMU 2000]	3.	When is	benzoic acid dissolve in b	enzene	e, the observed r	nolecular mass

	(a) 244	(b) 61	14.	The observed osmotic pressure of a solution of benzoic acid in
	(c) 366	(d) 122		benzene is less than its expected value because
•	The ratio of the value o	f any colligative property for KCl solution	n	(a) Banzana is a non polar solvent
	to that for sugar solution	1 is nearly[MP PMT 1985]		(b) Benzoic acid molecules are associated in benzene
	(a) I	(b) 0.5		(c) Benzoic acid molecules are dissociated in benzene
	(c) 2.0	(d) 3		(d) Benzoic acid is an organic compound
	Van't Hoff factor of Cal	(<i>NO</i> ₃) ₂ is [CPMT 199	7] 15.	The experimental molecular weight of an electrolyte will always be
	(a) 1	(b) 2		less than its calculated value because the value of Van't Hoff factor
	(c) 3	(d) 4		<i>"i</i> " is [MP PMT 1993]
	Dry air was passed suc	cessively through a solution of $5 gm$ of	а	(a) Less than I (b) Greater than I
	solute in $80gm$ of wat	er and then through pure water. The loss	in 16	(c) Equivalent to one (d) Zero The molecular mass of acetic acid dissolved in water is 60 and when
	weight of solution wa	as $2.50 gm$ and that of pure solve	nt 10.	dissolved in benzene it is 120. This difference in behaviour of
	0.04~gm . What is the	molecular weight of the solute		CH_3COOH is because [AMU 2000]
		[MP PMT 198	6]	(a) Water prevents association of acetic acid
	(a) 70.31	(b) 7.143		(b) Acetic acid does not fully dissolve in water
	(c) 714.3	(d) 80		(c) Acetic acid fully dissolves in benzene
	The Van't Hoff facto	or calculated from association data	is	(d) Acetic acid does not ionize in benzene
	alwaysthan calculated		17.	The correct relationship between the boiling points of very dilute
	(a) less	(b) More	9]	solutions of $AlCl_3(t_1)$ and $CaCl_2(t_2)$, having the same molar
	(c) Same	(d) More or less		concentration is [CPMT 1983]
	If α is the degree of	dissociation of Na_2SO_4 , the Vant Hof	°s	(a) $t_1 = t_2$ (b) $t_1 > t_2$
	factor (i) used for calcul	ating the molecular mass is	C .	(c) $t_2 > t_1$ (d) $t_2 \ge t_1$
	()	[AIEEE 200	5] 18.	The Van't Hoff factor for sodium phosphate would be
	(a) $1+\alpha$	(b)		(a) 1 (b) 2
	(c) $1 + 2\alpha$	(d) $1-2\alpha$		(c) 3 (d) 4
	Van't Hoff factor <i>i</i>		19.	The molecular weight of benzoic acid in benzene as determined by
	Normal mala	aular mag		depression in freezing point method corresponds to
	(a) $=1000000000000000000000000000000000000$	acular mass		(a) Ionization of benzoic acid
				(b) Dimerization of benzoic acid
	(b) $= \frac{\text{Observed mole}}{N}$	ecular mass		(c) Trimerization of benzoic acid
	Normal mole	cutar mass		(d) Solvation of benzoic acid
	(c) Less than one in ca	se of dissociation		
	(d) More than one in c Which of the following	compounds corresponds Van't Hoff fact)r	Critical Thinking
	i' to be equal to 2 for	dilute solution [NCERT 1978]		
	(a) $K_2 SO_4$	(b) $NaHSO_4$		Objective Questions
	(c) Sugar	(d) $MgSO_4$		
	The Van't Hoff factor i	for a 0.2 molal aqueous solution of urea is	1.	On adding solute to a solvent having vapour pressure 0.80 <i>atm</i> , vapour pressure reduces to 0.60 <i>atm</i> . Mole fraction of solute is
	(a) 0.2	(b) 01		(a) 0.25 (b) 0.75
	(a) 0.2	(d) 10		(c) 0.50 (d) 0.33
	(c) 1.2		. 2.	A solution containing 30 gms of non-volatile solute in exactly 90 gm
	One male of a colute A	10° $(10^{\circ})(10^{\circ})(10^{\circ})$ (10°)	it.	water has a vapour pressure of 21.85 mm Hg at $25^{\circ}C$. Further 18
	One mole of a solute A The association of the	is dissolved in a given volume of a solver volume of a solver volume take place according to $nA \rightleftharpoons (A)$		* 0
	One mole of a solute A The association of the s	solute take place according to $nA \rightleftharpoons (A)$	<i>ı</i> •	gms of water is then added to the solution. The resulting solution
	One mole of a solute <i>A</i> The association of the s The Van't Hoff factor <i>i</i> i	solute take place according to $nA \rightleftharpoons (A)$'s expressed as [MP PMT 199]	7]	gms of water is then added to the solution. The resulting solution has a vapour pressure of 22.15 mm Hg at $25^{\circ}C$. Calculate the molecular weight of the solute [UPSEAT 200]
	One mole of a solute <i>A</i> The association of the s The Van't Hoff factor <i>i</i> i	solute take place according to $nA \rightleftharpoons (A)$ is expressed as (b) $i = 1 + \frac{x}{2}$	7]	gms of water is then added to the solution. The resulting solutionhas a vapour pressure of 22.15 mm Hg at $25^{\circ} C$. Calculate themolecular weight of the solute[UPSEAT 200](a) 74.2(b) 75.6
	One mole of a solute <i>A</i> The association of the s The Van't Hoff factor <i>i</i> i (a) $i = 1 - x$	solute take place according to $nA \rightleftharpoons (A)$ is expressed as (b) $i = 1 + \frac{x}{n}$	7]	gms of water is then added to the solution. The resulting solutionhas a vapour pressure of 22.15 mm Hg at $25^{\circ}C$. Calculate themolecular weight of the solute[UPSEAT 2001](a) 74.2(b) 75.6(c) 67.83(d) 78.7
	One mole of a solute <i>A</i> The association of the s The Van't Hoff factor <i>i</i> i (a) $i = 1 - x$ $1 - x + \frac{x}{2}$	solute take place according to $nA \rightleftharpoons (A)$ is expressed as (b) $i = 1 + \frac{x}{n}$	7] 3 .	gms of water is then added to the solution. The resulting solutionhas a vapour pressure of 22.15 mm Hg at $25^{\circ} C$. Calculate themolecular weight of the solute[UPSEAT 2001](a) 74.2(b) 75.6(c) 67.83(d) 78.7Vapour pressure of a solution of $5g$ of non- electrolyte in $100g$
	One mole of a solute A The association of the solution of the	solute take place according to $nA \rightleftharpoons (A)$ is expressed as (b) $i = 1 + \frac{x}{n}$ (d) $i = 1$	7] 3.	gms of water is then added to the solution. The resulting solutionhas a vapour pressure of 22.15 mm Hg at $25^{\circ}C$. Calculate themolecular weight of the solute[UPSEAT 200](a) 74.2(b) 75.6(c) 67.83(d) 78.7Vapour pressure of a solution of $5g$ of non- electrolyte in $100g$ of water at a particular temperature is $2985 N/m^2$. The vapour

(a) 60

(c) 180

(b) 120

(d) 380

(a)	60		(b)	120

(c) 180	(d)	240
---------	-----	-----

				Solution and Colligative properties 179
4.	Azeotropic mixture of HCl and	nd water has	14.	An aqueous solution of a weak monobasic acid containing 0.1 g in
		[AFMC 1997; JIPMER 2002]		21.7 g of water freezes at 272.813 K. If the value of K_{f} for water is
	(a) 84% <i>HCl</i>	(b) 22.2% <i>HCl</i>		1.86 K/m , what is the molecular mass of the monobasic acid [AMU 20]
	(c) 63% <i>HCl</i>	(d) 20.2% <i>HCl</i>		(a) 50 g/mole (b) 46 g/mole (c) $\frac{1}{2}$
5.	The osmotic pressure at 17	^o C of an aqueous solution containing		(c) 55 g/mole (d) 60 g/mole
	1.75 g of sucrose per 150 ml	solution is	15.	K_f of 1,4-dioxane is 4.9 mol^{-1} for 1000 g. The depression in
		[BHU 2001]		freezing point for a 0.001 m solution in dioxane is
	(a) 0.8 <i>atm</i>	(b) 0.08 <i>atm</i>		[DPMT 2001]
	(c) 8.1 <i>atm</i>	(d) 9.1 <i>atm</i>		(a) 0.0049 (b) $4.9 + 0.001$ (c) 4.9 (d) 0.49
•	A 1.2 of solution of NaCl is	isotonic with 7.2 of solution of glucose.	16.	How many litres of CO_2 at STP will be formed when $100ml$ of
	Calculate the van't Hoff's fact	tor of <i>NaCl</i> solution		$0.1 M H_2 SO_4$ reacts with excess of $Na_2 SO_2$
		[UPSEAT 2001]		[EAMCET 1998]
	(a) 2.36	(b) 1.50		(a) 22.4 (b) 2.24
	(c) 1.95	(d) 1.00		(c) 0.224 (d) 5.6
•	0.6 g of a solute is disso	olved in 0.1 <i>litre</i> of a solvent which	17.	A solution is obtained by dissolving 12 g of urea (<i>mol.wt</i> .60) in a <i>litre</i> of water. Another solution is obtained by dissolving 68.4 g of
	develops an osmotic pressur mass of the substance is	e of 1.23 <i>atm</i> at 27° C . The molecular [BHU 1990]		cane sugar (<i>mol.wt.</i> 342) in a <i>litre</i> of water at are the same temperature. The lowering of vapour pressure in the first solution is
	(a) $149.5 g mole^{-1}$	(b) $120 \ g \ mole^{-1}$		(a) Same as that of 2 ⁻ solution
	(c) $430 g mole^{-1}$	(d) None of these		 (b) Nearly one-first of the 2⁻ solution (c) Double that of 2⁻ solution
•	The boiling point of a solution	on of 0.1050 gm of a substance in 15.84		(d) Nearly five times that of 2 ^a solution
).	(a) 144.50(c) 140.28Boiling point of chloroform v anthracene was dissolved in	 (b) 143.18 (d) 146.66 vas raised by 0.323 <i>K</i>, when 0.5143 <i>g</i> of 35 <i>g</i> of chloroform. Molecular mass of 	Read	The assertion and reason carefully to mark the correct option out of
	anthracene is		the o	options given below :
	$(\mathbf{X}_b \text{ for } CHCl_3 = 3.9 \text{ kg m})$		(a)	If both assertion and reason are true and the reason is the correct explanation of the assertion
	(a) 79.42 g/mol	(b) $132.32 \ g/mol$	<i>(b)</i>	If both assertion and reason are true but reason is not the correct
_	(c) 177.42 g/mon	(d) $242.52 \ g/mor$		explanation of the assertion.
0.	<i>grams</i> of a nonvolatile solute molecular weight of solute is	(100 C) becomes $100.52 C$, if 3 e is dissolved in $200ml$ of water. The	(c) (d) (e)	If assertion is true but reason is faise. If the assertion and reason both are false. If assertion is false but reason is true.
	(K_b for water is $0.6 K - m$	(AIIMS 1998)	L	Assertion : One molal aqueous solution of urea contains
	(a) $12.2 g mol^{-1}$	(b) 15.4 <i>gmol</i>		60g of urea in $1kg$ (1000g) water.
	(c) $17.3 g mol^{-1}$	(d) 20.4 g mol		Reason : Solution containing one mole of solute in $1000 g$ solvent is called as one molal solution.
•	normal boiling point of w pressure of water at 298 K i	vater is 373 K (at $760mm$). Vapour s 23 mm if the enthalpy of evaporation	2	Assertion : If 100 cc of 0.1 N HCl is mixed with 100 cc of
	is 40.656 <i>kJ</i> /mole, the boiling	g point of water at 23 <i>mm</i> pressure will [CBSE PMT 1995]		0.2 N HCl, the normality of the final solution
	(a) 250 K	(b) 294 <i>K</i>		will be 0.30.
	(c) 51.6 K	(d) 12.5 <i>K</i>		Reason : Normalities of similar solutions like <i>HCl</i> can be
2.	A 0.2 molal aqueous solutio	n of a weak acid (HX) is 20% ionised.		added.
	The freezing point of this so	lution is (Given $K_f = 1.86^{\circ} C/m$ for	3.	Assertion : If a liquid solute more volatile than the solvent is added to the solvent, the vapour pressure of the
	(a) $0.31^{\circ}C$	(b) $0.45^{\circ}C$		solution may increase i.e., $p_s > p^o$.
	(a) = 0.51 C	(0) = 0.45 C		Reason : In the presence of a more volatile liquid solute,
3.	(c) $-0.53^{\circ}C$ A 0.001 molal solution of [<i>H</i>	(d) -0.90° C $Pt(NH_3)_4 Cl_4$ in water had a freezing		only the solute will form the vapours and solvent will not.

13. A 0.001 molal solution of $[Pt(NH_3)_4 Cl_4]$ in water had a freezing point depression of $0.0054^{\circ}C$. If K_f for water is 1.80, the correct formulation for the above molecule is

			[Kerala CET (Med.) 2003]
(a)	$[Pt(NH_3)_4 Cl_3]Cl$	(b)	$[Pt(NH_3)_4 Cl] Cl_2$
(c)	$[Pt(NH_3)_4 Cl_2]Cl_3$	(d)	$[Pt(NH_3)_4 Cl_4]$

 Reason
 :
 The composition of the vapour phase is same as that of the liquid phase of an azeotropic mixutre.

Azeotropic mixtures are formed only by non-

ideal solutions and they may have boiling points

either greater than both the components or less

Assertion

4.

:

UNIVERS

180 Solution and Colligative properties Assertion Molecular mass of polymers cannot be calculated 5 using boiling point or freezing point method. Polymers solutions do not possess a constant Reason boiling point or freezing point. 6. Assertion The molecular weight of acetic acid determined by depression in freezing point method in benzene and water was found to be different. Water is polar and benzene is non-polar. Reason Ca^{++} and K^+ 7. Assertion ions are responsible for maintaining proper osmotic pressure balance in the cells of organism. Reason Solutions having the same osmotic pressure are called isotonic solutions. 8. Assertion Reverse osmosis is used in the desalination of sea water When pressure more than osmotic pressure is Reason applied, pure water is squeezed out of the sea water through the membrane. Camphor is used as solvent in the determination 9. Assertion of molecular masses of naphthalene, anthracene etc. Reason Camphor has high molal elevation constant. 10. Assertion Elevation in boiling point and depression in freezing point are colligative properties. All colligative properties are used for the Reason calculation of molecular masses. 11. Assertion An increase in surface area increases the rate of evaporation. Stronger the inter-molecular attractive forces, Reason fast is the rate of evaporation at a given [AIIMS 2002] temperature. 12. Assertion The boiling and melting points of amides are higher than corresponding acids. It is due to strong intermolecular hydrogen Reason bonding in their molecules. [AIIMS 2002] 13. Assertion The freezing point is the temperature at which solid crystallizers from solution. The freezing point depression is the difference Reason between that temperature and freezing point of pure solvent. [AIIMS 2000] 14. Assertion On adding NaCl to water its vapour pressure increases. Addition of non-volatile solute increases the Reason vapour pressure. [AIIMS 1996] 15. Assertion Molar heat of vaporisation of water is greater than benzene. Reason Molar heat of vaporisation is the amount of heat required to vaporise one mole of liquid at constant temperature. [AllMS 1996] 16. Assertion Ice melts faster at high altitude. At high altitude atmospheric pressure is high. [AIIMS 19 Reason Molecular mass of benzoic acid when determined 17. Assertion by colligative properties is found high. Dimerisation of benzoic acid. [AIIMS 1998] Reason 18. Use of pressure cooker reduces cooking time. Assertion At higher pressue cooking occurs faster. Reason [AIIMS 2000] Assertion CCl_4 and H_2O are immiscible. 19. Reason CCl_4 is a polar solvent. [AIIMS 2002] Isotonic solution do not show the phenomenon 20. Assertion of osmosis. Reason Isotonic solutions have equal osmotic pressure.

21. Assertion
 :
 Increasing pressure on pure water decreases its freezing point.

 Reason
 :
 Density of water is maximum at 273 K.

[AIIMS 2003]

Solubility

1	d	2	d	3	с	4	b	5	d
6	С								

Method of expressing concentration of solution

1	C	2	d	3	d	4	е	5	b
6	b	7	a	8	d	9	d	10	b
11	а	12	b	13	a	14	а	15	b
16	C	17	b	18	е	19	b	20	b
21	C	22	C	23	C	24	b	25	C
26	d	27	d	28	C	29	a	30	C
31	a	32	C	33	d	34	a	35	d
36	b	37	b	38	b	39	b	40	С
41	C	42	b	43	C	44	C	45	а
46	ac	47	C	48	b	49	a	50	c
51	C	52	b	53	d	54	b	55	b
56	d	57	b	58	b	59	C	60	а
61	d	62	a	63	a	64	b	65	а
66	a	67	C	68	C	69	a	70	d
71	d	72	C	73	C	74	b	75	b
76	C	77	a	78	b	79	C	80	b
81	d	82	b	83	b	84	b	85	d
86	d	87	d	88	е	89	b	90	b
91	а	92	d	93	a	94	C	95	а
96	a	97	C	98	d	99	b	100	d
101	C	102	d	103	d	104	C	105	d
106	b	107	a	108	b	109	d	110	а
111	d	112	b	113	C	114	C	115	b
116	a	117	b	118	C	119	C	120	d
121	b	122	C	123	b	124	а	125	С
126	c	127	c	128	C	129	а	130	b
131	а	132	c	133	C	134	c	135	С
136	С	137	c	138	b	139	а	140	b
141	d	142	c	143	b	144	а		

Colligative properties

[AIIMS 2002]

Solution and Colligative properties 181

UNIVERSAL SELF SCORER

1	а	2	C	3	а	4	C	5	C
6	а	7	b	8	а	9	C	10	a
11	ac								

Lowering of vapour pressure

1	а	2	b	3	b	4	d	5	b
6	а	7	а	8	а	9	C	10	b
11	а	12	b	13	b	14	C	15	d
16	а	17	b	18	d	19	b	20	b
21	а	22	а	23	b	24	b	25	b
26	d	27	а	28	C	29	b	30	d
31	C	32	а	33	C	34	а	35	C
36	b	37	C	38	а	39	b	40	b
41	а	42	b	43	d	44	C		

Ideal and Non-ideal solution

1	b	2	d	3	b	4	b	5	d
6	a	7	d	8	d	9	C	10	b
11	a	12	C	13	а	14	a	15	d
16	b	17	d	18	b	19	a	20	d
21	C	22	a	23	d	24	d	25	а
26	b	27	а	28	C	29	а	30	а

Azeotropic mixture

d

4

а

5

b

Osmosis and Osmotic pressure of the solution

d

2

С

3

1	C	2	b	3	C	4	a	5	b
6	b	7	C	8	b	9	b	10	а
11	C	12	d	13	b	14	b	15	а
16	b	17	C	18	а	19	d	20	b
21	а	22	а	23	d	24	d	25	а
26	b	27	C	28	b	29	b	30	b
31	a	32	C	33	b	34	d	35	b
36	C	37	C	38	C	39	b	40	d
41	C	42	b	43	c	44	a	45	C
46	C	47	b	48	а	49	a	50	b
51	d	52	d	53	a	54	b	55	d
56	b	57	d	58	а	59	b	60	bcd
61	ac								

Elevation of boiling point of the solvent

1	a	2	b	3	C	4	d	5	b
6	b	7	b	8	b	9	b	10	b

								6	CARA CONTRACTOR
11	b	12	C	13	C	14	b	15	а
16	d	17	C	18	b	19	b	20	а
21	b	22	С	23	b				

Depression of freezing point of the solvent

1	с	2	с	3	а	4	d	5	c
6	а	7	b	8	b	9	b	10	d
11	а	12	b	13	b	14	b	15	b
16	d	17	а	18	С	19	а	20	а
21	а	22	а	23	d	24	c	25	а
26	ad	27	b						

Colligative properties of electrolyte

1	c	2	b	3	d	4	с	5	C
6	а	7	с	8	С	9	а	10	а
11	с	12	с	13	d	14	c	15	а
16	d	17	с	18	b	19	C	20	C
21	b	22	а	23	b	24	c	25	C
26	d	27	а	28	b	29	d		

Abnormal molecular mass

1	С	2	а	3	а	4	C	5	C
6	а	7	а	8	c	9	а	10	d
11	d	12	C	13	b	14	b	15	b
16	b	17	b	18	d	19	b		

Critical Thinking Questions

1	a	2	C	3	C	4	d	5	а
6	C	7	b	8	b	9	c	10	C
11	b	12	b	13	b	14	d	15	а
16	c	17	a						

Assertion & Reason

1	а	2	е	3	с	4	b	5	c
6	а	7	d	8	a	9	с	10	b
11	C	12	а	13	b	14	d	15	b
16	d	17	а	18	a	19	с	20	b
21	С								

Mole fraction of water
$$= \frac{n_1}{n_1 + n_2} = \frac{1}{1+9} = \frac{1}{10} = 0.1$$

Method of expressing concentration of solution

1. (c)
$$M_1V_1 + M_2V_2 = MV$$

2. (d)
$$M = \frac{w}{m \times V(l)}$$
; $0.25 = \frac{w}{106 \times 0.25}$; $w = 6.625$ gm
3. (d) $N_1 V_1 = N_2 V_2$
 $2 \times 1 = N_2 \times 6$

$$N_2 = 0.33$$

4. (e)
$$5.85 \text{ g NaCl} = \frac{5.85}{58.5} \text{ mole} = 0.1 \text{ mol}$$

90 g $H_2O = \frac{90}{10} \text{ moles} = 5 \text{ moles}$

$$H_2 O = \frac{1}{18} moles = 5 moles$$

mole fraction of
$$NaCl = \frac{0.1}{5+0.1} \approx 0.0196$$
.

5. (b)
$$M = \frac{n}{V(l)} = \frac{0.006}{0.1} = 0.06$$

6. (b) $M = \frac{W \times 1000}{mol.mass \times \text{Volume in } ml.} = \frac{9.8 \times 1000}{98 \times 2000} = 0.05 M$

7. (a)
$$M = \frac{W}{m.wt.} \times \frac{1000}{\text{Volume in } ml.} = \frac{5 \times 1000}{40 \times 250} = 0.5M$$

8. (d) Basicity of
$$H_3PO_3$$
 is 2.

Hence 0.3
$$M H_3 PO_3 = 0.6 N$$
.

9. (d) 2 gm. Hydrogen has maximum number of molecules than others.
 a) M.V. = M.V.

n. (a)
$$M_1V_1 = M_2V_2$$

 $0.01 \times 19.85 = M_2 \times 20$
 $M_2 = 0.009925$; $M = 0.0099$.

12. (b) 1500 cm^3 of 0.1 *N HCl* have number of *gm* equivalence $= \frac{N_1 \times V_1}{1000} = \frac{1500 \times 0.1}{1000} = 0.15$ $\therefore 0.15 \ gm$. equivalent of *NaOH* = $0.15 \times 40 = 6 \ gm$.

13. (a)
$$M = \frac{w}{m.wt. \times \text{volume in litre}} = \frac{5.85}{58.5 \times 0.5} = 0.2M$$

14. (a) Molecular weight of
$$C_2H_5OH = 24 + 5 + 16 + 1 = 46$$

Molecular mass of $H_2O = 18$
414g of C_2H_5OH has $\frac{414}{46} = 9$ mole
18g of H_2O has $=\frac{18}{18} = 1$ mole