

- **46.** Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false?
 - (1) The H –C–H bond angle in CH_4 , the H–N–H bond angle in NH_3 , and the H–O–H bond angle in H_2O ar all greater than 90°
 - (2) The H–O–H bond angle in H_2O is larger than the H–C–H bond angle in CH_4 .
 - (3) The H–O–H bond angle in H_2O is smaller than the H–N–H bond angle in NH_3 .
 - (4) The H–C–H bond angle in CH_4 is larger than the H–N–H bond angle in NH_3 .

Ans. (2)

Sol.

47. In the reaction

 $H\!\!-\!\!C\!\!=\!\!CH \; \frac{(1)\,NaNH_2\,/\,liq.NH_3}{(2)\,CH_3CH_2Br} X \frac{(1)\,NaNH_2\,/\,liq.NH_3}{(2)\,CH_3CH_2Br}$

X and Y are:

(1) X = 1-Butyne; Y = 3-Hexyne

(2) X = 2-Butyne ; Y = 3-Hexyne

(3) X = 2-Butyne; Y = 2-Hexyne

(4) X = 1-Butyne; Y = 2-Hexyme

Ans. (1)

Sol. $HC \equiv CH$ $\frac{NaNH_2}{liq. NH_3}$ $HC \equiv CNa$ $H_3C - CH_2$ $RC \equiv CH_2 - CH_3$ $RC \equiv CH$

48. Among the following, the correct order of acidity is

(1) $HClO_3 \ll HClO_4 < HClO_2 < HClO$

(2) $HClO < HClO_2 < HClO_3 < HClO_4$

(3) $HCIO_2$ $HCIO < HCIO_3 < HCIO_4$

(4) HClO₄ < HClO₂ < HClO < HClO₃

Ans. (2)

Sol. Acidic strength ∞ EN ∞ +ve O.S. HClO < HClO $_2$ < HClO $_3$ < HClO $_4$ +1 +3 +5 +7

49. The rate of a first-order reaction is $0.04 \text{ mol } \ell^{-1}s^{-1}$ at 10 seconds and $0.03 \text{ mol } \ell^{-1}s^{-1}$ at 20 seconds after initiation of the reaction. The half-life period of the reaction is :

(1) 24.1 s

(2) 34.1 s

(3) 44.1 s

(4) 54.1 s

Ans. (1)

Sol. $K = \frac{2.303}{(t_2 - t_1)} log \frac{(a - x_2)}{(a - x_2)}$

 $K = \frac{2.303}{(20 - 10)} \log \frac{0.04}{0.03}$

 $K = \frac{2303 \times 0.1249}{10}$

 $\frac{2.303 \text{ log 2}}{\text{log 1}} = \frac{2.303 \times 0.1249}{10}$

 $\frac{1}{2} = \frac{0.3010 \times 10}{0.1249} = 24.1 \text{ sec}$

- Which one of the following characteristics is associated with adsorption ?
 - (1) ΔG is negative but ΔH and ΔS are positive
 - (2) ΔG , ΔH and ΔS all are negative
 - (3) ΔG and ΔH are negative but ΔS is positive
 - (4) ΔG and ΔS are negative but ΔH is positive

Ans. (2)

Sol. Adsorption is spontaneous process,

so ΔG = negative

Adsorption is exothermic process,

so $\Delta H = negative$

In adsorpiton entropy decreases,

so $\Delta S = negative$

so ΔG , ΔH and ΔS all are negative

- **51.** In which of the following options the order of arrangement does not agree with the variation of property indicated against it?
 - (1) $Al^{3+} < Mg^{2+} < Na^{+} < F$ (increasing ionic size)
 - (2) B < C < N < O (increasing first ionisation enthalpy)
 - (3) I < Br < Cl < F (increasing electron gain enthalpy)
 - (4) Li < Na < K < Rb (increasing metallic radius)

Ans. (2 & 3)

Sol. (2) B < C < N < O (given I.P. order) B < C < O < N (correct)

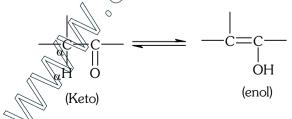
(3) I < Br < Cl < F (given ΔH_{eg} order) I < Br < F < Cl (Correct)

- **52.** Which of the following statements is false?
 - (1) Mg²⁺ ions form a complex with ATP
 - (2) Ca²⁺ ions are important in blood clotting
 - (3) Ca²⁺ ions are not important in maintaining the regular beating of the heart.
 - (4) Mg^{2+} ions are important in the green parts of plants.

Ans. (3)

Sol.

- **53.** Which of the following statements about hydrogen is **incorrect**?
 - (1) hydrogen has three isotopes of which tritium is the most common.
 - (2) Hydrogen never acts as cation in ionic salts
 - (3) Hydronium ion, H_3O^+ exists freely in solution
 - (4) Dihydrogen does not act as a reducing agent


Ans. (1 & 4)

Sol.

- **54.** The correct statement regarding a carbonyl compound with a hydrogen atom on its alphacarbon, is:-
 - (1) a carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol.
 - (2) a carbonyl compound with a hydrgen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
 - (3) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation.
 - (4) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism.

Ans. (4)

Sol. Keto-enol Tautomerism

- **55.** MY and NY $_3$, two nearly insoluble salts, have the same K_{sp} values of 6.2×10^{-13} at from temperature. Which statement would be true in regard to MY and NY $_3$?
 - (1) The molar solubilities of MY and NY₃ in water are identical.
 - (2) The molar solubility of MY in water is less than that of NY₃
 - (3) The salts MY and NY3 are more soluble in 0.5 M KY than in our water.
 - (4) The addition of the salt of KY to solution of MY and NY₃ will have no effect on their solubilities.

Ans. (2)

Sol. MY \rightarrow K_{sp} = $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ 6.2 × 10⁻¹

$$\begin{split} s &= \sqrt{6.2 \times 10^{-13}} \\ s &= 7.87 \times 10^{-7} \text{ mol } L^{-1} \\ \text{NY}_{_{3p}} &= 27 \text{ s}^{_{4}} = 6.2 \times 10^{-1} \end{split}$$

 $s = 3.89 \times 10^{-4} \text{ mol } L^{-1}$

 \therefore molar solubility of NY_3 is more than MY in water.

- **56.** In a protein molecule various amino acids are linked together by :
 - (1) α-glycosidic bond
 - (2) β-glycosidic bond
 - (3) peptide bond
 - (4) dative bond

Ans. (3)

Sol. Peptide bond

- **57.** Natural rubber has
 - (1) All cis-configuration
 - (2) All trans-configuration
 - (3) Alternate cis-and trans-configuration
 - (4) Random cis-and trans-configuration

Ans. (1)

Sol.
$$H_2C=C-CH=CH_2$$
 polymerisation CH_2 CH_2 CH_3 CH_3 Isoprene cis-polyisoprene

58. Match items of **Column I** with the items of **Column II** and asign the correct code :

	Column-I		Column-II
(a)	Cyanide process	(i)	Ultrapure Ge
(b)	Froth floatation process	(ii)	Dressing of ZnS
(c)	Electrolytic reduction	(iii)	Extraction of Al
(d)	Zone refining	(iv)	Extraction of Au
		(v)	Purification of Ni

Code:

	(a)	(b)	(c)	(d)
(1)	(iv)	(ii)	(iii)	(i)
(2)	(ii)	(iii)	(i)	(v)
(3)	(i)	(ii)	(iii)	(iv)
(4)	(iii)	(iv)	(v)	(i)

Ans. (1)

Sol.

- **59.** Which one of the following statements is correct when SO_2 is passed through acidified $K_2Cr_2O_7$ solution?
 - (1) The solution turns blue
 - (2) The solution is decolourized
 - (3) SO_2 is reduced
 - (4) Green $Cr_2(SO_4)_3$ is formed

Ans. (4)

Sol.
$$K_2Cr_2O_7 + SO_2 + H_2SO_4$$

 $\rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
green colour

- **60.** The electronic configurations of Eu(Atomic No 63), Gd(Atomic No 64) and Tb (Atomic No. 65) are
 - (1) [Xe]4f⁷6s², [Xe]4f⁸6s² and [Xe]4f⁸5d¹6s²
 - (2) $[Xe]4f^75d^16s^2$, $[Xe]4f^75d^16s^2$ and $[Xe]4f^96s^2$
 - (3) $[Xe]4f^65d^16s^2\sqrt{Xe}4f^75d^16s^2$ and $[Xe]4f^85d^16s^2$
 - (4) $[Xe]4f^76s^2$, $[Xe]4f^75d^16s^2$ and $[Xe]4f^96s^2$

Ans. (4)

Sol.

- **61.** Two electrons occupying the same orbital are distinguished by
 - (1) Principal quantum number
 - (2) Magnetic quantum number
 - (3) Azimuthal quantum number
 - (4) Spin quantum number

- Ans. (4)
- **Sol.** Two electrons occupying the same orbital differ by spin quantum number.
- **62.** Which copper is heated with conc \mathbb{H}_3 it produces
 - (1) $Cu(NO_3)_2$ and NO_2
 - (2) Cu $(NO_3)_2$ and NO
 - (3) Cu(NO₃)₂, NO and NO₂
 - (4) Cu(NO₃)₂ and N₂O

Ans. (1)

- **Sol.** Cu + 4HNO₃ (conc.) \rightarrow Cu(NO₃)₂ + 2NO₂+2H₂O
- **63.** Which of the following reagents would distingusih cis-cyclopenta-1,2-diol from the trans-isomer?
 - (1) Acetone
 - (2) Ozone
 - (3) MnO₂
 - (4) Aluminium isopropxide

Ans. (1)

Sol. ΔG AHP- T.ΔS

For
$$\Delta H < 0$$
 and $\Delta S > 0$, $\Delta G = -ve$ (always)

spontaneous at all temperatures.

- 64. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
 - (1) $\Delta H < 0$ and $\Delta S = 0$
 - (2) $\Delta H > 0$ and $\Delta S < 0$
 - (3) $\Delta H < 0$ and $\Delta S > 0$
 - (4) $\Delta H < 0$ and $\Delta S < 0$

Ans. (3)

Sol. $\Delta G = \Delta H - T.\Delta S$

For, $\Delta H < 0$ and $\Delta S > 0$, $\Delta G = -ve$ (always)

∴ spontaneous at all temperatures.

- **65.** Lithium has a bcc structure. Its density is 530 kg m^{-3} and its atomic mass is 6.94 g mol^{-1} . Calculate the edge length of a unit cell of Lithium metal. ($N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)
 - (1) 154 pm
- (2) 352 pm
- (3) 527 pm
- (4) 264 pm

Ans. (2)

Sol.
$$\rho = \frac{Z \times M}{N_{\Delta} \times a^3}$$

For bcc structure

$$Z = 2$$
, $\rho = 530 \text{ kg m}^{-3} = 0.530 \text{ g cm}^{-3}$

$$0.530 = \frac{2 \times 6.94}{6.02 \times 10^{23} \times a^3}$$

$$a^3 = 4.348 \times 10^{-23} \text{ cm}^3$$

$$a = 3.52 \times 10^{-8} \text{ cm}$$

$$a = 352 \text{ pm}$$

- **66.** Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?
 - (1) $I_2 > Br_2 > Cl_2 > F_2$
 - (2) $Cl_2 > Br_2 > F_2 > I_2$
 - (3) $Br_2 > I_2 > F_2 > Cl_2$
 - (4) $F_2 > Cl_2 > Br_2 > I_2$

Ans. (2)

Sol.
$$C\ell_2 > Br_2 > F_2 > I_2$$

due to high ℓp - ℓp repulsion

- **67.** Which of the following is an analgesic?
 - (1) Novalgin
 - (2) Penicillin
 - (3) Streptomycin
 - (4) Chloromycetin

Ans. (1)

- Sol. Novalgin used as analgesic
- **68.** Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape?
 - (1) 1/8
- (2) 1/4
- (3) 3/8
- (4) 1/2

Ans. (1)

Sol. $n_{H_2} = n_{O_2}$ and $t_{H_2} = t_{O_2}$

According to Graham's law

$$\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{H_2}}} \Rightarrow \frac{v_1 / t_1}{v_2 / t_2}$$

$$\frac{1/2}{1/x} = \sqrt{16} = \sqrt{16}$$

Fraction of
$$O_2 = 1/8$$

- **69.** Consider the nitration of benzene using mixed conc. H_2SO_4 and HNO_3 . If a large amount of KHSO₄ is added to the mixture, the rate of nitration will be:
 - (1) faster
- (2) slower
- (3) unchanged
- (4) doubled

Ans. (2)

- **Sol.** Slower, as large amount of $\mathbb{A} SO_4$ -owill decrease ionisation of \mathbb{A}_2SO_4 that result in lesser ionisation of nitric acid and lesser formation of nitronium ion $[NO_2^+]$
- 70. Predict the correct order among the following:-
 - (1) lone pair- lone pair bond pair bond pair bond pair
 - (2) lone pair lone pair > bond pair bond pair > lone pair bond pair
 - (3) bond pair bond pair > lone pair bond pair > lone pair lone pair
 - (4) lone pair bond pair > bond pair bond pair lone pair lone pair

Ans.(1)

S61.

- The product obtained as a result of a reaction of nitrogen with CaC_2 is :-
 - (1) $Ca(CN)_2$
- (2) CaCN
- (3) CaCN₃
- (4) Ca₂CN
- Ans. (Bonus) (Question should be Bonous)
- **Sol.** $CaC_2 + N_2 \rightarrow CaCN_2 + C$
- **72.** Consider the following liquid vapour equilibrium. Liquid \rightleftharpoons Vapour

Which of the following relations is **correct**?

- (1) $\frac{d\ell nG}{dT^2} = \frac{\Delta H_v}{RT^2}$
- (2) $\frac{d\ell nP}{dT} = \frac{-\Delta H_{\nu}}{RT}$
- (3) $\frac{d\ell nP}{dT^2} = \frac{-\Delta H_v}{T^2}$
- (4) $\frac{d\ell nP}{dT} = \frac{\Delta H_v}{RT^2}$

Ans. (4)

Sol. Clausius - Clapeyron's equation

$$\frac{d \ln P}{dT} = \frac{\Delta H_{V}}{RT^2}$$

73. Match the compounds given in column I with the hybridisation and shape given in column II and mark the **correct** option.

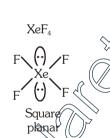
Column-I		Column-II	
(a)	XeF ₆	(i)	Distorted octahedral
(b)	XeO ₃	(ii)	Square planar
(c)	XeOF ₄	(iii)	pyramidal
(d)	XeF ₄	(iv)	Square pyramidal

Code :-

	(a)	(b)	(c)	(d
(1)	(i)	(iii)	(iv)	(ii)
(2)	(i)	(ii)	(iv)	(iii
(3)	(iv)	(iii)	(i)	(ii)
(4)	(iv)	(i)	(ii)	(iii

Ans. (1)

Sol.


distorted octahedral XeO₃

Pyramidal

Square pyramidal

- **74.** Which of the following has longest C-O bond length? (Free C-O bond length in Co is 1.128Å).
 - (1) Ni(CO)₄
 - (2) $[Co(CO)_4]^{\Theta}_{\circlearrowleft}$
 - (3) $[Fe(CO)_4]^{2}$
 - (4) [Mn(CO)

Ans. (3)

Sol. [Fe(CO)

Since metal atom is carrying maximum –ve charge therefore it would show maximum synergic bonding as sa resultant C–O bond length would be maximum.

- **75.** The pressure of H_2 required to make the potential of H_2 -electrode zero in pure water at 29% K is :-
 - (1) 10⁻¹⁴ atm
 - (2) 10⁻¹² atm
 - (3) 10⁻¹⁰ atm
 - (4) 10⁻⁴ atm

Ans. (1)

Sol. $2H^{+}(aq) + 2e^{-} \rightarrow H_{0}(q)$

$$\therefore E = E^0 - \frac{0.0591}{2} \log^2$$

 $P_{\rm p} = 10^{-14} \text{ atm}$

- The addition of a catalyst during a chemical reaction alters which of the following quantities?
 - (1) Entropy
 - (2) Internal energy
 - (3) Enthalpy
 - (4) Activation energy

Ans. (4)

- **Sol.** The addition of catalyst during a chemical reaction alters the activation energy.
- **77.** The ionic radii of A+ and B- ions are 0.98×10^{-10} m and 1.81×10^{-10} m. The coordination number of each ion in AB is :-
 - (1) 6
- (2) 4

(3) 8

(4) 2

Ans. (1)

Sol. radii ratio = $\frac{r_{_{+}}}{r_{_{-}}} = \frac{0.98 \times 10^{-10}}{1.81 \times 10^{-10}} = 0.54$

radii ratio is in between 0.414 to 0.732 so, coordination number is 6

- **78.** Which is the **correct** statement for the given acids?
 - (1) Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid
 - (2) Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid
 - (3) Both are triprotic acids
 - (4) Both are diprotic acids

Ans. (2)

Sol. Phosphinic acid (H₃PO₂)

$$\begin{array}{c}
O \\
\parallel \\
P \\
OH
\end{array}$$
Monoprotic

Phosphonic acid (H₃PO₃)

$$\begin{matrix} O \\ \parallel \\ P \\ OH \end{matrix} OH \longrightarrow Diprotic acid$$

- **79.** Fog is colloidal solution of :-
 - (1) Liquid in gas
 - (2) Gas in liquid
 - (3) Solid in gas
 - (4) Gas in gas

Ans. (1)

- **Sol.** Fog is a colloidal solution of liquid in gas
- 80. Which of the following statement about the composition of the vapour over an ideal 1:1 molar mixture of benzene and toluene is correct? Assume that the temperature is constant at 25°C. (Given: Vapour Pressure Data at 25°C, benzene = 12.8 kPa, Toluene = 3.85 kPa)
 - (1) The vapour will contain a higher percentage of benzene
 - (2) The vapour will contain a higher percentage of toluene
 - (3) The various will contain equal amounts of benezene and toluene
 - (4) Not enough information is given to make a predication

Ans. (1)

Sol. A→ benzene, B→ toluene 1 : 1 molar mixture of A and B \therefore $x_A = \frac{1}{2}$ and $x_B = \frac{1}{2}$

 $\boldsymbol{P}_{\!s} = \boldsymbol{P}_{\!A}^{0} \boldsymbol{X}_{\!A} + \boldsymbol{P}_{\!B}^{0} \boldsymbol{X}_{\!B}$

 $P_s = 12.8 \times \frac{1}{2} + 3.85 \times \frac{1}{2} = 8.325 \text{kPa}$

$$Y_A = \frac{P_A^0 X_A}{P_s} = \frac{12.8 \times \frac{1}{2}}{8.325} = 0.768$$

 $Y_{B} = 1 - Y_{A} = 1 - 0.268 = 0.232$

so, the vapour will contain higher percentage of benzene:

81. The **correct** statement regarding the comparison of staggered and eclipsed conformation of ethane,

The staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has torsional strain

- (2) The eclipsed conformation of ethane is more stable than staggered conformation, because eclipsed conformation has no torsional strain
- (3) The eclipsed conformation of ethane is more stable than staggered conformation even through the eclipsed conformation has torsional strain
- (4) The staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain.

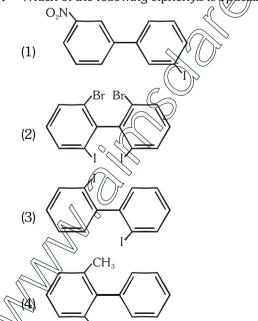
Ans. (4)

* No torsional strain

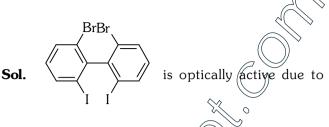
82. The reaction

$$OH \xrightarrow{NaH} O^{\circ} \stackrel{\oplus}{Na} \xrightarrow{Me-I} O^{\prime} \stackrel{Me}{\longrightarrow} O$$

Can be classified as :-


- (1) Williamson ether synthesis reaction
- (2) Alcohol formation reaction
- (3) Dehydration reaction
- (4) Williamson alcohol synthesis reaction

Ans. (1)


- **Sol.** This is an exmaple of Williamson ether syntehsis reaction in which sodium alkoxide reacts with alkyl halide and gives ether.
- **83.** The product formed by the reaction of an aldehyde with a primary amine is:-
 - (1) Schiff base
 - (2) Ketone
 - (3) Carboxylic acid
 - (4) Aromatic acid

Ans. (1)

84. Which of the following biphenyls is optically active?

Ans. (2)

absence of plane of symmetry and center of symmetry

- **85.** For the following reactions.
 - (a) $CH_3CH_2CH_2B_x + KOH \rightarrow CH_3CH = CH_4 + KB_x + H_2O$

(b)
$$H_3C$$
 CH_3 H_3C CH_3 $+$ KB_1

$$+Br_2 \longrightarrow \bigcup_{B_1}$$

Which of the following statements is **correct**?

- $\hat{J}(1)$ (a) and (b) are elimination reaction and (c) is addition reaction
- (2) (a) is elimination, (b) is substitution and (c) is addition reaction
- (3) (a) is elimination, (b) and (c) are substitution reactions
- (4) (a) is substitution, (b) and (c) are addition reaction

Ans. (2) Sol.

(a) $CH_3CH_2CH_2$ -Br+KOH $\rightarrow CH_3CH$ = CH_2 +KBr + H_2O breaking of 2σ bonds and formation of 1π bond so it is an example of elimination reaction.

(b)
$$H_3C \ C \ CH_3 + KOH \longrightarrow H_3C \ C \ CH_3 + KBr$$

replacement of Br⁻ by OH⁻ is substitution reaction

(c)
$$+ Br_2 \longrightarrow Br$$

breaking of 1π bond and formation of 2σ bonds is addition reaction

- **86.** At 100° C the vapour pressure of a solution of 6.5g of a solute in 100 g water is 732 mm. If $K_b = 0.52$, the boiling point of this solution will be :-
 - (1) 101°C
- (2) 100°C
- (3) 102°C
- (4) 103℃

Ans. (1)

Sol. $\left(\frac{P^{\circ} - P_{s}}{P^{\circ}}\right) = \frac{n}{N} = \frac{w_{solute}}{M_{solute}} \times \frac{M_{solvent}}{W_{solute}}$

at $100 \, ^{\circ}\text{C}$, $P^0 = 760 \, \text{mm}$

$$\frac{760 - 732}{760} = \frac{6.5 \times 18}{M_{\text{solute}} \times 100}$$

 $M_{solute} = 31.75 \text{ g mol}^{-1}$

$$\Delta T_{_b} = m \times K_{_b} = \frac{w_{_{solute}} \times 1000}{M_{_{solute}} \times w_{_{solvent}}} \times K_{_b}$$

$$\Delta T_b = \frac{0.52 \times 6.5 \times 1000}{31.75 \times 100} = 1.06^{\circ}C$$

.. boiling point of solution

$$= 100^{\circ}\text{C} + 1.06^{\circ}\text{C} \approx 101^{\circ}\text{C}$$

- **87.** The **correct** statement regarding RNA and DNA, respectively is :
 - (1) The sugar component in RNA is arabinose and the sugar component in DNA is 2'-deoxyribose.
 - (2) The sugar component in DNA is ribose and the sugar component in DNA is 2'-deoxyribose.
 - (3) The sugar component in RNA is arabinose
 - (4) The sugar component in RNA is 2'-deoxyribose and the sugar component in DNA is arabinose.

Ans. (2)

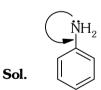
Sol. RNA Ribose Nucleic Acid

DNA ___ 2'-Deoxyribose Nucleic Acid

- **88.** The **correct** statement regarding the basicity of arylamines is :-
 - (1) Arylamines are generally less basic than alkylamines because the nitroger lone pair electrons are delocalized by interaction with the aromatic ring π electron system.
 - (2) Arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalized by interaction with the aromatic ring π electron system.
 - (3) Arylamines are generally more basic than alkylamines because of aryl group.
 - (4) Arylamines are generally more basic than alkylamines, because the nitrongen atom in arylamines is ap hybridized.

Ans. (1)

Sol.


 $R-\ddot{N}H_2$

alkyl amine

Aryl amine

- * Delocalized lone pair of nitrogen
- * less basic
- **89.** Which one given below is a non-reducing sugar?
 - (1) Maltose
 - (2) Lactose
 - (3) Glucose
 - (4) Sucrose

Ans. (4)

R-NH₂

Aryl amine

- * Delocalized lone pair of nitrogen
- * less basic
- **90.** The pair of electron in the given carbanion, $CH_3C \equiv C^{\Theta}$, is present in which of the following orbitals?
 - (1) 2p
- (2) sp^3
- (3) sp^2
- (4) sp

Ans. (4)

Sol. $CH_3-C \equiv C^{\Theta}$

No. of σ bp-1 2 & hybridisation is sp $\ell p{-}1$