R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Chapter-18. Electromotive force 01. Sol: (i) Ag / Ag⁺(10⁻⁵ M), $E^{0}_{Aa^{-1}Aa} = 0.80V$ $Ag^+ + e^- \longrightarrow Ag.$ $\varepsilon_{Ag^*/Ag} = \varepsilon_{Ag^*/Ag}^0 - \frac{2.303 \,\text{RT}}{n F} \log Q$ $\varepsilon_{Ag'/Ag} = 0.80V - \frac{0.0592}{1} \log \frac{1}{[Ag^+]}$ $\varepsilon_{Ag^*/Ag} = = 0.80 \text{ V} - 0.0592 \log(10^{-5}) = 0.80 \text{ V} - 5 \times 0.0592 = 0.30 \text{ V}$ Ans (ii) $Cu/Cu^{2+}(0.2M)$, $\varepsilon^0 Cu^{2+}/Cu = 0.34 V$ $\epsilon_{cu^{2^{-}}/Cu} = \epsilon_{Cu^{2^{+}}/Cu}^{0} - \frac{2.303 \,\text{RT}}{nF} \log Q$ $= 0.34V - \frac{0.0592}{2} \log \frac{1}{[Cu^{2+}]} = 0.34V - \frac{0.0592}{2} \times \log 5$ $= 0.34 \text{V} - \frac{0.0592}{2} \times 0.699 = 0.32 \text{ V}$ Ans Q2. Sol: (i) (Pt) H₂^{-/} HCl (1M) and Pt(Cl₂) / HCl (1M) (1 atm) 1 atm $\varepsilon^{0}_{2H'/H_{2}} = 0$ $\varepsilon_{2H'/H_2} = 0$ $\varepsilon_{CI_2/2CI^-}^0 = 1.36V$ Since $\varepsilon_{Cl_2/2Cl^-}^0 > \varepsilon_{2h'H_2}^0$ So Cl2/Cl electrode behaves as cathode, so that the cell has +ve emf. Cell reaction: $Cl_2 + H_2 \longrightarrow 2HCl$ Cell notation : Pt/H,, H⁺ || Cl,, Cl⁻ / Pt (ii) Cu/Cu²⁺(1M)&Cl⁻/Cl₂(Pt)). IM l atm $\varepsilon^{0}_{Cu^{2*}/Cu} = 0.34V \& \varepsilon^{0}_{Cl_{*}/Cl_{*}} = 1.36V$ Since $\varepsilon_{Cl_{1}/Cl_{1}}^{0} > \varepsilon_{Cu^{2t}/Cu}^{0}$ So Cl2/Cl behaves as cathode & hence Cl2 get reduced. Cell reac-ⁿ: $Cl_2 + Cu \longrightarrow Cu^{2+} + 2Cl^{-}$ Cell notation: Cu/Cu2+ //Cl,,Cl-/Pt Q3. Fluorine is the strongest oxidising agent possible so it is not possible for F⁻ too oxidised by any other elements listed in the electrochemistry series.

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q4. $CuSO \leftarrow Cu^{2+} + SO_4^{2-}$ Sol: Initially 0.1M **Finally** $0.1 - 0.1 \times \frac{90}{100}$ 0.09 0.09 0.1 - 0.09 $Cu^{2+} + 2e^{-} \longrightarrow Cu$ $\varepsilon_{Cu^{2+}/Cu} = \varepsilon_{Cu^{2+}/Cu}^{0} - \frac{0.0592}{2} \log \frac{1}{[Cu^{2+}]}$ $\varepsilon_{Cu^{2-}/Cu} = +0.34V - \frac{0.0592}{7}\log\frac{1}{0.09} = +0.34V - 0.031V = 0.31V$ Ans Q5. 1N CuSO₄ = 1×2 M CuSO₄ $Fe + CuSO_4$ Cu + Fe^{2+} **Initially** excess 2N 2 - XAt eq-b $\varepsilon_{E_0^{2+}/E_0}^0 = -0.44$ $\varepsilon_{Cu^{2-1}Cu}^{0} = 0.34 \,\mathrm{V}$ At eq-^b, Ecell = 0 and $Q = Keq^{b}$ So from Ecell = E^0 cell - $\frac{0.0592}{2} \log Q$ At eq-^b, $O = E^0 \text{cell} - \frac{0.0592}{2} \log k_{eq-^b}$ $\varepsilon_{cell}^{0} = + \frac{0.0592}{2} \log \frac{[Fe^{2+}]}{[Cuso_{4}]}$ $0.78 = \frac{+0.0592}{2} \log \frac{x}{2-x} \Rightarrow \frac{x}{2-x} = \operatorname{anti} \log(+26.35)$ $\Rightarrow X = 2.24 \times 10^{26} (2 - x)$ If $2 - x = y \Rightarrow x = 2 - y$ $(2 - y) = 2.2456 \times 10^{26} y$ $y = \frac{2}{2.2456 \times 10^{26}} = 8.906 \times 10^{-17}$ Ans :. So conc⁻ⁿ of CaSO₄ at eq^{-b} = $2 - x = y = 8.906 \times 10^{-27} \text{ M}$ Ans Q6. Sol: Mg + CuSO₄ $\xrightarrow{?}$ Mg²⁺ + Cu \downarrow $\varepsilon^0_{Mg/Mg^{2*}} = 2.36V \implies \varepsilon^0_{Mg^{2*}/Mg} = -2.36V$ $\varepsilon^{0}_{Cu/Cu^{2+}} = -0.34 V$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\varepsilon_{\text{Cu}^{2+}/\text{Cu}}^{0} > \varepsilon_{\text{Mg}^{2+}/\text{Mg}}^{0} \quad \text{So Cu}^{2+} \text{ can be reduced by Mg.}$$
Q7.
Sol: (i) Mg + Cl₂(1 atm) \longrightarrow Mg²⁺ (10⁻²M) + 2Cl⁻ (2 × 10⁻² M) (2e⁻ is transfered)
 $\varepsilon_{\text{Mg}^{2+}/\text{Mg}}^{0} = -2.36 \text{V} & \varepsilon_{\text{CL}/\text{ZCL}}^{0} = 1.36 \text{V}$
 $\varepsilon_{\text{Cell}}^{0} = \varepsilon_{\text{Cell}}^{0} - \frac{0.0592}{2} \log[\text{Cl}^{-}]^{2}[\text{Mg}^{2+}]$
 $= 3.72 \text{V} - \frac{0.0592}{2} \log\{(2 \times 10^{-2})^{2} \times 10^{-2}\} = 3.72 \text{V} - \frac{0.0592}{2} \log(4 \times 10^{-6})$
 $= 3.72 - \frac{0.0592}{2} (-6 + \log 4) = 3.72 \text{V} + 0.16 \text{V} = 3.88 \text{V}$ Ans
(ii) Zn + Fe²⁺(10⁻³M) \longrightarrow Zn²⁺(10⁻⁴M) + Fe
 $\varepsilon_{\text{Za}^{3+}/\text{Zn}}^{0} = -0.76 \text{V} & \varepsilon_{\text{Fe}^{3-}/\text{Fe}}^{0} = -0.44 \text{V}$
 $\varepsilon_{\text{Cell}}^{0} = -\varepsilon_{\text{Zh}^{3+}/\text{Zn}}^{0} + \varepsilon_{\text{Fe}^{2+}/\text{Fe}}^{0} = 0.76 \text{V} + (-0.44 \text{V}) = 0.32 \text{V}^{-1}$
 $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^{0} - \frac{2.303}{\text{nf}} \log[\frac{\text{Zn}^{2+}}{\text{[Fe}^{2+}]}]$
 $= 0.32 \text{V} - \frac{0.0592}{2} \log[\frac{10^{-4}}{10^{-3}}[10^{-1}] = 0.32 \text{V} + \frac{0.0592}{2} \times (-1) = 0.3496 \text{V}$ Ans

Q8.

Sol:
$$\mathbb{Z}n(s) + Pb^{2+}(1M) \longrightarrow \mathbb{Z}n^{2+}(1M) + Pb(S), \ \varepsilon_{Cell}^{0} = 0.66V$$

 $\varepsilon_{cell} = \varepsilon_{cell}^{0} - \frac{0.0592}{2} \log \frac{[Zn^{2+}]}{[Pb^{2+}]}$
 $= 0.66 - \frac{0.0592}{2} \log \frac{0.1}{0.1} = 0.66 V$ Ans

Q9.

Sol: In electrolytic cell that reaction will occur which has – ve emf. Since the reac-ⁿ $Cu^{2+} + 2Cl^{-} \rightarrow Cu(S) + Cl_{2}(g)$ has –Ve Emf, So this reac-ⁿ can be made to occur in electrolytic cell.

Ans (C)

Q10.

Sol: Since $E_{Cell} = +ve$, so reaction will proceed in forward direction but only to a extent at at which it attain eq^{-b} and so Ni²⁺ remain in some amount. Ans (C)

Q11.

Sol: (a) Since X can displace Ag⁺ from its salt, so it has more reducing power than Ag, so Oxidation Potential of X will be higher than that of Ag.

 $\varepsilon^{0}_{Ag/A^{2+}} < \varepsilon^{0}_{X/X^{2+}} \qquad \therefore \varepsilon^{0}_{X^{2+}/X} < \varepsilon^{0}_{Ag^{+}/Ag}$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 $\varepsilon^0_{X^{2*}/X} < 0.8 \, \mathrm{V}$ -----(1)

Also since X can't displace Cu^{2+} from its salt so it has less reducing power than Cu, so less oxidation potential & so high reduction potential.

 $\varepsilon_{X^{2^+}/X}^0 > \varepsilon_{Cu^{2^-}/Cu}^0$

$$\sim 0.34$$
 V $\sim (2)$

: (1) & (2) 0.34 V <
$$\varepsilon_{X^{2-}/X}^{\circ} < 0.8V$$
 An

(b) Since X can't displace Zn^{2+} or Fe^{2+}

So
$$\varepsilon^{0}_{X^{2+}/X} > \varepsilon^{0}_{2n^{2-}/2n} > \varepsilon_{Fe^{2+}/Fe}$$

 $\varepsilon^{0}_{X^{2+}/X} > -0.76 \text{ V } \& > -0.44 \text{ V}$

 $\therefore \varepsilon^0_{X^2/X}$ Should be greater than -0.44 V for only of Ξn^{2+} or Fe²⁺ not to displace

Also X can reduced H^+ to H_2 , So it has high reducing power than $H_2^ \therefore$ reduction potential will be less.

$$\varepsilon_{\mathbf{x}\mathbf{2}^{\prime}/\mathbf{x}} < 0 \implies \therefore -0.44 \, \mathrm{V} < \mathrm{E}_{\mathbf{x}^{2\prime}/\mathbf{x}}$$
 Ans

Q12.

Sol: $Hg,Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^-$

$$\varepsilon_{\text{Hg}_{2}^{2+}/\text{Hg},\text{Cl}^{-}} = \varepsilon_{\text{Hg}_{2}^{2+}/\text{Hg}}^{0} - \frac{2.303 \text{ RT}}{\text{nF}} \log Q$$

For the above reaction; $Q = [C1^{-}]^{2} = (0.1)^{2} = 10^{-2}$

$$\mathcal{E}_{Hg_{2}^{2^{-}}/Hg,Cl^{-}}^{0} = 0.28V$$

 $\therefore \mathcal{E}_{Hg_{2}^{2^{-}}/Hg,Cl^{-}} = 0.28V - \frac{0.0592}{2}\log 10^{-2} = 0.28V - \frac{0.0592}{2} \times (-2)^{-2}$
 $= 0.28 + 0.0592 = 0.339V$ Ans

Q13.

Sol: In concentration cell, we know that reaction tends to occur in the direction such that the conc-ⁿ in both half cell becomes equal.

So in half cell with lower H⁺ conc-ⁿ it forms & in half cell with higher H⁺ conc-ⁿ, it consume

 \therefore [H⁺] = 10⁻M \implies & [H⁺]₂ = 0.025M

Act as anode Act as cathode

So H^+ get formed So H^+ get consumed

Cent Notation.
$$Pt/H, H^{+}(10^{-8}M)//H^{+}(0.035M)H, /pt$$

Cell reac-n

 $\begin{array}{c} H_2 \longrightarrow 2H^+ + 2e^- & \text{at anode} \\ 2H^+ + 2e^- \longrightarrow H_2 & \text{at cathode} \end{array}$

Cell reac-ⁿ : $2H^+$ cathode $\longrightarrow 2H^+$ anode

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\therefore \quad \varepsilon_{\text{cell}} = \varepsilon_{\text{cell}}^{0} - \frac{0.0592}{1} \log \frac{[\text{H}^{+}]\text{anode}}{[\text{H}^{+}]\text{cathode}}$$

$$\varepsilon_{\text{cell}} = 0 - \frac{0.0592}{1} \log \frac{10^{-8}}{0.025} = -\frac{0.0592}{1} \left(\log \frac{10^{-5}}{25} \right)$$

$$= -\frac{0.0592}{1} (-5 - \log 25) = -0.0592 (-6.398) = 0.379 \text{ volt} \quad \text{Ans}$$

Q14.

Sol: Let the conc-ⁿ of Cu²⁺ is x for the cell reaction to occur.

$$Cu + Zn^{2+} \longrightarrow Cu^{2+} + Zn$$

$$Q = \frac{[Cu^{2+}]}{[Zn^{2+}]} = \frac{x}{1} \quad \text{For } Cu^{2+} + 2e^{-} \rightarrow Cu ; \quad Q = \frac{1}{(Cu^{2+})} = \frac{1}{x}$$

For cell reaction to occur

$$\varepsilon_{\text{cell}} > 0$$

$$\varepsilon_{2n^{2s}/2n}^{0} - \varepsilon_{cu^{2s}/Cu} > 0_{-} \implies \varepsilon_{Cu^{2s}/Cu}^{0} < \varepsilon_{2n^{2s}/Zn}^{0}$$

$$\varepsilon_{Cu^{2s}/Cu}^{0} - \frac{2.303\text{RT}}{\text{nF}} \log Q < -0.76$$

$$0.34 - \frac{0.0592}{2} \log \frac{1}{x} < -0.76$$

$$\frac{0.0592}{2} \log \frac{1}{x} > 1.1 \implies \log \frac{1}{x} > 37.162$$

$$x < 10^{-37.162} = 6.2 \times 10^{-38} \text{ M}$$
Ans

Q15.

Sol: In electrochemical cell / galvanic cell
+ve electrode is cathode & -ve electrode is anode.

$$\therefore$$
 Conc-ⁿ in anode half cell = 10⁻⁶M
 $\varepsilon_{\text{Cell}} = 0.118 \text{ V} = \frac{-0.0592}{1} \log \frac{[\text{H}^+]\text{anode}}{[\text{H}^+]\text{cathode}}$
 $\Rightarrow 0.118 \text{ V} = \frac{-0.0592}{1} \log \frac{10^{-6}}{[\text{H}^+]\text{cathode}}$
 $\Rightarrow -2 = \log \frac{10^{-6}}{[\text{H}^+]\text{cathode}} \Rightarrow \frac{10^{-6}}{[\text{H}^+]\text{cath}} = 10^{-2}$
 $[\text{H}^+] \text{ cathode } = \frac{10^{-6}}{10^{-2}} = 10^{-4} \text{ M}$ Ans
Q16.
Sol: For Fe²⁺ + Zn $\longrightarrow Zn^{2+}$ + Fe
 $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Fe}^{2+}/\text{Fe}}^0 - \varepsilon_{2n^{2+}/\overline{Zn}}^0 = -0.41 - (-0.76) = 0.35 \text{ V}$ Ans

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\begin{array}{c} +e^{-} \longrightarrow Fe^{2+}; \qquad E^{0} = 0.77 \text{ V} \\ +2e^{-} \longrightarrow Fe; \qquad E^{0} = -0.44 \text{ V} \\ +3e^{-} \longrightarrow Fe \\ s = -n_{1}F E_{1} - n_{2}F E_{2} \\ 3E_{3} = 1. E_{1} + 2.E_{2} \\ E_{3} = \frac{E_{1} + 2E_{2}}{3} = \frac{0.77 + 2(-0.44)}{3} = -0.04 \text{ V} \quad \text{Ans} \\ \textbf{Q18.} \\ \textbf{Sol:} \\ \textbf{Reducing oxidising} \\ \textbf{Hg}^{2+} + \textbf{Hg} \longrightarrow \textbf{Hg}^{2+} \\ e^{0}_{cell} = e^{0}_{He^{2+}/He_{1}^{2}} - e_{He_{2}^{2+}/He_{1}} = 0.92 - 0.788 = 0.132 \text{ V} \\ \therefore e^{0}_{cell} = \frac{0.0592}{1} \log \text{ Keq}^{-b} \\ \frac{0.132}{0.0592} = \log \text{ Keq}^{-b} \\ \frac{0.132}{0.0592} = \log \text{ Keq}^{-b} \\ K_{eq,b} = 10^{2.23} = 1.71 \times 10^{2} \quad \textbf{Ans} \\ \textbf{Q19.} \\ \textbf{Sol:} \quad Fe + \text{HCl} \longrightarrow Fe^{2+} + \text{H}_{2} \\ e_{cell} = e^{0}_{He^{1}/He_{2}} - e^{0}_{Fe^{1}/Fe^{2+}} = 0 - (-0.44) = 0.44 \text{ V} \\ \text{Since } e_{cell} \text{ is +ve, so the reaction can happen} \\ \textbf{Q20.} \\ \textbf{Sol:} \quad 3Zn + 2Cr^{3+} \longrightarrow 2Cr + 3Zn^{2+}(1M) \\ \text{Let at conc-}^{n} \text{ x M of } Cr^{3+}, e_{cell} = 0 \\ \therefore e_{cell} = e^{0}_{feel} - \frac{0.0592}{6} \log \frac{[Zn^{2+}]^{3}}{[Cr^{3+}]^{2}} \\ O = (e^{0}_{cr^{3+}/cr}, e^{0}_{Zn^{3+}/Zn}) - \frac{0.0592}{6} \log \frac{1^{3}}{x^{2}} \\ = \{-0.74 - (-0.76)\} + \frac{0.0592}{6} \log x^{2} \\ \Rightarrow -0.02 = \frac{0.0592}{6} = -1 \\ \Rightarrow x = 10^{-1} = 0.1 \text{ M} \text{ Ans} \\ \end{array}$$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q21. Sol: $Fe(s) + 2Cr^{3+}$ $2Cr^{2+} + Fe^{2+}$ Initially excess 1 At eq-b 1 - 2xx At eq^b, $\varepsilon_{cell} = O$, $Q = keq^{-b}$ 2x $\varepsilon^{0}_{Cell} - \frac{2.303 \text{RT}}{\text{nF}} \log \text{keq} - b = O$ $\left(\varepsilon_{Cr^{3*}/Cr^{2*}}^{0} - \varepsilon_{Fc^{2*}/Fc}^{0}\right) - \frac{0.0592}{2}\log\frac{[Cr^{2*}]^{2}[Fe^{2*}]}{[Cr^{3*}]^{2}} = O$ $\Rightarrow (-0.407 + 0.44) - \frac{0.0592}{2} \log \frac{(2x)^2 x}{(1-2x)^2} = 0$ $\Rightarrow \frac{-0.033 \times 2}{0.0592} = \log \frac{4x^3}{(1-2x)^2}$ $\frac{4x^3}{(1-2x)^2} = 10^{-1.1148} = 0.07676$ Solving we get x = 0.42 M Ans Q22. Sol: $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^0 - \frac{0.0592}{n} \log Q$ $Cu^{2+} + Pb \longrightarrow Cu + Pb^{2+}$ 1M1MIf the conc-ⁿ is 0.001 M then $Q = \frac{[Pb^{2+}]}{[Cu^{2+}]} \Rightarrow Q = \frac{0.001}{0.001} = 1$ $\therefore \varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^0 - \frac{0.0592}{2} \log 1$ $\therefore \varepsilon_{\rm Cell} = \varepsilon^0_{\rm Cell}$ So Emf doesn't change by any amount. Q23. Sol: At PH = 10 $[H^+] = 10^{-10}M$ $\mathcal{E}_{H^+/H_2} = \mathcal{E}_{H^+/H_2}^0 - \frac{0.0592}{1} \log \frac{1}{[H^+]} = 0 + \frac{0.0592}{1} \log [H^+]$ $= +0.0592 \log 10^{-10} = -0.592 V$ Ans Q24. Sol: $[Fe(CN)_6]^{3-} + e^-$ [Fe(CN)₆]⁴⁻, $E^0 = +0.36V$ $\frac{\text{oxidised form}}{\text{Reduced form}} = \frac{[\text{Fe}(\text{CN})_6]^{3^-}}{[\text{Fe}(\text{CN})_6]^{4^-}} = x(\text{say})$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 $\varepsilon = \varepsilon^0 - \frac{0.0592}{1} \log \frac{\left[\operatorname{Fe}(\operatorname{CN})_6\right]^{4-1}}{\left[\operatorname{Fe}(\operatorname{CN})_6\right]^{4-1}}$ $0.28 \text{ V} = 0.36 \text{ V} - \frac{0.0592}{1} \log \frac{1}{x} \implies \frac{-0.08 \times 1}{0.0592} = \log x$ $x = 10^{\frac{-8}{5.92}} = 0.0445$ Ans Q25. Fe/FeSO4 // CuSO4 / Cu Sol: ↓ (0.1M) (0.01M) $Fe + Cu^{2+} \longrightarrow Fe^{2+} + Cu$ 0.01 M 0.1 M $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^{0} - \frac{0.0592}{2} \log \frac{[\text{Fe}^{2+}]}{[\text{Cu}^{2+}]}$ $= \left(\varepsilon^{0}_{Cu^{2*}/Cu} - \varepsilon^{0}_{Fe^{2*}/Fe} \right) - \frac{0.0592}{2} \log \frac{0.1}{0.01}$ = $(0.34 + 0.44) \frac{-0.0592}{2} \times 1 = 0.78 + 0.03 = 0.75 \text{ V}$ Ans Q26. Sol: (i) $Ag/Ag^{+}(0.01M) || Zn^{2+}(0.1M)Zn$ $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^0 - \frac{0.0592}{\Delta} \log Q$ $2Ag + Zn^{2+} \longrightarrow 2Ag^{+} + Zn$ $Q = \frac{[Ag^+]^2}{[Zn^{2+}]} = \frac{[0.01)^2}{0.01} = 10^{-3}$ $\therefore \varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^{0} - \frac{0.0592}{2} \log 10^{-3} = \varepsilon_{\text{Cell}}^{0} + \frac{0.0592 \times 3}{2}$ $= \left(E^{0}_{Z_{B}^{24}/Z_{B}} - E^{0}_{Ag^{*}/Ag} \right) + 0.0592 \times 1.5$ (-0.76 - 0.80) V + 0.0888 V = (-1.56 + 0.0888) V = -1.4712 V Ans Since $\varepsilon_{cell} < O$, so the reaction is not spontaneous Pt / Fe²⁺ (1M), Fe³⁺(0.1M) || Cl⁻ (0.001M) / AgCl / Ag (ii) **Cell reaction** $Fe^{2+} + AgCl refer Fe^{2+} + AgCl$ 0.1 M 0.001 M $Q = \frac{[Fe^{3+}][Cl^{-}]}{[Fe^{2+}]} = \frac{0.1 \times 0.001}{\times 1} = 10^{-4}$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^{0} - \frac{0.0592}{1} \log Q$$

= (0.22 - 0.77) - $\frac{0.0592}{1} \log 10^{-4}$
= -0.55 + 4 × 0.0592
= -0.3132 V

Since $\varepsilon_{Cell} < O$, so the reaction is not spontaneous

(iii)
$$Zn/ZnO_2^{2-}(0.1M), OH^{-}(1M) \parallel HgO/Hg$$

HgO + Zn + 2OH⁻
$$\longrightarrow$$
 Hg + ZnO₂²⁻ + H₂O
1M 0.1 M
Q = $\frac{[ZnO_2^{2^-}]}{[OH^-]^2} = \frac{0.1}{1^2} = 0.1$
 $\varepsilon_{Cell} = \varepsilon_{Cell}^0 - \frac{0.0592}{2} \log Q$
= $(\varepsilon_{HgO/Hg}^0 - \varepsilon_{Zn/O_2/Zn}^0) - \frac{0.0592}{2} \log 10^{-1}$
= $(0.85 - (0.76) - \frac{0.0592}{2} \times (-1) = 1.61 + 0.03 = 1.63 = +Ve$

So the reaction is spontaneous. The value of E_{Cell} is diff-ⁿ because I have used Zn^{2+}/Zn in place of $ZnO_2^{2-}/Zn \& Hg^{2+}/Hg$ in place of HgO / Hg. Q27.

Sol: HCOOH
$$\longrightarrow$$
 H⁺+HCOO⁽⁻⁾
Initially 0.5 0 0
At eq- 0.5-0.5x 0.5 x 0.5 x
 $Ka = \frac{(0.5x)(0.5x)}{0.5-0.5x} = \frac{0.5x^2}{1-x} = 1.77 \times 10^{-4}$
 $x^2 = \frac{1.77}{0.5} \times 10^{-4} \implies x^2 = \frac{1.77}{0.5} \times 10^{-4}$

So conc-ⁿ of H⁺ in anode compartment containing HCOOH = $(1.88 \times 10^{-2} \text{ M}) \times 0.5 = 0.94 \times 10^{-2} \text{ M}$ Similarly

 $CH_{3}COOH \longrightarrow CH_{3}COO^{(-)} + H^{(+)}$ Initially 1M 0 0 At eq-^b 1 - x x x

$$\begin{aligned} x^{*} &= \frac{x^{*}}{1-x} \approx x^{2} & \implies x = \sqrt{Ka} \\ &= \sqrt{18} \times 10^{-1} \end{aligned}$$

 $x = 4.2426 \times 10^{-3} M$

K

So [H⁺] in cathodic compartment = 4.2426×10^{-2} M,

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cell}}^{0} - \frac{0.0592}{1} \log \frac{[\text{H}^{+}]\text{anode}}{[\text{H}^{+}]\text{cathode}}$ $= 0 - \frac{0.0592}{1} \log \frac{0.84 \times 10^{-2}}{4.243 \times 10^{-3}}$ $= -0.0592 \times (+0.3458) = -0.0243 \text{ volt} \quad \text{Ans}$

Q28.

Sol: $(Pt/H_2)H^+(C = unknown) || KCl sol⁻ⁿ / Hg₂Cl₂ / Hg; E = 0.4783$

$$H_{2} + Hg_{2}Cl_{2} \longrightarrow 2Hg + 2H^{+} + 2Cl^{-}$$

$$\varepsilon_{\text{cell}} = \varepsilon_{\text{cell}}^{0} - \frac{0.0592}{2} \log \frac{[H^{+}][Cl^{-}]^{2}}{2}$$

$$= \left(\varepsilon_{\text{Hg}_{2}Cl_{2}/H/KCl}^{0} - \varepsilon_{\text{H}^{+}/H_{2}}^{0}\right) - \frac{0.0592}{2} \log[H^{+}]^{2}(1)$$

If we use standard calomel electrode then KCl conc-ⁿ should be 1 M.

$$0.4783 = (0.2420 - 0) - \frac{0.0592}{2} \times 2\log[H^+]$$
$$\frac{0.2363}{0.0592} = -\log[H^+] \Rightarrow PH = 3.99$$
Ans

Q29.

Sol:
$$5Fe^{2^{+}} + MnO_4 + 8H^{+} \longrightarrow Mn^{2^{+}} + 5Fe^{3^{+}} + 4H_2O$$

Given 0.1 M 1×10^{-2} M 1×10^{-3} M 1×10^{-4} M 1 M
 $Q = \frac{[Mn^{2^{+}}][Fe^{3^{+}}]^5}{[Fe^{2^{+}}]^5[MnO_4^{-}][H^{+}]^8} = \frac{10^{-4} \times 1^5}{(10^{-5})(10^{-2})(10^{-3})^8} = \frac{10^{-4}}{10^{-5} \times 10^{-2} \times 10^{-24}} = 10^{20+7} = 10^{27}$
 $\varepsilon_{cell} = \varepsilon_{cell}^0 - \frac{2.303RT}{nF} \log Q$
 $\varepsilon_{cell} = \left(\varepsilon_{MnO_4,Mn^{2^{-}}}^0 - \varepsilon_{Fe^{3^{+}},Fe}^0\right) - \frac{0.0592}{5} \log 10^{27}$
 $= (1.51 - 0.771) - \frac{0.0592}{5} \times 27 = 0.739 - 0.31968 = 0.419$ V Ans
Q30.
Sol: $Hg_2(NO_3)_2 + 2Fe(NO_3)_2 \longrightarrow 2Hg + 2Fe(NO_3)_3$
 $\varepsilon_{ua^{2^{+}}\mua^{2^{-}}} = 0.79V, \varepsilon_{ua^{2^{+}}\mua^{2^{+}}} = 0.77$ volt

At eq
$$-^{b}$$
 $\varepsilon_{Cell} = O \implies \varepsilon^{0}_{Cell} = \frac{0.0592}{n} \log \text{Keq} -^{b}$

$$(0.79 - 0.77) = \frac{0.0592}{2} \log k_{ee}$$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 $\frac{0.04}{0.0592} = \log K_{eq^b} \implies K_{eq^{-b}} = 10^{\frac{+0.04}{0.0592}} = 4.78$ Ans Q31. Sol: AgBr \triangleleft Ag⁺ + Br⁻ Initially (0.1M from KBr) At eg-b -S S 0.1 + S : $Ksp = [Ag^+] [Br^-] = S(0.1 + S) = 6 \times 10^{-13}$ \Rightarrow S×0.1=6×10⁻¹³ \Rightarrow S=6×10⁻¹² $\therefore [Ag^+] = 6 \times 10^{-12} M$ $Q = \frac{1}{[Ag^+]} = \frac{1}{(6 \times 10^{-12})}$ $\therefore \quad \varepsilon_{Ag^{+}/Ag} = \varepsilon_{Ag^{+}/Ag}^{0} - \frac{0.0592}{1} \log \frac{1}{[Ag^{+}]}$ $= 0.80 + \frac{0.0592}{1} \log(6 \times 10^{-12}) = 0.80 + 0.0592 (-12 + \log 6)$ = 0.80 - 0.664 = 0.14 V Ans Q32. Sol: pH = 3.5, $[H^+] = 10^{-3.5}M$ pH = 10.5, $[H^+] = 10^{-10.5}M$ For concentration cell; $Q = \frac{[H^+]anode}{[H^+]cathode} = \frac{10^{-10.5}}{10^{-3.5}}$ $\varepsilon^0_{Cell} = 0$ $\varepsilon_{\text{Cell}} = \frac{-0.0592}{10^{-3.5}} \log \frac{10^{-10.5}}{10^{-3.5}} = -0.0592 \log (10^{-7}) = -0.0592 \times (-7)$ $\varepsilon_{\text{Cell}} = 0.4244 \text{V}$ Ans Q33. Sol: $[H^+]$ in one cell = 1M[OH] in another half cell = 1M $[H^+][OH^-] = 10^{-14}$ $[H^+].1 = 10^{-14} \implies [H^+] = 10^{-14} M.$ In concentration cell, half cell with less [H⁺] act as anode. $\frac{1}{2} \operatorname{H}_{2}^{\prime} \to \operatorname{H}_{\operatorname{Anode}}^{+} + \mathrm{e}^{-}$ $\mathrm{H^+_{Cathode}} + \mathrm{e^-} \rightarrow \frac{1}{2}\mathrm{H_2}$ $H^+_{Cathode} \rightarrow H^+_{uncele}$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$Q = \frac{[H^+]_{anode}}{[H^+]_{Cathode}} = \frac{10^{-14}}{1}$$

. $\varepsilon_{Cell} = \frac{-0.0592}{1} \log 10^{-14} = 14 \times 0.0592 = 0.83V$ Ans

1M NH₃ has lower OH⁻ conc-ⁿ because it is a weaker base, So $[H^+]$ will be higher So, log $[H^+]$ will be higher & hence $-0.0592 \log [H^+]$ will be lower

Q34.

 $2Cu^+ \longrightarrow Cu^{2+} + Cu$ Sol: $\varepsilon_{\text{Cell}} = \varepsilon_{\text{Cu}^{-}/\text{Cu}} - \varepsilon_{\text{Cu}^{2+}/\text{Cu}} = 0.52 - 0.34 = 0.18 \text{ V}$ Ans Q35. Sol: (Pt) H_2 (1 atm) | H^+ (PH unknown) || H^+ (PH = 1) / H_2 (1 atm) In anode half cell, let the conc-ⁿ of $H^+ = x M$ $\therefore pH = -\log [H^+] = -\log x$ In cathode half cell, $pH = 1 \Rightarrow [H^+] = 10^{-1}M$ $\varepsilon_{Cell} = 0.16V$ For concentration cell, $\varepsilon^0_{Cell} = O$ $\varepsilon_{\text{cell}} = \frac{-0.0592}{1} \log \frac{[\text{H}^+]\text{anode}}{[\text{H}^+]\text{cathode}}$ $0.16 \text{ V} = \frac{-0.0592}{1} \log \frac{x}{10^{-1}} \implies 0.16 = -0.0592 \log 10x$ $\frac{0.16}{0.0592} = -(\log 10 + \log x) \implies 2.7 = -1 - \log x \implies -\log x = pH = 3.7 \text{ Ans}$ 036. Sol: It is the case of concentration cell of chlorine. So, cell notation : $Pt/2Cl^{-}$, $Cl_2(P = 0.9 \text{ atm}) \parallel Cl_2 (0.1 \text{ atm})$, $2Cl^{-}/Pt$

Cell reaction: Cl⁻
$$\longrightarrow \frac{1}{2}$$
Cl₂ + e⁻ (at anode)
 $\frac{1}{2}$ Cl₂ + e⁻ \longrightarrow Cl⁻
 $\frac{1}{2}$ Cl₂_{Cathode} $\longrightarrow \frac{1}{2}$ Cl₂ anode

$$Q = \frac{(P_{Cl_{2} anode})^{\frac{1}{2}}}{(P_{Cl_{2} anode})^{\frac{1}{2}}} = \left(\frac{0.9}{0.1}\right)^{\frac{1}{2}} = 9^{\frac{1}{2}}$$
 $\therefore \varepsilon_{Cell} = 0 - \frac{0.0593}{1} \log(9)^{\frac{1}{2}} = \frac{-0.0592}{2} \log(9) = -0.0282 \text{ V}$

So ε_{Cell} is negative, so the reaction written will non spontaneous.

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q37.
Sol: pH in cathode = 3
$$\Rightarrow$$
 [H⁺] cathode = 10³M
Let pH in anode = x \Rightarrow [H⁺] anode = 10⁸M
 $\varepsilon^{0}_{cut} = 272 \text{ mv} = 0.272 \text{ V}$
 $\therefore \varepsilon_{cut} = \frac{-0.0592}{1} \log \frac{[\text{H}^{+}]\text{anode}}{[\text{H}^{+}]\text{cathode}}$
 $0.272 = -0.0592 \log \frac{10^{-x}}{10^{-3}} = -0.0592 \log 10^{-(x-3)}$
 $0.272 = 0.0592 (x - 3) \Rightarrow x - 3 = \frac{0.272}{0.0592} = 4.59 \Rightarrow x = 7.59$ Ans
Q38.
Sol: $\frac{1}{2} \text{Cu}(\text{S}) + \frac{1}{2} \text{Cl}_{2}(\text{g}) \oplus \text{EP} \frac{1}{2} \text{Cu}^{2*} + \text{Cl}^{-}$
 $\varepsilon^{0}_{cut}, \text{cr}^{-} = +1.36 \text{ V}, \varepsilon^{0}_{cut^{2}, cu} = 0.34 \text{ V}$
 $\therefore \varepsilon^{0}_{cut} = \varepsilon^{0}_{cu_{1}, cr} - \varepsilon^{0}_{cu^{2}, cu} = 0.34 \text{ V}$
 $\therefore \varepsilon^{0}_{cut} = \frac{0.0592}{1} \log \text{ K}_{eu^{3}}$
 $1.02 = 0.0592 \log \text{ Keq}^{-5}$
 $1.02 = 0.0592 \log \text{ Keq}^{-5}$
 $\log \text{ K}_{eq^{-5}} = \frac{1.02}{0.0592} = 17.23$
 $\text{ K}_{eq^{-5}} = \frac{1.02}{0.0592} = 17.23$
 $\text{ K}_{eq^{-5}} = \frac{1.07}{0.0592} = 17.23$
 $\text{ K}_{eq^{-5}} = \frac{1.07}{0.0592} = 17.23$
 $\text{ K}_{eq^{-5}} = \frac{1.07}{10^{-15^{-5}}} \text{ Ans}$
Q39.
Sol: $\varepsilon_{i_{7}, r^{-}} = 2.75 \text{ V} \& \varepsilon^{0}_{i_{7}, r_{0}} = 2.87 \text{ V}$
 $\frac{1}{2} \text{ F}_{2}^{-4} \text{ e}^{-} \longrightarrow \text{ F}^{-1}(0.38 \text{ M})$
Let the pressure of F₂ gas is p atm.
 $\therefore \varepsilon_{i_{7}, r_{7}} = \varepsilon^{0}_{i_{7}, r_{7}} - \frac{0.0592}{1} \log \frac{(\text{F}^{-1}]}{(\text{P}_{i_{7}})^{i_{2}}}$
 $2.75 = 2.87 - \frac{0.0592}{1} \log \frac{0.38}{(\text{P})^{i_{2}}} \Rightarrow 2.03 = \log \frac{0.38}{(\text{P})^{i_{2}}}$
 $\frac{0.38}{(\text{P})^{i_{2}}} = 106.421 \Rightarrow \text{P}^{i_{2}} = \frac{0.38}{106.42}$
 $\text{P}^{i_{2}} = 3.57 \times 10^{-3}$; $\text{P} = 1.275 \times 10^{-5} \text{ atm}$ Ans

O40.

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Sol: $\varepsilon^0 = -1.662 \text{ V}$ (a) $\frac{1}{3}$ Al³⁺ + e⁻ $\longrightarrow \frac{1}{3}$ Al(S), $\Delta G^0 = 160.4$ KJ/mole $\Delta G^0 = -nF \varepsilon^0$ $160.4 \times 10^3 = -1 \times 96500 \times E^0$ $\varepsilon^0 = \frac{-1.604 \times 10^5}{96500} = -1.662$ V (b) $Al^{3+} + 3e^{-} \longrightarrow Al(S), \Delta G^{0} = 481.2 \text{ KJ/mole}$ $\Lambda G^0 = -nF \varepsilon^0$ $481.2 \times 10^3 = -3 \times 96500 \times E^0$ $\varepsilon^{0} = \frac{-4.812 \times 10^{5}}{3 \times 96500} = -1.662 \,\mathrm{V}$ Ans So in both (a) & (b), E^0 are same 041. Sol: No, because without salt bridge ions accumulate at electrode & so reaction stops. 042. Sol: No, not at all, size doesn't affect the voltage. It affect the current at which cell work only Q43. Sol: $Mg / Mg^{2+} \parallel Fe^{3+} / Fe^{2+}$ I = 150 m A $t = 20 min = 20 \times 60 sec$ $Q = I.t = 150 \times 10^{-3} \times 1.2 \times 10^{-3} = 180$ coulombs W = Z.Q = $\frac{\text{gin eq. wt.}}{96500}$ Q = $\frac{12}{96500} \times 15 \times 12 = 0.0224$ g Ans 044. Sol: (i) $Cd^{2+} + 2e^{-} \longrightarrow Cd(s)$, $E^{0} = -0.403 V$ (ii) CdS (s) + 2e² \longrightarrow Cd(s) + S²(aq), E⁰ = -1.21 V (iii) $\underline{Cd(s) + S^{2-}(aq)} \longrightarrow CdS(s) + 2e^{-}, E^{0} = 1.21 V$ (i) -(ii) Cd²⁺ + S²⁻ \longrightarrow CdS, E⁰ = -0.403 + 1.21 = 0.807 \Rightarrow CdS \longrightarrow Cd²⁺ + S²⁻, E⁰ = -0.807 V $\Delta G^0 = -nf \varepsilon^0 = -2 \times 96500 \times 0.807 = 155.8 \text{ KJ/mole}$ $\varepsilon^0 = \frac{0.0592}{2} \log \text{Ksp} \Rightarrow \frac{-0.807 \times 2}{0.0592} = \log \text{Ksp}$ $K_{SP} = 10^{-27.26} = 4.99 \times 10^{-28}$ Ans 045. Sol: $Cd(S) + 2H^{+}(aq) \longrightarrow Cd^{2+}(aq) + H_{2}(g)$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

$$\varepsilon^{0}_{Cd^{2*}/Cd} = -0.40 V \& \varepsilon^{0}_{H^{*},H_{2}} = 00.V$$

$$W_{max} = \Delta G = -nF \varepsilon_{Cell}$$

$$\varepsilon_{Cell} = \varepsilon^{0}_{Cell} - \frac{0.0592}{2} \log Q$$

$$= \left(E^{0}_{H^{*}_{H_{2}}} - E^{0}_{Cd^{2*}/Cd}\right) - \frac{0.0592}{2} \log \frac{0.780}{2 \times 0.780}$$

$$= \left(0 - (-0.40)\right) \frac{-0.0592}{2} \log\left(\frac{1}{2}\right)$$

$$= 0.40 + 8.9 \times 10^{-3} = 0.409$$

:. Work done = $-2 \times 96500 \times 0.409 = -78919$. 724 J = -78.9197 KJ Ans

-Ve work implies that work is done by cell.

Q46.

Sol: For concentration cell, $\varepsilon^0_{\text{Cell}} = O$

For
$$\varepsilon_{\text{Cell}} = \frac{-0.0592}{2} \log Q$$

For ε_{cell} to be + Ve, log Q should be -Ve

: Q should be less than 1.

 $Q = \frac{0.04}{1.0}$

 Cr^{3+} with less concentration will be in right direction of the reaction & Cr^{3+} with higher concⁿ will be on the left side.

 $Cr^{3+}(1M) + Cr \longrightarrow Cr^{3+}(0.04M) + Cr$

 \therefore Cr³⁺ with less cone-ⁿ act as anode so the dilute sol-ⁿ side will be the anodic side.

Q47.

Sol:
$$O_2(g) + 4H^+(aq) + 4Br^-(ag) \longrightarrow 2H_2O(1) + 2Br_2(1)$$

$$Q = \frac{1}{[H^+]^4[Br^-]^4}$$
At pH = 3.6; $[H^{+1} = 10^{-3.6} = 2.51 \times 10^{-4} \text{ M.}$
 \therefore For [Br] standard sol⁻ⁿ = 1M

$$Q = \frac{1}{(2.51 \times 10^{-4})^4 \times 1} = \frac{1}{39.61 \times 10^{-16}}$$
 $\varepsilon_{cell}^0 = \varepsilon_{0_{2,4}H^+/H_{2}O}^0 - \varepsilon_{Br_2/Br^-}^0 = 1.23 - 1.07 = 0.16$
 $\varepsilon_{cell}^0 = \varepsilon_{cell}^0 - \frac{0.0592}{4} \log \frac{1}{39.61 \times 10^{-16}} = 0.16 - \frac{0.0592}{4} (16 \log 39.61)$
 $\varepsilon_{cell}^0 = 0.16 \frac{0.0592}{4} \times 14.40 = 0.16 - 0.213$
 $= -0.053 \text{ V}$, (-ve), so the reaction is not spontaneous.

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Q48.

Sol: $\varepsilon_{cell} = 0.45$ with standard hydrogen electrode as anode

AgscN $Ag^{+} + SCN^{-}$ Initially 0.1 M At eq-^b S S 0.1 +S $\therefore K_{SP} = S(0.1 + S)$ $\therefore \varepsilon_{Cell} = \varepsilon^{0}_{Ag^{+}/Ag} - \varepsilon^{0}_{H^{-}/H_{2}}$ $0.45 = \varepsilon^{0}_{Ag^{+}/Ag} - \frac{0.0592}{1} \log \frac{1}{[Ag^{+}]} - 0$ $0.45 = 0.80 + \frac{0.0592}{1} \log (Ag^{+})$ $-\frac{-0.35}{0.0592} = \log[Ag^{+}]$ $[Ag^{+}] = 10^{-5.9} = 1.124 \times 10^{-6} \therefore S = [Ag^{+}] = 1.124 \times 10^{-6}$ $\therefore Ksp = s(0.1 + s) \approx 0.1.s = 1.124 \times 10^{-7}$ Ans

Q49.

Sol:
$$\varepsilon_{Cell} = \frac{+0.0592}{10} \log K_{cq^b}$$

 $(1.51 + 0.49) = \frac{0.0592}{10} \log K_{cq^b} \Rightarrow \frac{20}{0.0592} = \log K_{cq^b}$
 $\Rightarrow \log K_{cq^b} = 337.8 \quad K_{cq^b} = 10^{338} \quad Ans^{-1}$

Objective Problems

Q1. Ans - (b) In galvanic cell, Anode is -ve electrode, Cathode is +ve electrode. because from anode c is leaving and there must be -vely charge, so that it car charge c s.

Q2. Ans - (a)

Q3. Ans - (b) Cu is oxidising & so e is loosing & that e is taken Ag^+ & it get reduced. Q4. Ans - (b) $\varepsilon^0_{H^+/H_0} = 0$

$$\varepsilon^0_{Ag^*/Ag} = 0.80$$

Reducing potential of Ag > Red. Potential of H_2 ; so Ag has more oxidising power than H_2 , So H_2 can't oxidise silver in standard case.

Q5. Ans - (a)
$$\varepsilon_{H^+/H_2} = \varepsilon_{H^+/H_2}^0 - \frac{0.0592}{1} \log \frac{1}{H^+}$$

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

 $-0.118 = 0 + 0.0592 \log[H^+]$ $\log[H^+] = \frac{-0.118}{0.502} = -2$ $[H^+] = 10^{-2} M.$ **Q6.** Ans - (b) :: $\varepsilon_{\text{cell}} = \varepsilon_{\text{H}^*/\text{H}_2}^0 - \varepsilon_{\text{Z}n^{2*}/\text{Z}n}^0 = 0 - (-0.76) = 0.76 \text{ V}$ Q7. Ans - (a) Reducing power $\propto \frac{1}{\text{Reduction potential}}$ Q8. Ans - (b) $\varepsilon^{0}_{Cell} = \varepsilon^{0}_{Fe^{2t}/Fe} - \varepsilon^{0}_{Zn^{2t}/Zn}$ = -0.41 - (-0.76) = 0.76 - 0.41 = 0.35 V Q9. Ans - (a) Since the largest gap is betⁿ II & III Q10. Ans - (d) Again the largest gap is in between I < IV Q11. Ans - (b) Again for the same reason. Q12. Ans - (c) $(n_1 + n_2) \cdot F \cdot \varepsilon = n_1 F \varepsilon_1 + n_2 F \varepsilon_2$ $3 \cdot \varepsilon = 1 \varepsilon_1 + 2 \varepsilon_2$ $\varepsilon = \frac{\varepsilon_1 + 2\varepsilon_2}{2} = \frac{0.77 + 2(-0.44)}{2} = -0.0367 = -0.04$ Q13. Ans - (a) $\varepsilon_{cell} = \varepsilon_{Cl_2/Cl_1}^0 - \varepsilon_{Me^{2\gamma}/Me}^0$ = 1.36 - (2.36) = 1.36 + 2.36 = 3.72 V Ans Q14. Ans - (b) $\varepsilon_{cell}^{0} = \varepsilon_{Ma^{2+1}Ma}^{0} - \varepsilon_{7a^{2+1}7a}^{0}$ all are in standard condition, so it has same ε_{cell}^0 . Q15. Ans - (a) because ε is an intensive property **Q16.** Ans - (c) Since ΔG , is an extensive property $\therefore \Delta G_2 = 2\Delta G_1$ Q17. Ans - (d) $\mathcal{E}_{cell}^0 = \frac{0.00592}{n} \log K_{eq^b}$ For $\varepsilon_{coll}^0 > 0$, K_{ea^b} should be greater than 1. Q18. Ans - (b) $\varepsilon_{cell}^0 < 0$, so at standard condition it is not possible for reaction to happen. Q19. Ans - (b) Max-^m emf will be obtained if $Emf = \frac{-0.0592}{1} \log \frac{[H^+]anode}{[H^+]cathode}$ $= \frac{-0.0592}{1} \log[\text{H}^+] \text{ anode } \therefore [\text{H}^+] \text{ cathode} = 1 \text{ M gives}$ [H⁺] anode is the least which will happen in 0.1 M CH₃COOH. **Q20.** Ans - (c) $\frac{1}{2}$ H₁(g) + AgCl(s) \longrightarrow H⁺(ag) + Ag(s)

R. K. MALIK' S NEWTON CLASSES JEE (MAIN & ADV.), MEDICAL + BOARD

Pt / H₂ (g), HCl (Sol⁻ⁿ) || AgCl (s) / Ag'
Q21. Ans - (a, d)
$$\varepsilon_{csll} = \varepsilon_{csll}^{0} - \frac{0.0592}{2} \log \left[\frac{[T_{1}^{+}]^{2}}{[Cu^{2}]}\right]$$

To increase ε_{csll} , $\log \frac{(\pi_{1}^{+})^{2}}{[Cu^{2}]}$ should decrease. So $[T_{1}^{+}]$ should decreases & $[Cu^{2^{2}}]$
should increase.
Q22. Ans - (b) $\Delta \varepsilon_{csll} = \frac{-0.0592}{2} \left\{ log[Zn^{2^{+}}] - log \frac{[Zn^{2^{+}}]}{10} \right\}$
 $\varepsilon_{1} - \varepsilon_{r} = \frac{-0.0592}{2} log \frac{[Zn^{2^{+}}]}{[Zn^{2^{+}}]} \times 10 = -\frac{(.0592)}{2} \times 1$
 $\therefore \varepsilon$ will decrease by $-0.03 V$
Q23. Ans - (b) At PH = 10, [H⁺] = 10⁻¹⁰ M
 $\varepsilon_{nr/\mu_{2}} = -\frac{0.0592}{1} log \frac{1}{[H^{+}]} = -0.592 V$
Q24. Ans - (d) $\varepsilon_{1} - \varepsilon_{r} = \frac{-0.0592}{1} log [H^{+}], -log[H^{+}],$
 $= \frac{-0.0592}{1} (logl_{-} - log10^{-7}) = \frac{-0.0592}{1} \times -log10^{-7} = \frac{-0.0592}{1} \times 7 = -0.41 V$ Ans
Q25. Ans - (a) In Na⁺ & H⁺, H⁺ will reduce first because it has higher reduction potential than that
of Na⁺. In SO₂⁺² & SO at eathode H₂ will produce & at ande O₂ will be produced.
Q26. Ans - (e) Let the reduction potential of Cu⁺/Cu is ε than
 $1.\varepsilon + 1 \times 0.153 = (1+1) \times 0.337$ by $\{n_{1}\varepsilon_{1} + n_{2}\varepsilon_{2} = (n_{1} + n_{2})\varepsilon_{3}\}$
 $\varepsilon = 0.674 - 0.153 = 0.521 V$ Ans
Q27. Ans - (b)
Q28. Ans - (b) Temp. coefficient = $5 \times 10^{-5} V/K$
 $\frac{\partial E}{\partial T|_{\mu}} = 5 \times 10^{-5} = +ve$
So when the cell work its gets discharge & so E decreases.
 $Since \frac{\partial E}{\partial T|_{\mu}} = +ve$
So if E decrease, then T will also decrease
Q29. Ans - (a) Since Reduction potential of Mo₂⁺ is larger than that of Cl₂: So MnO₄⁺ can

reduce easily. So it has higher oxidising power than Cl₂. So MnO₄⁻ can be used with HCl. Q30. Ans - (c) According to the rule in latimer diagram red-ⁿ pot. At right side is lower than Reduction potential.