Chemical Periodicity 651 UNIVERSAL

Chemical Periodicity

ET Self Evaluation Test -15

	If the difference in electronegativities of two elements is very large, 9. then				For a p - block element, its 3 d , 3 s , 3 p and 4 s orbitals are completely filled and the differentiating electron goes to the 4 p orbital. The element should have its atomic number in the range				-
	(a) The bond is 50% ionic					13 - 18		e	
	(b) The bond is 100% covale					31 - 36			
	(c) The bond is more covalent than ionic			10.		most common lanthanide i	. ,		1005]
	(d) The bond is more ionic than covalent			10.		Lanthanum		•	[6661
2.	Which of the following ele affinity	ements v	vill have the lowest electron		(a) (c)	Samarium			
	(a) Nitrogen	(b)	Flourine	11.	ln a	period, elements are arrang	ged in	strict sequence of	
	(c) Chlorine	(d)	Phosphorus					[CPMT	1989]
.	The correct order of second ionization potential of carbon, nitrogen,				(a)	Decreasing charges in the	nucleu	IS	
	oxygen and fluorine is				(b)	Increasing charges in the	nucleus	5	
	[11T-	-JEE 1981; (CBSE PMT 1991; MADT Bihar 1995;		(c)	Constant charges in the n	ucleus	on goes to the $4p$ orbital ber in the range) 21 - 26) 49 - 54 [AFMC) Cerium) Plutonium strict sequence of [CPMT us is ced produce electric current MU 2001]) Phyroelectric effect) Piezoelectric effect ments containing same nu [CPMT) $Na - Cl$) $Cl - Br$ [DCE) d -block) f -block) onate which metal carbon PSEAT 1999]) Na_2CO_3	
			MP PMT 2003]		(d)	Equal charges in the nucle	eus		
	(a) $C > N > O > F$	()	O > N > F > C	12.	Som	e of the polar crystal when	heated	d produce electric current.	. This
	(c) $O > F > N > C$	()	F > O > N > C		•	nomena is termed as	[AN	IU 2001]	
	Which of the following specie	es has the	highest ionisation potential[EAM	CET 1998]	(a)	Ferroelectric effect	(b)	Phyroelectric effect	
	(a) Li^+	(b)	Mg^+		(c)	Antiferroelectric effect	(d)	Piezoelectric effect	
	(c) Al^+	(d)	Ne	13.		ch of the following pairs h ectrons in the outermost o		nents containing same nu	mber
	Which of the following elements are analogous to the lanthanides[A1IMS 1998]							[CPMT	1985]
	(a) Actinides	(b)	Borides		(a)	N - O	(b)	Na – Cl	
	(c) Carbides	(d)	Hydrides		(c)	Ca – Cl	(d)	Cl - Br	
	Which of the order for ionisation energy is correct				Coir	age metals are present in		DCE	2000]
			[CPMT 1999; CBSE PMT 2001]	-	(a)	<i>s</i> -block	(b)	-	
	(a) $Be > B > C > N > O$, (b)	B < Be < C < O < N		(c)	<i>p</i> -block	(d)	<i>F</i> -block	
	(c) $B < Be < C < N < O$	(d)	B < Be < N < C < O	15.	• •		l carbo	onate which metal carbona	ate is
	Modern periodic table is l	based on	the atomic number of the	•		omposed on heating		n goes to the 4 p orbita er in the range 21 - 26 49 - 54 (AFM Cerium Plutonium strict sequence of [CPM IS s d produce electric curren AU 200] Phyroelectric effect Piezoelectric effect Piezoelectric effect ments containing same n [CPM Na - Cl Cl - Br [DCI d-block Fblock onate which metal carbon SEAT 1999] Na_2CO_3	
	alamanta. Tha avpariment	which pr	oved the significance of the [CBSE PMT 1989]		(a)	MgCO ₃	(b)	Na_2CO_3	
	atomic number was								
	•	riment	[0000111111909]		(c)	$K_2 CO_3$	(d)	Pb_2CO_3	
	atomic number was			16.	Whi	ch one of the following is t	_	rect decreasing order of be	•
	atomic number was (a) Millikan's oil drop exper	ray spectr	a	16.	Whi poin	ch one of the following is t t	he cor	rect decreasing order of bo [AMU	•
	 atomic number was (a) Millikan's oil drop experi (b) Moseley's work on X -r (c) Bragg's work on X -rays (d) Discovery of X -rays by 	ray spectr / diffractio y Rontgen	a on	16.	Whi	ch one of the following is t	he cor	rect decreasing order of bo [AMU	•
	 atomic number was (a) Millikan's oil drop exper (b) Moseley's work on X -r (c) Bragg's work on X -ray 	ray spectr / diffractio y Rontgen	a on tallic	16.	Whi poin	ch one of the following is t t	he corr > H ₂ T	rect decreasing order of be [AMU e	•
	 atomic number was (a) Millikan's oil drop experi (b) Moseley's work on X -r (c) Bragg's work on X -rays (d) Discovery of X -rays by 	ray spectr / diffractio y Rontgen	a on	16.	Whi poin (a) (b)	ch one of the following is t t $H_2O > H_2S > H_2Se > 0$	the correction $H_2 T$ > $H_2 T$ > $H_2 G$	rect decreasing order of bo [AMU ?e O	•

Answers and Solutions

(SET -15)

ORER 652 Chemical Periodicity

- 1. (d) If the difference in electronegativities of two elements is very high then the bond is more ionic than covalent.
- (d) Phosphorus have the lowest electron affinity due to half filled p orbital, but in nitrogen electron affinity is greater than phosphorus because of large nuclear attraction in comparison with phosphorus.
- **3.** (c) The ionization potential increases across the period but the second ionization potential of oxygen is highest among them because after the removal of $1e^-$ the $2e^-$ is to be removed from half filled orbital which is difficult.
- **4.** (d) As, now the e^- is to be removed from stable configuration. *Li* has the highest ionisation potential due to its stability.
- 5. (a) Actinides are homologous of Lanthanides.
- (b) Ionisation energy increases across the period but due to stable half filled configuration of VA group, its I.E. is more than VI-A group.
- (b) Moseley's work on X-ray spectra was proved the significance of the atomic number.

15. (a) $MgCO_3 \rightarrow MgO + CO_2$

```
(c) Correct decreasing order of boiling point is,
```

 $H_2O > H_2Te > H_2Se > H_2S .$

16.

8. (d) The metallic property of an element increases from top to bottom in group.

9. (c) $31-36 \Rightarrow Ga$ to Kr.

- **10.** (b) The most common lanthanide is cerium.
- (b) Increasing charges in the nucleus as atomic number increases across a period.
- 12. (d) This phenomena is called piezoelectric effect.
- **13.** (d) Cl Br. Both belong to VII-A group having 7 e^{-} in valence shell.
- 14. (b) Copper, Silver and Gold are coinage metals