

(SET -23)

General Organic Chemistry

ET Self Evaluation Test -23

							,	,	nber of chiral
				[CBSE PMT 1997]		compounds is		[IIT-JEE S	creening 2004]
	(a)	Skew boat	(b)	Eclipsed		(a) 2	(b)	-	
	(c)	Gauche	(d)	Staggered		(c) 6	(d)	8	
2.	Which of the following undergoes nucleophilic substitution by SN^{-1}				13.	An isomer of ethanol is [DPMT 1982, 88; CPMT 1973, 75, 78, 84; IIT-JEE 1986;			
		hanism		[CBSE PMT 2005]		•		I, 85; EAMCET 1993	•
	` '	Benzyl chloride		Ethyl chloride			R	PET 1999; BHU 200	0; AFMC 2002]
	` '	Chlorobenzene	. ,	Isopropyl chloride		(a) Methanol	. ,	Dimethyl ether	
3.	Whi	ch type of isomerism is show	wn by	propanal and propanone[CPMT 200	04]	(c) Diethyl ether	(d)	Ethylene glycol	
	(a)	Functional group	(b)	Metamerism	14.	Due to the presence of an u	npaired el	lectron, free radica	als are
	(c)	Tautomerism	(d)	Chain isomerism		(a) Chemically reactive	(b)	Chemically inact	tive
4.	Whi	ch of the following exhibits	optical	isomerism		(c) Anions	(d)	Cations	
			[BI	iu 1980; NCERT 1983; AIIMS 1992; MNR 1993; MP PMT 1990, 94]	15.	Tertiary alkyl halides are p	ractically	inert to substitut	IV.
	(a)	Butanol-1	(b)	Butanol-2		mechanism because of	(1)	1.1.10	[AIEEE 2005]
	(c)	Butene-1		Butene-2		(a) Insolubility	. ,	Instability	
5.	ln ca	arbonium ion the carbon be		he positive charge in the[Pb. PMT I	999: MH	(c) Inductive effect	(d)	Steric hindrance	! ! •1
0.		2	g .	3	316	The decreasing order of nucle	ophilicity a	among the nucleop	hiles
		•		sp^3d -hybridized state		(i) $CH_3 C - O^-$	(ii)	CH_3O^-	
	(c)	- ·		sp^3 -hybridized state		O			
6.	Whi	ch of the following is not an	ı electr	ophile					o
				[CBSE PMT 2001]		(iii) CN^-	(:)	и с	g O-
	(a)	Cl^+	(b)	Na^+		(III) CIV	(IV)	H_3C –	3 – <i>0</i>
		H^+	(1)	BF_3					0
	(c)			9		is			[AIEEE 2005]
7.		,	energy	of alkyl halides follows the		(a) (i), (ii), (iii), (iv)	(b)	(iv), (iii), (ii), (i)	
	-	ience		[AMU 2000]		(c) (ii), (iii), (i), (iv)	(d)	(iii), (ii), (i), (iv)	
	(-)	R - F > R - Cl > R - B			17.	Which of the following is op			[BHU 2005]
	(b)	R - I > R - Br > R - C	l > R	-F		(a) Butane		4-methylheptan	2
	(c)	R-I > R-F > R-Br	> R -	- Cl		(c) 3-methylheptane		2-methylheptane	
	(d)	R - Cl > R - Br > R - R	I > R	-F	18.	Correct configuration of the	` '	, ,	
8.	The	shape of carbonium is		[AMU (Engg.) 1999]		CH ₃	Ü		
		Planar	(b)	Pyramidal		$H \stackrel{CH_3}{\longrightarrow} OH$			
	(c)	Linear	(d)	None of these					[AIIMS 2005]
9.	Whi	ch of the following compour	nds sh	ows tautomerism		CH_3 — OH			,
				[MP PET 2001]		\dot{H}			
	(a)	НСНО	(b)	CH_3CHO		(a) 1S, 2S	(b)	1S, 2R	
	(c)	CH_3COCH_3	(d)	НСООН		(c) 1R, 2S	(d)	1R, 2R	
10.	ln w	hich bond angle is the high	est	[CBSE PMT 1991]	19.	Which types of isomerism is	shown by	y 2, 3-dichlorobut	ane
									[AIEEE 2005]
	(a)	sp^3	(b)	sp^2		(a) Distereo	(b)	Optical	
	(c)	sp	(d)	sp^3d		(c) Geometric	` '	Structural	
11.	How	many primary amines are	possibl	e for the formula $C_4H_{11}N$ [MNF	20. R 1995]	Who synthesised the first or	•	•	e laboratory[RPMT
	(a)				,	(a) Kolbe	()	Wohler	
	(a) (c)		(b)			(c) Fraizer	(d)	Berzilius	
	(e)	J	(u)	4					

1080 General Organic Chemistry

1. (d) Anti or completely staggard

Staggard form is most stable because of minimum repulsion between bulky methyl groups.

- **2.** (a) Due to more stable carbocation.
- 3. (a) When two compounds have similar molecular formula but differ in the functional group then the isomerism is called functional group isomerism i.e. CH₃CH₂CHO and

$$CH_3$$
. CCH_3 .

4. (b)
$$CH_3 - C^* - CH_2 - CH_3$$
OH

Because it has chiral carbon atom.

- **5.** (a) The central carbon atom in carbonium ion is sp^2 hybridised and it has three sp^2 hybrid orbitals for single bonding to three substituents.
- **6.** (b) Na^+ is not an electrophile.
- 7. (b) R-I > R-Br > R-Cl > R-F
- **8.** (a) Carbonium ion is planar species
- 9. (c) Ketones show tautomerism. They form keto and enol form

$$CH_3 - C - CH_3 \stackrel{\text{Tautomerism}}{\longleftarrow} CH_3 - C = CH_2$$

10. (c) Type

Bond angle

 sp^3

109.5°

 sp^2

 120^{o}

 sp^3d

 90^{o} and 120^{o}

sp

 180^{o}

11. (d)
$$CH_3 - CH_2 - CH_2 - CH_2 - NH_2$$

$$CH_3-CH_2-CH_3-CH_3\\NH_2\\ \text{(2-aminobutane)}\\CH_3$$

$$CH_3$$

$$CH_3 - C - CH_3$$

$$NH_2$$

(2-Methyl-2-aminopropa ne)

$$CH_3 - CH_1 - CH_2 - NH_2$$

$$CH_3$$

$$(2-Methyl-1-aminopropa ne)$$

12. (b) The possible monochlorinated products of 2-methyl butane are

Therefore, a total of four chiral compounds are obtained.

- 13. (b) Dimethyl ether is an isomer of ethanol.
- **14.** (a) Free radicals are very reactive due to the presence of free e.
- **15.** (d) Due to steric hinderance

$$CH_3$$

17. (c) $CH_3CH_2^*CHCH_2CH_2CH_3$ has a chiral carbon atom and hence is optically active.

Following the H procedure outlined under 'Golden Rule' the absolute configuration is 1s, 2s.

19. (b)
$$H \longrightarrow CH_3$$
 Cl , $H \longrightarrow Cl$, $H \longrightarrow CH_3$ Cl , $H \longrightarrow CH_3$

$$\begin{array}{c|c} CH_3 & H\\ H & CH_3 & Cl \end{array}$$

20. (b) Wohler synthesised the first organic compound urea in the laboratory.