Hydrogen and Its compounds

ET Self Evaluation Test -17

- Temperature of maximum density in H_2O and D_2O respectively
 - 277.15 K, 284.75 K
 - (b) 273.15 K, 277.15 K
 - 277.15 K, 285.75 K
 - (d) 284.75 K, 277.15 K
- Non-metallic oxides dissolves in water to form
 - Acidic solution
 - Alkaline solution
 - Neutral solution
 - (d) None of these
- Ordinary water is not used as a moderator in nuclear reactors 3.
 - (a) It cannot slow down fast moving neutrons
 - It cannot remove the heat from the reactor core
 - (c) It absorbs the fast moving neutrons
 - Of its corrosive action on the metallic parts of the nuclear
- Brackish water mostly contains
 - (a) Calcium chloride
- (b) Barium sulphate
- (c) Sodium chloride
- (d) Mineral acids
- $TiH_{1.73}$ is an example of 5.
 - (a) Ionic hydride
 - (b) Covalent hydride
 - Metallic hydride
 - (d) Polymeric hydride
- The volume strength of perhydrol is

(b) 30

- (c) 100
- (d) 10
- The solubility of an ionic compound is compared in heavy and 7. simple water. It is
 - (a) Higher in heavy water
 - (b) Lower in heavy water
 - (c) Same in heavy water and simple water
 - (d) Lower in simple water
- 8. Which of the following cannot be reduced by H_2O_2

- Ag_2O
- (b) Fe^{3+}
- (c) Acidified KMnO₄
- (d) Acidified $K_2Cr_2O_7$
- Hydrogen can be prepared by the action of dil. H_2SO_4 on
 - (a) Copper
- (b) Iron
- (c) Lead
- (d) Mercury
- The element whose hydride contains maximum number of hydrogen 10. per atom of the element is
 - (a) Na

(b) O

(c) B

- (d) *Si*
- Indicator type silica gel used as a dehumidifier contains 11.
 - (a) Cu^{2+} ions
- (b) Ni^{2+} ions
- (c) Co^{2+} ions
- (d) Fe^{2+} ions
- To an aqueous solution of $AgNO_3$ some NaOH(aq) is added, till 12. a brown ppt. is obtained. To this $H_2 O_2$ is added dropwise. The ppt. turns black with the evolution of $\,O_2$. The black ppt. is
 - (a) Ag_2O
- (b) Ag_2O_2
- (c) AgOH
- (d) None of these
- Atomic hydrogen reacts with oxygen to give 13.
 - (a) Almost pure water
 - Almost pure hydrogen peroxide
 - A mixture of water and hydrogen peroxide
 - (d) None of these
- Which of the following cannot be used for the preparation of H_2
 - $Zn + HCl(dil.) \rightarrow$
 - $NaH + H_2O \rightarrow$
 - $Zn + HNO_3(dil.) \rightarrow$
 - (d) $HCOONa \xrightarrow{\Delta}$
- The process used for the removal hardness of water is

[EAMCET 2001]

- Calgon
- (b) Baeyer
- (c) Serpeck
- (d) Hoope

(SET -17)

UNIVERSAL SELF SCORER

702 Hydrogen and Its compound s

- 1. (a) Temperature of maximum density of H_2O is 277.15 $\it K$. Temperature of maximum density of $\it D_2O$ is 284.75 $\it K$.
- 2. (a) Non metallic oxides in water are form acidic solutions *e.g.* $P_2O_5 + 3H_2O \to 2H_3PO_4$ phosphoric acid
- **3.** (c) Ordinary water absorbs fast moving neutrons, thus stopping the process of nuclear fission.
- 4. (c) Brackish water mostly contains sodium chloride.
- 5. (c) It is a metallic hydride.
- **6.** (c) The volume strength of perhydral is 100 perhydral is 30% H_2O_2 10 vol. $H_2O_2\equiv 3\%~H_2O_2$

$$\therefore$$
 30% of $H_2O_2 \equiv 100$ vol. H_2O_2

- (b) The solubility of an ionic compound is more in simple water and less in heavy water.
- **8.** (b) H_2O_2 cannot reduce Fe^{3+} . All other compounds are reduced by H_2O_2 .
- 9. (b) Hydrogen cannot be prepared by the action of dil. H_2SO_4 on copper or mercury as these two metals cannot displace hydrogen from acids. Action of dil. H_2SO_4 are stops after sometimes due to the formation of insoluble $PbSO_4$. Only, iron reacts rapidly with dil. H_2SO_4 to give H_2 .

- **10.** (d) Hydride of $Si(SiH_4)$ contains more hydrogen atoms than hydrides of Na(NaH), $O(H_2O)$, $B(BH_3)$.
- 11. (c) Indicator type of gel used as a dehumidifier contains CO^{2+} ions, when dry it is blue in colour and on absorbing moisture it becomes pink.
- 12. (d) $2AgNO_3(aq) + 2NaOH(aq) \rightarrow$

$$Ag_2O(s) + H_2O(l) + 2NaNO_3(aq)$$

$$Ag_2O(s) + H_2O_2(aq) \to H_2O(l) + O_2(g) + 2Ag(s)$$
Black ppt.

The finely divided Ag is black in colour.

 (b) Atomic hydrogen reacts with oxygen to give almost pure hydrogen peroxide.

$$2[H] + O_2 \rightarrow H_2O_2$$

14. (c)
$$Zn + 2HCl(dil) \rightarrow ZnCl_2 + H_2$$

$$NaH + H_2O \rightarrow NaOH + H_2$$

$$2HCOONa \xrightarrow{\quad \Delta \quad} Na_2C_2O_4 + H_2$$
 sodium oxalate

$$4Zn + 10HNO_3dil \rightarrow 4Zn(NO_3)_2 + N_2O + 5H_2O$$

15. (a) Calgon process is used for the removal of hardness of water.