inteli Class

CHEMISTRY

Shortcuts Formulas

IIT-JEE

e-book

Free Edition

TABLE OF CONTENT

PHYSICAL CHEMISTRY	E	
ATOMIC STRUCTURE	0	
ATOMIC STRUCTURECHEMICAL BONDING	2	
CHEMICAL EQUILIBRIUM		
IONIC EQULIBRIUM		
CHEMICAL KINETICS	0	
OXIDATION-REDUCTIONVOLUMETRIC ANALYSIS	7	
MOLE CONCEPT		
MULE CONCEPT	9	40
CHEMICAL ENERGETICSELECTRO CHEMISTRY		- 10
SOLUTION AND COLLIGATIVE PROPERTIES.		
NUCLEAR CHEMISTRYGASEOUS STATE		2
GASEOUS STATE		5
SOLID AND LIQUID STATE		
SURFACE CHEMISTRY & COLLOIDAL STATE	.(ŋ 15)
INORGANIC CHEMISTRY	0	
PERIODIC TABLE	.4.\	3
EXTRACTIVE METALLURGY	17	7
s- BLOCK ELEMENTS	17	,
BORON FAMILY	18	3
CARBON FAMILY	18	R
OXYGEN FAMILY	<u>U</u>)
HALOGEN FAMILY		
TRANSITION ELEMENTS (D-BLOCK ELEMEN	TS)21	1
COORDINATION COMPOUNDS	①′2·	1
	(
ORGANIC CHEMISTRY		
	\Box	
		_
ALKANESALKENES	<u></u>	3
ALKENES		3
ALKYNES	23	3
HALOGEN COMPOUNDS	23	3
ALCOHOLS		
PHENOLSETHERS	24	4
ETHERS	25	5
CARBONYL COMPOUNDS	25	5
CARBOXYLIC ACIDS		6
NITROGEN COMPOUNDS		i
CARBOHYHYDRATES, AMINO ACIDS AND PO	OLYMERS26	3
CHARACTERISTIC REACTIONS OF DIFFEREN		
IMPORTANT REAGENT	<u></u>	3 -29
MAIN USE OF COMPOUNDS		
SMELL OF SOME COMPOUNDS		
IDENTIFICATION TESTS		

PHYSICAL CHEMISTRY

ATOMIC STRUCTURE

1.
$$r_n = \frac{n^2 h^2}{4\pi^2 m Z e^2} = 0.529 \left(\frac{n^2}{Z}\right) A, r_n = n^2 \times r_1$$

2.
$$E_T = KE = \frac{PE}{2} = -13.6 \frac{Z^2}{n^2} eV$$

3.
$$\Delta E = \frac{hc}{\lambda} = \frac{2\pi^2 me^4}{h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

4.
$$\overline{v} = \frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right], \left[R = 1.0968 \times 10^7 m^{-1} \right]$$

5. Total no. of spectrum lines=
$$\frac{n(n-1)}{2}$$

6. Heisenberg Uncertainty Principle
$$(\Delta x)(\Delta p) \ge h/4\pi$$

7. Moseley's law:
$$\sqrt{v} = a(Z - b), E_n = -\frac{13.7}{n^2} eV / atom$$

8. Nodes
$$(n-1)$$
 = total nodes, l = angular nodes, $(n-l-1)$ = Radial nodes

9. Photoelectric effect:
$$hv = hv_0 + \frac{1}{2}mv^2$$

10. Orbital angular momentum:
$$\sqrt{l(l+1)} \frac{h}{2\pi}$$

CHEMICAL BONDING

1. % ionic character =
$$\frac{\text{Actual dipole moment}}{\text{Calculated dipole moment}} \times 100$$

- 2. Fajan's Factors: following factors are helpful in including covalent character in ionic compounds
- (a) Small cation
- (b) Big anion
- (c) High charge on cation
- (d) High charge on anion
- (e) Cation having pseudo inert gas configuration (ns²p6d¹0) e.g. Cu+, Ag⁺, Zn²+, Cd²+__
- 3. $-\Delta H_f = H_S + \frac{1}{2}H_d + IE + \Delta H_{EG} E_L$
- 4. M.O. theory:
 - (a) Bond order = $\frac{1}{2}(N_b N_a)$
 - (b) Higher the bond order, higher is the bond dissociation energy, greater is the stability, and shorter is the bond length.
- (c) Species Bond order Magnetic properties H_2 Diamagnetic H_2^{\dagger} 0.5 Paramagnetic Li_2 1 Diamagnetic Diamagnetic
- 5. $Q = \frac{1}{2} [V + SA (\pm q)]$
- 6. Former charge = $V \left(L + \frac{1}{2}S\right)$
- 7. VSEPR theory
 - (a) (LP LP) repulsion > (LP BP) > (BP BP)
 - (b) For NH₃→ Bond Angle 106°45' because H₂O molecule contains 2LP and 2BP where as NH₃has ILP and 3BP.
- 8. Bond angle:

Decrease in bond angle down the gp is due to LP – BP repulsion

- (a) $NH_3 > PH_3 > AsH_3$
- $(b)H_2O > H_2S > H_2Se$

CHEMICAE EQUILIBRIUM

- 1. $K_p = K_{c}(RT)^{n_g}$ where $\Delta n_g = n_p n_R$
- 2. Free Energy change($G\Delta$)
- (a) If $G\Delta=0$ then reversible reaction would be equilibrium.
- (b) If $G\Delta=(+)$ ve then equilibrium will displace in backward direction.
- (C) If $G\Delta=(-)$ ve then equilibrium will displace in forward direction.
- 3. (a) K_c unit \rightarrow (moles/li)^{Δn}
 - (b) K_p unit \rightarrow $(atm)^{\Delta n}$
 - (c) Total molecule at equlibrium = [total initial moles $+\Delta n$]
 - (d) Time required to establish equlibrium $\alpha 1/k_c$
 - (e) If in any heterogeneous equilibrium solid substance is also present then its active mass & partial pressure is assumed 1.
- 4. Le chatelier's principle
- (i) Increase of reactant conc. (Shift forward)
- (ii) Decrease of reactant conc. (Shift backward)
- (iii) Increase of pressure (from more moles to less moles)
- (iv) Decrease of pressure (from less moles to more moles)
- (v) For exothermic reaction decrease in temp. (Shift forward)
- (vi) For endothermic increase in temp. (Shift forward). Time Total

www.aimsda

ACID BASE

- (b). Lewis Base (e-pair donor) NH₃, ROH, ROR, H₂O, RNH₂, R₂NH,R₃N, normal anion
- 2. Dissociation of Weak Acid & Weak Base →

(a). Weak Acid
$$\rightarrow K_a = Cx^2 / (1-x)$$
 or $K_a = Cx^2$

- (b). Weak Base $\rightarrow K_b = Cx^2 / (1-x)$ or $K_b = Cx^2$
- 3. Buffer solution:
 - (a) Acidic $\rightarrow pH = pK_a + \log\{salt / Acid\}$ for Maximum buffer action pH = pK_a Range of Buffer pH = pK_a ±1
 - (b) Alkaline \rightarrow pOH = pK_b+log {Salt/Base} for max. Buffer range for basic buffer = pK_b ±1
 - (c) Buffer Capacity = $\frac{\text{Moles/lit of Acid or Base Mixed}}{\text{Change in pH}}$ $B = \frac{\text{dCBOH}}{\text{dpH}} = -\frac{\text{dCHB}}{\text{dpH}}$
- 4. Necessary condition for showing neutral colour of Indicator pH = pKln or $[HIn] = [In^-]$ or $[InOH] = [In^+]$

www.aimsda

IONIC EQULIBRIUM

$$Ki = \frac{\alpha^2}{(1-\alpha)V} = \frac{\alpha^2 C}{(1-\alpha)}$$
 (Ostwald's dilution law)

It is applicable to weak electrolytes for which $\alpha = \sqrt{K_i V} = \sqrt{\frac{K_i}{C}} \text{ or } V \uparrow C \downarrow \alpha \uparrow$

2. Common ion effect : By addition of X mole/ L of a common ion, to a weak acid (or weak base) α becomes equal to

$$\frac{K_a}{X} \left(or \frac{K_b}{X} \right)$$
 [where α =degree of dissociation]

- 3. (A) If solubility product = ionic product then the solution saturates.
 - (B). If solubility product > ionic product then the solution is unsaturated and more of the substance can be dissolved in it.
 - (C). Id ionic product > solubility product the solution is super saturated (principle of precipition).
- 4. Salt of weak acid and strong base:

$$pH = 0.5(pK_w + pK_a + \log c)$$

Salt of weak base and strong acid

$$pH = 0.5(pK_w - pK_b - \log c)$$

Salt of weak acid and weak base:

$$pH = 0.5(pK_w + pK_a - pK_b)$$

CHEMICAL KINETICS

$$K = mol^{1-\Delta n} lit^{\Delta n-1} sec^{-1}$$

2. First Order reaction:

$$K = \frac{2.303}{t} \log_{10} \frac{a}{a - x} \& t_{1/2} = \frac{0.693}{K}$$
$$[A]_{t} = [A]_{0} e^{-kt}$$

3. Second Order Reaction:

When concentration of A and B taking same.

$$K_2 = \frac{1}{t} \left(\frac{x}{a(a-x)} \right)$$

When concentration of A and b are taking different-

$$K_2 = \frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)}$$

4. Zero Order Reaction:

$$K = \frac{a_0 - a_t}{t}$$

$$x = kt & t_{1/2} = \frac{a_0}{2K}$$

5. Arrhenius equation:

$$K = Ae^{-E_a/RT} & slope = \frac{-E_a}{2.303RK}$$
where $T \rightarrow \infty$ then $E = A(\cdot, e^{-E_a/RT} - 1)$

when
$$T \to \infty$$
, then $k = A\left(:: e^{-E_a/RT} = 1\right)$

6.
$$\log\left(\frac{k_2}{k_1}\right) = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

>

OXIDATION-REDUCTION

Oxidant itself is reduced (gives O₂)
 Or Oxidant → e (s) Acceptor
 Reductant itself is oxidised (gives H₂)
 Or reductant → e (s) Donor

2. (i) Strength of acid α O.N (ii) Strength of base α 1/ O.N

3. (a) Electro Chemical Series:- Li, K, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H₂, Cu, I₂, Hg, Ag, Br₂, Cl₂, Pt, Au, F₂

(b)As we move from top to bottom in this series

(1) Standard Reduction Potential ↑

(2) Standard Oxidation Potential↓

(3) Reducing Capacity ↓

(4) Ip↑

(5) Reactivity↓

4. (a) Formal charge = Group No. – [No. of bonds+ No. of non-bonded e^{-s}]

(b)At A node → Oxidation, Cathode → Reduction

are

i m

>

VOLUMETRIC ANALYSIS

Equivalent weight of element = $\frac{\text{Atomic wt of the element}}{\text{n-factor}}$

- 2. Equivalent weight of Compound = $\frac{\text{Formula wt of the compound}}{\text{on factor}}$
- 3. Equivalent weight of an ion = $\frac{\text{Formula wt (or At. Wt.)of ion}}{\text{its valency}}$
- 4. The law of dulong and petit
 Atomic wt.× specific heat ≈ 6.4
- 5. Normality (N)= $\frac{\text{Number of equivalents of solute}}{\text{Volume of the solution in liters}}$
- 6. Molarity (M)= $\frac{\text{Number of moles of solute}}{\text{Volume of the solution in liters}}$
- 7. When a solution is diluted $N_1 \times V_1 = N_2 \times V_2$ (before dilution) (a fter dilution)
- 8. Common acid- base indicators

Indicator	Colour in acidic medium	(Colour in alkaline medium	pH range
Methyl orange	Pink	Yellow	3.0-4.4
Methyl red	Red	Yellow	4.2-6.2
Litmus	Red	Blue	5.5-7.5
Phenolphthalein	Colourless	Pink	8.3-9.8

MOLE CONCEPT

GAM
$$\equiv 1$$
gm atom $\equiv 6.02 \times 10^{23}$ atom.

GAM = 1gm molecule =
$$6.02 \times 10^{23}$$
 molecules.

$$N_A = 6.02 \times 10^{23}$$

2.Moles (gases)at NTP=
$$\frac{volume(L)}{22.4}$$

3.Molecular mass=2×vapour density

CHEMICAL ENERGETICS

1. First Law: $\Delta E = Q + W$

Expression for pressure volume work $W = -P\Delta V$

Maximum work in a reversible expansion:

W = -2.303n RT log
$$\frac{V_2}{V_1}$$
 = -2.303nRT log $\frac{P_1}{P_2}$

2. Enthalpy and heat content: $\Delta H = \Delta E + P\Delta V$

$$[q_{_{(p)}}{=}q_{_{(\nu)}} + \Delta n_{_g}RT] \qquad \Delta H = \Delta E + \Delta n_{_g}RT$$

$$[\Delta n_g = n_{p(g)} - n_{r(g)}]$$

3. Kirchoffs equation:

$$\Delta E_{T_2} = \Delta E_{T_1} + \Delta C_v (T_2 - T_1) [cons \tan t V]$$

$$\Delta \mathbf{H}_{\mathrm{T_2}} = \Delta \mathbf{H}_{\mathrm{T_1}} + \Delta C_p (T_2 - T_1) [cons \tan t P]$$

4. Entropy(s): Measure of disorder or randomness

$$\Delta S = \sum_{p} S_{p} - \sum_{r} S_{r}$$

$$\Delta S = \frac{q_{rev}}{T} = 2.303 nr \log = \frac{V_2}{V_1} = 2.303 nr \log \frac{P_1}{P_2}$$

5. free energy change: $\Delta G = \Delta H - T \Delta S$

$$\Delta G < 0$$
(Spontaneous) [-ve] $\Delta G = 0$ (equilibrium)

 $\Delta G > 0$ (non-spontaneous) [+ve]

$$-\Delta G = W(maximum) - P\Delta V$$

COM

ΦН	ΦS	→ ¢G	Reaction
			characteristics
-	+	Always Negative	Reaction is
		9	spontaneous at all
		ОР	temperature.
+	-	Always Positive	Reaction is no
			spontaneous at all
			temperature.
-	-	→ Negative at low	Spontaneousat
		temperature but	low temp. & non
		positive at high	spontaneousat
		temperature	high temperature.
+	+	Positive at low	Non spontaneous
		temperature but	at low temperature
		negative at high	& spontaneous at
		temperature	high temperature.

www.aimsdareto

ELECTRO CHEMISTRY

- 1. M = Z. I.t
- 2. Degree of dissociation: $\alpha = \frac{\lambda_{eq}}{\lambda_{eq}^{\infty}} = \frac{\text{Equivalent conductance at given concentration}}{\text{equivalent conductance at infinite dilution}}$
- 3. Kohlrausch'slaw: $\Delta_m^0 = x \lambda_A^0 + y \lambda_B^0$
- 4.Nernst Equation

$$E = E^{0} - \frac{0.0591}{n} \log_{10} \frac{[\text{Pr} \ oducts]}{[\text{Re} \ ac \ \tan ts]} \& E^{0}_{\text{cell}} = E^{0}_{\text{anode}} + E^{0}_{\text{cathode}} \& \text{Keq} = \text{antilog} \left[\frac{nFE^{0}}{0.0591} \right]$$

$$\Delta G = -nFE_{cell} \& \Delta G^0 = -nFE_{cell}^0$$

$$-\Delta G^{0} = 2.303RT \log K_{c} \& W_{\text{max}} = +nFE^{0} \& \Delta G = \Delta H + T \left(\frac{\partial \Delta G}{\partial T}\right)_{n}$$

5. Calculation of pH of an electrolyte by using a calomel electrode:

$$pH = \frac{E_{cell} - 0.2415}{0.0591}$$

SOLUTION AND COLLIGATIVE PROPERTIES

1. Raoult's law

Radult S law
$$p = p_A + p_B = p_A^0 X_A + p_B^0 X_B = (1 - XB) p_A^0 + p_B^0 X_B = (p_B^0 - P_A^0) X_B + p^0 A$$

$$\frac{P_0 - P_S}{P_0} = \frac{n}{n+N} \& \frac{P_0 - P_S}{P_0} = \frac{w.m}{W.M}$$

- 2. Colligative α Number of particles T
 - Properties α Number of molecules (in case of nonelectrolytes)
 - α Number of ions (in case of electrolytes)
 - α Number of moles of solute
 - $\boldsymbol{\alpha}$ Mole fraction of solute
- 3. Depression of freezing point, $\Delta T_f = K_f m$

4. Elevation in boiling point with relative lowering of vapour pressure

$$\Delta T_b = \frac{1000K_b}{M_1} \left(\frac{p^0 - p}{p^0}\right) (M_1 = mol.wt.ofsolvent)$$

5. Osmotic pressure (P) with depression in freezing point $T\Delta$

$$P = \Delta T_f \times \frac{dRT}{1000K_f}$$

6. $i = \frac{\text{Normal molar mass}}{\text{Observed molar mass}} = \frac{\text{Observed colligative property}}{\text{Normal colligative property}}$

 $i = \frac{\text{Observed osmotic pressure}}{\text{Normal osmotic pressure}} = \frac{\text{Actual number of particles}}{\text{No. of particles for no. ionisation}}$

degree of association(a) = $(1-i)\frac{n}{n-1}$ & degree of dissociation(α) = $\frac{i-1}{n-1}$

NUCLEAR CHEMISTRY

- 1. Radius of the nucleus: $R = R^0 A^{1/3}$
- 2. The amount N of the radioactive substance left after 'n' half lives = $\frac{N_0 \text{ (initial amount)}}{2^n}$
- 3. Half-life period $t_{1/2} = \frac{0.693}{2}$
- 4. Rate of disintegration:

$$-\frac{dN}{dt} = \lambda.N \& \lambda = \frac{2.303}{t} \log_{10} \frac{N_0}{N} or N = N_0 e^{-\lambda t}$$

Average life $(t_{AV}) = \frac{\text{Total life time of all the atoms}}{\text{Total number of atoms}}$

5.
$$= \frac{\int_{0}^{\infty} t dn}{N_{0}} = \frac{1}{\lambda} = 1.44t_{1/2}$$

GASEOUS STATE

- 1. Ideal gas equation: PV = nRT
 - R = 0.0821 litre atm. K⁻¹ mole⁻¹
 - R = 62.4 liters mm Hg K^{-1} mole⁻¹ (ii)
 - R = 8.314 * 10⁷ ergs K⁻¹ mole⁻¹ (iii)
 - (iv)
 - R =8.314 J K⁻¹ mole⁻¹ (v)
- 2. Velocities related to gaseous state

RMS velocity C =
$$\sqrt{\frac{3PV}{M}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3P}{M}}$$

Average speed =
$$\sqrt{\frac{8RT}{\pi M}}$$
 & Most probable speed = $\sqrt{\frac{2RT}{M}}$

Average speed = 0.9213 * RMS speed

MPS = .816 * RMS; RMS = 1.224 MPS

MPS: A. V. speed: RMS = 1: 1.128: 1.224

- 3. Rate of diffusion $\alpha \frac{1}{\sqrt{\text{density of gas}}}$
- 4. Vander Wall's equation

$$\left(P + \frac{n2a}{V2}\right)(V - nb) = nRT$$
 for n moles

5. Z (compressibility factor)= $\frac{PV}{nRT}$; Z = 1 for ideal gas

(1)

SOLID AND LIQUID STATE

Simple cubic =
$$\frac{\pi}{6}$$
 = 0.52

$$bcc = \frac{\pi\sqrt{3}}{8} = 0.68$$

fcc. =
$$\frac{\pi\sqrt{2}}{6}$$
 = 0.74 Ω

$$hcp = \frac{\pi \sqrt{2}}{6} = 0.74$$

diamond =
$$\frac{\pi\sqrt{3}}{6}$$
 = 0.34

 $bcc = \frac{\pi\sqrt{3}}{8} = 0.68 \qquad \text{fcc.} = \frac{\pi\sqrt{2}}{6} = 0.74 \quad \text{O}$ $hcp = \frac{\pi\sqrt{2}}{6} = 0.74 \qquad \text{diamond} = \frac{\pi\sqrt{3}}{6} = 0.34$ 2. Radius ratio and co-ordination number (CN)

Limiting radius ratio	CN	_	Geometry
[0.155- 0.225]	3	Q	[plane triangle]
[0.255 – 0.414]	4		[tetrahedral]
[0.414 - 0.732]	6	(/)	[octahedral]
[0.732 – 1]	8	()	[bcc]

3. Atomic radius r and the edge of the unit cell:

Pure elements: Simple cubic = $r = \frac{a}{2}$

$$bcc r = \sqrt{\frac{3a}{4}} \quad fcc = \sqrt{\frac{2a}{4}}$$

- 4. Relationship between radius of void (r) and the radius of the sphere (R): r (tetrahedral) = 0.225 R; r(octahedral) = 0.414 R
- 5. Paramagnetic: Presence of unpaired electrons [attracted by magnetic field1
- 6. Ferromagnetic: Permanent magnetism [^^^^]
- 7. Antiferromagnetic: net magnetic moment is zero [↑↓↑↓]
- 8. Ferrimagnetic: net magnetic moment is there[↑↓↓↑↑]

SURFACE CHEMISTRY & COLLOIDAL STATE

- 1. Higher is the valency of active ion, the greater is its coagulating power.
- 2. Emulsion: Colloidal soln. of two immiscible liquids [O/ Wemulsion, W / O emulsion]
- 3. Emulsifier: Long chain hydrocarbons are added to stabilize emulsion.
- 4. Lyophilic colloid: Starchy gum, gelatin have greater affinity for solvent. Solution Can be easily prepared by bringing in contact with solvent and warming.
- 5. Lyophobic colloid: No affinity for solvent, special methods are used to prepare sol. [e.g. As₂S₃, Fe(OH)₃ sol]

 ω

()

- 6. Preparation of colloidal solution:
 - (i) Dipersion methods
 - (ii) Condensation method.
- 7. Properties of colloidal solution:
 - (i) Tyndall effect
 - (ii) Brownian movement
 - (iii) Coagulation
 - (iv) Filtrability

3

INORGANIC CHEMISTRY

PERIODIC TABLE

1. General electronic configuration (of outer orbits)

s- block p- block d-block f- block	ns^{1-2} $ns^{2}np^{1-6}$ $(n-1)d^{1-10}ns^{1-2}$ $(n-2)s^{2}p^{6}d^{10}f^{1-14}$ $(n-1)s^{2}p^{6}d^{0}$ or 1 ns^{2}
p- block d-block	ns ² np ¹⁻⁶

2.

Properties	Pr(L to R)	Gr (T to B)
(a) Atomic radius	↓ Ω	\uparrow
(b) Ionization	†	\
potential	0)	
(c) Electron affinity	↑ 0) S	
(d) Electron negativity	1 0	\
(e)Metallic character	1	\uparrow
or electropositive		
character	4 4 7	
(f) Alkaline character	+	↑
of hydroxides		
(g) Acidic character	1	\downarrow
(h) Density	(i) Firstly increase	\uparrow
	(ii)in between max	
	(iii)then decrease	
(i)Reducing property	<u></u>	↑
(j) Oxidizing property	↑	\downarrow
(k)Non metallic	1	\downarrow
charcter	Ō	
	10	

4. EA $\alpha \frac{1}{\text{size}} \alpha$ neclear charge

Second electron affinity is always positive. Electron affinity of chlorine is greater than fluorine.

5. The first element of a group has similar properties with the second element of the next group. This is called diagonal relationship.

EXTRACTIVE METALLURGY

- 1. Floatation is a physical method of separating a mineral from the gangue depending on differences in their wettabilities by a liquid
- 2. Roasting is the process of heating a mineral in the presence of air.
- 3. Calcination is the process of heating the ore in the absence of air.
- 4. Electrolytic reduction: Highly electropositive metals are extracted by the electrolysis of their oxides and hydroxides.

s- BLOCK/ELEMENTS

- 1. Atomic radii: Li < Na < K < Rb < Cs
- 2. Ionic radii: $Li^{\dagger} < Na^{\dagger} < K^{\dagger} < Rb^{\dagger} < Cs^{\dagger}$
- 3. Electronegativity: Li > Na > K > Rb < Cs
- 4. First ionization potential: Li > Na > > K > Rb > Cs
- 5. Melting point: Li > Na > K > Rb > Cs'
- 6. Density: Li > Na > K > Rb > Cs
- 7. Colour of the flame Li- red, Na- Golden, K- Violet, Rb- Red, Cs- Blue, Ca-Brick Red, Sr- Blood red, Ba- Apple green
- 8. Rb and Cs show photoelectric effect.
- 9. Stability of hydrides: LiH > NaH > KH > RbH > CsH
- 10. Basic nature of hydroxides: [LiOH < NaOH < KOH < RbOH < CsOH]

BORON FAMILY

- 1. Stability of +3 oxidation state: B > Al > Ga > In > Tl
- 2. Stability of +1 oxidation state: Ga⊦< In < TI
- 3. Reducing nature: Al > Ga > In > Th
- 4. Basic nature of the oxides and hydroxides: B < Al < Ga < In < TI
- 5. Relative strength of Lewis acid: BF₃ < BCl₃ < BBr₃ < BI₃

CARBON FAMILY

- 1. Reactivity: C < Si < Ge < Sn < Pb
- 2. Metallic character: C < Si < Ge < Sn < Pb
- 3. Acidic character of the oxides: CO₂ > SiO₂ > GeO₂ > SnO₂ > PbO₂ Weaker acidic (amphoteric)
- 4. Thermal stability and volatility of hydrides: $CH_4 > SiH_4 > GeH_4 > SnH_4 < PbH_4$
- 5. Reducing nature of hydrides: CH₄ < SiH₄ > geH₄ > SnH₄ > PbCl₄
- Reducing power, covalent nature of Hydrides: NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃
- 7. Stability of trihalides of nitrogen: NF₃ > NCl₃ > NBr₃
- 8. Ease of hydrolysis of trichlorides NCl₃ > PCL₃ > AsCl₃ > SbCl₃ > BiCl₃
- 9. Lewis and strength of trihalides of P, As and Sb PF₃ > PCI₃ > PBr₃ > PI₃
- 10. Lewis acid strength among phosphorus trihalides PF₃ > PCl₃ > PBr₃ > Pi₃
- 11. Bond angle, among the halides of phosphorus PF₃ < PCl₃ < PBr₃ < Pl₃

OXYGEN FAMILY

0

0

(1)

(1)

- 1. Melting and boiling point of hydrides $H_2O > H_2Te > H_2Se > H_2S$
- Volatility of hydrides H₂O > H₂Te > H₂Se > H₂S
- 3. Thermal stability of hydrides H₂O > H₂S > H₂Se > H₂Te
- 4. Reducing nature of hydrides H₂S < H₂Se < H₂Te
- 5. Covalent character of hydrides $H_2O < H_2S < H_2Se < H_2Te$
- 6. Bond angle & dipole moment of hydrides $H_2O > H_2S > H_2Se > H_2Te$ (104°) (92°) (91°) (90°)
- 7. Ease of hydrolysis of hexahalides: SF₆ > SeF₆ > TeF₆
- 8. The acidic character of oxides (element in the same oxidation state)

Ø

- 9. Acidic character of oxide of a particular element(e.g. S) AO₂ > SeO₂ > TeO₂ > PoO₂ So₃ > SeO₃ > TeO₃
- 10. Stability of dioxides SO₂ > TeO₂ > SeO₂ > PoO₂

w w w .a i m

HALOGEN FAMILY

- 1. Bond energy of halogens: $Cl_2 > Br_2 > F_2 > I_2$
- 2. Bond length in x_2 molecule: $F_2 > Cl_2 > Br_2 > l_2$
- 3. Solubility of halogen in water: $F_2 > CI_2 > Br_2 > I_2$
- 4. Oxidizing power: $F_2 > Cl_2 > Br_2 > l_2^{\odot}$
- 5. Enthalpy of hydration of X ion: $F \ge Cl > Br > l$
- 6. Reactivity of halogens: F > Cl > Br > I
- 7. Ionic character of M X bond in halide M F > M Cl > M Br > M I
- 8. Reducing character of X ion: I > Br > Cl > F
- 9. Thermal stability of hydrides: HF > HCl > HBr > HI
- 10. Acidic strength of halogen acids: HI > HBr > HCl > HF
- 11. Conjugate base strength of halogen acids I < Br < Cl < F
- 12. Reducing power of hydrogen halides HF < HCI < HBr < HI
- 13.Dipole moment of hydrogen halides HF > HCl > HBr > Hl
- 14.Oxidising power of oxides of chlorine $Cl_2O > Cl_2 > Cl_2O6 > Cl_2O_7$
- 15.Acidic character of oxyacids of chloride HCIO < HCIO₂ <HCIO₃ < HCIO₄
- 16.Strength of conjugate bases of oxyacids of chlorine CIO > CIO₂ > CIO₃ > CIO₄

HALOGEN FAMILY

- 17. Oxidizing power of oxyacids of chlorine HCIO < HCIO₂ < HCIO₃ < HCIO₄
- 18. Thermal stability of oxyacids of chlorine HCIO < HCIO₂ < HCIO₃ < HCIO₄
- 19. Stability of anions of oxyacids of chlorine CIO > CIO₂ > CIO₃ > CIO₄

TRANSITION ELEMENTS (D-BLOCK ELEMENTS)

- 1. The element with exceptional configuration are Cr^{24} [Ar] $3d^54s^1$, Cu^{29} [Ar] $3d^{10}4s^1$ (Mo⁴² [Kr] $4d^55s^1$, Pd^{46} [Kr] $4d^{10}5s^0$ (Ag⁴⁷ [Kr] $4d^{10}5s^1$, Pt^{78} [Xe] $4f^{14}5d^{10}6s^0$ Au⁷⁹ [Xe] $4f^{14}5d^{10}6s^1$
- 2. Ferromagnetic substances are those in which there are large number of electrons with unpaired spins and whose magnetic moments are aligned in the same direction.

COORDINATION COMPOUNDS

- 1. Coordination number is the number of the nearest atoms or groups in the coordination sphere.
- 2. Ligand is a Lewis base donor of electrons that bonds to a central metal atom in a coordination compound.
- 3. Paramagnetic substance is one that is attracted to the magnetic field, this result on account of unpaired electrons present in the atom/molecule/ion.
- 4. Effective atomic number EAN = (Z Oxidation number) + (2 * Coordination number)
- 5. Factors affecting stability of complex
- (i) Greater the charge on the central metal ion, greater is the stability.
- (ii) Greater the ability of the ligand to donate electron pair (basic strength) greater is the stability.
- (iii) Formation of chelate rings increases the stability.

ORGANIC CHEMISTRY

GOC

- 1. The order of decreasing electro negativity of hybrid orbital's is sp > sp² > sp³
- 2. Conformational isomers are those somers which arise due to rotation around a single bond.
- 3. A meso compound is optically inactive, even though it has asymmetric centers (due to internal compensation of rotation of plane polarized light)
- 4. An equimolar mixture of enantiomers is called racemic mixture, which is optically inactive
- 5. Tautomerism is the type of isomerism arising by the migration of hydrogen.
- Reaction intermediates and reagents:
 Homolytic fission → Free radicals
 Hetrolytic fission → Carbocation and carbanion
- 7. Nucleophiles electro rich

Two types:

1. Anions 2. Neutral molecules

With lone pair of electrons(Lewis bases)

Electrophiles: electron deficient.

Two types:

1. Cations

- 2. Neutral molecules with vacant orbitals (Lewis acids)
- 8. Inductive effect is due to <u>s</u>
- 9. electron displacement along a chain and is permanent effect.
- 9. +I (inductive effect) increase basicity, I effect increases acidity of compounds.
- 10. Resonance is a phenomenon in which two or more structures can be written for the same compound but none of them actually exists.

ALKANES

- 1. Pyrolytic cracking is a process in which alkane decomposes to a mixture of smaller hydrocarbons, when it is heated strongly, in the absence of oxygen.
- 2. Combustion is a process in which hydrocarbons from carbon dioxide and H_2O (I) when they are completely burnt in air/ O_2 .

ALKENES

- 1. In dehydration and dehydro halogenations the order for removal of hydrogen is 3° > 2° > 1° (Saytzeff's rule)
- 2. The lower the Δh_h (heat of dehydrogenation) the more stable the alkene is.
- 3. Alkenes undergo anti-Markonikov addition only with HBr in the presence of peroxides.

ALKYNES

- 1. All o and p-directing groups ring activating groups (expect X) They are: -OH, -NH₂, -X, R, -OR etc.
- 2. All m-directing groups are ring deactivating groups. They are: -CHO, -COOH, -NO₂, -CN, -NR₃ etc.

HALOGEN COMPOUNDS

- 1. The order of reactivity is
- (a)RI > RBr > RCI > RF
- (b)Ally halide > Alkyl halide > Vinyl halide
- (c) Alkyl halide > Aryl halide
- 2. $S_N 1$ reaction: mainly 3^0 alkyl halides undergo this reaction and form racemic mixture. $S_N 1$ is favoured by polar solvent and low concentration of nuclephile.
- 3. $S_N 2$ reaction:Mainly 10 alkyl halides undergo this substitution. S_N^2 reaction is preferred by non-polar solvents and high concentration of nucleophile.

ALCOHOLS

1. Alkenes are converted to alcohol in different ways as follows

Reagent

dil H₂SO₄

 B_2H_6 and H_2O_2

Oxymercuration demercuration

Types of addition

Markovnikov

- Anti- Markovnikov

- Markovnikov

2. Oxidation of

1° alcohol → aldehyde → carboxylic acid

(with same

(with same

no. of C atom)

no. of C atom)

2º alcohol ketone carboxylic acid

(with same

(with less

no. of C atom)

no. of C atom)

3º alcohol ketone carboxylic acid

(with less

(with less

no. of C atom)

no. of C atom)

PHENOLS

- 1. Phenol Salicyaldehyde (Reimer- Tieman reaction)
- 2. Phenol $\frac{\text{CO}_2}{\Delta}$ Salicyclic acid (Kolbe reaction)
- 3. Acidity of phenols
 - (a) Increase by electron withdrawing substituents like -NO₂, -CN, -CHO, -COOH, -X, -NR,
 - (b) Decrease by electron releasing substituent's like -R , -OH, -NH₂, -NR₂, QR

ETHERS

1.
$$2ROH \xrightarrow{Al_2O_3} R - O - R + H_2O$$

3. ROR + 2 H₂SO₄
$$\xrightarrow{\Delta}$$
 2RHSO₄ + H₂O

4. ROR + H₂O
$$\frac{\text{dil. H}_2\text{SO}_4}{\Lambda}$$
 \rightarrow 2ROH

CARBONYL COMPOUNDS

1. Formation of alcohols using RMgX

(other than HCHO)
Hydrolysis
(c)Ketone + RMgX
$$\rightarrow$$
 30 alcohol

2. Cannizzaro reaction (disproportionation)

Aldehyde
$$\frac{\text{Hot conc.}}{\text{Alkali}}$$
 Alcohol + salt of acid no α H-atom

Crossed- cannizzaro reaction gives alcohol with aryl group or bigger alkyl group.

3. Aldol condensation:

Carbonyl compound +dil. alkali
$$\beta$$
 - hydroxy carbonyl compound (With α H-atom)

4. Benzoin condensation

CARBOXYLIC ACIDS

- 1. The rate of esterification decrease when alcohol, acid or both have branched substitutents.
- 2. Ortho effect: All ortho substituted benzoic acids (irrespective of type of substitutent) are stronger than benzoic acid. As this group decrease outer resonance of ring towards acid which increase acidic nature.

NITROGEN COMPOUNDS

- 1. Order of basicity: $(R = -CH_3 \text{ or } C_2 H_5)$ $2^{\circ} > 1^{\circ} > 3^{\circ} > NH_3$
- 2. Hofmann degradation Br₂/KOH \rightarrow 10 amine Amides –
- 3. The basicity of amines is
 - Decreased by electron withdrawing groups (a)
 - Increased by electron releasing groups (b)
- 4. Reduction of nitrobenzene in different media gives different products

Product Medium Acidic Aniline Azoxy, Azo and finally hydrazobenzene Phenyl hydroxyl amine Basic

Neutral

CARBOHYHYDRATES, AMINO ACIDS AND POLYMERS

- 1. Carbohydrates are polyhydroxy aldehydes or ketenes.
- 2. Oligosaccharides are simple sugars, containing three to nine carbon atoms.
- 3. Polymer is a chemical species of high molecular weight made up from repeating units of low molecular weight.

CHARACTERISTIC REACTIONS OF DIFFERENT ORGANIC COMPOUNDS

0

(1)

Homologous series

- (a) Alkanes
- (b) Alkenes and alkynes
- (c) Arenes
- (d) Alkyl halides
- (e) Aldehyde and ketones

Test to differentiate:

1°, 2°, and 3° alcohols

1°, 2°, and 3° amines

1°, 2°, and 3° nitro compounds

Aryl halides and alkyl halides

Aldehydes and ketones aromatic

Aldehydes and aliphatic aldehydes

Type of reactions

Substitution (Mostly free radical)

Electrophilic addition

Electrophilic substitution

Neucleophilic Substitution

Nucleophilic addition

Lucas test Victormayer's test

Hinsberg test

Test with HNO₂ and KOH

Test with AgNO₃ solution

Tollen's test/ Fehling's test

Fehling's test

IMPORTANT REAGENT

1. DiH_2SO_4 [or Cons. $H_2SO_4 + H_2O$

Use → Dehydrating agent (+HOH)

(a)
$$CH_2 = CH_2 \xrightarrow{\text{dil. } H_2SO_4} CH_3 - CH_2 - OH$$

- (b) $C_2H_5OC_2H_5$ \longrightarrow $2C_2H_5OH$
- 2. Alc. KOH or Nanh₂ (Use → -H®

 CH_3CH_2C1 alc. KOH \rightarrow CH_2 \longrightarrow CH_2

3. Cu or ZnO / 300°C

 1^0 alc \longrightarrow ald, 2^0 alc \longrightarrow ketone, 3^0 alc \longrightarrow alkene (exception)

4. Lucas reagent Zncl₂ + Conc. HCl

Use → for distinction between 1°, 2° & 3° alcohol

5. Tiden Reagent NOCI (Nitrosyl chloride)

 $C_2H_5NH_2$ \longrightarrow $C_1H_2C_1$

6. Alkaline KMNO4 (Strong oxidant)

Toluene → Benzoicacid

7. Bayer's Reagent

1 % alkaline KMNO₄ (Weak oxidant)

Use:
$$\longrightarrow$$
 for test of > C = C $<$ or $C = C$

$$CH_2 = CH_2 + H_2O + [O] - CH_2OH - CH_2OH$$

8. Acidic K₂Cr₂O₇ (Strong oxidant)

RCH2OH [O] → RCHO

9. SnCl₂ / HCl or Sn / HCl use for reduction of nitrobenzene in acidic medium.

$$C_6H_5NO_2 \xrightarrow{SnCl_2 / HCl} C_6H_5NH_2$$

10. Lindlar's catalyst = pd / CaCO₃ +in small quantity(CH₃COO)₂Pb

11. Ziegler- Natta Catalyst (C₂H₅)₃Al + TiCl₄ Use – In additional polymerization

Propene ─ → Poly propene

MAIN USE OF COMPOUNDS

```
Alkane \longrightarrow Fuel, Alkene \longrightarrow Solvent making westron, Westrosol, General alkyl halide \longrightarrow as solvents, CHCl<sub>3</sub> \longrightarrow Anaesthetic., Germicide, CCl<sub>4</sub> \longrightarrow Pyrene & Fire extinguisher, CH<sub>3</sub>OH \longrightarrow Antifreeze, deforming of alcohol, C<sub>2</sub>H<sub>5</sub>-O-C<sub>2</sub>H<sub>5</sub> \longrightarrow Antiseptic, Natellite, HCHO \longrightarrow Formamint medicine, CH<sub>3</sub>CHO \longrightarrow Antiseptic, CH<sub>3</sub>COCH<sub>3</sub> \longrightarrow as solvent, CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> \longrightarrow Artificial silk & flavor, CH<sub>3</sub>NH<sub>2</sub> \longrightarrow Refrigerating agent, C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub> \longrightarrow in development of photography.
```

SMELL OF SOME COMPOUNDS

```
\begin{array}{c} CH_3COOC_2H_5 \longrightarrow Fruity \\ CHCI_3, CH_3I, C_2H_5I \longrightarrow Sweetsmell \\ C_6H_5NO_2 \& C_6H_5CHO \longrightarrow Like bitter almonds \\ CH_3COCI \longrightarrow Pungent \\ CH_3NH_2 \& C_6H_5NH_2 \longrightarrow Fishy, \\ Impure CH_3CONH_2 \longrightarrow mice like, \\ ROH \longrightarrow Wine \\ RNCS \longrightarrow Mustard oil, \\ Methyl salicylate \longrightarrow wintergreen oil, \\ RNC \longrightarrow Foul smell. \\ \end{array}
```

IDENTIFICATION TESTS

- (a) Unsaturated compound (Bayer's reagent) Decolorizing the reagent
- (b) Alcohols (Ceric Ammonium nitrate solution) Red coloration.
- (c) Phenols (Neutral FeCl₃ solution) violet/deep blue coloration.
- (d) Aldehydes and ketones (2, 4-D.N.P.) orange Precipitate
- (e) Acids (NaHCO₃ solution) Brisk effervescence (CO₂ is evolved)
- (f) 10 amine (CHCl₃ + KOH) Foul smell (isocyanide)
- (g)20 amine (NaNO2 + HCI) yellowoily liquid (Nitrosoamine)

vww.aimsdaret

Address

Delhi / NCR

1 Mumbai

Intelivisto Consulting India Private Limited Intelivisto Consulting India Private Limited

C-131, Sector 2

NOIDA- 201301, INDIA

Mobile: +91-9582000102.

Phone: - 0120-4314666

() Aekveera Regency, Mr. Aggarwal Residency Shankar Lane, Kandivli (West), Mumbai - 400067

Mobile: 9870976534

(Phone: - +91 22 65305201

Mail Address

info@inteliclass.com

Join us on

www.facebook.com/inteliclass