R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Chapter 10. Empirical, Molecular & structural formulae Q1. Sol: Let the Molecular formula is Fe₂S_X Then Molecular wt. = $2 \times 56 + 32x = 112 + 32x$ A/q. % of Fe = 46.5% $\frac{112}{112+32x} \times 100 = 46.5$ $\Rightarrow 112 + 32x = \frac{11200}{46.5} = 240.86$ $32 x = 128.86 \implies x = \frac{128.86}{32} = 4$... Molecular formula will be Fe₂S₄. So the simplest form of formula which will be the empirical formula is FeS2 02. Sol: Let the molecular formula if iron oxide is Fe₂O_X A/q, Fe,O_x +H; \longrightarrow 2Fe + H,O 1.60 g 1.12 g : 1.60 g of Fe₂O_X contain 1.12 g of Fe 1.12 : 1 -----1.60 $\therefore (112 + 16x) - \frac{1.12}{1.60} \times (112 + 16x)$ We know that (112 + 16x) g of compound contains 112 g of Fe $\therefore \frac{1.12}{1.60} \times (112 + 16x) = 112$ $112 + 16x = 160 \implies x = 3$:. Molecular formula = Fe_2O_3 \Rightarrow Empirical formula = Fe₂O₃ Q3. Sol: Let the formula of $A = CH_X$ % of H = 25% A/q. $\Rightarrow \frac{x}{12+x} \times 100 = 25 \Rightarrow \frac{x}{12+x} = \frac{1}{4} \Rightarrow x = 4$: Empirical formula of A = CH₄ Let the empirical formula of $B = CH_y$ % of H = 14.3% A/q, $\therefore \frac{y}{12+y} \times 100 = 14.3 \implies \frac{y}{12+y} = \frac{14.3}{100}$ $100y - 14.3 y = 12 \times 14.3$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 $\Rightarrow y = \frac{12 \times 14.3}{85.7} = 2$

:. Empirical formula of $B = CH_2$ Let the empirical formula of $C = CH_2$ A/q, % of H = 7.7%Z ×100 = 7.7 \Rightarrow (100

 $\therefore \frac{Z}{12+Z} \times 100 = 7.7 \implies (100-7.7) \ Z = 12 \times 7.7 \implies Z = 1.00$

 \therefore Empirical formula of C = CH

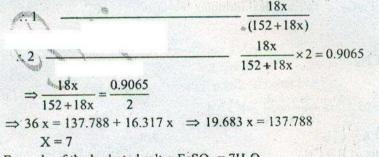
Q4. Sol:

x/n-4 xn/xsmallest
0.75/0.25 = 3.0
1/0.25 = 4.0
$\frac{0.25}{0.25} = 1.0$

 \therefore Empirical formula = C₃H₄N

Empirical wt = 54g

$$\therefore n = Mol.wt/emp.wt = \frac{108}{54} = 2$$


: Molecular formula = $(C_3H_4N)_2 = C_6H_8N_2$

(Note:- % ratio by wt. of Nitrogen should be given 3.5 not 3)

Q5.

Sol: Let the hydrated iron sulphate is FeSO₄. XH₂O Mol. wt. of hydrated salt = 56 + 96 + 18x = (152 + 18x) g

Now (152 + 18x) g of FeSO4 XH2O contain 18x g of water

:. Formula of the hydrated salt = $FeSO_4 = 7H_2O$

(Note:- In question it should be specified that Fe(II) sulphate is hydrated. I have assumed so to Solve the problem.

128

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Sol: Element	% by wt	0/ hu mt	
Lienen	76 Uy WI	$\frac{\% \text{ by wt}}{\text{At.wt}} = x$	X/X _{smallest}
С	64.4%	$\frac{64.4}{12} = 5.4$	5.4/0.54=10
Н	5.5%	$\frac{12}{5.5}_{1} = 5.5$	5.5/0.54 - 10
Fe	29.9%	$\frac{1}{\frac{29.9}{56}} = 0.54$	$\frac{0.54}{0.54} = 1$
: Empirical form	mula = C H Ea A		
	$hu_{10} - C_{10} H_{10} F e A$	uns	net of a set of the
Q7.			
ol: Let the hydrated	BaCl ₂ is BaCl ₂ . XH ₂ O		
	$XH_2O) = 137 + 71 + 13$		
∵ (208 + 18x) g	of BaCl2 . XH2O cont	ains 208 g of anhydrous B	aCl ₂
		208	
	- Friday - Contractor		
See See See See See		(208 + 18x)	
1.00		208	
.: 1.763			
	100 M		
	6. 6	$\frac{200}{208+18x}$ × 1.763 = 1.505	the View of California State
			an a shekara mi v tal
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$	$\frac{.505}{.763} = 0.8535$		
	$\frac{.505}{.763} = 0.8535$		
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$	$\frac{.505}{.763} = 0.8535$ 6+15.6x		
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$	$\frac{.505}{.763} = 0.8535$ 6+15.6x		
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$	$\frac{1.505}{208+18x}$ × 1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$	$\frac{1.505}{208+18x}$ × 1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$	$\frac{.505}{.763} = 0.8535$ 6+15.6x	$\frac{1.505}{208+18x}$ × 1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{11}$ $\Rightarrow 208 = 177.54$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$ hydrated salt = BaCl ₂	$\frac{1.505}{208+18x}$ × 1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 01: From ideal gas equation	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$ hydrated salt = BaCl ₂	$\frac{1.505}{208+18x}$ × 1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{11}$ $\Rightarrow 208 = 177.54$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$ hydrated salt = BaCl ₂	$\frac{1.505}{208+18x}$ × 1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ OI: From ideal gas equiple PV = nRT	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$ hydrated salt = BaCl ₂ quation	208 + 18x) ×1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 01: From ideal gas equation	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$ hydrated salt = BaCl ₂ quation	208 + 18x) ×1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 28. ol: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 10^{-10}$	$\frac{.505}{.763} = 0.8535$ $\frac{.44}{.64} = 2$ $.$	208 + 18x) ×1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 28. ol: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 10^{-10}$	$\frac{.505}{.763} = 0.8535$ $\frac{.44}{.64} = 2$ $.$	208 + 18x) ×1.763 = 1.505	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 28. ol: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 10^{-10}$	$\frac{.505}{.763} = 0.8535$ $\frac{.44}{.64} = 2$ $.$	208+18x) ×1.763 = 1.505 . 2H₂O. 1×373	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 8. ol: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times$ $\Rightarrow M.W = \frac{0.055}{0.65}$	$\frac{.505}{.763} = 0.8535$ 6+15.6x $\frac{44}{34} = 2$ hydrated salt = BaCl ₂ quation	208 + 18x) ×1.763 = 1.505 . 2H₂O. 1×373	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 28. ol: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 10^{-10}$	$\frac{.505}{.763} = 0.8535$ $\frac{.44}{.64} = 2$ $.$	208 + 18x) ×1.763 = 1.505 . 2H₂O. 1×373	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.54$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ PV = nRT $\Rightarrow 0.658 \times 40.7 \times$ $\Rightarrow M.W = \frac{0.055}{0.65}$ % of B = 85.7%	$\frac{.505}{.763} = 0.8535$ $6+15.6x$ $\frac{44}{34} = 2$ $44 +$	208 + 18x) ×1.763 = 1.505 . 2H ₂ O. 1×373	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.54$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ PV = nRT $\Rightarrow 0.658 \times 40.7 \times$ $\Rightarrow M.W = \frac{0.055}{0.65}$ % of B = 85.7%	$\frac{.505}{.763} = 0.8535$ $6+15.6x$ $\frac{44}{34} = 2$ $44 +$	208+18x) ×1.763 = 1.505 . 2H ₂ O. 1×373	vin 130. schule V. Olio temae V. sc. 1
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 28. 60: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 0.055$ $\Rightarrow M.W = \frac{0.055}{0.655}$	$\frac{.505}{.763} = 0.8535$ $6+15.6x$ $\frac{44}{34} = 2$ $44 +$	208+18x) ×1.763 = 1.505 . 2H ₂ O. 1×373	
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ \therefore Formula of the 28. col: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 0.055$ $\Rightarrow M.W = \frac{0.055}{0.65}$ % of B = 85.7% $\frac{x}{63} \times 100 = 85.7\%$	$\frac{.505}{.763} = 0.8535$ $6+15.6x$ $\frac{44}{34} = 2$ $44 +$	208+18x) ×1.763 = 1.505 . 2H ₂ O. 1×373	Hi, No sando V. O to unuto V. o
$\Rightarrow \frac{208}{208 + 18x} = \frac{1}{1}$ $\Rightarrow 208 = 177.50$ $\Rightarrow x = \frac{30.4}{15.3}$ $\therefore \text{ Formula of the}$ 18. ol: From ideal gas eq PV = nRT $\Rightarrow 0.658 \times 40.7 \times 300000000000000000000000000000000000$	$\frac{.505}{.763} = 0.8535$ $6+15.6x$ $\frac{44}{34} = 2$ $44 +$	208+18x) ×1.763 = 1.505 . 2H ₂ O. 1×373	vin 130. schule V. Olio temae V. sc. 1

K. MALIK' S R. NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 \therefore no. of hydrogen atoms = $\frac{1}{2} = 9$

:. Molecular formula of Boron hydride = B_5H_9

09.

Sol: Let the gas is C_XN_Y

$$C_{\chi}N_{\chi} + 2O_2 \longrightarrow xCO_2 + \frac{Y}{2}N_2$$

→ 2 volume 1 volume 2 volume 1 volume From reaction : x = 2

$$\frac{y}{2} = 1 \implies Y = 2$$

.: The gas is C2N2

Q10.

Sol: Let the compound is C_XH_YN_Z

(1)
$$C_x H_y N_z + (x + \frac{y}{4}) O_2 \longrightarrow xCO_2 + \frac{y}{2} H_2 O + \frac{z}{2} N_2$$

9 vol \longrightarrow 4 vol 6 vol 2 vol

Ans

Let V vol. of CxHyNz is present in 9 volume of CxHyNz & O2.

Then volume of O₂ required for complete combustion of $C_X H_Y N_Z = \left(x + \frac{Y}{4}\right) V$

Now
$$V + (x + \frac{y}{4})V = 9$$
 ---- (1)
Also from balanced reaction, we have
 $XV = 4$
 $\frac{y}{2}V = 6$
 $\frac{z}{2}V = 2$
(1): $\Rightarrow V + XV + \frac{y}{4}V = 9$
From (2): $V + 4 + 3 = 9$ $\Rightarrow Y = 9 - 7 = 2$ vol
 \therefore Volume of $C_xH_YN_z = 2$ vol
Volume of $O_2 = 9 - 2 = 7$ vol Ans
 \therefore Molecular formula of compound = $C_2H_6.N_2$ Ans
Let the hydrocarbon is C_xH_Y

Q11

Sol: Volume at NTP = 1.12 lit

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

131

: no of moles = $\frac{1.12}{22.4} = \frac{0.1}{2}$ $C_{x}H_{y} \longrightarrow xCO_{2} + \frac{Y}{2}H_{2}O$ $\frac{0.1}{2}$ mole 2.2 g 1.8 g $\frac{2.2}{44} = \frac{0.1}{2}$ $\frac{1.8}{18} = 0.1$ moles So $x = 1 \& \frac{y}{2} = 2 \implies Y = 4$:. Hydrocarbon is CH₄ Ans Mol. wt = 16Wt of 1.12 lit of CH₄ = $\frac{0.1}{2} \times 16 = 0.8$ g Ans Volume of O₂ required = $(x + \frac{y}{14})1.12$ lit = $(1 + \frac{y}{4})1.12$ lit = 2.24 lit Q12. Sol: Let the compound is C_XH_YO_zN_W Organic compound + $O_2 \xrightarrow{\Delta} CO_2 + H_2O + N_2$ 0.21 g 0.462 g 0.125 g Since wt. of each atom remain conserved So, wt of C in 0.462 g of CO_2 = wt of C in 0.21 g of organic Compound $\frac{12}{44} \times 0.462 \text{ g} = \text{wt of C in } 0.21 \text{ g of organic compound}$:. % of C = $\frac{\frac{12}{44} \times 0.462}{0.21} \times 100 = 60\%$ Wt of H in 0.1215 g of H₂O = wt of h in 0.21 g of organic compound % of H = $\frac{\frac{2}{18} \times 0.1215}{0.21} \times 100 = 6.43\%$ 0.104 g + $H_2SO_4 \longrightarrow (NH_4)_2SO_4$ ·NH3 $15 \text{ ml} \& \frac{1}{20} \text{ N}$ meq of NH₃ = meq of H₂SO₄ \Rightarrow mmole of NH₃ × 1 = 15× $\frac{1}{20}$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\frac{\text{wt NH}_3}{17} \times 1000 = \frac{3}{4} \implies \text{wt NH}_3 = \frac{3 \times 17}{4000} \text{g}$$

wt. of N present in this wt of NH_3 = $\frac{14}{17} \times \frac{3 \times 17}{4000} = \frac{42}{4000}$

% of N =
$$\frac{1.05 \times 10^{-2}}{0.104} \times 100 = 10$$

:. % of oxygen = 100 - (%C + %H + %N) = 100 - (60 + 6.4 + 10) = 23.6%

Element	% by wt	$\frac{\% \text{ by wt}}{1} = \text{Xi}$	Xi
Constant Const		At.wt	X _{smallest}
C	60	$\frac{60}{-1} = 5$	$\frac{5}{0.72} = 7$
Н	6.4	$\frac{60}{12} = 5$ $\frac{6.4}{1} = 6.4$	$\frac{5_{0.72}}{\frac{6.4}{0.72}} = 9$
			0.72
N	10	$\frac{\frac{10}{14} = 0.72}{\frac{23.6}{16_{\text{s}}} = 1.47}$	$\frac{0.72}{1} = 1$
0	23.6	$\frac{23.6}{23.6} = 1.47$	0.72
		16,	$\frac{1.47}{0.72} = 2$

So, empirical formula will be C₇H₉NO₂ Ans

Q13.

4

Sol: Organic compound + $CuO + O_2 \longrightarrow CO_2 + H_2O$

1.239g 0.1269 g 1.0 g ×1.239 \Rightarrow % of C = $\times 100 = 33.7\%$ $\Rightarrow \% \text{ of H} = \frac{\frac{2}{18} \times 0.1269}{18} \times 100 = 1.41\%$ Organic compound + NaOH > NH3 2g excess NH₃ $(NH_4)SO_4 + H_2SO_4$ + H2SO4 50 ml (remained) 500 ml 1.0 N 25 ml 25ml solution + NaOH → complete neutralisation

21.8 ml & 0.05 N

meq of H₂SO₄ remained in 25 ml = meq of NaOH used = 21.8×0.05 \therefore meq of H₂SO₄ remained in 500 ml = $21.8 \times 0.05 \times 500/25 = 21.8$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

meq of H₂SO₄ reacted with NH₃ = 50 × 1 - 21.8 = 28.2 \therefore meq of NH₃ = 28.2 $\frac{\text{wt}}{17/1} \times 1000 = 28.2 \implies \text{wt} = \frac{28.2 \times 17}{1000}$ \therefore t of Nitrogen = $\frac{28.2 \times 17}{1000} \times \frac{14}{17} = 0.3948$ $\Rightarrow \% \text{ N} = \frac{0.3948}{2} \times 100 = 19.74$ % of O = 100 - (% C + % H + % N) = 100 - (33.7 + 1.41+19.74) % of O = 45.15%

Element	% by wt	$\frac{\% \text{ by wt}}{\text{At wt}} = \text{Xi}$	xi x _{smallest}
C	33.7	$\frac{33.7}{2} = 2.82$	2.82 = 2
Н	1.41	12 1.41 1.41 1.41	$ \begin{array}{c} 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \end{array} $
0	45.15	$\frac{45.15}{16} = 2.82$	$\frac{2.82}{1.41} = 2$

 \therefore Empirical formula of the compound = C₂HNO₂

Q14.

OFFICE AT

606, 6th FLOOR HARIOM TOWER

Sol: Organic compound
$$\xrightarrow{O_2/A} CO_2 + H_2O_{0.2324 g} = 0.0950 g$$

 $\Rightarrow \% \text{ of } C = \frac{12}{44} \times 0.2324 = 0.02614 \times 100 = 24.20\% & \% \text{ of } H = \frac{2/18 \times 0.0950}{0.2614} \times 100 = 4\%$
Organic compound $\longrightarrow AgCl_{0.1195 g} = 0.347 g$
 $\Rightarrow \% \text{ of } Cl = \frac{143.5 \times 0.347}{0.1195} \times 100 = 71.8\%$
Element $\% \text{ by wt}_{0.1195} = 24.22 \qquad \frac{\% \text{ by wt}}{At.\text{wt}} = 24.2 \qquad \frac{12}{12} = 2$
H $Cl = 143.5 \times 0.347 g$
 $H = 24.2 \qquad \frac{4}{1} = 4$
 $Cl = 71.8 \qquad \frac{71.8}{35.5} = 2$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Empirical formula =
$$C_2H_4Cl_2$$

Now, vapour density = 49.5 \Rightarrow \therefore Mol. wt = 49.5 \times 2 = 91 g
Empirical wt = 12 \times 2 +1 \times 4 + 35.5 \times 2 = 99 g
 \therefore n = $\frac{Mol.wt}{emp.wt} = \frac{99}{.99} = 1 \Rightarrow \therefore$ Molecular formula = $C_2H_4Cl_2$ Ans

Q15.

Sol: acid \longrightarrow CO₂ + H₂O

0.2 g 0.195 g 0.04 g

$$\Rightarrow \% \text{ of } C = \frac{0.195 \times \frac{12}{44}}{0.2} \times 100 = 26.6\% \text{ \& } \% \text{ of } H = \frac{\frac{2}{18} \times 0.04}{0.2} \times 100 = 2.22\%$$
% of O = 100 - (% C + %H) = 100 - (26.6 + 2.22) = 71.2%

Elements	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = X_i$	$\frac{X_i}{X_{smalless}}$
С	26.6	$\frac{26.6}{12} = 2.22$	1
Н	2.22	12 2.22 = 2.22	1
0	71.2	$\frac{1}{71.2}$ = 4.44	2

 ∴ Empirical formula = CHO₂ Empirical wt = 12 + 1 + 16 × 2= 45
 Now for acid to be dibasic, it must have two H – atom
 ∴ Mol. formula = (CHO₂)₂ = (COOH)₂ Ans

Q16.

Sol: Organic base
$$\longrightarrow$$
 CO₂ + H₂O
0.10 g 0.2882 g 0.0756 g
 $\Rightarrow \% \text{ of } C = \frac{12}{44} \times 0.2882$
0.10 $\times 100 = 78.6\%$ & % of H = $\frac{2}{18} \times 0.0756}{0.10} \times 100 = 8.4\%$
0.2 g of base $\longrightarrow N_2$
21.8 ml at 15°C & 760 mm pressure
 $\Rightarrow n_{N_2} = \frac{PV}{RT} = \frac{760}{760} \times 21.8 \times 10^{-3}}{0.0821 \times 288} = 0.92 \times 10^{-3}$
 $\therefore W_{N_2} = n_{N_2} M.W_{N_2} = 0.92 \times 10^{-3} \times 28 = 0.0258 g$
% of N = $\frac{0.0258}{0.2} = 13\%$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

: Element	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = X_i$	$\frac{X_i}{X_{smallest}}$
C	78.6	$\frac{78.6}{12} = 6.55$	$\frac{6.55}{0.93} = 7$ -
Н	8.4	$\frac{8.4}{1} = 8.4$	$\frac{\frac{6.55}{0.93}}{\frac{8.4}{0.93}} = 9$
N	13	$\frac{13}{4} = 0.93$	$\frac{0.93}{0.93} = 1$

 \therefore Empirical formula = C₇H₉N Ans

Q17.

 $O_2/_{\Delta} \rightarrow CO_2 +$ Sol: Organic compound -H₂O 0.1688 g 0.454 g 0.0663 g $\Rightarrow \% \text{ of } C = \frac{\frac{12}{44} \times 0.454}{0.1688} \times 100 = 73.35\% \qquad \& \qquad \% \text{ of } H$ $\frac{2}{18} \times 0.0663$ $-\times 100 = 4.42\%$ 0.1668 Organic compound + HNO₃ + BaCl₂ \longrightarrow BaSO₄ 0.1254 g

$$\Rightarrow \% \text{ of } S = \frac{\frac{32}{(10-37+32+16\times4)} \times 0.1292}{0.1254} \times 100 = 14.15\%$$

$$\Rightarrow \% \text{ of } O = 100 - (\% C + \% H + \% S)$$

$$= 100 - (73.35 + 4.42 + 14.15) = 8.88\%$$

Elei	nent	% by wt	$\frac{\% \text{by wt}}{=} X_i$	Xu
Sale.	part >		Atwt	X _{smallest}
C	States and	73.35	$\frac{73.35}{12} = 6.1125$	$\frac{6.1125}{0.442} \approx 14$
	1.10 1.4		12	0.442
н		4.42	$\frac{4.42}{1} = 4.42$	$\frac{4.42}{0.442} = 10$
0		8.88	$\frac{8.88}{16} = 0.55$	$\frac{0.55}{0.442} = 1$
s	-	14.15	$\frac{14.15}{32} = 0.442$	$\frac{0.442}{0.442} = 1$

 \therefore Empirical formula = C₁₄H₁₀SO Ans

Q17.

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

:. Element	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = \mathbf{X}_{i}$	$\frac{X_i}{X_{smallest}}$
C	78.6	78.6	$\frac{6.55}{0.93} = 7$
н	8.4	$\frac{12}{12} = 6.55$ $\frac{8.4}{1} = 8.4$	$\frac{6.55}{0.93} = 7$ $\frac{8.4}{0.93} = 9$
N	13	$\frac{13}{4} = 0.93$	$\frac{0.93}{0.93} = 1$

 \therefore Empirical formula = C₇H₉N Ans

 $2/\Delta \rightarrow CO_2 +$ Sol: Organic compound - H_2O 0.1688 g 0.454 g 0.0663 g $\Rightarrow \% \text{ of } C = \frac{\frac{12}{44} \times 0.454}{0.1688} \times 100 = 73.35\%$ $\frac{2}{-}$ × 0.0663 & % of H = $-\times 100 = 4.42\%$ 0.1668 Organic compound + HNO₃ + BaCl₂ \longrightarrow BaSO₄ 0.1254 g 0.1292 g $\times 0.1292$) $\times 100 = 14.15\%$ 32 \Rightarrow % of S = $\frac{(10-37+32+16\times4)}{(10-37+32+16\times4)}$ 0.1254 \Rightarrow % of O = 100 - (% C + % H + %S) = 100 - (73.35 + 4.42 + 14.15) = 8.88%Element % by wt %by wt X ...

C C Line 1	73.35	$\frac{73.35}{73.35} = 6.1125$	$\frac{10}{X_{\text{smallest}}}$ 6.1125 ~ 14
H	4.42	$\frac{\frac{19.33}{12} = 6.1125}{\frac{4.42}{1} = 4.42}$	$\frac{\frac{0.1123}{0.442} \approx 14}{\frac{4.42}{0.442} = 10}$
0	8.88	$\frac{\frac{1}{8.88}}{16} = 0.55$	$\frac{0.442}{0.442} = 1$
s	14.15	$\frac{14.15}{32} = 0.442$	$\frac{0.442}{0.442} = 1$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Element	% by wt	$\frac{\% \text{ by wt}}{1} = X_i$	Xi
		At.wt	X _{smallest}
С	92.3	$\frac{92.3}{2} = 7.7$	$\frac{7.7}{1.7} = 1$
	State and the second	12	7.7
Н	7.7	$\frac{7.7}{1} = 7.7$	7.7

Now, Mol. wt = 26
$$\Rightarrow \therefore n = \frac{\text{Mol.wt}}{\text{Emp.wt}} = \frac{26}{13} = 2$$

:. Molecular formula = $(CH)_2 = C_2H_2$

 $C_2H_2 + Br_2 \longrightarrow compound$ 92.5% Br

There is no need for any other information

Mol. formula : $C_2H_2 \Rightarrow$ Structural formula: CH =CH. Ans

Q19. Sol:

element	%by wt	$\frac{\% by wt}{At.wt} = X_i$	$\frac{\mathbf{X}_{i}}{\mathbf{X}_{i}} = \mathbf{Y}_{i}$	Y _i ×2	alang sé gan sa s
C	52.2	$\frac{52.2}{12} = 4.350$	$\frac{A_{\text{smallest}}}{\frac{4.350}{1.24}} = 3.5$	7	Familia
H	3.7	$\frac{3.7}{1} = 3.7$	$\frac{3.7}{1.24} = 3$	6	Empirio al formula
CI	44.1	$\frac{44.1}{35.5} = 1.24$	$\frac{1.24}{1.24} = 1$	2	: C7H6CI

For compound to be aromatic, it must have C6H5 component

So the compound is C₆H₅CHCl₂

 $C_6H_5CHCl_2 + KMno_4 \longrightarrow acid \longrightarrow sodium salt \underline{Sodalime distillation} C_6H_6$ The reaction implies that the organic acid is C_6H_5COOH .

Q 20.

Sol: Hydrocarbon $\longrightarrow C_5H_{10}Br_2$

Dilute alkaline $C_5\Pi_{12}O_2$ KMnO₄ O Ozonolysis $C\Pi_3 - C \sim CH_3^+ CH_3 - CHO$

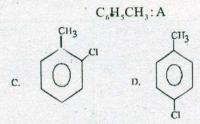
R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

react	ion implies	that structural f	formula of A is		
	CH ₃	CH,			
	\ C -				
	/ -	A	15		
CONTRACTOR OF	CH3	Н			
221.					
	07 1 .	0	artanet, and a parallel		
ol: A —	OZonolysis	$\rightarrow CH_3 - C - C$	CH ₃ + Aldehyd	e	
	4				
React	ion implies	that, Aldehyde	$\xrightarrow{[0]} \text{acid}$	#	
	aldehyde is		ng, so it should be		
	CH ₃ CH	I - CH = 0			
	CH ₃	I - CH = O			
	CH ₃	CH - CH ₃ / :		CH, H	
: A is	C = 0	CH-CH :	A Acid is	C :	В
	CH ₃	CH,		M / 1	
	CII3	CII3		CH ₃ COOH	
	Br /P	and and the	South Read and a state	incontrol torsion	and the second
В	Br ₂ /P CH ₃ 1	→c		C hydroly	$\rightarrow D$
	CH ₃ J	Br	M. Tarining	CH ₃	OH
C will		· · c		D will be	:D
	11	and the second s		1	1
	CH ₃ C	COOH		CH ₃	CQOH
22.	All and a second second	NX			
ol:	Send . Japa			y i ser y star	al a second
Eleme	nt have !!	% by wt	$\frac{\% \text{ by wt}}{\Lambda} = X_i$	$\frac{X_i}{Y} = Y_i$	$Y_i \times 7$
	A Stranger Stranger		At.wt	Asmallest	
C		91.3	$\frac{91.3}{12} = 7.6$	$\frac{7.6}{7.6} = 1$	$\frac{7.6}{7.6} = 1$
			12	7.6	7.6
	12.2		8.7	07	and a second
H		8.7	$\frac{8.7}{1} = 8.7$	$\frac{8.7}{7.6} = 1.14$	$1.14 \times 7 = 8$
	STATE AND A			16	

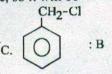
K. MALIK' S R. NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

reaction implies that structural formula of A is CH, CH, C = CAns Н CH, Q21. Sol: A $\xrightarrow{OZonolysis}$ $CH_3 - C - CH_3 + Aldehyde$ Reaction implies that, Aldehyde $\xrightarrow{[0]}$ acid Since aldehyde is easily oxidising, so it should be / can be CH₃ CH - CH = OCH, CH₃ CH, H CH, C. \therefore A is C = CH - CH: A Acid is : B 11 CH, CH, CH₃ COOH $B \xrightarrow{Br_2/P} C$ $CH_3 Br$ hydrolysis CH₃ OH C will be D will be C CH, COOF CH, COOH Q22. Sol:

Element	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = X_i$	$\frac{\mathbf{X}_{i}}{\mathbf{X}_{\text{smallest}}} = \mathbf{Y}_{i}$	Y _i ×7
С	91.3	$\frac{91.3}{12} = 7.6$	$\frac{7.6}{7.6} = 1$	$\frac{7.6}{7.6} = 1$
H	8.7	$\frac{8.7}{1} = 8.7$	$\frac{8.7}{7.6} = 1.14$	1.14×7=8


D

:D


: Empirical formula C₇H₈

Since compound is aromatic & it gives 3 diff-ⁿ monochloroderivatives, so it must be

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Since B on oxidation gives a monobasic acid which on distillation with sodalime gave Benzene, so it will be

Q23.

Sol: Organic compound $\longrightarrow CO_2 + H_2O$

A (0.15 g)

$$\Rightarrow \% \text{ of } C = \frac{\frac{12}{44} \times 0.33}{0.15} \times 100 = 60\%$$

 $\Rightarrow \% \text{ of } H = \frac{\frac{2}{18} \times 0.18}{0.15} \times 100 = \frac{2}{0.15} = 13.33\%$

% of O = 100 - (60 + 13.33) 100 - 73.33 = 26.67%Since compound A undergoes dehydration, it must have -OH group, so have oxygen atom.

Element	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = X_i$	$\frac{X_i}{X_{smallest}} \rightarrow$
C	60	$\frac{60}{12} = 5$	$\frac{5}{1.667} = 3$
prove a		$\frac{13.33}{1} = 13.33$	13.33 - 8
H () man	13.33		1.668
1 1 1		$\frac{26.67}{1.668}$ = 1.668	$\frac{1.668}{1.668} = 1$
0 .	26.67	16	$\frac{1.668}{1.668} = 1$

So Empirical formula = C_3H_8O Empirical wt = $12 \times 3+8+16 = 60 = Mol.wt$ \therefore Molecular formula = empirical formula = C_3H_8O \therefore A will be CH₃CH₂CH₂ - OH <u>Dehydration</u> CH₃ - CH = CH₂ (B) HIO₄ / AgOH CH₃ - CH - CH₃ (C)

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q24. AgNO₃ Sol: A -→ white ppt. Mol.wt-108 %C = 88.89% %H = 11.11% Hydrogenation Mol. wt = 108Mol. wt = 112 Oxidation Decarboxylation Acid ➤ Cyclohexane Mol.wt = 128C6H12 So acid will be C6H11- COOH Now A gives a white ppt with AgNO3, so it must have terminal triple bond, : A will be $C_6H_{11} - C \equiv CH \implies Mol. wt = 12 \times 8 + 12 = 108 g$ B will be $C_6H_{11} - CH_2 - CH_3$, \Rightarrow Mol. wt = $12 \times 8 + 16 = 112$ g Q25. Sodium Sol: X No reaction (contains C, H & O) So it can't have acid or alcohol Bra No reaction Schift reagent ► No reaction So it can't be aldehyde and ketone, it can be only ether. Further x \longrightarrow HIO₄ \rightarrow only are product, so it must be symmetrical ether I_2/P_4 (red) KMnO₄ Oxidation Carboxylic acid., (Eq.wt = 60) It has - COOH group Wt of - COOH group = $12+16 \times 2+1 = 45$ g So it can have only CH₃ unit attached to - COOH group. So acid is CH₃ - COOH. So Ξ will be CH₃ – CH₂ – OH Y will be $CH_3 - CH_2 - I$ Ans X will be $CH_3 - CH_2 - O - CH_2 - CH_3$ $C_2H_5 - O - C_2H_5 + 2HI \longrightarrow 2C_2H_5I + H_2O$

R. K. MALIK' S NEWTON CLASSES

		N & ADV.),		BOARD
Q26. Sol: For compo	unds		1.64	164
no. of mole	$es = \frac{volume}{Molar.vol} = \frac{w}{Mol}$	$\frac{448}{1.\text{wt}} \Rightarrow \frac{448}{22400} = \frac{1}{N}$	$\frac{1.64}{\text{Mol.wt}} \Rightarrow \text{Mol.w}$	$wt = \frac{164}{2} = 82g$
Element	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = X_i$	$\frac{X_i}{X_{\text{smallest}}} = X_i$	Y×3
C	87.8%	$\frac{\frac{87.8}{12} = 7.316}{\frac{12.19}{1} = 12.19}$	$\frac{7.316}{7.316} = 1$ $\frac{12.19}{12.66} = 1.66$	$1 \times 3 = 3$ $1.66 \times 3 = 5^{\text{H}}$
	$formula = C_3H_5 \implies I$ $\frac{Aol.wt}{mp.wt} = \frac{82}{41} = 2$	$\frac{1}{\text{Empirical wt} = 12 \times 3}$	7.316 3 + 5 = 41	and the last
: Molecu	mp.wt 41 lar formula = $(C_3H_5)_2$.F. factor = $\frac{14-10}{2}$ =		nd or two double	bonds
Now C ₆ H	$_{0} \xrightarrow{\text{HgSO}_{4}} C_{6}\text{Hr}$	$_{2}O \Rightarrow C_{6}H_{10}$ has a	triple bond	
Further C_6 $\therefore C_6H_{10}$ -	$H_{10} \xrightarrow{AgNO_3} N_0$ $\xrightarrow{hydrogenation} O$	$\begin{array}{l} \text{CH}_{3} - \text{CH}_{-} \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{-} \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} \end{array}$	H_{10} has internal th $H_2 - CH_3$	ipie bonų
$\Rightarrow C_6 H_{10}$	is CH ₃ = CH - C CH3	= C - CH ₃	Ans	
Q27.	volume	wt $\rightarrow 67.2$	0.369	and the second second
M	$cs = \frac{volume}{Mol.volume} = \frac{1}{M}$ $ol.wt = \frac{0.369 \times 22400}{67.2}$	=123g		
A Nat	$\xrightarrow{\text{Al}_2\text{O}_3} \text{B} \xrightarrow{\text{Al}_2\text{O}_3} 250^{\circ}\text{C}$	C (neutral compour	nd)	

D(hydrocarbon)

 $\xrightarrow{\text{HBr}}$ An isomer of A D -H2SO4/H2O

300 C

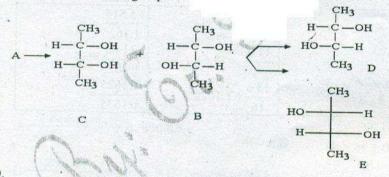
E

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

A is a monobromoderivatives with Mol.wt. 123 Wt of hydrocarbon = (123 - 80)+1 = 43 + 1 = 44 \therefore hydrocarbon has 3 carbon & 8 hydrogen = $12 \times 3+8 = 44g$ A : CH₃ - CH₂ - CH₃ Monobromodevatives : CH₃ - CH₂- CH₂ - Br B : CH₃ - CH₂ - CH₂ - OH C : C₃H₇O - C₃H₇ (At lower temperature intermolecular dehydration occur) D: CH₃ - CH = CH₂ (At higher temperature intramolecular dehydration occur) CH₃

E: CH-OH

CH,

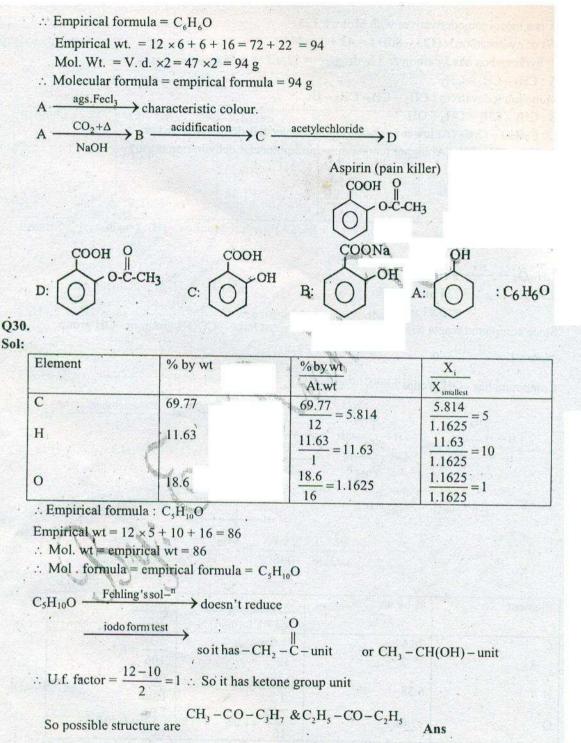

Q28.

Sol: $C_4H_{10}O_2 \xrightarrow{Na} H_2$ gas 0.90 g 224 ml at NTP = 0.01 moles

Since compound reacts with Na to give H2, so it must have - COOH group or -OH group.

Now u.f. $=\frac{10-10}{2}=0$

Compound has -OH groups


Q29. Sol:

Element	% by wt	$\frac{\% \text{ by wt}}{\text{At wt}} = X_{i}$	$\frac{X_i}{X_{smallest}}$
C Have th	76.6	$\frac{76.6}{12} = 6.38$	$\frac{6.38}{106} = 6$
Н	6.38	$\frac{6.38}{1} = 6.38$	$\frac{6.38}{1.06} = 6$
0	17.02	$\frac{17.02}{16} = 1.06$	$\frac{1.06}{1.06} = 1$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

OFFICE AT

606, 6th FLOOR HARIOM TOWER

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q31.

Sol: On oxidation X gives acid, so it must have CHO, -OH or Ketone group. In other word, oxygen will be present in it

Element	% by wt	$\frac{\% \text{ by wt}}{\text{At.wt}} = X_i$	X	
С	54.54	$\frac{54.54}{12} = 4.545$	$\frac{X_{\text{smallest}}}{\frac{4.545}{2.27} = 2}$	
Н	9.09	$\frac{9.09}{1} = 9.09$	$\frac{9.09}{2.27} = 4$	
0	36.37	$\frac{36.37}{12} = 2.27$	$\frac{2.27}{2.27} = 1$	

- : Empirical formula : C₂H₄O
- Empirical wt = $12 \times 2 + 4 + 16 = 44$ g = Mol.wt
- \therefore Molecular formula = empirical formula = C₂H₄O
 - U. F. Factor = $\frac{6-4}{2} = 1$
- So it is an aldehyde: CH₃-CHO Ans

Q 32.

haloform Sol: \rightarrow so A has CH₃ - C - unit reaction OH Reduction will hav CH₃-CH-unit B → D (Monozonide) hydroly D acetaldehyde 0 SoDisCH₃-CH CH-CH₃ Ó 0 C is $CH_3 - CH = CH - CH_3$ OH Ais CH, -CH, -CH, Bis CH₃-CH-CH₂-CH₃

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Element	% by wt	$\frac{\% \text{by wt}}{\text{At wt}} = X_i$	Xi
		At wt	X _{smallest}
С	62.06%	$\frac{62.06}{12} = 5.17$	$\frac{5.17}{1.72} = 3$
н	10.35%	$\frac{12}{10.35} = 10.35$	$\frac{1.72}{\frac{10.35}{1.72}} = 6$

:. Empirical formula = C_3H_6O Empirical Weight = $12 \times 3+6+16 = 58 = Mol.wt$. :. Molecular formula = Empirical formula = C_3H_6O

Q34.

Sol: Reaction implies that compound has oxygen atom present in it now

Element	% by wt	$\frac{\% by wt}{At.wt} = X^{i}$	Xi
		At.wt	X _{smallest}
c	79.25	$\frac{79.25}{12} = 6.604$	$\frac{6.604}{0.95} = 7$
н	5.56	$\frac{5.56}{1} = 5.56$	$\frac{5.56}{0.95} \approx 6$
0	15.19	$\frac{15.19}{16} = 0.95$	$\frac{0.95}{0.95} = 1$

 \therefore Empirical formula : C₇H₆O

Since compound is aromatic, so it will have C6H5 unit.

Now the compound can be C₆H₅CHO only.

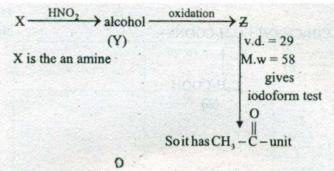
R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

under	go Canizzaro's reaction	$H_5CH_2OH + C_6H_5COONa$	
		(Y) C ₆ H ₅ COOH (Z)	And a start
х		and the second star	
Aromatic comp	ound		
Element	%by wt	$\frac{\% \text{by wt}}{\text{At.wt}} = X_i$	$\frac{X^{i}}{X_{smallest}}$
C	58.5	$\frac{58.5}{1.2} = 4.875$	4.875
C	The Westmanner		$\frac{4.875}{0.814} = 6$
н	4.1	$\frac{12}{\frac{4.1}{1}} = 4.1$	$\frac{4.1}{0.814} = 5$
	4.1 26		$\frac{1}{0.814} = 6$ $\frac{4.1}{0.814} = 5$ $\frac{0.625}{0.814} = 2$

So the empirical formula is $C_6H_5NO_2$ since the compound is aromatic, so it has C_6H_5 unit Which is present in empirical formula. This implies that Molecular formula will be some as empirical formula

$$\therefore X: C_6H_5NO_5$$

$$X \leftarrow HNO_3 = Y;$$
 So Y is C₆H₆


$$C_6H_5NO_2 \longrightarrow C_6H_5NH_2(\mathbb{Z})$$

(X)

Q36.

Sol:

$\frac{x_{\text{Smallest}}}{x_{\text{Smallest}}} = 5.084 \qquad \frac{5.084}{1.696} = 3$
= 5.084 $= 3$
$=15.25$ $\frac{15.25}{1.696} = 9$
$=1.696$ $\frac{1.696}{1.696} = 1$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

(since x has 3 carbon, So \mathbb{Z} will also have) So Z can beCH₃ - C - CH₃

 $\begin{array}{c} OH \\ Y: CH_3 - CH - CH_3 \end{array} X: CH_3 - CH - CH_3 \end{array}$

Q 37.

Sol: A Reduction Primary amine (B)

So A has Nitro group, so it has oxygen atom present in it % of O = 100 - (% C + % H + % N)= 100 - (32 + 6.66 + 18.67) = 42.67

Element	% by wt	$\frac{\% \text{by wt}}{\text{At wt}} = X_i$	X _i X _{smallest}
C	32	$\frac{32}{12} = 2.66$ $\frac{6.66}{10} = 6.66$	$\frac{2.66}{1.33} = 2$
н	6.66		$\frac{\frac{6.66}{1.33}}{\frac{1.33}{1.33}} = 1$
N	18.67	$\frac{18.67}{14} = 1.33$	$\frac{1:33}{1.33} = 1$
0	42.67	$\frac{42.67}{16} = 2.66$	$\frac{2.66}{1.33} = 2$

So the empirical formula will be C2H5NO2

B $\xrightarrow{\text{Nitrous}}$ acid \rightarrow ethyl alcohol (C₂H₅OH)

So B is C₂H₅NH₂

So A is C₂H₅NO₂ (which is coming as empirical formula)

 $C_{2}H_{5}.NH_{2} \xrightarrow{CHCl_{3}} C_{2}H_{5}.NC (C)$ $\downarrow Reduction$ $C_{2}H_{5} - NH - CH_{3}$

K. MALIK' S R. NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

038.

Sol: A gives Lucas test in 5-10 minutes, then it will be secondary hydroxide.

A + Na metal \longrightarrow H₂↑

6 g

1120 ml at NTP 0.1 2

Also A contain one oxygen atom per molecule, so it has one -OH group.

So the compound will give only one H-atom, so $\frac{1}{2}H_2$ molecule.

New $\frac{1}{2}$ mole of H₂ is produced by 1 mole

So $\frac{0.1}{2}$ - 0.1 mole

moles =
$$\frac{\text{wt}}{\text{Mol.wt}} \implies 0.1 = \frac{6}{\text{Mol.wt}} \implies \text{Mol.wt} = \frac{6}{0.1} = 60\text{g}$$

So the compound can have 3 carbon atom -one oxygen atom & 8 hydrogen atom,

Ans

C

H

CI

 $\frac{\% \text{ by wt}}{\text{At wt}} = X_i$ Element % by wt X_{smallest} $\frac{68.32}{12} = 5.69$ $\frac{5.69}{0.71} = 8$ 68.32 $\frac{6.4}{0.71} = 9$ $\frac{6.4}{1} = 6.4$ 6.4

Empirical formula of $A = C_8H_9Cl$.

Empirical wt. = $12 \times 8 + 9 \times 35.5 = 140.5 = Mol.wt$

So Molecular formula = empirical formula = C₈H₉Cł

25.26

hydrolysis → B (C₈H₁₀O) _oxidation, Mild condition _ C₈H₈O (C) $A(C_8H_9Cl)$ dilute acid

 $\frac{25.26}{35.5} = 0.71$

$$C_{6}H_{5}-C=N-NH-C_{6}H_{5} (D)$$

$$\downarrow CH_{3}$$

X,

 $\frac{0.71}{0.71} = 1$

Since it +ve iodoform test

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

N So hydrazine must have CH, -C-unit $C_{s}H_{s}-C=N-NH-C_{s}H_{s}$ So D must be ĊH, $B: C_6H_5 - CH = OH \qquad A: C_6H_5 - CH = CI$ $C: C_6H_5 - C = O$ | CH_3 Q40. Sol: W $(C_2H_6 + C_2H_5OH) = 10 \text{ g}$ Let x g of C_2H_5OH is present in the mix Since only ethanol reacts with Na, So $C_2H_2OH + Na \longrightarrow C_2H_5ONa + \frac{1}{2}H_2$ 200 ml At 27°C & 760 mm Hg $nH_2 = \frac{\frac{760}{760} \times 200 \times 10^{-3}}{0.0821 \times 300} = \frac{0.2}{0.0821 \times 300} = 8.12 \times 10^{-3}$: moles of $C_2H_5OH = 2 \times \text{mole}$ of $H_2 = 0.01624$ $\therefore \frac{\text{wt}}{(24+6+16)g} = 0.01624$ Wt = 0.747 g:. % by wt = $\frac{0.747}{10} \times 100 = 7.47\%$ Ans 041. Sol: $W(C_2H_5OH + CH_3CHO) = 0.535 g$ Let x g of CH₃CHO is present in the mixture 2CH₃CHO + 2Fehling solution -→ 2CH₃COOH + Cu₂O (Cu^{2+}) 1.2 g Xg 2 mole of $CH_3CHO \equiv 1$ mole of Cu_2O $\Rightarrow \text{ moles of CH}_3\text{CHO} = \frac{1}{2} \text{ (moles of Cu}_2\text{O produced)} = \frac{1}{2} \left(\frac{1.2}{63.5 \times 2 + 16} \right) = \frac{1}{2} \left(\frac{1.2}{143} \right)$ $\frac{\text{WtCH}_{3}\text{CHO}}{\text{Mol.wt}} = 8.39 \times 10^{-3} \times \frac{1}{2}$ Wt CH₃CHO = $\frac{1}{2} \times 8.39 \times 10^{-3} \text{ x} (24 + 14 + 16) = \frac{0.369}{2} \text{ g} = 0.1845 \text{ g}$:. % of CH₂CHO = $\frac{0.1845}{0.535} \times 100 = 34.5\%$ Ans

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q42	•
Sol:	

Element	% by wt	$\frac{\% by wt}{At wt} = X_i$	$\frac{X_i}{X_{smallest}}$
C	49.32	49.32 - 4.11	$\frac{4.11}{1.37} = 3$
н	9.59	$\frac{12}{9.59} = 9.59$	$\frac{4.11}{1.37} = 3$ $\frac{9.59}{1.37} = 7$ $\frac{1.37}{1.37} = 1$
N	19.18	$\frac{19.18}{14}$ - 1.37	$\frac{1.37}{1.37} = 1$
0	21.91	$\frac{21.91}{16} = 1.37$	$\frac{1.37}{1.37} = 1$

C,H,COOH

So Empirical formula : C₃H₇NO

A $\xrightarrow{\text{NaOH}}$ NH₃ + Salt $\xrightarrow{\text{acidi fication}}$ monobasic Nitrogen free acid (B) Boiled

So A is an amide

$$\begin{array}{c} O \\ \parallel \\ A: C_2H_5 - C - NH_2 \end{array} \quad B: C_2H_5 - COOH \end{array}$$

Q43. Sol:

(I) (II) $[Pd C_XH_YN_Z]$ (ClO₄)₂ \longrightarrow $[Pd C_XH_YZ_Z]$ (CNS)₂ 30.15% C 40.412% C 5.06% H 5.94% H Let M is the Mol. wt of (1) Mol. wt of (II) = $M - 2.(35.5 + 64) + (12 + 14 + 32) \times 2 = M - 199 + 116 = (M - 83) g$ Now 106 + 12x + y + 14Z + 199 = M - (1)In (I) % of C = 30.15% $\frac{12x}{M} \times 1000 = 30.15 \implies x = \frac{30.15M}{1200} - --(2)$ % of H = 5.06% $\frac{y}{M} \times 100 = 5.06 \implies y = \frac{5.06M}{100}$ (3) In (2) % of H

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\frac{y}{M-83} \times 100 = 5.94 \implies y \frac{(5.94)(M-83)}{100} - - - -(4)$$
(3) & (4): $\implies 5.06 \text{ M} = 5.94 - 5.94 \times 83$

$$M = \frac{5.94 \times 83}{0.88} = 560$$

$$y = \frac{5.06 \times 560}{100} = 28$$

$$x = \frac{30.15 \times 560}{1200} = 14 \qquad \text{Ans}$$
From (I) 106 + 12 × 14 + 28 + 13 × Z= 560 - 199
14Z = 560 - 199 - 106 - 12 × 14 + 28
$$Z = \frac{59}{14} = 4 \qquad \text{Ans}$$