
CHAPTER 1 SOLUTION FOR PROBLEM 1

Use the given conversion factors.
(a) The distance d in rods is

d = 4.0 furlongs =
(4.0 furlongs)(201.168m/furlong)

5.0292m/rod
= 160 rods .

(b) The distance in chains is

d = 4.0 furlongs =
(4.0 furlongs)(201.168m/furlong)

20.17m/chain
= 40 chains .



CHAPTER 1 SOLUTION FOR PROBLEM 23

(a) Let ρ be the mass per unit volume of iron. It is the same for a single atom and a large chunk. If
M is the mass and V is the volume of an atom, then ρ =M/V , or V =M/ρ. To obtain the volume
in m3, first convert ρ to kg/m3: ρ = (7.87 g/cm3)(10−3 kg/g)(106 cm3/m3) = 7.87× 103 kg/m3.
Then

V =
M

ρ
=
9.27× 10−26 kg
7.87× 103 kg/m3

= 1.18× 10−29 m3 .

(b) Set V = 4πR3/3, where R is the radius of an atom, and solve for R:

R =
3V
4π

1/3

=
3(1.18× 10−29 m3)

4π

1/3

= 1.41× 10−10 m .

The center-to-center distance between atoms is twice the radius or 2.82× 10−10 m.



CHAPTER 1 HINT FOR PROBLEM 3

(a) Multiply 1.0 km by the number of meters per kilometer (1.0× 103 m/km) and the number of
microns per meter (1.0× 106 µ/m).
(b) Multiply 1.0 km by the number of meters per kilometer, by the number of feet per meter
(3.218), and by the number of yards per foot (0.333).

ans: (a) 109 µm; (b) 10−4; (c) 9.1× 105 µm



CHAPTER 1 HINT FOR PROBLEM 9

The volume of water is the area of the land times the depth of the water if it does not seep into
the ground. You must convert 26 km2 to acres and 2.0 in. to feet. For the first conversion use
1 km2 = 1× 106 m2, 1m2 = (3.281 ft)2, and 1 acre = 43 560 ft2. See Appendix D.

ans: 1.1× 103 acre-fteet



CHAPTER 1 HINT FOR PROBLEM 17

(a) The ratio of the interval on clock B to the interval on clock A (600 s) is the same as the ratio
of the interval between events 2 and 4 on clock B to the same interval on clock A.
(b) The ratio of the interval on clock C to the interval on clock B is the same as the ratio of the
interval between events 1 and 3 on clock C to the same interval on clock B.
(c) Measure the time of the event (when clock A reads 400 s) from the time of event 2 on the
diagram. The interval is 400 s − 312 s on clock A. Calculate the interval on clock B and add
125 s.
(d) Measure the time of the event (when clock C reads 15.0 s) from the time of event 1 on the
diagram. The interval is 15.0 s− 92 s on clock C. Calculate the interval on clock B and add 25 s.

ans: (a) 495 s; (b) 141 s; (c) 198 s; (d) −245 s



CHAPTER 2 SOLUTION FOR PROBLEM 3

(a) The average velocity during any time interval is the displacement during that interval divided
by the interval: vavg = ∆x/∆t, where ∆x is the displacement and ∆t is the time interval. In this
case the interval is divided into two parts. During the first part the displacement is ∆x1 = 40 km
and the time interval is

∆t1 =
(40 km)
(30 km/h)

= 1.33 h .

During the second part the displacement is ∆x2 = 40 km and the time interval is

∆t2 =
(40 km)
(60 km/h)

= 0.67 h .

Both displacements are in the same direction, so the total displacement is ∆x = ∆x1 + ∆x2 =
40 km + 40 km = 80 km. The total time interval is ∆t = ∆t1 + ∆t2 = 1.33 h + 0.67 h = 2.00 h.
The average velocity is

vavg =
(80 km)
(2.0 h)

= 40 km/h .

(b) The average speed is the total distance traveled divided by the time. In this case the total
distance is the magnitude of the total displacement, so the average speed is 40 km/h.
(c) Assume the automobile passes the origin at
time t = 0. Then its coordinate as a function of
time is as shown as the solid lines on the graph
to the right. The average velocity is the slope of
the dotted line.
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CHAPTER 2 SOLUTION FOR PROBLEM 19

(a) Since the unit of ct2 is that of length and the unit of t is that of time, the unit of c must be
that of (length)/(time)2, or m/s2.
(b) Since bt3 has a unit of length, b must have a unit of (length)/(time)3, or m/s3.
(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is zero. Since
the velocity is given by v = dx/dt = 2ct− 3bt2, v = 0 occurs for t = 0 and for

t =
2c
3b
=
2(3.0m/s2)
3(2.0m/s3)

= 1.0 s .

For t = 0, x = 0 and for t = 1.0 s, x = 1.0m. Reject the first solution and accept the second.
(d) In the first 4.0 s the particle moves from the origin to x = 1.0m, turns around, and goes back
to x(4 s) = (3.0m/s2)(4.0 s)2 − (2.0m/s3)(4.0 s)3 = −80m. The total path length it travels is
1.0m + 1.0m + 80m = 82m.
(e) Its displacement is given by ∆x = x2−x1, where x1 = 0 and x2 = −80m. Thus ∆x = −80m.
The velocity is given by v = 2ct− 3bt2 = (6.0m/s2)t− (6.0m/s3)t2. Thus

(f) v(1 s) = (6.0m/s2)(1.0 s)− (6.0m/s3)(1.0 s)2 = 0
(g) v(2 s) = (6.0m/s2)(2.0 s)− (6.0m/s3)(2.0 s)2 = −12m/s
(h) v(3 s) = (6.0m/s2)(3.0 s)− (6.0m/s3)(3.0 s)2 = −36.0m/s
(i) v(4 s) = (6.0m/s2)(4.0 s)− (6.0m/s3)(4.0 s)2 = −72m/s .

The acceleration is given by a = dv/dt = 2c− 6b = 6.0m/s2 − (12.0m/s3)t. Thus

(j) a(1 s) = 6.0m/s2 − (12.0m/s3)(1.0 s) = −6.0m/s2

(k) a(2 s) = 6.0m/s2 − (12.0m/s3)(2.0 s) = −18m/s2

(l) a(3 s) = 6.0m/s2 − (12.0m/s3)(3.0 s) = −30m/s2

(m) a(4 s) = 6.0m/s2 − (12.0m/s3)(4.0 s) = −42m/s2 .



CHAPTER 2 SOLUTION FOR PROBLEM 41

(a) At the highest point the velocity of the ball is instantaneously zero. Take the y axis to be
upward, set v = 0 in v2 = v20 − 2gy, and solve for v0: v0 =

√
2gy. Substitute g = 9.8m/s2 and

y = 50m to get

v0 = 2(9.8m/s2)(50m) = 31m/s .

(b) It will be in the air until y = 0 again. Solve y = v0t − 1
2gt

2 for t. Since y = 0 the two
solutions are t = 0 and t = 2v0/g. Reject the first and accept the second:

t =
2v0
g
=
2(31m/s)
9.8m/s2

= 6.4 s .

(c)
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The acceleration is constant while the ball is in
flight: a = −9.8m/s2. Its graph is as shown
on the right.
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CHAPTER 2 HINT FOR PROBLEM 13

(a) Use vavg = ∆x/∆t. To calculate the particle’s coordinate at the beginning of the interval
substitute t = 2.00 s into the equation for x and to calculate its coordinate at the end of the
interval substitute t = 3.00 s. ∆x, of course, is the difference and ∆t is 1.00 s
(b) Differentiate the expression for the coordinate with respect to time and evaluate the result for
t = 2.00 s.
(c) Do the same for t = 3.00 s.
(d) Do the same for t = 2.5 s.
(e) You must find the time when the particle is midway between the two positions. Find the
midway point xm by taking the average of the two coordinates found in part (a), then solve
xm = 9.75 + 1.50t3 for t. Finally, substitute this value for t into the expression for the velocity
as a function of time (the derivative of the coordinate).

ans: (a) 28.5 cm/s; (b) 18.0 cm/s; (c) 40.5 cm/s; (d) 28.1 cm/s; (e) 30.3 cm/s



CHAPTER 2 HINT FOR PROBLEM 21

Use v = v0 + at, where v is the electron’s velocity at any time t, v0 is its velocity at time t = 0,
and a is its acceleration. Let t = 0 at the instant the electron’s velocity is +9.6m/s and evaluate
the expression for (a) t = −2.5 s and for t = +2.5 s.

ans: (a) +1.6m/s; (b) +18m/s



CHAPTER 2 HINT FOR PROBLEM 35

Put the origin of an x axis at the position of train A when it starts slowing and suppose the train
has velocity vA0 (= +40m/s from the graph) at that time. Its velocity as a function of time is
given by vA0 + aAt, where aA is its acceleration. This is the slope of the upper line on the graph
and is negative. Solve for the time when train A stops and use xA = vA0t + 1

2aAt
2 to find its

position when it stops.
The velocity of train B is given by vB = vB0 + aBt, where vB0 is its velocity at t = 0 (−30m/s
from the graph), and aB is its acceleration. This is the slope of the lower line on the graph and
is positive. Solve for the time when train B stops and use xB = xB0 + vB0t + 1

2aBt
2 to find its

position when it stops. Here xB0 = 200m. The separation of the trains when both have stopped
is the difference of the coordinates you have found.

ans: 40m



CHAPTER 2 HINT FOR PROBLEM 57

Divide the falling of the ball into two segments: from the top of the building to the top of the
window and from the top of the window to the sidewalk. You need to find the lengths of each
of these segments.
. You need to know the velocity of the ball as it passes the top of the window going down.
Take the origin of a coordinate system to be at the top of the window and suppose the downward
direction is positive. Suppose further that the velocity of the ball is v0 when falls past that point.
If hw is the top-to-bottom dimension of the window, then h = v0t + 1

2gt
2, where t is the time to

pass the window. Solve for v0.
To find the length of the first segment solve for the distance the ball must fall to achieve a
velocity of v0. To find the length of the second segment solve for the distance the ball falls in
1.125 s, starting with a downward velocity of v0. The time here is the time for the ball to pass
the window plus the time for it to fall from the bottom of the window to the sidewalk.

ans: 20.4m



CHAPTER 3 SOLUTION FOR PROBLEM 7

(a) The magnitude of the displacement is the distance
from one corner to the diametrically opposite corner:
d = (3.00m)2 + (3.70m)2 + (4.30m)2 = 6.42m. To
see this, look at the diagram of the room, with the
displacement vector shown. The length of the diag-
onal across the floor, under the displacement vector,
is given by the Pythagorean theorem: L =

√
f2 + w2,

where f is the length and w is the width of the room.
Now this diagonal and the room height form a right tri-
angle with the displacement vector as the hypotenuse,
so the length of the displacement vector is given by
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d =
√
L2 + h2 =

√
f2 +w2 + h2 .

(b), (c), and (d) The displacement vector is along the straight line from the beginning to the end
point of the trip. Since a straight line is the shortest distance between two points the length of
the path cannot be less than the magnitude of the displacement. It can be greater, however. The
fly might, for example, crawl along the edges of the room. Its displacement would be the same
but the path length would be f + w + h. The path length is the same as the magnitude of the
displacement if the fly flies along the displacement vector.
(e) Take the x axis to be out of the page, the y axis to be to the right, and the z axis to be upward.
Then the x component of the displacement is w = 3.70m, the y component of the displacement
is 4.30m, and the z component is 3.00m. Thus nd = (3.70m) î + (4.30m) ĵ + (3.00m) k̂. You may
write an equally correct answer by interchanging the length, width, and height.
(f) Suppose the path of the fly is as shown by the
dotted lines on the upper diagram. Pretend there is
a hinge where the front wall of the room joins the
floor and lay the wall down as shown on the lower
diagram. The shortest walking distance between the
lower left back of the room and the upper right front
corner is the dotted straight line shown on the dia-
gram. Its length is

Lmin = (w + h)2 + f2

= (3.70m + 3.00m)2 + (4.30m)2 = 7.96m .
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CHAPTER 3 SOLUTION FOR PROBLEM 19

(a) and (b) The vector na has a magnitude 10.0m and makes the angle 30◦ with the positive x
axis, so its components are ax = (10.0m) cos 30◦ = 8.67m and ay = (10.0m) sin 30◦ = 5.00m.
The vector nb has a magnitude of 10.0m and makes an angle of 135◦ with the positive x axis,
so its components are bx = (10.0m) cos 135◦ = −7.07m and by = (10.0m) sin 135◦ = 7.07m.
The components of the sum are rx = ax + bx = 8.67m − 7.07m = 1.60m and ry = ay + by =
5.0m + 7.07m = 12.1m.
(c) The magnitude of nr is r = r2x + r2y = (1.60m)2 + (12.1m)2 = 12.2m.

(d) The tangent of the angle θ between nr and the positive x axis is given by tan θ = ry/rx =
(12.1m)/(1.60m) = 7.56. θ is either 82.5◦ or 262.5◦. The first angle has a positive cosine and
a positive sine and so is the correct answer.



CHAPTER 3 SOLUTION FOR PROBLEM 31

Since ab cosφ = axbx + ayby + azbz,

cosφ =
axbx + ayby + azbz

ab
.

The magnitudes of the vectors given in the problem are a = (3.0)2 + (3.0)2 + (3.0)2 = 5.2 and
b = (2.0)2 + (1.0)2 + (3.0)2 = 3.7. The angle between them is found from

cosφ =
(3.0)(2.0) + (3.0)(1.0) + (3.0)(3.0)

(5.2)(3.7)
= 0.926

and the angle is φ = 22◦.



CHAPTER 3 HINT FOR PROBLEM 5

Use a coordinate system with its origin at the original position of the ship, its x axis positive to
the east, and its y axis positive to the north. Let ndg (= (120 km) ĵ) be the vector from the ship
to its goal, ndw (= (100 km) î) be the vector to the point where the wind blows the ship, and nd be
the vector describing the required displacement. The vector equation is ndg = ndw + nd. Solve for
nd. The distance it must sail is the magnitude of nd and you might describe the direction it must
sail by calculating the angle nd makes with north or with east.

ans: (a) 156 km; (b) 39.8◦ west of north



CHAPTER 3 HINT FOR PROBLEM 21

In each case vectorially add the displacements for the three moves, then calculate the magnitude
and direction of the result. You might place an x axis parallel to the forward direction and a y
axis left to right. Each displacement is then 1m or 2m along one of these axes. Once you have
the total displacement calculate its magnitude by taking the square root of the sum of the squares
of its components. If you use the coordinate system suggested above, the tangent of the angle
it makes with the forward direction is its y component divided by its x component. Sketch the
displacement to be sure you get the correct value when you evaluate the inverse tangent.

ans: All displacements have a magnitude of 2.24m. The angles are: (1) 26.6◦ right of forward;
(2) 63.4◦ left of forward; (3) 26.6◦ left of forward



CHAPTER 3 HINT FOR PROBLEM 27

(a) Use na ·nb = ab cosφ. Where the angle φ between them is the difference of the angles they
make with the positive x axis.
(b) The magnitude of the vector product is ab sinφ. Use the right-hand rule to find the direction.

ans: (a) −18.8; (b) 26.9, in the positive z direction



CHAPTER 3 HINT FOR PROBLEM 33

Use na ·nb = ab cosφ, where φ is the angle between the vectors when they are drawn with their
tails at the same point. Solve for cosφ, then take the inverse.

ans: 70.5◦



CHAPTER 4 SOLUTION FOR PROBLEM 25

(a) Take the y axis to be upward and the x axis to be horizontal. Place the origin at the
point where the diver leaves the platform. The components of the diver’s initial velocity are
v0x = 3.00m/s and v0y = 0. At t = 0.800 s the horizontal distance of the diver from the platform
is x = v0xt = (2.00m/s)(0.800 s) = 1.60m.
(b) The driver’s y coordinate is y = −12gt2 = − 12(9.8m/s2)(0.800 s)2 = −3.13m. The distance
above the water surface is 10.0m− 3.13m = 6.86m.
(c) The driver strikes the water when y = −10.0m. The time he strikes is

t = −2y
g
= −2(−10.0m)

9.8m/s2
= 1.43 s

and the horizontal distance from the platform is x = v0xt = (2.00m/s)(1.43 s) = 2.86m.



CHAPTER 4 SOLUTION FOR PROBLEM 37

You want to know how high the ball is from the ground when its horizontal distance from home
plate is 97.5m. To calculate this quantity you need to know the components of the initial velocity
of the ball. Use the range information. Put the origin at the point where the ball is hit, take the y
axis to be upward and the x axis to be horizontal. If x (= 107m) and y (= 0) are the coordinates
of the ball when it lands, then x = v0xt and 0 = v0yt− 1

2gt
2, where t is the time of flight of the

ball. The second equation gives t = 2v0y/g and this is substituted into the first equation. Use
v0x = v0y, which is true since the initial angle is θ0 = 45◦. The result is x = 2v20y/g. Thus

v0y =
gx

2
=

(9.8m/s2)(107m)
2

= 22.9m/s .

Now take x and y to be the coordinates when the ball is at the fence. Again x = v0xt and
y = v0yt− 12gt2. The time to reach the fence is given by t = x/v0x = (97.5m)/(22.9m/s) = 4.26 s.
When this is substituted into the second equation the result is

y = v0yt− 12gt
2 = (22.9m/s)(4.26 s)− 1

2
(9.8m/s2)(4.26 s)2 = 8.63m .

Since the ball started 1.22m above the ground, it is 8.63m + 1.22m = 9.85m above the ground
when it gets to the fence and it is 9.85m− 7.32m = 2.53m above the top of the fence. It goes
over the fence.



CHAPTER 4 SOLUTION FOR PROBLEM 53

To calculate the centripetal acceleration of the stone you need to know its speed while it is being
whirled around. This the same as its initial speed when it flies off. Use the kinematic equations
of projectile motion to find that speed. Take the y axis to be upward and the x axis to be
horizontal. Place the origin at the point where the stone leaves its circular orbit and take the time
to be zero when this occurs. Then the coordinates of the stone when it is a projectile are given
by x = v0t and y = − 12gt2. It hits the ground when x = 10m and y = −2.0m. Note that the
initial velocity is horizontal. Solve the second equation for the time: t = −2y/g. Substitute
this expression into the first equation and solve for v0:

v0 = x − g
2y
= (10m) − 9.8m/s

2

2(−2.0m) = 15.7m/s .

The magnitude of the centripetal acceleration is a = v2/r = (15.7m/s)2/(1.5m) = 160m/s2.



CHAPTER 4 HINT FOR PROBLEM 13

When the cart reaches its greatest y coordinate the y component of its velocity is zero. Since the
acceleration is constant you may write vy = v0y + ayt, where t is the time. Solve for the time
when vy = 0, then substitute this value into the expression for the x component of the velocity:
vx = v0x + axt.

ans: (32m/s î



CHAPTER 4 HINT FOR PROBLEM 23

Put the origin of a coordinate system at the point where the decoy is released and take the time
to zero when it is released. The initial velocity of the decoy is the same as the velocity of the
plane.
(a) Solve x = v0xt for the flight time of the decoy.
(b) Evaluate y = v0yt− 1

2gt
2 for the y coordinate of the landing point. Its magnitude is the height

of the plane above the ground when the decoy is released.

ans: (a) 10.0 s; (b) 897m



CHAPTER 4 HINT FOR PROBLEM 43

(a) The ball travels a horizontal distance of 50.0m in 4.00 s. Calculate the horizontal component
of its velocity. This is constant throughout the motion. Before it reaches the top of wall it travels
horizontally for 1.00 s. Calculate the horizontal distance it travels from when it is hit to when
it reaches the top of the wall. Since the motion is symmetric, the horizontal distance it travels
from when it passes the top of the wall on the way down to when it is caught is the same. The
total horizontal distance traveled is the sum of these three distances.
(b) and (c) The ball is in flight for 6.00 s. Use y = y0 + voyt− 1

2gt
2 to compute the y component

of its initial velocity. Its initial speed is the square root of the sum of the squares of the velocity
components and the tangent of the launch angle is the y component divided by the x component.
(d) Use y = v0yt− 1

2gt
2 to compute the height of the ball 1.00 s after it is hit.

ans: (a) 75.0m; (b) 31.9m/s; (c) 66.9◦; (d) 25.5m



CHAPTER 4 HINT FOR PROBLEM 57

Let vr be the man’s running speed and vw be the speed of the moving walk. When running in
the direction of travel of the walk the speed of the man relative to the building is vr + vw and
when running in the opposite direction his speed relative to the building is vr−vw. The distance
run in the first case is given by t1(vr + vw) and in the second by t2(vr − vw), where t1 = 2.5 s
and t2 = 10.0 s. The two distances are the same. Solve for vr/vw.

ans: 5/3



CHAPTER 5 SOLUTION FOR PROBLEM 13

(a) The free-body diagram is shown in Fig. 5–18 of the text. Since the acceleration of the
block is zero, the components of the Newton’s second law equation yield T −mg sin θ = 0 and
FN −mg cos θ = 0. Solve the first equation for the tension force of the string: T = mg sin θ =
(8.5 kg)(9.8m/s2) sin 30◦ = 42N.
(b) Solve the second equation for FN : FN = mg cos θ = (8.5 kg)(9.8m/s2) cos 30◦ = 72N.
(c) When the string is cut it no longer exerts a force on the block and the block accelerates. The x
component of the second law becomes −mg sin θ = ma, so a = −g sin θ = −(9.8m/s2) sin 30◦ =
−4.9m/s2. The negative sign indicates the acceleration is down the plane.



CHAPTER 5 SOLUTION FOR PROBLEM 29

The free-body diagram is shown at the right. nFN is the normal force
of the plane on the block and mng is the force of gravity on the block.
Take the positive x axis to be down the plane, in the direction of the
acceleration, and the positive y axis to be in the direction of the normal
force. The x component of Newton’s second law is then mg sin θ =
ma, so the acceleration is a = g sin θ.
(a) Place the origin at the bottom of the plane. The equations for
motion along the x axis are x = v0t + 12at

2 and v = v0 + at. The block
stops when v = 0.
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According to the second equation, this is at the time t = −v0/a. The coordinate when it stops is

x = v0
−v0
a

+
1
2
a
−v0
a

2

= −1
2
v20
a
= −1

2
v20

g sin θ

= −1
2

(−3.50m/s)2
(9.8m/s2) sin 32.0◦

= −1.18m .

(b) The time is

t = −v0
a
= − v0

g sin θ
= − −3.50m/s

(9.8m/s2) sin 32.0◦
= 0.674 s .

(c) Now set x = 0 and solve x = v0t + 1
2at

2 for t. The result is

t = −2v0
a
= − 2v0

g sin θ
= − 2(−3.50m/s)

(9.8m/s2) sin 32.0◦
= 1.35 s .

The velocity is

v = v0 + at = v0 + gt sin θ = −3.50m/s + (9.8m/s2)(1.35 s) sin 32◦ = 3.50m/s ,

as expected since there is no friction. The velocity is down the plane.



CHAPTER 5 SOLUTION FOR PROBLEM 43

(a) The free-body diagrams are shown to the right. nF is the applied
force and nf is the force of block 1 on block 2. Note that nF is
applied only to block 1 and that block 2 exerts the force −nf on
block 1. Newton’s third law has thereby been taken into account.
Newton’s second law for block 1 is F − f = m1a, where a is the
acceleration. The second law for block 2 is f = m2a. Since the
blocks move together they have the same acceleration and the same
symbol is used in both equations. Use the second equation to obtain
an expression for a: a = f/m2. Substitute into the first equation
to get F − f = m1f/m2. Solve for f :

f =
Fm2

m1 +m2
=
(3.2N)(1.2 kg)
2.3 kg + 1.2 kg

= 1.1N .

(b) If nF is applied to block 2 instead of block 1, the force of contact
is

f =
Fm1

m1 +m2
=
(3.2N)(2.3 kg)
2.3 kg + 1.2 kg

= 2.1N .
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(c) The acceleration of the blocks is the same in the two cases. Since the contact force f is
the only horizontal force on one of the blocks it must be just right to give that block the same
acceleration as the block to which nF is applied. In the second case the contact force accelerates
a more massive block than in the first, so it must be larger.



CHAPTER 5 HINT FOR PROBLEM 15

Use Newton’s second law in component form. The x component of the acceleration is the slope
of the left-hand graph and the y component is the slope of the right-hand graph. Multiply each
of these components by the mass of the package to obtain the components of the force. The
magnitude is the square root of the sum of the squares of the components and the tangent of
the angle that the force makes with the positive x axis is the y component divided by the x
component.

ans: (a) 11.7N; (b) −59.0◦



CHAPTER 5 HINT FOR PROBLEM 25

Draw a free-body diagram for Tarzan and put in the axes. Remember that the vine pulls, not
pushes, on him. The x component of the force of the vine on Tarzan is given by T sin θ and the
y component is given by T cos θ, where T is the tension in the vine and θ is the angle the vine
makes with the vertical. The net force is the vector sum of the tension force and the gravitational
force of Earth on Tarzan (his weight). According to Newton’s second law his acceleration is the
net force divided by his mass.

ans: (a) (285N) î + (705N) ĵ; (b) (285N) î− (115N) ĵ; (c) 307N; (d) −22.0◦; (e) 3.67m/s2; (f)
−22.0◦



CHAPTER 5 HINT FOR PROBLEM 37

Draw a free-body diagram for the bundle. The forces on it are the upward tension force of the
cable and the downward gravitational force of Earth. Take the tension to have its maximum
value and solve the Newton’s second law equation for the acceleration. Use v2 = 2ah to find the
speed v of the bundle when it hits the ground. Here h is the starting height of the bundle above
the ground.

ans: (a) 1.4m/s2; (b) 4.1m/s



CHAPTER 5 HINT FOR PROBLEM 47

Draw a free-body diagram for each of the blocks. The forces on the left-hand block are the force
of gravity m1g, down, and the tension force of the cord T , up. The forces on the right-hand
block are the force of gravity m2g and the tension force T , up. Let a1 be the acceleration of
block 1 and a2 be the acceleration of block 2, then write a Newton’s second law equation for
each block. Note that the tension force on block 1 has the same magnitude as the tension force
on block 2 and that the accelerations are actually vertical components.
The magnitudes of the accelerations are the same since the blocks are connected by the cord.
Their signs, however, depend on the coordinate system used. If, for example, you take the upward
direction to be positive for both blocks then a1 = −a2. Substitute a1 = a and a2 = −a into the
second law equations and solve them simultaneously for a and the cord tension.

ans: (a) 3.6m/s2; (b) 17N



CHAPTER 6 SOLUTION FOR PROBLEM 3

(a) The free-body diagram for the bureau is shown to the right.
nF is the applied force, nf is the force of friction, nFN is the normal
force of the floor, and mng is the force of gravity. Take the x axis
to be horizontal and the y axis to be vertical. Assume the bureau
does not move and write the Newton’s second law equations. The
x component is F − f = 0 and the y component is FN −mg = 0.
The force of friction is then equal in magnitude to the applied
force: f = F . The normal force is equal in magnitude to the
force of gravity: FN = mg. As F increases, f increases until
f = µsFN . Then the bureau starts to move. The minimum force
that must be applied to start the bureau moving is
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F = µsFN = µsmg = (0.45)(45 kg)(9.8m/s2) = 2.0× 102 N .
(b) The equation for F is the same but the mass is now 45 kg− 17 kg = 28 kg. Thus

F = µsmg = (0.45)(28 kg)(9.8m/s2) = 1.2× 102 N .



CHAPTER 6 SOLUTION FOR PROBLEM 21

The free-body diagrams for block B and for the knot
just above block A are shown to the right. T1 is the
magnitude of the tension force of the rope pulling
on block B, T2 is the magnitude of the tension force
of the other rope, f is the magnitude of the force of
friction exerted by the horizontal surface on block B,
FN is the magnitude of the normal force exerted by
the surface on block B, WA is the weight of block
A, andWB is the weight of block B. θ (= 30◦) is the
angle between the second rope and the horizontal.
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For each object take the x axis to be horizontal and the y axis to be vertical. The x component
of Newton’s second law for block B is then T1 − f = 0 and the y component is FN −WB = 0.
The x component of Newton’s second law for the knot is T2 cos θ−T1 = 0 and the y component
is T2 sin θ−WA = 0. Eliminate the tension forces and find expressions for f and FN in terms of
WA and WB, then selectWA so f = µsFN . The second Newton’s law equation gives FN =WB

immediately. The third gives T2 = T1/ cos θ. Substitute this expression into the fourth equation to
obtain T1 =WA/ tan θ. SubstituteWA/ tan θ for T1 in the first equation to obtain f =WA/ tan θ.
For the blocks to remain stationary f must be less than µsFN or WA/ tan θ < µsWB . The
greatest that WA can be is the value for which WA/ tan θ = µsWB . Solve for WA:

WA = µsWB tan θ = (0.25)(711N) tan 30◦ = 1.0× 102 N .



CHAPTER 6 SOLUTION FOR PROBLEM 47

The free-body diagram for the plane is shown to the right. F is the mag-
nitude of the lift on the wings and m is the mass of the plane. Since the
wings are tilted by 40◦ to the horizontal and the lift force is perpendicular
to the wings, the angle θ is 50◦. The center of the circular orbit is to the
right of the plane, the dashed line along x being a portion of the radius.
Take the x axis to be to the right and the y axis to be upward. Then
the x component of Newton’s second law is F cos θ = mv2/R and the y
component is F sin θ −mg = 0, where R is the radius of the orbit. The
first equation gives F = mv2/R cos θ and when this is substituted into the
second, (mv2/R) tan θ = mg results. Solve for R:

R =
v2

g
tan θ .

The speed of the plane is v = 480 km/h = 133m/s, so

R =
(133m/s)2

9.8m/s2
tan 50◦ = 2.2× 103 m .
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CHAPTER 6 HINT FOR PROBLEM 19

In each case you must decide if the block moves or not. If it moves the frictional force is kinetic
in nature; if it does not move the frictional force is static in nature. Assume the block does not
move and find the frictional force that is need to hold it stationary. Draw a free-body diagram for
the block. The forces on it are the gravitational force, the normal force of the plane, the frictional
force of the plane, and the applied force nP . Take the x axis to be parallel to the plane and the y
axis to perpendicular to the plane, then write the Newton’s second law equations in component
form, with the acceleration equal to zero. Calculate the frictional and normal forces and compare
the magnitude of the frictional force with the product of the coefficient of static friction and the
magnitude of the normal force. If it is less the block does not move and the frictional force you
computed is the actual frictional force. If the frictional force is greater the block does move and
the magnitude of the frictional force is the product of the coefficient of kinetic friction and the
magnitude of the normal force.

ans: (a) (17N) î; (b) (20N) î; (c) (15N) îndans



CHAPTER 6 HINT FOR PROBLEM 29

If the smaller block does not slide the frictional force of the larger block on it must have magnitude
mg and this must be less than the product of the coefficient of static friction between the blocks
and the magnitude of the normal force of the blocks on each other. Write the horizontal component
of the Newton’s second law equation for the smaller block. The horizontal forces on it are the
applied force and the normal force of the larger block. Do the same for the larger block. The
only horizontal force on it is the normal force of the smaller block. According to Newton’s third
law the two normal forces have the same magnitude. These equations can be solved for the
magnitude of the normal force and then the value of the maximum static frictional force can be
computed.

ans: 4.9× 102 N



CHAPTER 6 HINT FOR PROBLEM 37

To round the curve without sliding the frictional force must be equal to mv2/r, where m is the
mass of the bicycle and rider, v is their speed, and r is the radius of the curve, and it must be
less than µsFN , where µs is the coefficient of kinetic friction between the tires and the road and
FN is the normal force of the road on the tires.

ans: 21m



CHAPTER 7 SOLUTION FOR PROBLEM 17

(a) Let F be the magnitude of the force exerted by the cable on the astronaut. The force of
the cable is upward and the force of gravity is mg is downward. Furthermore, the acceleration
of the astronaut is g/10, upward. According to Newton’s second law, F − mg = mg/10, so
F = 11mg/10. Since the force F and the displacement d are in the same direction the work
done by F is

WF = Fd =
11mgd
10

=
11(72 kg)(9.8m/s2)(15m)

10
= 1.16× 104 J .

(b) The force of gravity has magnitude mg and is opposite in direction to the displacement. Since
cos 180◦ = −1, it does work

Wg = −mgd = −(72 kg)(9.8m/s2)(15m) = −1.06× 104 J .

(c) The total work done is W = 1.16 × 104 J − 1.06× 104 J = 1.1 × 103 J. Since the astronaut
started from rest the work-kinetic energy theorem tells us that this must be her final kinetic energy.
(d) Since K = 1

2mv
2 her final speed is

v =
2K
m
=

2(1.1× 103 J)
72 kg

= 5.3m/s .



CHAPTER 7 SOLUTION FOR PROBLEM 29

(a) As the body moves along the x axis from xi = 3.0m to xf = 4.0m the work done by the
force is

W =
xf

xi

Fx dx =
xf

xi

−6x dx = −3x2
xf

xi

= −3(x2f − x2i )

= −3 (4.0)2 − (3.0)2 = −21 J .
According to the work-kinetic energy theorem, this is the change in the kinetic energy:

W = ∆K = 1
2m(v

2
f − v2i ) ,

where vi is the initial velocity (at xi) and vf is the final velocity (at xf ). The theorem yields

vf =
2W
m
+ v2i =

2(−21 J)
2.0 kg

+ (8.0m/s)2 = 6.6m/s .

(b) The velocity of the particle is vf = 5.0m/s when it is at x = xf . Solve the work-kinetic energy
theorem for xf . The net work done on the particle is W = −3(x2f − x2i ), so the work-kinetic
energy theorem yields −3(x2f − x2i ) = 1

2m(v
2
f − v2i ). Thus

xf = −m
6
(v2f − v2i ) + x2i = − 2.0 kg

6N/m
(5.0m/s)2 − (8.0m/s)2 + (3.0m)2 = 4.7m .



CHAPTER 7 SOLUTION FOR PROBLEM 33

(a) The graph shows F as a function of x if x0 is positive.
The work is negative as the object moves from x = 0 to
x = x0 and positive as it moves from x = x0 to x = 2x0.
Since the area of a triangle is 12(base)(altitude), the work
done from x = 0 to x = x0 is −12(x0)(F0) and the work done
from x = x0 to x = 2x0 is 12(2x0−x0)(F0) = 1

2(x0)(F0). The
total work is the sum, which is zero.
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(b) The integral for the work is

W =
2x0

0
F0

x

x0
− 1 dx = F0

x2

2x0
− x

2x0

0
= 0 .



CHAPTER 7 HINT FOR PROBLEM 11

The magnitude of the force is given by Newton’s second law: F = ma, where m is the mass of
the luge and rider and a is the magnitude of their acceleration. Since the force is constant and
directed oppositely to the displacement, the work it does is W = −Fd, where d is the distance
traveled while stopping. According to the work-kinetic energy theorem this must be the change
in kinetic energy of the luge and rider and since the luge stops, −12mv2 = −Fd, where v is the
initial speed of the luge. Solve for d. Use W = −12mv2 or W = −Fd to calculate the work done
by the force.

ans: (a) 1.7× 102 N; (b) 3.4× 102 m; (c) −5.8× 104 J; (d) 3.4× 102 N; (e) 1.7× 102 N;
(f) −5.8× 104 J



CHAPTER 7 HINT FOR PROBLEM 23

The work done by the cable is given byW = Td, where T is the tension force of the cable and d
is the distance the elevator cab travels (d1 in part (a) and d2 in part (b)). According to Newton’s
second law the acceleration of the cheese (and also of the elevator) is a = FN/mc, where mc is
the mass of the cheese, and the tension force of the cable is T = mea, where me is the mass of
the elevator cab. (Strictly, it should be the mass of the cab and cheese together, but the mass of
the cheese is so small it may be neglected here.)
(a) Put d equal to d1 (= 2.40m) and FN = 3.00N, then solve for W .
(b) Put d = d2 (= 10.5m) and W = 92.61× 103 J, then solve for FN .

ans: (a) 25.9 kJ; (b) 2.45N



CHAPTER 7 HINT FOR PROBLEM 35

Use the work-kinetic energy theorem: the work done by the force is equal to the change in the
kinetic energy of the object. Find the speed of the object at the beginning and end of the interval
by differentiating its coordinate with respect to time.

ans: 5.3× 102 J



CHAPTER 7 HINT FOR PROBLEM 47

(a) The work done by the force is given byW =F ·∆d, where ∆d = df−di. Use the component
equation for the value of the scalar product: F ·∆d = Fx(∆d)x + Fy(∆d)y + Fz(∆d)z .
(b) The average power is the work done by the machine’s force divided by the time.

ans: (a) 1.0× 102 J; (b) 8.4W



CHAPTER 8 SOLUTION FOR PROBLEM 9

(a) The only force that does work as the flake falls is the force of gravity and it is a conservative
force. If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic energy at
the bottom, Ui is the gravitational potential energy of the flake-Earth system with the flake at the
top, and Uf is the gravitational potential energy with it at the bottom, then Kf + Uf = Ki + Ui.
Take the potential energy to be zero at the bottom of the bowl. Then the potential energy at the
top is Ui = mgr, where r is the radius of the bowl and m is the mass of the flake. Ki = 0 since
the flake starts from rest. Since the problem asks for the speed at the bottom, write 12mv

2 for
Kf . The energy conservation equation becomes mgr = 12mv

2, so

v = 2gr = 2(9.8m/s2)(0.220m) = 2.08m/s .

(b) Note that the expression for the speed (v =
√
2gr) does not contain the mass of the flake.

The speed would be the same, 2.08m/s, regardless of the mass of the flake.
(c) The final kinetic energy is given by Kf = Ki +Ui−Uf . Since Ki is greater than before, Kf
is greater. This means the final speed of the flake is greater.



CHAPTER 8 SOLUTION FOR PROBLEM 29

Information given in the second sentence allows us to compute the spring constant. Solve F = kx
for k:

k =
F

x
=
270N
0.02m

= 1.35× 104 N/m .
(a) Now consider the block sliding down the incline. If it starts from rest at a height h above
the point where it momentarily comes to rest, its initial kinetic energy is zero and the initial
gravitational potential energy of the block-Earth system is mgh, where m is the mass of the
block. We have taken the zero of gravitational potential energy to be at the point where the block
comes to rest. We also take the initial potential energy stored in the spring to be zero. Suppose
the block compresses the spring a distance x before coming momentarily to rest. Then the final
kinetic energy is zero, the final gravitational potential energy is zero, and final spring potential
energy is 12kx

2. The incline is frictionless and the normal force it exerts on the block does no
work, so mechanical energy is conserved. This means mgh = 12kx

2, so

h =
kx2

2mg
=
(1.35× 104 N/m)(0.055m)2

2(12 kg)(9.8m/s2)
= 0.174m .

If the block traveled down a length of incline equal to , then sin 30◦ = h, so = h/ sin 30◦ =
(0.174m)/ sin 30◦ = 0.35m.
(b) Just before it touches the spring it is 0.055m away from the place where it comes to rest
and so is a vertical distance hI = (0.055m) sin 30◦ = 0.0275m above its final position. The
gravitational potential energy is then mghI = (12 kg)(9.8m/s2)(0.0275m) = 3.23 J. On the other
hand, its initial potential energy is mgh = (12 kg)(9.8m/s2)(0.174m) = 20.5 J. The difference is
its final kinetic energy: Kf = 20.5 J− 3.23 J = 17.2 J. Its final speed is

v =
2Kf

m
=

2(17.2 J)
12 kg

= 1.7m/s .



CHAPTER 8 SOLUTION FOR PROBLEM 51

(a) The magnitude of the force of friction is f = µkN , where µk is the coefficient of kinetic
friction and N is the normal force of the surface on the block. The only vertical forces acting on
the block are the normal force, upward, and the force of gravity, downward. Since the vertical
component of the block’s acceleration is zero, Newton’s second law tells us that N = mg, where
m is the mass of the block. Thus f = µkmg. The increase in thermal energy is given by
∆Eth = f = µkmg , where is the distance the block moves before coming to rest. Its value is
∆Eth = (0.25)(3.5 kg)(9.8m/s2)(7.8m) = 67 J.
(b) The block had its maximum kinetic energy just as it left the spring and entered the part of the
surface where friction acts. The maximum kinetic energy equals the increase in thermal energy,
67 J.
(c) The energy that appears as kinetic energy is originally stored as the potential energy of the
compressed spring. Thus ∆E = 1

2kx
2, where k is the spring constant and x is the compression.

Solve for x:

x =
2∆E
k

=
2(67 J)
640N/m

= 0.46m .



CHAPTER 8 HINT FOR PROBLEM 11

Use conservation of mechanical energy. When the car is a distance y above ground level and is
traveling with speed v the mechanical energy is given by 12mv

2 +mgy, where m is the mass of
the car. Write this expression for the initial values and for the values when the car is at another
point (A, B, C, or the point where it stops on the last hill). Equate the two expressions to each
other and solve for the unknown (either the speed or the height above the ground). Notice that
the mass of the car cancels from the conservation of energy equation.

ans: (a) 17.0m/s; (b) 26.5m/s; (c) 33.4m/s; (d) 56.7m; (e) all the same



CHAPTER 8 HINT FOR PROBLEM 19

(a) Use U = − F dx and select the constant of integration so that U = 27 J for x = 0.
(b) The force is zero at the value of x for which the potential energy is maximum.
(c) and (d) Set the expression for U equal to zero and solve for x.

ans: (a) U = 27 + 12x− 3x2; (b) 39 J; (c) −1.6m; (d) 5.6m



CHAPTER 8 HINT FOR PROBLEM 35

Take the gravitational potential energy to be zero when the whole cord is stuck to the ceiling.
Now compute the potential energy when the cord is hanging by one end. Consider an infinitesimal
segment of cord with mass dm a distance y from the ceiling. The potential energy associated
with this segment is dU = −gy dm. If the length of the segment is dy, then dm = (dy/L)M ,
where L is the length of the cord and M is its mass. The total potential energy is the sum over
segments:

U = −
L

0
gy
M

L
dy .

Evaluate the integral.

ans: −18mJ



CHAPTER 8 HINT FOR PROBLEM 57

(a) The work done by the spring force is given byWs = − 12kd2, where d is the spring compression
and k is the spring constant.
(b) The change in the thermal energy is given by ∆Eth = fd, where f is the magnitude of the
frictional force. This is the product of the magnitude of the normal force of the floor on the
block and the coefficient of kinetic friction. Use Newton’s second law to obtain the magnitude
of the normal force.
(c) Use the energy equation W = ∆Emec +∆Eth, where W is the work done by external forces
and ∆Emec is the change in the mechanical energy. Take the system to be composed of the block
and the spring. Then no external forces do work and the mechanical energy is the sum of the
kinetic energy of the block and the potential energy stored in the spring. Solve for the initial
kinetic energy and then the initial speed.

ans: (a) −0.90 J; (b) 0.46 J; (c) 1.0m/s



CHAPTER 9 SOLUTION FOR PROBLEM 17

Take the x axis to be to the right in the figure, with the origin at the shore. Let mb be the
mass of the boat and xbi its initial coordinate. Let md be the mass of the dog and xdi his initial
coordinate. The coordinate of the center of mass is

xcom =
mbxbi +mdxdi
mb +md

.

Now the dog walks a distance d to the left on the boat. The new coordinates xbf and xdf are
related by xbf = xdf + d, so the coordinate of the center of mass can be written

xcom =
mbxbf +mdxdf
mb +md

=
mbxdf +mbd +mdxdf

mb +md
.

Since the net external force on the boat-dog system is zero the velocity of the center of mass
does not change. Since the boat and dog were initially at rest the velocity of the center of mass
is zero. The center of mass remains at the same place and the two expressions we have written
for xcom must equal each other. This means mbxbi +mdxdi = mbxdf +mbd +mdxdf . Solve for
xdf :

xdf =
mbxbi +mdxdi −mbd

mb +md

=
(18 kg)(6.1m) + (4.5 kg)(6.1m)− (18 kg)(2.4m)

18 kg + 4.5 kg
= 4.2m .



CHAPTER 9 SOLUTION FOR PROBLEM 43

(a) Let m be the mass and vi î be the velocity of the body before the explosion. Let m1, m2,
and m3 be the masses of the fragments. (The mass of the third fragment is 6.00 kg.) Write
v1 ĵ for the velocity of fragment 1, −v2 î for the velocity of fragment 2, and v3x î + v3y ĵ for the
velocity of fragment 3. Since the original body and two of the fragments all move in the xy
plane the third fragment must also move in that plane. Conservation of linear momentum leads
to mvi î = m1v1 ĵ−m2v2 î +m3v3x î +m3v3y ĵ, or (mvi +m2v2−m3v3x) î− (m1v1 +m3v3y) ĵ = 0.
The x component of this equation gives

v3x =
mvi +m2v2

m3
=
(20.0 kg)(200m/s) + (4.00 kg)(500m/s)

6.0 kg
= 1.00× 103 m/s .

The y component gives

v3y = −m1v1
m3

= − (10.0 kg)(100m/s)
6.0 kg

= −167m/s .

Thus nv3 = (1.00× 103 m/s) î− (167m/s) ĵ. The velocity has a magnitude of 1.01× 103 m/s and
is 9.48◦ below the x axis.
(b) The initial kinetic energy is

Ki =
1
2
mv2i =

1
2
(20.0 kg)(200m/s)2 = 4.00× 105 J .

The final kinetic energy is

Kf =
1
2
m1v

2
1 +
1
2
m2v

2
2 +
1
2
m3v

2
3

=
1
2
(10.0 kg)(100m/s)2 + (4.00 kg)(500m/s)2 + (6.00 kg)(1014m/s)2

= 3.63× 106 J .

The energy released in the explosion is 3.63× 106 J− 4.00× 105 J = 3.23× 106 J.



CHAPTER 9 SOLUTION FOR PROBLEM 63

(a) Use conservation of mechanical energy to find the speed of either ball after it has fallen a
distance h. The initial kinetic energy is zero, the initial gravitational potential energy is Mgh,
the final kinetic energy is 12Mv

2, and the final potential energy is zero. Thus Mgh = 12Mv
2 and

v =
√
2gh. The collision of the ball of M with the floor is a collision of a light object with a

stationary massive object. The velocity of the light object reverses direction without change in
magnitude. After the collision, the ball is traveling upward with a speed of

√
2gh. The ball of

mass m is traveling downward with the same speed. Use Eq. 9–75 to find an expression for the
velocity of the ball of mass M after the collision:

vMf =
M −m
M +m

vMi +
2m

M +m
vmi =

M −m
M +m

2gh− 2m
M +m

2gh

=
M − 3m
M +m

2gh .

For this to be zero, m =M/3 = (0.63 kg)/3 = 0.21 kg.
(b) Use the same equation to find the velocity of the ball of mass m after the collision:

vmf = −m−M
M +m

2gh +
2M
M +m

2gh =
3M −m
M +m

2gh .

SubstituteM = 3m to obtain vmf = 2
√
2gh. Now use conservation of mechanical energy to find

the height hI to which the ball rises. The initial kinetic energy is 12mv
2
mf , the initial potential

energy is zero, the final kinetic energy is zero, and the final potential energy is mghI. Thus
1
2mv

2
mf = mghI, so

hI =
v2mf
2g

=
8gh
2g

= 4h = 4(1.8m = 7.2m ,

where 2
√
2gh was substituted for vmf .



CHAPTER 9 HINT FOR PROBLEM 13

(a) Use nacom = (m1na1 +m2na2)/(m1 +m2), where na1 is the acceleration of block 1 and na2 is the
acceleration of block 2. First use Newton’s second law to find the magnitude of the acceleration
of the blocks. If T is the tension force of the cord, block 1 obeys T = m1a and block 2 obeys
m2g − T = m2a. Eliminate T and solve for a. Then na1 = a î and na2 = −a ĵ.
(b) Since the acceleration is constant and the system is released from rest the velocity of the
center of mass as a function of time t is nvcom = nacomt.
(d) The center of mass follows a straight line. If θ is the angle between the path and the x axis,
then tan θ = acom y/acom y.

ans: (a) (2.35m/s2) î − (1.57m/s2) ĵ; (b) (2.35m/s2) î− (1.57m/s2) ĵ t; (d) straight, at a
downward angle of 34◦



CHAPTER 9 HINT FOR PROBLEM 31

(a) The impulse is given by the integral J = F dt over the duration of a single impact. This
is just the area enclosed by one of the triangles on the graph. The area, of course, is half the
product of the base (= 10ms) and the altitude (= 200N).
(b) The average force is given by Favg = J/∆t, where ∆t is the duration of the impact.
(c) Use Favg = ∆p/∆t, where ∆p is the change in the momentum of the snowball stream in
time ∆t, a time interval that includes many impacts. Since the snowballs stick to the wall, the
momentum of each snowball changes by mv, where v is its speed. If N snowballs hit per unit
time, the change in the total momentum is ∆p = mvN ∆t.

ans: (a) 1.00N · s; (b) 100N; (c) 20N



CHAPTER 9 HINT FOR PROBLEM 49

The momentum of the bullet-bock 1 system is conserved in the encounter of the bullet with that
block. Let m be the mass of the bullet and v0 be its initial velocity. Let vint be the velocity of the
bullet after it emerges from block 1 but before it strikes block 2. Let M1 be the mass of block
1 and let V1 be its velocity after the bullet emerges from it. Then mv0 = mvint +M1V1.
Momentum is also conserved in the encounter of the bullet with block 2. Let M2 be the mass
of that block and let V2 be its velocity after the bullet becomes embedded in it. Then mvint =
(m +M2)V2. Solve the second equation for vint and then the first for v0.

ans: (a) 721m/s; (b) 937m/s



CHAPTER 10 SOLUTION FOR PROBLEM 21

(a) Use 1 rev = 2π rad and 1min = 60 s to obtain

ω =
200 rev
1min

=
(200 rev)(2π rad/rev)
(1min)(60 s/min)

= 20.9 rad/s .

(b) The speed of a point on the rim is given by v = ωr, where r is the radius of the flywheel
and ω must be in radians per second. Thus v = (20.9 rad/s)(0.60m = 12.5m/s.
(c) If ω is the angular velocity at time t, ω0 is the angular velcoty at t = 0, and α is the angular
acceleration, then since the anagular acceleration is constant ω = ω0 + αt and

α =
ω − ω0
t

=
(1000 rev/min)− (200 rev/min)

1.0min
= 800 rev/min2 .

(d) The flywheel turns through the angle θ, which is

θ = ω0t +
1
2
αt2 = (200 rev/min)(1.0min) +

1
2
(800 rev/min2)(1.0min)2 = 600 rev .



CHAPTER 10 SOLUTION FOR PROBLEM 41

Use the parallel-axis theorem. According to Table 10–2, the rotational inertia of a uniform slab
about an axis through the center and perpendicular to the large faces is given by

Icom =
M

12
(a2 + b2) .

A parallel axis through a corner is a distance h = (a/2)2 + (b/2)2 from the center, so

I = Icom +Mh2 =
M

12
(a2 + b2) +

M

4
(a2 + b2) =

M

3
(a2 + b2)

=
0.172 kg
3

(0.035m)2 + (0.084m)2 = 4.7× 10−4 kg ·m2 .



CHAPTER 10 SOLUTION FOR PROBLEM 55

(a) Use constant acceleration kinematics. If down is taken to be positive and a is the acceleration
of the heavier block, then its coordinate is given by y = 12at

2, so

a =
2y
t2
=
2(0.750m)
(5.00 s)2

= 6.00× 10−2 m/s2 .

The lighter block has an acceleration of 6.00× 10−2 m/s2, upward.
(b) Newton’s second law for the heavier block is mhg − Th = mha, where mh is its mass and
Th is the tension force on the block. Thus

Th = mh(g − a) = (0.500 kg)(9.8m/s2 − 6.00× 10−2 m/s2) = 4.87N .

(c) Newton’s second law for the lighter block is mlg−Tl = −mla, where Tl is the tension force
on the block. Thus

Tl = ml(g + a) = (0.460 kg)(9.8m/s2 + 6.00× 10−2 m/s2) = 4.54N .

(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the rim of
the pulley must be the same as the acceleration of the blocks, so

α =
a

R
=
6.00× 10−2 m/s2
5.00× 10−2 m = 1.20 rad/s2 .

(e) The net torque acting on the pulley is τ = (Th − Tl)R. Equate this to Iα and solve for I:

I =
(Th − Tl)R

α
=
(4.87N− 4.54N)(5.00× 10−2 m)

1.20 rad/s2
= 1.38× 10−2 kg ·m2 .



CHAPTER 10 HINT FOR PROBLEM 11

Use the equation for constant-angular acceleration rotation: θ = ω0t+ 12αt
2, where θ is the angular

position at time t (measured from the angular position at t = 0), ω0 is the angular velocity at
t = 0, and α is the angular acceleration. Solve for α.
(b) the average angular velocity is the angular displacement divided by the time interval.
(c) Evaluate the constant-acceleration equation ω = ω0 + αt.
(d) Use θ = ω0t + 12αt

2. You might take the time to be zero at the end of the first 5 seconds and
take ω0 to be the answer to part (c).

ans: (a) 2.0 rad/s2; (b) 5.0 rad/s; (c) 10 rad/s; (d) 75 rad



CHAPTER 10 HINT FOR PROBLEM 25

The tangential component of the acceleration is given by at = αr and the radial component is
given by ar = ω2r, where α is the angular acceleration, ω is the angular velocity, and r is the
distance from the rotation axis to the point. Use ω = dθ/dt to find ω and α = dω/dt to calculate
α.

ans: (a) 6.4 cm/s2; (b) 2.6 cm/s2



CHAPTER 10 HINT FOR PROBLEM 39

(a) The rotational inertia of a rod of length d and mass M , rotating about an axis through its
center and perpendicular to it, is 1

12Md
2 (see Table 10–2). Use the parallel-axis theorem to find

the rotational inertias of the rods in this problem. For one rod the rotation axis is d/2 from its
center and for the other it is 3d/2 from its center. The rotational inertia of either of the particles
is the product of its mass and the square of the its distance from the rotation axis. Sum the
rotational inertias to obtain the total rotational inertia.
(b) The rotational kinetic energy is given by K = 12Iω

2, where I is the total rotational inertia.

ans: (a) 0.023 kg ·m2; (b) 11mJ



CHAPTER 10 HINT FOR PROBLEM 53

Use τnet = Iα, where τnet is the net torque on the cylinder, I is its rotational inertia, and α is its
angular acceleration. The net torque is the sum of the individual torques. The magnitude of the
torque associated with nF1 is F1R; the magnitude of the torque associated with nF2 is F2R; the
magnitude of the torque associated with nF3 is F3r; the magnitude of the torque associated with nF4
is 0. If the torque, acting alone, tends to produce an angular acceleration in the counterclockwise
direction it enters the sum as a positive value; if it tends to produce an angular acceleration in
the clockwise direction it enters the sum as a negative value. The rotational inertia is I = 12MR

2,
whereM is the mass of the cylinder. Solve for α. If the result is positive the angular acceleration
is in the counterclockwise direction; if it is negative the angular acceleration is in the clockwise
direction.

ans: (a) 9.7 rad/s2; (b) counterclockwise Use τnet = Iα, where τnet is the net torque on the
cylinder, I is it rotational inertia, and α is its angular acceleration. The net torque is the sum of
the individual torques. The magnitude of the torque associated with nF1 is F1R; the magnitude
of the torque associated with nF2 is F2R; the magnitude of the torque associated with nF3 is F3r;
the magnitude of the torque associated with nF4 is 0. If the torque, acting alone, tends to produce
an angular acceleration in the counterclockwise direction it enters the sum as a positive value; it
tends to produce an angular acceleration in the clockwise direction it enter the sum as a negative
value. The rotational inertia is I = 1

2MR
2, where M is the mass of the cylinder. Solve for α. If

the result is positive it is in the counterclockwise direction; if it is negative the acceleration is in
the clockwise direction.

ans: (a) 9.7 rad/s2; (b) counterclockwise



CHAPTER 11 SOLUTION FOR PROBLEM 31

(a) The angular momentum is given by the vector productnf = mnr × nv, where nr is the position
vector of the particle and nv is its velocity. Since the position and velocity vectors are in the xy
plane we may write nr = x î + y ĵ and nv = vx î + vy ĵ. Thus

nr × nv = (x î + y ĵ)× (vx î + vy ĵ) = xvx î× î + xvy î× ĵ + yvx ĵ× î + yvy ĵ× ĵ .

Use î× î = 0, î× ĵ = k̂, ĵ× î = −k̂, and ĵ× ĵ = 0 to obtain

nr × nv = (xvy − yvx) k̂ .

Thus

nf = m(xvy − yvx) k̂
= (3.0 kg) (3.0m)(−6.0m/s)− (8.0m)(5.0m/s) k̂ = (−1.7× 102 kg ·m2/s) k̂ .

(b) The torque is given by nτ = nr × nF . Since the force has only an x component we may write
nF = Fx î and

nτ = (x î + y ĵ)× (Fx î) = −yFx k̂ = −(8.0m)(−7.0N) k̂ = (56N ·m) k̂ .

(c) According to Newton’s second law, nτ = dnf/dt, so the time rate of change of the angular
momentum is 56 kg ·m2/s2, in the positive z direction.



CHAPTER 11 SOLUTION FOR PROBLEM 41

(a) No external torques act on the system consisting of the man, bricks, and platform, so the
total angular momentum of that system is conserved. Let Ii be the initial rotational inertia of the
system and let If be the final rotational inertia. If ωi is the initial angular velocity and ωf is the
final angular velocity, then Iiωi = Ifωf and

ωf =
Ii
If

ωi =
6.0 kg ·m2
2.0 kg ·m2 (1.2 rev/s) = 3.6 rev/s .

(b) The initial kinetic energy is Ki = 1
2Iiω

2
i , the final kinetic energy is Kf = 1

2Ifω
2
f , and their

ratio is
Kf

Ki
=
Ifω

2
f

Iiω2i
=
(2.0 kg ·m2)(3.6 rev/s)2
(6.0 kg ·m2)(1.2 rev/s)2 = 3.0 .

(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to his body.
This energy came from the man’s store of internal energy.



CHAPTER 11 SOLUTION FOR PROBLEM 59

(a) If we consider a short time interval from just before the wad hits to just after it hits and sticks,
we may use the principle of conservation of angular momentum. The initial angular momentum
is the angular momentum of the falling putty wad. The wad initially moves along a line that is
d/2 distant from the axis of rotation, where d is the length of the rod. The angular momentum of
the wad is mvd/2. After the wad sticks, the rod has angular velocity ω and angular momentum
Iω, where I is the rotational inertia of the system consisting of the rod with the two balls and
the wad at its end. Conservation of angular momentum yields mvd/2 = Iω. If M is the mass
of one of the balls, I = (2M +m)(d/2)2. When mvd/2 = (2M +m)(d/2)2ω is solved for ω, the
result is

ω =
2mv

(2M +m)d
=

2(0.0500 kg)(3.00m/s)
[2(2.00 kg) + 0.0500 kg](0.500m)

= 0.148 rad/s .

(b) The initial kinetic energy is Ki = 1
2mv

2, the final kinetic energy is Kf = 1
2Iω

2, and their
ratio is Kf/Ki = Iω2/mv2. When I = (2M +m)d2/4 and ω = 2mv/(2M +m)d are substituted,
this becomes

Kf

Ki
=

m

2M +m
=

0.0500 kg
2(2.00 kg) + 0.0500 kg

= 0.0123 .

(c) As the rod rotates the sum of its kinetic and potential energies is conserved. If one of the
balls is lowered a distance h, the other is raised the same distance and the sum of the potential
energies of the balls does not change. We need consider only the potential energy of the putty
wad. It moves through a 90◦ arc to reach the lowest point on its path, gaining kinetic energy
and losing gravitational potential energy as it goes. It then swings up through an angle θ, losing
kinetic energy and gaining potential energy, until it momentarily comes to rest. Take the lowest
point on the path to be the zero of potential energy. It starts a distance d/2 above this point,
so its initial potential energy is Ui = mgd/2. If it swings through the angle θ, measured from
its lowest point, then its final position is (d/2)(1 − cos θ) above the lowest point and its final
potential energy is Uf = mg(d/2)(1− cos θ). The initial kinetic energy is the sum of the kinetic
energies of the balls and wad: Ki = 1

2Iω
2 = 1

2(2M +m)(d/2)2ω2. At its final position the rod
is instantaneously stopped, so the final kinetic energy is Kf = 0. Conservation of energy yields
mgd/2 + 1

2(2M +m)(d/2)2ω2 = mg(d/2)(1− cos θ). When this equation is solved for cos θ, the
result is

cos θ = −1
2

2M +m
mg

d

2
ω2

= −1
2
2(2.00 kg) + 0.0500 kg
(0.0500 kg)(9.8m/s2)

0.500m
2

(0.148 rad/s)2 = −0.0226 .

The result for θ is 91.3◦. The total angle of the swing is 90◦ + 91.3◦ = 181◦.



CHAPTER 11 HINT FOR PROBLEM 13

At the loop bottom the vector sum of the gravitational and normal forces must equal the product of
the mass of the ball and the centripetal acceleration. That is, FN −Mg =Mv2/r, where v is the
speed of the ball and r is the radius of the loop. Use conservation of energy to find an expression
for v2. Take the potential energy to be zero at the bottom of the loop. Then the initial potential
energy is Mgh. The initial kinetic energy is zero and the final kinetic energy is 12Mv

2 + 1
2Iω

2,
where ω is the angular speed of the ball. Since the ball does not slide the speed and angular
speed are related by v = ωR. Use this relationship to eliminate ω from the energy equation, then
solve for v2. Substitute this expression and FN = 2.00Mg into FN −Mg = Mv2/r and solve
for I/MR2.

ans: 0.50



CHAPTER 11 HINT FOR PROBLEM 29

(a) Use Newton’s second law to find the acceleration: na = nF/m, where m is the mass of the
object.
(b) The angular momentum is nf = mnd× nv. Use the component form of the vector product:

nd× nv = (yvz − zvy) î + (zvx − xvz) ĵ + (xvy − yvx) k̂ .

(c) The torque is nτ = mnd× nF . Use the component form of the vector product:

nd× nF = (yFz − zFy) î + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

(d) Equate the two forms of the scalar product, nv · nF = vF cosφ and nv · nF = vxFx + vyFy + vzFz,
then solve for φ, the angle between nv and nF .

ans: (a) (3.00m/s2) î− (4.00m/s2) ĵ + (2.00m/s2) k̂; (b) (42.0 kg ·m2/s) î + (24.0 kg ·m2/s) ĵ +
(60.0 kg ·m2/s) k̂; (c) (−8.00N ·m) î− (26.0N ·m) ĵ− (40.0N ·m) k̂; (d) 127◦ (a) Use Newton’s
second law to find the acceleration: na = nF/m, where m is the mass of the object.
(b) The angular momentum is nf = mnd×nv, where m is the mass of the object. Use the component
form of the vector product:

nd× nv = (yvz − zvy) î + (zvx − xvz) ĵ + (xvy − yvx) k̂ .

(c) The torque is nτ = mnd× nF . Use the component form of the vector product:

nd× nF = (yFz − zFy) î + (zFx − xFz) ĵ + (xFy − yFx) k̂ .

(d) Equate the two forms of the scalar product, nv · nF = vF cosφ and nv · nF = vxFx + vyFy + vzFz
and solve for φ, the angle between nv and nF .

ans: (a) (3.00m/s2) î− (4.00m/s2) ĵ + (2.00m/s2) k̂; (b) (42.0 kg ·m2/s) î + (24.0 kg ·m2/s) ĵ +
(60.0 kg ·m2/s) k̂; (c) (−8.00N ·m) î− (26.0N ·m) ĵ− (40.0N ·m) k̂; (d) 127◦



CHAPTER 11 HINT FOR PROBLEM 47

(a) The skaters must remain equidistance from the center of the circle and they are 3.0m apart.
(b) The total angular momentum of the skaters is conserved. While the skaters are skating along
straight lines, each has an angular momentum of mvd/2 about the center of the circle. Here d
is the separation of the skaters. After they start skating around the circle each has an angular
momentum of m(d/2)2ω, where ω is their angular speed. Equate the two expression for the total
angular momentum and solve for ω.
(c) The kinetic energy is given by K = 12Iω

2, where the rotational inertia of the two-skater system
is 2m(d/2)2.
(d) The angular momentum of the system is conserved as the skaters pull along the pole. Thus
Inewωnew = Ioldωold. Solve for ωnew.
(e) The kinetic energy is now K = 12Iω

2
new.

(f) The total energy of the system is the sum of the kinetic, potential, and internal energies and
remains constant. The kinetic energy changed but the potential energy did not.

ans: (a) 1.5m; (b) 0.93 rad/s; (c) 98 J; (d) 8.4 rad/s; (e) 8.8× 102 J; (f) internal energy of the
skaters



CHAPTER 11 HINT FOR PROBLEM 55

(a) The angular momentum of the two-disk system is conserved as the small disk slides. Let I1
be the rotational inertia of the large disk, I2 be the rotational inertia of the small disk in its initial
location, and II2 be the rotational inertia of the small disk in its final location, all about the axis
through the center of the large disk. If ωi is the initial angular velocity of the disks and ωf is their
final angular velocity, then conservation of angular momentum yields (I1 + I2)ωi = (I1 + I I2)ωf .
The center of the small disk moved a distance of 2r. The parallel axis theorem tells us that
I I2 = I2 +m(2r)2. According to Table 10–2, I1 =

1
2(10m)(3r)

2 and I2 = 1
2mr

2. You can now
solve for ωf .
(b) The old kinetic energy is K0 = 1

2(I1 + I2)ω
2
i and the new kinetic energy is K = 12(I1 + I

I
2)ω2f .

ans: (a) 18 rad/s; (b) 0.92



CHAPTER 12 SOLUTION FOR PROBLEM 5

Three forces act on the sphere: the tension force nT of the rope (acting
along the rope), the force of the wall nN (acting horizontally away
from the wall), and the force of gravitymng (acting downward). Since
the sphere is in equilibrium they sum to zero. Let θ be the angle
between the rope and the vertical. Then, the vertical component of
Newton’s second is T cos θ −mg = 0. The horizontal component is
N − T sin θ = 0.
(a) Solve the first equation for T : T = mg/ cos θ. Substitute cos θ =
L/
√
L2 + r2 to obtain

T =
mg
√
L2 + r2

L
=
(0.85 kg)(9.8m/s2) (0.080m)2 + (0.042m)2

0.080m
= 9.7N .

(b) Solve the second equation for N : N = T sin θ. Use sin θ =
r/
√
L2 + r2 to obtain
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N

T

mg

r

θ

N =
Tr√
L2 + r2

=
mg
√
L2 + r2

L

r√
L2 + r2

=
mgr

L
=
(0.85N)(9.8m/s2)(0.042m)

0.080m
= 4.4N .



CHAPTER 12 SOLUTION FOR PROBLEM 19

Consider the wheel as it leaves the lower floor. The floor no
longer exerts a force on the wheel, and the only forces acting
are the force F applied horizontally at the axle, the force of
gravity mg acting vertically at the center of the wheel, and
the force of the step corner, shown as the two components fh
and fv. If the minimum force is applied the wheel does not
accelerate, so both the total force and the total torque acting
on it are zero.
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Calculate the torque around the step corner. Look at the second
diagram to see that the distance from the line of F to the
corner is r − h, where r is the radius of the wheel and h is
the height of the step. The distance from the line of mg to
the corner is r2 + (r − h)2 = √2rh− h2. Thus F (r − h) −
mg
√
2rh− h2 = 0. The solution for F is

F =
√
2rh− h2
r − h mg =

2(0.0600m)(0.0300m)− (0.0300m)2
0.0600m− 0.0300m (0.800 kg)(9.8m/s2) = 13.6N
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CHAPTER 12 SOLUTION FOR PROBLEM 29

(a) Examine the box when it is about to tip. Since it will
rotate about the lower right edge, that is where the normal
force of the floor is exerted. This force is labeled N on the
diagram to the right. The force of friction is denoted by
f , the applied force by F , and the force of gravity by W .
Note that the force of gravity is applied at the center of the
box. When the minimum force is applied the box does not
accelerate, so the sum of the horizontal force components
vanishes:
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f

F − f = 0 ,
the sum of the vertical force components vanishes:

N −W = 0 ,

and the sum of the torques vanishes:

FL− WL
2
= 0 .

Here L is the length of a side of the box and the origin was chosen to be at the lower right
edge.Solve the torque equation for F :

F =
W

2
=
890N
2

= 445N .

(b) The coefficient of static friction must be large enough that the box does not slip. The box is
on the verge of slipping if µs = f/N . According to the equations of equilibrium N =W = 890N
and f = F = 445N, so µs = (445N)/(890N) = 0.50.
(c) The box can be rolled with a smaller applied force if
the force points upward as well as to the right. Let θ be
the angle the force makes with the horizontal. The torque
equation then becomes FL cos θ+FL sinθ−WL/2 = 0,
with the solution

F =
W

2(cos θ + sin θ)
.
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You want cos θ + sin θ to have the largest possible value. This occurs if θ = 45◦, a result you
can prove by setting the derivative of cos θ + sin θ equal to zero and solving for θ. The minimum
force needed is

F =
W

4 cos 45◦
=

890N
4 cos 45◦

= 315N .



CHAPTER 12 HINT FOR PROBLEM 3

The rope is along straight lines from the supports to the center. Suppose these lines make the
angle θ with the horizontal. Then tan θ = 2h/L, where h is the sag of the rope and L is the
distance between supports. The factor 2 arises because the center of the rope is a distance L/2
from each support. The rope pulls up on the object with a force of 2T sin θ, where T is the
tension in the rope. This must equal the weight of the suspended object. Solve for T

ans: 7.92 kN



CHAPTER 12 HINT FOR PROBLEM 15

The floor pushes up on the foot at point P with a force that is equal in magnitude to the weight
of the person. To find the force of the calf muscle write an expression for the net torque about
B and to find the force of the lower leg bones write an expression for the net torque about A.
In each case the net torque must vanish and you can solve the resulting equation for one of the
forces.

ans: (a) 2.7 kN; (b) up; (c) 3.6 kN; (d) down



CHAPTER 12 HINT FOR PROBLEM 23

(a) Consider the net torque on the strut about the hinge. If M is the mass of the concrete block
and L is the length of the strut, the magnitude of the torque produced by the block is LMg cos θ.
If m is the mass of the strut the magnitude of the torque associated with the gravitational force
on the strut is (mgL/2) cos θ. The factor 2 arises because the force of gravity may be taken to
act at the center of the strut. A little trigonometry shows that the angle between the strut and
the cable is θ − φ, so if T is the tension in the cable the magnitude of the torque it produces is
TL sin(θ − φ. The first two torques are clockwise and the last is counterclockwise.l The three
torques must sum to zero since the system is in equilibrium. Solve for T .
(b) and (c) The horizontal and vertical components of the net force on the strut are both zero.
Use these conditions to solve for the horizontal and vertical components of the force of the hinge.

ans: (a) 6.63 kN; (b) 5.74 kN; (c) 5.96 kN



CHAPTER 13 SOLUTION FOR PROBLEM 5

At the point where the forces balance GMem/r
2
1 = GMsm/r

2
2, where Me is the mass of Earth,

Ms is the mass of the Sun, m is the mass of the space probe, r1 is the distance from the center
of Earth to the probe, and r2 is the distance from the center of the Sun to the probe. Substitute
r2 = d− r1, where d is the distance from the center of Earth to the center of the Sun, to find

Me

r21
=

Ms

(d− r1)2 .

Take the positive square root of both sides, then solve for r1. A little algebra yields

r1 =
d
√
Me√

Ms +
√
Me

=
(150× 109 m) 5.98× 1024 kg
1.99× 1030 kg + 5.98× 1024 kg = 2.6× 10

8 m .

Values for Me, Ms, and d can be found in Appendix C.



CHAPTER 13 SOLUTION FOR PROBLEM 23

(a) The magnitude of the force on a particle with mass m at the surface of Earth is given by
F = GMm/R2, where M is the total mass of Earth and R is Earth’s radius. The acceleration
due to gravity is

ag =
F

m
=
GM

R2
=
(6.67× 10−11 m3/s2 · kg)(5.98× 1024 kg)

(6.37× 106 m)2 = 9.83m/s2 .

(b) Now ag = GM/R2, where M is the total mass contained in the core and mantle together and
R is the outer radius of the mantle (6.345× 106 m, according to Fig. 13–36). The total mass is
M = 1.93× 1024 kg + 4.01× 1024 kg = 5.94× 1024 kg. The first term is the mass of the core and
the second is the mass of the mantle. Thus

ag =
(6.67× 10−11 m3/s2 · kg)(5.94× 1024 kg)

(6.345× 106 m)2 = 9.84m/s2 .

(c) A point 25.0 km below the surface is at the mantle-crust interface and is on the surface of
a sphere with a radius of R = 6.345× 106 m. Since the mass is now assumed to be uniformly
distributed the mass within this sphere can be found by multiplying the mass per unit volume by
the volume of the sphere: M = (R3/R3e)Me, where Me is the total mass of Earth and Re is the
radius of Earth. Thus

M =
6.345× 106 m
6.37× 106 m

3

(5.98× 1024 kg) = 5.91× 1024 kg .

The acceleration due to gravity is

ag =
GM

R2
=
(6.67× 10−11 m3/s2 · kg)(5.91× 1024 kg)

(6.345× 106 m)2 = 9.79m/s2 .



CHAPTER 13 SOLUTION FOR PROBLEM 41

Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be the radius of the
galaxy. The total mass in the galaxy is NM and the magnitude of the gravitational force acting
on the Sun is F = GNM2/r2. The force points toward the galactic center. The magnitude of
the Sun’s acceleration is a = v2/R, where v is its speed. If T is the period of the Sun’s motion
around the galactic center then v = 2πR/T and a = 4π2R/T 2. Newton’s second law yields
GNM 2/R2 = 4π2MR/T 2. The solution for N is

N =
4π2R3

GT 2M
.

The period is 2.5× 108 y, which is 7.88× 1015 s, so

N =
4π2(2.2× 1020 m)3

(6.67× 10−11 m3/s2 · kg)(7.88× 1015 s)2(2.0× 1030 kg)
= 5.1× 1010 .



CHAPTER 13 SOLUTION FOR PROBLEM 55

(a) Use the law of periods: T2 = (4π2/GM )r3, whereM is the mass of the Sun (1.99× 1030 kg)
and r is the radius of the orbit. The radius of the orbit is twice the radius of Earth’s orbit:
r = 2re = 2(150× 109 m) = 300× 109 m. Thus

T =
4π2r3

GM

=
4π2(300× 109 m)3

(6.67× 10−11 m3/s2 · kg)(1.99× 1030 kg)
= 8.96× 107 s .

Divide by (365 d/y)(24 h/d)(60min/h)(60 s/min) to obtain T = 2.8 y.
(b) The kinetic energy of any asteroid or planet in a circular orbit of radius r is given by
K = GMm/2r, where m is the mass of the asteroid or planet. Notice that it is proportional to
m and inversely proportional to r. The ratio of the kinetic energy of the asteroid to the kinetic
energy of Earth is K/Ke = (m/me)(re/r). Substitute m = 2.0× 10−4me and r = 2re to obtain
K/Ke = 1.0× 10−4.



CHAPTER 13 HINT FOR PROBLEM 9

Symmetry tells us that the horizontal component of the net force on the central sphere is zero.
A little geometry shows that the distance from a vertex to the center of the triangle is

√
3L/4,

where L is the length of a triangle side. Furthermore, the angle between a side and the line from
a vertex to the center is 30◦ and the sine of this angle is 1/2. Thus vertical component of the
force on the central sphere is

Fnet, y =
GMm4

(
√
3L/4)2

− 2Gmm4(1/2)
(
√
3L/4)2

.

Set this expression equal to zero and solve for M . Notice that the algebraic result for M does
not depend on the value of m4.

ans: (a) m; (b) 0



CHAPTER 13 HINT FOR PROBLEM 19

The gravitational force on a particle that is located at the equator has magnitude F = GmM/R2,
where M is the mass of the star and R is its radius. For the particle to remain on the surface this
must equal the centripetal force mω2R required to keep the particle on its circular path. Here ω
is the angular speed of the star. Set these two expression equal and solve for M .

ans: 5× 1024 kg



CHAPTER 13 HINT FOR PROBLEM 29

If U (Rs) is the gravitational potential energy when the projectile when it is on the surface of the
planet and K is its initial kinetic energy, then to escape the planet the mechanical energy must
be at least zero. Set the mechanical energy equal to zero and solve for K.

ans: 5.0× 109 J



CHAPTER 13 HINT FOR PROBLEM 39

The period T and orbit radius r are related by the law of periods: T2 = (4π2/GM )r3, where M
is the mass of Mars. Convert the given period to seconds and solve for M .

ans: 6.5× 1023 kg



CHAPTER 13 HINT FOR PROBLEM 47

(a) The semimajor axis is given by

a =
GMT 2

4π2

1/3

,

where M is the mass of the Sun (which can be found in Appendix C), and T is the period of
the motion. Be sure to substitute the period in seconds.
(b) The eccentricity e of the orbit is related to the aphelion distance Ra by

e = 1− Ra
a
.

The mean orbital radius of Pluto can also be found in Appendix C.

ans: (a) 1.9× 1013 m; (b) 3.6Rp



CHAPTER 13 HINT FOR PROBLEM 59

The period T is given by the Kepler’s law of periods: T2 = (4π2/GM )r3. The speed is given
by v = 2πr/T , the kinetic energy by K = 12Mv

2, and the magnitude of the angular momentum
by mrv.

ans: (a) r3/2; (b) 1/r; (c)
√
r; (d) 1/

√
r



CHAPTER 14 SOLUTION FOR PROBLEM 7

(a) At every point on the surface there is a net inward force, normal
to the surface, due to the difference in pressure between the air
inside and outside the sphere. The diagram to the right shows half
the sphere and some of the force vectors. We suppose a team of
horses is pulling to the right. To pull the sphere apart it must exert
a force at least as great as the horizontal component of the net force
of the air.
Consider the force acting at the angle θ shown. Its horizontal com-
ponent is ∆p cos θdA, where dA is an infinitesimal area element at
the point where the force is applied. We take the area to be that
of a ring of constant θ on the surface. The radius of the ring is
R sin θ, where R is the radius of the sphere. If the angular width
of the ring is dθ, in radians, then its width is R dθ and its area
is dA = 2πR2 sin θ dθ. Thus the net horizontal component of the
force of the air is given by
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• θ

R

Fh = 2πR2∆p
π/2

0
sin θ cos θ dθ

= πR2∆p sin2 θ
π/2

0
= πR2∆p .

This is the force that must be exerted by each team of horses to pull the sphere apart.
(b) Use 1 atm = 1.00× 105 Pa to show that ∆p = 0.90 atm = 9.00× 104 Pa The sphere radius is
0.30m, so Fh = π(0.30m)2(9.00× 104 Pa) = 2.5× 104 N.
(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. The
force of the wall on the sphere would balance the force of the horses. Two teams were probably
used to heighten the dramatic effect.



CHAPTER 14 SOLUTION FOR PROBLEM 19

(a) At depth y the gauge pressure of the water is p = ρgy, where ρ is the density of the water.
Consider a strip of water with widthW and thickness dy, across the dam. Its area is dA =W dy
and the force it exerts on the dam is dF = p dA = ρgWy dy. The total force of the water on the
dam is

F =
D

0
ρgWy dy = 1

2ρgWD
2

= 1
2(0.998× 103 kg/m3)(9.8m/s2)(314m)(35.0m)2 = 1.80× 109 N .

(b) Again consider the strip of water at depth y. Its moment arm for the torque it exerts about
O is D− y so the torque it exerts is dτ = dF (D− y) = ρgWy(D− y) dy and the total torque of
the water is

τ =
D

0
ρgWy(D− y) dy = ρgW 1

2
D3 − 1

3
D3 = 1

6ρgWD
3

= 1
6(0.998 kg/m

3)(9.8m/s2)(314m)(35.0m)3 = 2.19× 1010 m .
(c) Write τ = rF , where r is the effective moment arm. Then,

r =
τ

F
=
1
6ρgWD

3

1
2ρgWD

2
=
D

3
=
35.0m
3

= 11.7m .



CHAPTER 14 SOLUTION FOR PROBLEM 31

(a) The force of gravity mg is balanced by the buoyant force of the liquid ρgVs: mg = ρgVs.
Here m is the mass of the sphere, ρ is the density of the liquid, and Vs is the submerged volume.
Thus m = ρVs. The submerged volume is half the volume enclosed by the outer surface of the
sphere, or Vs = 1

2(4π/3)r
3
o, where ro is the outer radius. This means

m =
4π
6
ρr3o =

4π
6

(800 kg/m3)(0.090m)3 = 1.22 kg .

Air in the hollow sphere, if any, has been neglected.
(b) The density ρm of the material, assumed to be uniform, is given by ρm = m/V , where m is
the mass of the sphere and V is its volume. If ri is the inner radius, the volume is

V =
4π
3

r3o − r3i =
4π
3
(0.090m)3 − (0.080m)3 = 9.09× 10−4 m3 .

The density is

ρ =
1.22 kg

9.09× 10−4 m3 = 1.3× 10
3 kg/m3 .



CHAPTER 14 SOLUTION FOR PROBLEM 59

(a) The continuity equation yields Av = aV and Bernoulli’s equation yields 12ρv
2 = ∆p + 1

2ρV
2,

where ∆p = p2 − p1. The first equation gives V = (A/a)v. Use this to substitute for V in the
second equation. You should obtain 12ρv

2 = ∆p + 1
2ρ(A/a)

2v2. Solve for v. The result is

v =
2∆p

ρ 1− A2
a2

=
2a2∆p

ρ(a2 − A2) .

(b) Substitute values to obtain

v =
2(32× 10−4 m2)2(41× 103 Pa− 55× 103 Pa)

(998 kg/m3) (32× 10−4 m2)2 − (64× 10−4 m2)2
= 3.06m/s .

The density of water was obtained from Table 14–1 of the text. The flow rate is Av = (64 ×
10−4 m2)(3.06m/s) = 2.0× 10−2 m3/s.



CHAPTER 14 HINT FOR PROBLEM 9

The pressure p in a fluid at depth h below the surface is p = p0 + ρgh, where p0 is the pressure
at the surface and ρ is the density of the fluid.

ans: 1.90× 104 Pa



CHAPTER 14 HINT FOR PROBLEM 23

The force on the output piston has magnitude Fo = kx, where k is the spring constant and x is the
distance the spring is compressed. The force on the input piston has magnitude Fi = mg, where
m is the mass of sand in the container. The forces obey Pascal’s principle: Fo/A0 = Fi/Ai,
where Ao is the cross-sectional area of the output piston and Ai is the cross-sectional area of the
input piston. Replace Fo with kx and Fi with mg, then solve for m.

ans: 8.50 kg



CHAPTER 14 HINT FOR PROBLEM 37

(a) Let V be the volume of water displaced by the car and ρw (= 0.998 × 103 kg/m3) be the
density of water. Then the magnitude of the buoyant force on the car is ρwgV . Since the car is
essentially in equilibrium this must equal the weight mg of the car, where m is its mass. solve
mg = ρwgV for V .
(b) Let Vw be the volume of water in the car. The total weight of the car and the water in it
is mg + ρwgVw. The magnitude of the buoyant force is now ρwgVtotal, where Vtotal is the total
volume of the car (= 5.00m3 + 0.75m3 + 0.800m3 = 6.55m3). Solve mg + ρwgVw = ρwgVtotal
for Vw.

ans: 4.75m3



CHAPTER 14 HINT FOR PROBLEM 47

(a) Use the equation of continuity: VbAb = v2A2, where vb is the water speed and Ab is the
cross-sectional ares of the pipe at the basement and v2 is the speed and A2 is the cross-sectional
area of the pipe at the second floor. If d is the diameter of the pipe its cross-sectional area is
πd2/4. Solve for v2.
(b) Use the Bernoulli equation: pb+ 12ρv

2
b = p2 +

1
2v
2
2 +h, where pb is the pressure at the basement,

p2 is the pressure at the second floor, h is the height of the second floor above the basement, and
ρ is the density of water.

ans: (a) 3.9m/s; (b) 88 kPa



CHAPTER 14 HINT FOR PROBLEM 55

Use Bernoulli’s principle and the projectile motion equations to develop an expression for x as
a function of h. The pressure inside the tank at the hole is p0 + ρgh, where p0 is atmospheric
pressure and ρ is the density of water. The pressure outside the tank at the hole is p0. Let v0 be
the speed of the water as it leaves the hole. The speed of the water inside the tank is quite small
and may be taken to be zero. Then the principle yields p0 + ρgh = p0 + 12ρv

2
0. Algebraically solve

this equation for v0. If it takes time ∆t for water to fall from the hole to the ground, a distance
H − h, then H − h = 1

2g(∆t)
2. Solve for ∆t. The distance from the tank to the point on the

ground where the water hits is x = v0∆t.
(a) Evaluate the expression you developed for x.
(b) Solve the expression for h. There are two solutions. One is 10 cm. You want the other one.
(c) Set the derivative of x with respect to h equal to zero and solve for h.

ans: (a) 35 cm; (b) 30 cm; (c) 20 cm



CHAPTER 14 HINT FOR PROBLEM 61

Bernoulli’s principle gives pA = pB + 1
2ρairv

2. The pressure difference is pA − pB = ρgh. Use
this to substitute for pA − pB in the Bernoulli equation, then solve for v.

ans: (b) 63.3m/s



CHAPTER 15 SOLUTION FOR PROBLEM 15

The maximum force that can be exerted by the surface must be less than µsN or else the block
will not follow the surface in its motion. Here, µs is the coefficient of static friction and N is the
normal force exerted by the surface on the block. Since the block does not accelerate vertically,
you know that N = mg, where m is the mass of the block. If the block follows the table and
moves in simple harmonic motion, the magnitude of the maximum force exerted on it is given by
F = mam = mω2xm = m(2πf )2xm, where am is the magnitude of the maximum acceleration,
ω is the angular frequency, and f is the frequency. The relationship ω = 2πf was used to obtain
the last form.
Substitute F = m(2πf )2xm and N = mg into F < µsN to obtain m(2πf )2xm < µsmg. The
largest amplitude for which the block does not slip is

xm =
µsg

(2πf )2
=
(0.50)(9.8m/s2)
(2π × 2.0Hz)2 = 0.031m .

A larger amplitude requires a larger force at the end points of the motion. The surface cannot
supply the larger force and the block slips.



CHAPTER 15 SOLUTION FOR PROBLEM 39

(a) Take the angular displacement of the wheel to be θ = θm cos(2πt/T ), where θm is the
amplitude and T is the period. Differentiate with respect to time to find the angular velocity:
Ω = −(2π/T )θm sin(2πt/T ). The symbol Ω is used for the angular velocity of the wheel so it is
not confused with the angular frequency. The maximum angular velocity is

Ωm =
2πθm
T

=
(2π)(π rad)
0.500 s

= 39.5 rad/s .

(b) When θ = π/2, then θ/θm = 1/2, cos(2πt/T ) = 1/2, and

sin(2πt/T ) = 1− cos2(2πt/T ) = 1− (1/2)2 =
√
3/2 ,

where the trigonometric identity cos2A + sin2A = 1 was used. Thus

Ω = −2π
T
θm sin

2πt
T

= − 2π
0.500 s

(π rad)
√
3
2

= −34.2 rad/s .

The minus sign is not significant. During another portion of the cycle its angular speed is
+34.2 rad/s when its angular displacement is π/2 rad.
(c) The angular acceleration is

α =
d2θ

dt2
= − 2π

T

2

θm cos(2πt/T ) = − 2π
T

2

θ .

When θ = π/4,

α = − 2π
0.500 s

2
π

4
= −124 rad/s2 .

Again the minus sign is not significant.



CHAPTER 15 SOLUTION FOR PROBLEM 55

(a) The period of the pendulum is given by T = 2π I/mgd, where I is its rotational inertia,
m is its mass, and d is the distance from the center of mass to the pivot point. The rotational
inertia of a rod pivoted at its center is mL2/12 and, according to the parallel-axis theorem, its
rotational inertia when it is pivoted a distance d from the center is I = mL2/12 +md2. Thus

T = 2π
m(L2/12 + d2)

mgd
= 2π

L2 + 12d2

12gd
.

The square of the period is 4π2(L2 + 12d2)/12gd) and the derivative of this with respect to d is

dT 2

dd
=
4π2

12g
24− L

2 + 12d2

d2
.

Set this equal to zero and solve for d. The result is d = L/
√
12. Substitute this back into the

expression for T and obtain

T = 2π
L√
3g
= 2π

2.20m√
3(9.8m/s2)

= 2.26 s .

(b) According to the expression obtained in part (a) for the minimum period this period is
proportional to

√
L, so it increases as L increases.

(c) According to the expression obtained in part (a) for the minimum period this period is
independent of m. T does not change when m increases.



CHAPTER 15 HINT FOR PROBLEM 17

(a) The displacement x and acceleration a at any instant of time are related by x = −ω2a, where
ω is the angular frequency. The frequency is f = ω/2π.
(b) The angular frequency, mass m, and spring constant k are related by ω2 = k/m.
(c) If xm is the amplitude then we may take the displacement to be x = xm cos(ωt). The velocity
is v = −ωxm sin(ωt). Use the trigonometric identity sin2(ωt)+cos2(ωt) = 1 to find an expression
for xm.

ans: (a) 5.58Hz; (b) 0.325 kg; (c) 0.400m



CHAPTER 15 HINT FOR PROBLEM 25

Suppose the smaller block is on the verge of slipping when the acceleration of the blocks has
its maximum value. This occurs when the displacement of the blocks is equal to the amplitude
xm of their oscillation and the value is am = ω2xm, where ω is the angular frequency of the
oscillation. The magnitude of the force of friction is f = mam = mω2xm. Since the block is on
the verge of slipping f = µsN = µsmg, where N (= mg) is the magnitude of the normal force of
either block on the other. Solve for xm. The angular frequency is given by ω = k/(m +M ).

ans: 22 cm



CHAPTER 15 HINT FOR PROBLEM 33

(a) Use f = (1/2π) k/m, where k is the spring constant and m is the mass of the object.
(b) The potential energy is given by U = 12kx

2.
(c) The kinetic energy is given by K = 12mv

2, where v is the speed of the object.
(d) The mechanical energy, which is the sum of the kinetic and potential energies, is 12kx

2
m,

where xm is the amplitude of the oscillation.

ans: (a) 2.25Hz; (b) 1125 J; (c) 250 J; (d) 86.6 cm



CHAPTER 15 HINT FOR PROBLEM 41

The period of a physical pendulum with rotational inertia I and mass m, suspended from a point
that is a distance h from its center of mass, is T = 2π I/mgh. The distance between the point
of suspension and the center of oscillation is the same as the length of a simple pendulum with
the same period. The period of a simple pendulum of length L0 is T = 2π L0/g. Set these two
expressions for the period equal to each other and solve for L0.



CHAPTER 15 HINT FOR PROBLEM 53

At time t = 0 the angle is θ0 = θm cos(φ) and its rate of change is (dθ/dt)0 = −ωθm sin(φ), where
ω (= 4.44 rad/s) is the angular frequency of oscillation. Solve the first equation for cos(φ) and
the second for sin(φ). Use the results to find an expression for tan(φ) in terms of θ0, (dθ/dt)0,
and ω. Then find θ itself. Be sure you obtain the correct result for φ. Both the sine and cosine
should be positive. Now add the expressions for the square of the sine and the square of the
cosine to find an expression for θm.

ans: (a) 0.845 rad; (b) 0.0602 rad



CHAPTER 16 SOLUTION FOR PROBLEM 17

(a) In the expression for y, the quantity ym is the amplitude and so is 0.12mm.
(b) The wave speed is given by v = τ/µ, where τ is the tension in the string and µ is the
linear mass density of the string, so the wavelength is λ = v/f = τ/µ/f and the angular wave
number is

k =
2π
λ
= 2πf

µ

τ
= 2π(100Hz)

0.50 kg/m
10N

= 141m−1 .

(c) The frequency is f = 100Hz, so the angular frequency is ω = 2πf = 2π(100Hz) = 628 rad/s.
(d) The positive sign is used since the wave is traveling in the negative x direction.



CHAPTER 16 SOLUTION FOR PROBLEM 23

(a) The wave speed at any point on the rope is given by v = τ/µ, where τ is the tension at that
point and µ is the linear mass density. Because the rope is hanging the tension varies from point
to point. Consider a point on the rope a distance y from the bottom end. The forces acting on
it are the weight of the rope below it, pulling down, and the tension, pulling up. Since the rope
is in equilibrium these balance. The weight of the rope below is given by µgy, so the tension is
τ = µgy. The wave speed is v = µgy/µ = √gy.
(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, is
dt = dy/v = dy/√gy and the total time for the wave to move the entire length of the rope is

t =
L

0

dy√
gy
= 2

y

g

L

0
= 2

L

g
.



CHAPTER 16 SOLUTION FOR PROBLEM 39

Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is an
integer. The corresponding frequencies are given by f = v/λ = nv/2L, where v is the wave
speed. The wave speed is given by v = τ/µ = τL/M , where τ is the tension in the wire,
µ is the linear mass density of the wire, and M is the mass of the wire. µ = M/L was used to
obtain the last form. Thus

f =
n

2L
τL

M
=
n

2
τ

LM
=
n

2
250N

(10.0m)(0.100 kg)
= n(7.91Hz) .

(a) For n = 1, f = 7.91Hz.
(b) For n = 2, f = 15.8Hz.
(c) For n = 3, f = 23.7Hz.



CHAPTER 16 SOLUTION FOR PROBLEM 49

The waves have the same amplitude, the same angular frequency, and the same angular wave
number, but they travel in opposite directions.
(a) The amplitude of each of the constituent waves is half the amplitude of the standing wave or
0.50 cm.
(b) Since the standing wave has three loops the string is three half-wavelengths long. If L is the
length of the string and λ is the wavelength, then L = 3λ/2, or λ = 2L/3 = 2(3.0m)/3 = 2.0m.
The angular wave number is k = 2π/λ = 2π/(2.0m) = 3.1m−1.
(c) If v is the wave speed, then the frequency is

f =
v

λ
=
3v
2L

=
3(100m/s)
2(3.0m)

= 50Hz .

The angular frequency is ω = 2πf = 2π(50Hz) = 3.1× 102 rad/s.
(d) Since the first wave travels in the negative x direction, the second wave must travel in the
positive x direction and the sign in front of ω must be the negative sign.



CHAPTER 16 HINT FOR PROBLEM 11

Determine the sign in front of ω from the direction of travel of the wave. At t = 0 the displacement
at x = 0 is ym sin(φ). Solve this for φ and, of the possible solutions, choose the value that makes
sin(−ωt + φ) a positive sine function. Then the displacement for t = 0 is ym sin(kx + φ). At
x = 0 the wave is given by y = ym sin(±ωt + φ), where you should use the appropriate sign in
front of ω.
The amplitude is the maximum displacement of the string from y = 0. The angular wave number
is k = 2π/λ, where λ is the wavelength. The angular frequency is ω = 2π/T , where T is period,
which can be read from the graph. The wave speed is given by v = ω/k. The transverse particle
velocity is the derivative of y with respect to t.

ans: (a) negative sine function; (b) 4.0 cm; (c) 0.31 cm−1; (d) 0.63 s−1; (e) π rad; (f) negative
sign; (g) 2.0 cm/s; (h) −2.5 cm/s



CHAPTER 16 HINT FOR PROBLEM 25

The rate with which kinetic energy passes a point on the cord is given by

dK

dt
= 1
2µvω

2y2m cos2(kx− ωt) ,

where µ is the linear mass density of the cord, v is the wave speed, ω is the angular frequency,
and ym is the amplitude. A maximum on the graph has the value 12µvω

2y2m. Read this value
from either graph. The linear mass density of the cord is given. The period T can be read from
the second graph and ω = 2π/T can be used to compute ω. The wavelength λ can be read from
the first graph and the wave speed can be computed using v = λ/T . You can now compute ym.

ans: 3.2mm



CHAPTER 16 HINT FOR PROBLEM 31

The amplitude ym is given in the problem statement. The angular wave number is given by
k = 2π/λ, where λ is the wavelength, which is the same for both waves and for the resultant.
It can therefore be read from the graph. The angular frequency is given by ω = v/k, where v
is the wave speed, which you can easily calculate since you know that the wave travels 57.0 cm
in 8.0ms. The resultant amplitude, which can be read from the graph, is related to the phase
constant φ2 by yresult, m = 2ym cos(φ2/2). Solve for φ2. The sign in front of ω is determined by
the direction of travel of the wave.

ans: (a) 9.0mm; (b) 16m−1; (c) 1.1× 103 s−1; (d) 2.7 rad; (e) positive sign



CHAPTER 16 HINT FOR PROBLEM 43

(a) The wave speed is determined by the linear mass density of the string and the tension in it.
(b) The wavelength is twice the distance between nodes of the standing wave pattern. In this
case one and one-half wavelengths fit into the distance between the string ends.
(c) The frequency f is given by f = v/λ, where v is the wave speed and λ is the wavelength.

ans: (a) 144m/s; (b) 60.0 cm; (c) 241Hz



CHAPTER 17 SOLUTION FOR PROBLEM 5

Let tf be the time for the stone to fall to the water and ts be the time for the sound of the splash
to travel from the water to the top of the well. Then, the total time elapsed from dropping the
stone to hearing the splash is t = tf + ts. If d is the depth of the well, then the kinematics of
free fall gives d = 1

2gt
2
f , or tf = 2d/g. The sound travels at a constant speed vs, so d = vsts,

or ts = d/vs. Thus the total time is

t =
2d
g
+
d

vs
.

This equation is to be solved for d. Rewrite it as

2d
g
= t− d

vs

and square both sides to obtain

2d
g
= t2 − 2 t

vs
d +

1
v2s
d2 .

Now multiply by gv2s and rearrange to get

gd2 − 2vs(gt + vs)d + gv2st2 = 0 .

This is a quadratic equation for d. Its solutions are

d =
2vs(gt + vs)± 4v2s(gt + vs)2 − 4g2v2st2

2g
.

The physical solution must yield d = 0 for t = 0, so we take the solution with the negative sign
in front of the square root. Once values are substituted the result d = 40.7m is obtained.



CHAPTER 17 SOLUTION FOR PROBLEM 25

(a) Let I1 be the original intensity and I2 be the final intensity. The original sound level is
β1 = (10 dB) log(I1/I0) and the final sound level is β2 = (10 dB) log(I2/I0), where I0 is the
reference intensity. Since β2 = β1 + 30 dB,

(10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 30 dB ,

or
(10 dB) log(I2/I0)− (10 dB) log(I1/I0) = 30 dB .

Divide by 10 dB and use log(I2/I0)− log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 3. Now use
each side as an exponent of 10 and recognize that

10log(I2/I1) = I2/I1 .

The result is I2/I1 = 103. The intensity is increased by a factor of 1.0× 103.
(b) The pressure amplitude is proportional to the square root of the intensity so it is increased by
a factor of

√
1000 = 32.



CHAPTER 17 SOLUTION FOR PROBLEM 59

(a) The expression for the Doppler shifted frequency is

f I = f
v ± vD
v ∓ vS ,

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector (the
uncle), and vS is the speed of the source (the locomotive). All speeds are relative to the air. The
uncle is at rest with respect to the air, so vD = 0. The speed of the source is vS = 10m/s. Since
the locomotive is moving away from the uncle the frequency decreases and we use the plus sign
in the denominator. Thus

f I = f
v

v + vS
= (500.0Hz)

343m/s
343m/s + 10.00m/s

= 485.8Hz .

(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00m/s
toward the source. This tends to increase the frequency and we use the plus sign in the numerator.
The source is moving at vS = 10.00m/s away from the girl. This tends to decrease the frequency
and we use the plus sign in the denominator. Thus (v + vD) = (v + vS) and f I = f = 500.0Hz.
(c) Relative to the air the locomotive is moving at vS = 20.00m/s away from the uncle. Use the
plus sign in the denominator. Relative to the air the uncle is moving at vD = 10.00m/s toward
the locomotive. Use the plus sign in the numerator. Thus

f I = f
v + vD
v + vS

= (500.0Hz)
343m/s + 10.00m/s
343m/s + 20.00m/s

= 486.2Hz .

(d) Relative to the air the locomotive is moving at vS = 20.00m/s away from the girl and the girl
is moving at vD = 20.00m/s toward the locomotive. Use the plus signs in both the numerator
and the denominator. Thus (v + vD) = (v + vS) and f I = f = 500.0Hz.



CHAPTER 17 HINT FOR PROBLEM 27

The sound level in decibels is given by β = (10 dB) log(I/I0), where I is the intensity and I)
is the reference intensity (1 × 10−12 W/m2). Solve for I . The intensity is related to the sound
displacement amplitude sm by I = 1

2ρvω
2s2m, where ρ is the density of air (1.21 kg/m

3), ω is
the angular frequency (2π times the frequency), and v is the speed of sound (343m/s).

ans: (a) 10µW/m2; (b) 0.10µW/m2; (c) 70 nm; (d) 7.0 nm



CHAPTER 17 HINT FOR PROBLEM 31

(a) The rate of energy transport is given by 12ρvω
2s2mA, where ρ is the density of air (1.21 kg/m

3),
sm is the displacement amplitude (12.0 nm), ω is the angular frequency, v is the speed of sound
(343m/s), and A is the cross-sectional area of the tube. Use A = πR2, where R is the internal
radius of the tube, to compute A.
(b) The two waves together carry twice as much energy as one wave alone.
(c), (d), and (e) Since the waves interfere the amplitude is now 2sm cos(φ/2), where φ is the
phase difference.

ans: (a) 0.34 nW; (b) 0.68 nW; (c) 1.4 nW; (d) 0.88 nW; (e) 0



CHAPTER 17 HINT FOR PROBLEM 41

The top of the water is a displacement node and the top of the well is a displacement antinode.
At the lowest resonant frequency exactly one-fourth of a wavelength fits into the depth of the
well. If d is the depth and λ is the wavelength then λ = 4d. The frequency is f = v/λ = v/4d,
where v is the speed of sound. The speed of sound is given by v = B/ρ, where B is the bulk
modulus and ρ is the density of air in the well.

ans: 12.4m



CHAPTER 17 HINT FOR PROBLEM 55

Use the Doppler shift equation. In the reflector frame the speed of the source is 29.9m/s +
65.8m/s = 95.7m/s, the speed of the detector (the reflector) is zero, and the speed of sound is
329m/s + 65.8m/s = 394.8m/s. The source is moving toward the detector. In the source frame
the speed of the source is zero, the speed of the detector is 95.7m/s and the speed of sound is
329m/s + 29.9m/s = 358.9m/s. The detector is moving toward the source. In each case the
wavelength is the speed of sound divided by the frequency.

ans: (a) 1.58 kHz; (b) 0.208m; (c) 2.16 kHz; (d) 0.152m



CHAPTER 18 SOLUTION FOR PROBLEM 15

If Vc is the original volume of the cup, αa is the coefficient of linear expansion of aluminum, and
∆T is the temperature increase, then the change in the volume of the cup is ∆Vc = 3αaVc∆T .
See Eq. 18–11. If β is the coefficient of volume expansion for glycerin then the change in the
volume of glycerin is ∆Vg = βVc∆T . Note that the original volume of glycerin is the same as
the original volume of the cup. The volume of glycerin that spills is

∆Vg −∆Vc = (β − 3αa)Vc∆T
= (5.1× 10−4 /C◦)− 3(23× 10−6 /C◦) (100 cm3)(6 C◦) = 0.26 cm3 .



CHAPTER 18 SOLUTION FOR PROBLEM 39

(a) There are three possibilities:

1. None of the ice melts and the water-ice system reaches thermal equilibrium at a temperature
that is at or below the melting point of ice.
2. The system reaches thermal equilibrium at the melting point of ice, with some of the ice
melted.
3. All of the ice melts and the system reaches thermal equilibrium at a temperature at or above
the melting point of ice.

First suppose that no ice melts. The temperature of the water decreases from TWi (= 25◦C) to
some final temperature Tf and the temperature of the ice increases from TIi (= −15◦C) to Tf .
If mW is the mass of the water and cW is its specific heat then the water rejects heat

Q = cWmW (TWi − Tf ) .

If mI is the mass of the ice and cI is its specific heat then the ice absorbs heat

Q = cImI(Tf − TIi) .

Since no energy is lost these two heats must be the same and

cWmW (TWi − Tf ) = cImI (Tf − TIi) .

The solution for the final temperature is

Tf =
cWmWTWi + cImITIi

cWmW + cImI

=
(4190 J/kg · K)(0.200 kg)(25◦C) + (2220 J/kg · K)(0.100 kg)(−15◦C)

(4190 J/kg · K)(0.200 kg) + (2220 J/kg · K)(0.100 kg)
= 16.6◦C .

This is above the melting point of ice, so at least some of the ice must have melted. The
calculation just completed does not take into account the melting of the ice and is in error.
Now assume the water and ice reach thermal equilibrium at Tf = 0◦C, with mass m (< mI) of
the ice melted. The magnitude of the heat rejected by the water is

Q = cWmWTWi ,

and the heat absorbed by the ice is

Q = cImI(0− TIi) +mLF ,



where LF is the heat of fusion for water. The first term is the energy required to warm all the
ice from its initial temperature to 0◦C and the second term is the energy required to melt mass
m of the ice. The two heats are equal, so

cWmWTWi = −cImITIi +mLF .

This equation can be solved for the mass m of ice melted:

m =
cWmWTWi + cImITIi

LF

=
(4190 J/kg · K)(0.200 kg)(25◦C) + (2220 J/kg · K)(0.100 kg)(−15◦C)

333× 103 J/kg
= 5.3× 10−2 kg = 53 g .

Since the total mass of ice present initially was 100 g, there is enough ice to bring the water
temperature down to 0◦C. This is the solution: the ice and water reach thermal equilibrium at a
temperature of 0◦C with 53 g of ice melted.
(b) Now there is less than 53 g of ice present initially. All the ice melts and the final temperature
is above the melting point of ice. The heat rejected by the water is

Q = cWmW (TWi − Tf )

and the heat absorbed by the ice and the water it becomes when it melts is

Q = cImI(0− TIi) + cWmI(Tf − 0) +mILF .

The first term is the energy required to raise the temperature of the ice to 0◦C, the second term
is the energy required to raise the temperature of the melted ice from 0◦C to Tf , and the third
term is the energy required to melt all the ice. Since the two heats are equal,

cWmW (TWi − Tf ) = cImI(−TIi) + cWmITf +mILF .

The solution for Tf is

Tf =
cWmWTWi + cImITIi −mILF

cW (mW +mI)
.

Substitute given values to obtain Tf = 2.5◦C.



CHAPTER 18 SOLUTION FOR PROBLEM 49

(a) The change in internal energy ∆Eint is the same for path iaf and path ibf . According to
the first law of thermodynamics, ∆Eint = Q −W , where Q is the heat absorbed and W is the
work done by the system. Along iaf ∆Eint = Q −W = 50 cal − 20 cal = 30 cal. Along ibf
W = Q−∆Eint = 36 cal− 30 cal = 6 cal.
(b) Since the curved path is traversed from f to i the change in internal energy is −30 cal and
Q = ∆Eint +W = −30 cal− 13 cal = −43 cal.
(c) Let ∆Eint = Eint, f − Eint, i. Then, Eint, f = ∆Eint +Eint, i = 30 cal + 10 cal = 40 cal.
(d) and (e) The workWbf for the path bf is zero, soQbf = Eint, f−Eint, b = 40 cal−22 cal = 18 cal.
For the path ibf Q = 36 cal so Qib = Q−Qbf = 36 cal− 18 cal = 18 cal.



CHAPTER 18 HINT FOR PROBLEM 13

The change in the surface area is ∆A = 2Aα∆T , where A is the original surface area, ∆T
is the change in temperature (on the Kelvin or Celsius scale), and α is the coefficient of linear
expansion for brass. See Table 18–2 for the value of α. A cube has 6 faces, each with an area
equal to the square of an edge length.

ans: 11 cm2



CHAPTER 18 HINT FOR PROBLEM 19

Use V = V0 +V0βliquid∆T to compute the new volume V of the liquid and A = A0 + 2Aαglass∆T
to compute the new cross-sectional area of the tube. Here V0 is the original volume of fluid and
A0 is the original cross-sectional area of the tube. The height h of the fluid after the temperature
increase can be found from Ah = V . You will need to use V0 = A0L/2, where L is the length
of the tube.

ans: 0.13mm



CHAPTER 18 HINT FOR PROBLEM 31

The steam is converted to water, giving up energy mSLV , where mS is the mass of steam and
LV is the heat of vaporization of water. The temperature of the water is then reduced from TS0
(= 100◦C) to T (= 50◦C), giving up energy mSc(T0 − T ), where c is the specific heat of water.
The ice melts, absorbing energy mILF , where mI is the mass of ice and LF is the heat of fusion
of water. Then the temperature of the resulting water is raised from TI0 (= 0◦C) to T , absorbing
energy mIc(T −TI0. The energy given up by the substance that originally was steam must equal
the energy absorbed by the substance that was originally ice. Solve for mS .

ans: 33 g



CHAPTER 18 HINT FOR PROBLEM 47

According to the first law of thermodynamics the change in the internal energy of the gas as
it goes from c to a via d is ∆Eint, c→a = Qc→d + Qd→a −Wc→d −Wd→a. Since the internal
energy depends only on the state of the gas ∆Eint, c→a = −∆Eint, a→c. You should recognize
that Wd→a = 0 since the volume of the gas does not change over this portion of the path. All
other quantities are given.

ans: 60 J



CHAPTER 18 HINT FOR PROBLEM 55

When the rods are welded together end to end the rate of energy conduction is

Pcond =
kA

2L
∆T ,

where k is the thermal conductivity, A is the cross-sectional area of each rod, L is the length of
each rod, and ∆T is the difference in temperature of the ends of the composite. When they are
welded together side by side the length is L and the cross-sectional area is 2A, so the rate of
energy conduction is

Pcond =
2kA
L

∆T .

Note that this is 4 times as large as previously.

ans: 0.50min



CHAPTER 18 HINT FOR PROBLEM 59

According to Eq. 18–37 the rate of energy conduction through the composite is given by

Pcond =
A∆T

Li/ki
,

where A is the cross-sectional area, ∆T is the temperature difference of the ends, ki is the
thermal conductivity of layer i, and Li is the thickness of layer i. The rate of energy conduction
is the same throughout the composite. Through layer 4 it is

Pcond =
k4A

L4
∆T4 ,

where ∆T4 is the energy difference of the ends of layer 4. Equate the two expressions for the
rate of energy conduction and solve for ∆T4. Note that the area cancels from the equation. Since
you know the temperature at one end of layer 4 you can calculate the temperature at the other
end.

ans: −4.2◦C



CHAPTER 19 SOLUTION FOR PROBLEM 13

Suppose the gas expands from volume Vi to volume Vf during the isothermal portion of the
process. The work it does is

W =
Vf

Vi

p dV = nRT
Vf

Vi

dV
V
= nRT ln

Vf
Vi
,

where the ideal gas law pV = nRT was used to replace p with nRT/V . Now Vi = nRT/pi and
Vf = nRT/pf , so Vf/Vi = pi/pf . Also replace nRT with piVi to obtain

W = piVi ln
pi
pf
.

Since the initial gauge pressure is 1.03×105 Pa, pi = 1.03×105 Pa+1.013×105 Pa = 2.04×105 Pa.
The final pressure is atmospheric pressure: pf = 1.013× 105 Pa. Thus

W = (2.04× 105 Pa)(0.140m3) ln 2.04× 10
5 Pa

1.013× 105 Pa = 2.00× 10
4 J .

During the constant pressure portion of the process the work done by the gas isW = pf (Vi−Vf ).
Notice that the gas starts in a state with pressure pf , so this is the pressure throughout this portion
of the process. Also note that the volume decreases from Vf to Vi. Now Vf = piVi/pf , so

W = pf Vi − piVi
pf

= (pf − pi)Vi
= (1.013× 105 Pa− 2.04× 105 Pa)(0.140m3) = −1.44× 104 J .

The total work done by the gas over the entire process is W = 2.00 × 104 J − 1.44 × 104 J =
5.60× 103 J.



CHAPTER 19 SOLUTION FOR PROBLEM 39

(a) The distribution function gives the fraction of particles with speeds between v and v + dv,
so its integral over all speeds is unity: P (v) dv = 1. Evaluate the integral by calculating the
area under the curve in Fig. 19–22. The area of the triangular portion is half the product of the
base and altitude, or 12av0. The area of the rectangular portion is the product of the sides, or av0.
Thus P (v) dv = 1

2av0 + av0 =
3
2av0, so

3
2av0 = 1 and av0 = 2/3.

(b) The average speed is given by

vavg = vP (v) dv .

For the triangular portion of the distribution P (v) = av/v0 and the contribution of this portion is

a

v0

v0

0
v2 dv =

a

3v0
v30 =

av20
3
=
2
9
v0 ,

where 2/3v0 was substituted for a. P (v) = a in the rectangular portion and the contribution of
this portion is

a
2v0

v0

v dv =
a

2
(4v20 − v20) =

3a
2
v20 = v0 .

Thus vavg = 2
9v0 + v0 = 1.2v0 and vavg/v0 = 1.2.

(c) The mean-square speed is given by

v2rms = v2P (v) dv .

The contribution of the triangular section is

a

v0

v0

0
v3 dv =

a

4v0
v40 =

1
6
v20 .

The contribution of the rectangular portion is

a
2v0

v0
v2 dv =

a

3
(8v30 − v30) =

7a
3
v30 =

14
9
v20 .

Thus vrms = 1
6v
2
0 +

14
9 v

2
0 = 1.31v0 and vrms/v0 = 1.3. (d) The number of particles with speeds

between 1.5v0 and 2v0 is given by N
2v0
1.5v0

P (v) dv. The integral is easy to evaluate since
P (v) = a throughout the range of integration. Thus the number of particles with speeds in the
given range is Na(2.0v0 − 1.5v0) = 0.5Nav0 = N/3, where 2/3v0 was substituted for a. The
fraction of particles in the given range is 0.33.



CHAPTER 19 SOLUTION FOR PROBLEM 51

(a) Since the process is at constant pressure energy transferred as heat to the gas is given by
Q = nCp∆T , where n is the number of moles in the gas, Cp is the molar specific heat at
constant pressure, and ∆T is the increase in temperature. For a diatomic ideal gas Cp = 7

2R.
Thus

Q =
7
2
nR∆T =

7
2
(4.00mol)(8.314 J/mol · K)(60.0K) = 6.98× 103 J .

(b) The change in the internal energy is given by ∆Eint = nCV ∆T , where CV is the specific
heat at constant volume. For a diatomic ideal gas CV = 5

2R, so

∆Eint =
5
2
nR∆T =

5
2
(4.00mol)(8.314 J/mol · K)(60.0K) = 4.99× 103 J .

(c) According to the first law of thermodynamics, ∆Eint = Q−W , so

W = Q−∆Eint = 6.98× 103 J− 4.99× 103 J = 1.99× 103 J .

(d) The change in the total translational kinetic energy is

∆K =
3
2
nR∆T =

3
2
(4.00mol)(8.314 J/mol · K)(60.0K) = 2.99× 103 J .



CHAPTER 19 HINT FOR PROBLEM 9

Use the ideal gas law. The partial pressure for gas 1 is p1 = n1RT/V and the partial pressure
for gas 2 is p2 = n2RT/V . Here n1 is the number of moles of gas 1, n2 is the number of
moles of gas 2, T is the temperature, and V is the volume of the container. The total pressure is
p = p1 + p2. You want to calculate p2/(p1 + p2).

ans: 0.2



CHAPTER 19 HINT FOR PROBLEM 25

(a) Use 6 = LV /N , where LV is the heat of vaporization and N is the number of molecules per
gram. Divide the molar mass of water by Avogadro’s number to obtain the mass of an atom.
The reciprocal of the mass in grams is the number of molecules per gram.
(b) The average translational kinetic energy is Kavg = 3

2kT .

ans: (a) 1.61× 10−20 cal (6.76× 10−20 J); (b) 10.7



CHAPTER 19 HINT FOR PROBLEM 37

(a) The rms speed is given by vrms = 3RT/M . The molar mass of hydrogen is 2.02 ×
10−3 kg/mol.
(b) When the surfaces of the spheres that represent an H2 molecule and an Ar atom are touching,
the distance between their centers is the sum of their radii.
(c) Since the argon atoms are essentially at rest, in time t the hydrogen atom collides with all the
argon atoms in a cylinder of radius d and length vt, where v is its speed. That is, the number of
collisions is πd2vtN/V , where N/V is the concentration of argon atoms.

ans: (a) 7.0 km/s; (b) 2.0× 10−8 cm; (c) 3.5× 1010 collisions/s



CHAPTER 19 HINT FOR PROBLEM 47

(a) The work is given by the integral W = p dV , where p is the pressure and dV is a volume
element. According to the ideal gas law p = nRT/V , so W = (nRT/V ) dV . Take the volume
to be V = V0 + αt and the temperature to be T = T0 + βt, where t is the time. Find the values
of V0, T0, α, and β so that the expressions for V and T give correct values for t = 0 (when the
process begins) and for t = 2.00 h. Substitute the expressions for V , T , and dV = αdt into the
equation for the work to obtain

W =
2.00 h

0

nR(T0 + βt)
V0 + αt

α dt .

Evaluate the integral.
(b) According to the first law of thermodynamics the energy absorbed as heat is Q = ∆Eint +W ,
where∆Eint is the change in the internal energy, which may be computed using∆Eint = nCV ∆T ,
where CV is the molar specific heat for constant volume processes and ∆T is the change in
temperature.
(c) The molar specific heat for the process is Q/n∆T .
(d), (e), and (f) The work done by the gas during the isothermal portion of the process is
W = nRT ln(Vf/Vi), where Vi is the initial volume and Vf is the final volume. The temperature
here is the initial temperature. The work done during the constant-volume portion is zero. The
energy absorbed as heat and the molar specific heat can be computed in the same manner as in
parts (b) and (c).

ans: (a) 7.72× 104 J; (b) 5.46× 104 J; (c) 5.17 J/mol ·K; (d) 4.32× 104 J; (e) 8, 86× 104 J; (f)
8.38 J/mol ·K



CHAPTER 19 HINT FOR PROBLEM 57

The change in the internal energy is the same for the two paths. In particular it is Q−W , where
Q is the net energy input as heat and W is the net work done by the gas. Add up the heat input
and the work for the segments of path 1, then calculate Q −W . Along an isotherm the work
done is equal to the heat input and along an adiabat the heat input is zero.

ans: −20 J



CHAPTER 20 SOLUTION FOR PROBLEM 7

(a) The energy that leaves the aluminum as heat has magnitude Q = maca(Tai − Tf ), where ma

is the mass of the aluminum, ca is the specific heat of aluminum, Tai is the initial temperature
of the aluminum, and Tf is the final temperature of the aluminum-water system. The energy that
enters the water as heat has magnitude Q = mwcw(Tf−Twi), where mw is the mass of the water,
cw is the specific heat of water, and Twi is the initial temperature of the water. The two energies
are the same in magnitude since no energy is lost. Thus maca(Tai−Tf ) = mwcw(Tf −Twi) and

Tf =
macaTai +mwcwTwi
maca +mwcw

.

The specific heat of aluminum is 900 J/kg · K and the specific heat of water is 4190 J/kg · K.
Thus,

Tf =
(0.200 kg)(900 J/kg · K)(100◦ C) + (0.0500 kg)(4190 J/kg · K)(20◦ C)

(0.200 kg)(900 J/kg · K) + (0.0500 kg)(4190 J/kg · K)
= 57.0◦ C .

This is equivalent to 330K.
(b) Now temperatures must be given in kelvins: Tai = 393K, Twi = 293K, and Tf = 330K. For
the aluminum, dQ = maca dT and the change in entropy is

∆Sa =
dQ
T
= maca

Tf

Tai

dT
T
= maca ln

Tf
Tai

= (0.200 kg)(900 J/kg · K) ln 330K
373K

= −22.1 J/K .

(c) The entropy change for the water is

∆Sw =
dQ
T
= mwcw

Tf

Twi

dT
T
= mwcw ln

Tf
Twi

= (0.0500 kg)(4190 J/kg · K) ln 330K
293K

= +24.9 J/K .

(d) The change in the total entropy of the aluminum-water system is ∆S = ∆Sa + ∆Sw =
−22.1 J/K + 24.9 J/K = +2.8 J/K.



CHAPTER 20 SOLUTION FOR PROBLEM 21

(a) The efficiency is

E =
TH − TC
TH

=
(235− 115)K
(235 + 273)K

= 0.236 .

Note that a temperature difference has the same value on the Kelvin and Celsius scales. Since
the temperatures in the equation must be in kelvins, the temperature in the denominator was
converted to the Kelvin scale.
(b) Since the efficiency is given by E = |W |/|QH |, the work done is given by |W | = E|QH | =
0.236(6.30× 104 J) = 1.49× 104 J.



CHAPTER 20 SOLUTION FOR PROBLEM 45

(a) Suppose there are nL molecules in the left third of the box, nC molecules in the center third,
and nR molecules in the right third. There are N ! arrangements of the N molecules, but nL!
are simply rearrangements of the nL molecules in the right third, nC! are rearrangements of the
nC molecules in the center third, and nR! are rearrangements of the nR molecules in the right
third. These rearrangements do not produce a new configuration. Thus, the multiplicity is

W =
N !

nL!nC!nR!
.

(b) If half the molecules are in the right half of the box and the other half are in the left half of
the box, then the multiplicity is

WB =
N !

(N/2)! (N/2)!
.

If one-third of the molecules are in each third of the box, then the multiplicity is

WA =
N !

(N/3)! (N/3)! (N/3)!
.

The ratio is
WA

WB
=

(N/2)! (N/2)!
(N/3)! (N/3)! (N/3)!

.

(c) For N = 100,
WA

WB
=

50! 50!
33! 33! 34!

= 4.16× 1016 .



CHAPTER 20 HINT FOR PROBLEM 9

The change in entropy of a block is ∆S = (mc/T ) dT = mc ln(Tf/Ti), where m is the mass of
the block, c is the specific heat, Ti is the initial temperature, and Tf is the final temperature. Since
the blocks are identical the final temperature is halfway between the two initial temperatures. To
find the value of mc, consider the irreversible process of Fig. 20–5. The energy absorbed as heat
is related to the change in temperature by Q = mc∆T . Solve for mc.
Now go back to the reversible process of Fig. 20–6. Since the block and its reservoir are isolated
and the process is reversible the change in the entropy of the reservoir is the negative of the
change in the entropy of the block.

ans: (a) −710mJ/K; (b) +710mJ/K; (c) +723mJ/K; (d) −723mJ/K; (e) +13mJ/K; (f) 0



CHAPTER 20 HINT FOR PROBLEM 13

(a) The energy absorbed by the lower temperature block equals the energy emitted by the higher
temperature block. Thus mCcC(TC −T ) = mLcL(T −TL), where mC is the mass of the copper
block, TC is its initial temperature, cC is the specific heat of copper, mL is the mass of the lead
block, TL is its initial temperature, cL is the specific heat of lead, and T is the final temperature
of the blocks. Solve for T .
(b) The two blocks form a system that does no work on its environment and absorbs no energy
as heat from its environment.
(c) Consider a constant-volume process that takes a block from its initial temperature to its final
temperature. The change in entropy is ∆S = (mc/T ) dT .

ans: (a) 320K; (b) 0; (c) +1.72 J/K



CHAPTER 20 HINT FOR PROBLEM 23

The efficiency of a Carnot engine is given by C = 1− (TL/TH), where TL is the temperature of
the low-temperature reservoir and TH is the temperature of the high-temperature reservoir, both
on the Kelvin scale. Solve for TH for each of the given efficiencies.

ans: 97K



CHAPTER 20 HINT FOR PROBLEM 43

The possible configurations in the form (n1, n2) are: (1, 7), (2, 6), (3, 5), (4, 4), (3, 5), (2, 6), and
(1, 7). The corresponding multiplicities are calculated using W = 8!/(n1!n2!) and entropies are
calculated using S = k lnW , where k is the Boltzmann constant.



CHAPTER 21 SOLUTION FOR PROBLEM 9

Assume the spheres are far apart. Then the charge distribution on each of them is spherically
symmetric and Coulomb’s law can be used. Let q1 and q2 be the original charges and choose the
coordinate system so the force on q2 is positive if it is repelled by q1. Take the distance between
the charges to be r. Then the force on q2 is

Fa = − 1
4π60

q1q2
r2

.

The negative sign indicates that the spheres attract each other.
After the wire is connected, the spheres, being identical, have the same charge. Since charge
is conserved, the total charge is the same as it was originally. This means the charge on each
sphere is (q1 + q2)/2. The force is now one of repulsion and is given by

Fb =
1
4π60

(q1 + q2)2

4r2
.

Solve the two force equations simultaneously for q1 and q2. The first gives

q1q2 = −4π60r2Fa = − (0.500m)
2(0.108N)

8.99× 109 N ·m2/C2
= −3.00× 10−12 C2

and the second gives

q1 + q2 = 2r 4π60Fb = 2(0.500m)
0.0360N

8.99× 109 N ·m2/C2
= 2.00× 10−6 C .

Thus
q2 =

−(3.00× 10−12 C2)
q1

and
q1 − 3.00× 10

−12 C2

q1
= 2.00× 10−6 C .

Multiply by q1 to obtain the quadratic equation

q21 − (2.00× 10−6 C)q1 − 3.00× 10−12 C2 = 0 .
The solutions are

q1 =
2.00× 10−6 C± (−2.00× 10−6 C)2 + 4(3.00× 10−12 C2)

2
.

If the positive sign is used, q1 = 3.00 × 10−6 C and if the negative sign is used, q1 = −1.00 ×
10−6 C. Use q2 = (−3.00 × 10−12)/q1 to calculate q2. If q1 = 3.00 × 10−6 C, then q2 =
−1.00 × 10−6 C and if q1 = −1.00 × 10−6 C, then q2 = 3.00 × 10−6 C. Since the spheres are
identical, the solutions are essentially the same: one sphere originally had charge −1.00×10−6 C
and the other had charge +3.00× 10−6 C.



CHAPTER 21 SOLUTION FOR PROBLEM 17

If the system of three particles is to be in equilibrium, the force
on each particle must be zero. Let the charge on the third particle
be q0. The third particle must lie on the x axis since otherwise the
two forces on it would not be along the same line and could not
sum to zero. Thus the y coordinate of the particle must be zero.
The third particle must lie between the other two since otherwise
the forces acting on it would be in the same direction and would
not sum to zero. Suppose the third particle is a distance x from
the particle with charge q, as shown on the diagram to the right.
The force acting on it is then given by

• ••
q 4.00qq0

←− x −→←− L− x −→

F0 =
1
4π60

qq0
x2
− 4.00qq0
(L− x)2 = 0 ,

where the positive direction was taken to be toward the right. Solve this equation for x. Canceling
common factors yields 1/x2 = 4.00/(L−x)2 and taking the square root yields 1/x = 2.00/(L−x).
The solution is x = 0.333L.
The force on q is

Fq =
1
4π60

qq0
x2
+
4.00q2

L2
= 0 .

Solve for q0: q0 = −4.00qx2/L2 = −0.444q, where x = 0.333L was used.
The force on the particle with charge 4.00q is

F4q =
1
4π60

4.00q2

L2
+
4.00qq0
(L− x)2 =

1
4π60

4.00q2

L2
+
4.00(0.444)q2

(0.444)L2

=
1
4π60

4.00q2

L2
− 4.00q

2

L2
= 0 .

With q0 = −0.444q and x = 0.333L, all three charges are in equilibrium.



CHAPTER 21 HINT FOR PROBLEM 7

Calculate the x and y components of the forces of particles 1, 2, and 4 on particle 3. Add the
x components to find the x component of the net force and add the y components to find the y
component of the net force. Use Coulomb’s law to calculate the magnitude of each force. The
charges of particles 1 and 3 have the same sign so the force of 1 is in the negative y direction.
The charges of particles 2 and 3 have opposite signs so the force of 2 has positive x and y
components. The distance between these particles is

√
2a and the force makes an angle of 45◦

with the positive x direction. The charges of particles 3 and 4 have opposite signs so the force
of 4 is in the negative x direction.

ans: (a) 0.17N; (b) −0.046N



CHAPTER 21 HINT FOR PROBLEM 19

Divide the shell into concentric shells of infinitesimal thickness dr. The shell with radius r has
volume dV = 4πr2 dr and contains charge dq = ρ dV = 4πr2ρ dr. Integrate this expression. The
lower limit is the inner radius of the original shell and the upper limit is its outer radius.

ans: 3.8× 10−8 C



CHAPTER 21 HINT FOR PROBLEM 25

The current is the charge that is intercepted by Earth’s surface per unit time. If N is the number
of protons that hit each square meter of the surface per second, then the current is i = NAe,
where A is the area of the surface, given by A = 4πR2. Look up the radius R of Earth in
Appendix C.

ans: 122mA



CHAPTER 22 SOLUTION FOR PROBLEM 11

Choose the coordinate axes as shown on the diagram
to the right. At the center of the square, the electric
fields produced by the particles at the lower left and
upper right corners are both along the x axis and each
points away from the center and toward the particle
that produces it. Since each particle is a distance d =√
2a/2 = a/

√
2 away from the center, the net field due

to these two particles is

Ex =
1
4π60

2q
a2/2

− q

a2/2

•

•

•

•
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d

d

a

a

xy

−q

q −2q

2q

=
1
4π60

q

a2/2
=
(8.99× 109 N ·m2/C2)(1.0× 10−8 C)

(0.050m)2/2
= 7.19× 104 N/C.

At the center of the square, the field produced by the particles at the upper left and lower right
corners are both along the y axis and each points away from the particle that produces it. The
net field produced at the center by these particles is

Ey =
1
4π60

2q
a2/2

− q

a2/2
=

1
4π60

q

a2/2
= 7.19× 104 N/C .

The magnitude of the net field is

E = E2x +E2y = 2(7.19× 104 N/C)2 = 1.02× 105 N/C

and the angle it makes with the x axis is

θ = tan−1
Ey
Ex

= tan−1(1) = 45◦ .

It is upward in the diagram, from the center of the square toward the center of the upper side.



CHAPTER 22 SOLUTION FOR PROBLEM 27

(a) The linear charge density λ is the charge per unit length of rod. Since the charge is uniformly
distributed on the rod, λ = −q/L = −(4.23× 10−15 C)/(0.0815m) = −5.19× 10−14 C/m.
(b) and (c) Position the origin at the left end of
the rod, as shown in the diagram. Let dx be an
infinitesimal length of rod at x. The charge in
this segment is dq = λ dx. The charge dq may
be taken to be a point charge. The electric field
it produces at point P has only an x component
and this component is given by

dx
•
P

0 x L L + a

dEx =
1
4π60

λ dx
(L + a− x)2 .

The total electric field produced at P by the whole rod is the integral

Ex =
λ

4π60

L

0

dx
(L + a− x)2 =

λ

4π60
1

L + a− x
L

0

=
λ

4π60
1
a
− 1
L + a

=
λ

4π60
L

a(L + a)
.

When −q/L is substituted for λ the result is

Ex = − 1
4π60

q

a(L + a)
= − (8.99× 10

9 N ·m2/C2)(4.23× 10−15 C)
(0.120m)(0.0815m + 0.120m)

= −1.57× 10−3 N/C .

The negative sign indicates that the field is toward the rod and makes an angle of 180◦ with the
positive x direction.
(d) Now

Ex = − 1
4π60

q

a(L + a)
= − (8.99× 10

9 N ·m2/C2)(4.23× 10−15 C)
(50m)(0.0815m + 50m)

= −1.52× 10−8 N/C .

(e) The field of a point particle at the origin is

Ex = − q

4π60a2
= − (8.99× 10

9 N ·m2/C2)(4.23× 10−15 C)
(50m)2

= −1.52× 10−8 N/C .



CHAPTER 22 SOLUTION FOR PROBLEM 31

At a point on the axis of a uniformly charged disk a distance z above the center of the disk, the
magnitude of the electric field is

E =
σ

260
1− z√

z2 +R2
,

where R is the radius of the disk and σ is the surface charge density on the disk. See Eq. 22–26.
The magnitude of the field at the center of the disk (z = 0) is Ec = σ/260. You want to solve
for the value of z such that E/Ec = 1/2. This means

E

Ec
= 1− z√

z2 +R2
=
1
2

or
z√

z2 +R2
=
1
2
.

Square both sides, then multiply them by z2 +R2 to obtain z2 = (z2/4)+(R2/4). Thus, z2 = R2/3
and z = R/

√
3 = (0.600m)/

√
3 = 0.346m.



CHAPTER 22 HINT FOR PROBLEM 13

The particles are equidistance from P and their charges have the same magnitude. The y com-
ponents of their fields sum to zero and their x components are the same, so you need calculate
only the x component of one of the fields, then double it. The x component of the field of either
particle is given by Ex = −(1/4π60)qx/r3, where x is the coordinate of the particle and r is its
distance from P.

ans: (a) 1.38× 10−10 N/C; (b) negative x direction



CHAPTER 22 HINT FOR PROBLEM 19

At P the electric fields of the two charged particles have the same magnitude, which is given by
E = (1/4π60)q/(r2 + d2/4). Their x components sum to zero and their y components have the
same value: Ey = −E sin θ, where θ is the angle between the x axis and the line from either
particle to P. Use sin θ = (d/2)/ r2 + d2/4 to substitute for sin θ. Double the result to take both
particles into account, then use the binomial theorem to find the expression for the net field for
r >> d.

ans: (a) qd/4π60r3; (b) negative y direction



CHAPTER 22 HINT FOR PROBLEM 29

Symmetry tells us that the horizontal component of the net electric field at P is zero. Divide the
rod into sections of infinitesimal width dx and treat each section as a point particle with charge
dq = λ dx, where λ (= q/L) is the linear charge density of the rod. Put the origin at the center of
the rod. The magnitude of the field produced at P by the section at x is dE = (1/4π60)(λ dx)/r2
and its vertical component is E sin θ. Here r is the distance from the section to P and θ is the
angle between the line from the section to P and the positive x direction. Substitute r =

√
x2 +R2

and sin θ = R/r = R/
√
x2 +R2 and integrate over the length of the rod.

ans: a) 12.4N/C; (b) positive y direction



CHAPTER 22 HINT FOR PROBLEM 53

The potential energy of an electric dipole is given by U = −np · nE = −pE cos θ, where np is the
dipole moment, nE is the electric field, and θ is the angle between the dipole moment and the
electric field. The work required of an external agent is the change in the potential energy.

ans: 1.22× 10−23 J



CHAPTER 23 SOLUTION FOR PROBLEM 27

Assume the charge density of both the conducting rod and the shell are uniform. Neglect fringing.
Symmetry can be used to show that the electric field is radial, both between the rod and the shell
and outside the shell. It is zero, of course, inside the rod and inside the shell since they are
conductors.
(a) and (b) Take the Gaussian surface to be a cylinder of length L and radius r, concentric
with the conducting rod and shell and with its curved surface outside the shell. The area of the
curved surface is 2πrL. The field is normal to the curved portion of the surface and has uniform
magnitude over it, so the flux through this portion of the surface is Φ = 2πrLE, where E is the
magnitude of the field at the Gaussian surface. The flux through the ends is zero. The charge
enclosed by the Gaussian surface is Q1 − 2.00Q1 = −Q1. Gauss’ law yields 2πr60LE = −Q1,
so

E = − Q1
2π60Lr

= − (8.99× 10
9N ·m2/C2)(3.40× 10−12 C)

(11.00m)(26.0× 10−3 m) = −0.214N/C .

The magnitude of the field is 0.214N/C. The negative sign indicates that the field points inward.
(c) and (d) Take the Gaussian surface to be a cylinder of length L and radius r, concentric with
the conducting rod and shell and with its curved surface between the conducting rod and the
shell. As in (a), the flux through the curved portion of the surface is Φ = 2πrLE, where E is
the magnitude of the field at the Gaussian surface, and the flux through the ends is zero. The
charge enclosed by the Gaussian surface is only the charge Q1 on the conducting rod. Gauss’
law yields 2π60rLE = Q1, so

E =
Q1

2π60Lr
=
2(8.99× 109 N ·m2/C2)(3.40× 10−12 C)

(11.00m)(6.50× 10−3 m) = +0.855N/C .

The positive sign indicates that the field points outward.
(e) Consider a Gaussian surface in the form of a cylinder of length L with the curved portion of
its surface completely within the shell. The electric field is zero at all points on the curved surface
and is parallel to the ends, so the total electric flux through the Gaussian surface is zero and the
net charge within it is zero. Since the conducting rod, which is inside the Gaussian cylinder, has
charge Q1, the inner surface of the shell must have charge −Q1 = −3.450× 10−12 C.
(f) Since the shell has total charge −2.00Q1 and has charge −Q1 on its inner surface, it must
have charge −Q1 = −3.40× 10−12 C on its outer surface.



CHAPTER 23 SOLUTION FOR PROBLEM 31

(a) To calculate the electric field at a point very close to the center of a large, uniformly charged
conducting plate, we may replace the finite plate with an infinite plate with the same area charge
density and take the magnitude of the field to be E = σ/60, where σ is the area charge density
for the surface just under the point. The charge is distributed uniformly over both sides of the
original plate, with half being on the side near the field point. Thus

σ =
q

2A
=
6.0× 10−6 C
2(0.080m)2

= 4.69× 10−4 C/m2 .

The magnitude of the field is

E =
σ

60
=

4.69× 10−4 C/m2
8.85× 10−12 C2/N ·m2 = 5.3× 10

7 N/C .

The field is normal to the plate and since the charge on the plate is positive, it points away from
the plate.
(b) At a point far away from the plate, the electric field is nearly that of a point particle with
charge equal to the total charge on the plate. The magnitude of the field is E = q/4π60r2, where
r is the distance from the plate. Thus

E =
(8.99× 109 N ·m2/C2)(6.0× 10−6 C)

(30m)2
= 60N/C .



CHAPTER 23 SOLUTION FOR PROBLEM 47

To find an expression for the electric field inside the shell in terms of A and the distance from
the center of the shell, select A so the field does not depend on the distance.
Use a Gaussian surface in the form of a sphere with radius rg, concentric with the spherical shell
and within it (a < rg < b). Gauss’ law will be used to find the magnitude of the electric field a
distance rg from the shell center.
The charge that is both in the shell and within the Gaussian sphere is given by the integral
qs = ρ dV over the portion of the shell within the Gaussian surface. Since the charge distribution
has spherical symmetry, we may take dV to be the volume of a spherical shell with radius r and
infinitesimal thickness dr: dV = 4πr2 dr. Thus,

qs = 4π
rg

a

ρr2 dr = 4π
rg

a

A

r
r2 dr = 4πA

rg

a

r dr = 2πA(r2g − a2) .

The total charge inside the Gaussian surface is q + qs = q + 2πA(r2g − a2).
The electric field is radial, so the flux through the Gaussian surface is Φ = 4πr2gE, where E is
the magnitude of the field. Gauss’ law yields

4π60Er2g = q + 2πA(r
2
g − a2) .

Solve for E:
E =

1
4π60

q

r2g
+ 2πA− 2πAa

2

r2g
.

For the field to be uniform, the first and last terms in the brackets must cancel. They do if
q − 2πAa2 = 0 or A = q/2πa2 = (45.0× 10−15 C)/2π(2.00× 10−2 m)2 = 1.79× 10−11 C/m2.



CHAPTER 23 HINT FOR PROBLEM 7

Think of the proton as being at the center of a cube with edge length d. According to Gauss’s
law the net electric flux through the surface of the cube is e/60. Since the proton is at the center
one-sixth of the net flux is through each face of the cube.

ans: 3.01 nN ·m2/C



CHAPTER 23 HINT FOR PROBLEM 23

(a) The charge on the drum is the product of its surface charge density and the surface area of
its curved surface: q = σ2πRL, where σ is the charge density (2.0µC/m2 from Problem 16), R
is its radius, and L is its length.
(b) The magnitude of the electric field at the drum surface is given by E = λ/2π60R, where
lambda is the linear charge density. Since λ = q/L, E = q/2π60RL. Thus q2/R2L2 = q1/R1L1,
where the subscripts 1 refer to the old values and the subscripts 2 refer to the new values. Solve
for q2.

ans: (a) 0.32µC; (b) 0.14µC



CHAPTER 23 HINT FOR PROBLEM 27

The electric field at a distance r from the cylindrical axis is given by E = λ/2πr, where λ is the
linear charge density inside the Gaussian cylinder of radius r. For part (a) the point is outside
both the rod and the cylindrical shell, so λ = (Q1 +Q2)/L. For part (b) the point is outside the
rod but inside the shell, so λ = Q1/L. The field is radially outward if E is positive and radially
inward if E is negative. There can be no net charge inside a Gaussian cylinder that is completely
within the shell, so the charge on the rod and the interior surface of the shell must sum to zero.
The charge on the interior and exterior surfaces of the shell must sum to Q2.

ans: (a) 0.214N/C; (b) inward; (c) 0.855N/C; (d) outward; (e) −3.4× 10−12 C; (f) −3.40×
10−12 C



CHAPTER 23 HINT FOR PROBLEM 33

The magnitude of the electric field of a large plate with surface charge density σ is E = σ/260.
If σ is positive the field points away from the plate and if σ is negative it points toward the
plate. Thus the x component of the field is σ/260 to the right of the plate and −σ/260 to the
left. Write equations for the x component of the field between plates 1 and 2, between plates 2
and 3, and outside plate 3, then solve these for σ2/σ2.

ans: −1.5



CHAPTER 23 HINT FOR PROBLEM 45

Use Gauss’ law with a spherical Gaussian surface in the form of a sphere with radius r. The
electric flux through the surface is 4πr2E, where E is the magnitude of the electric field. For
part (a) only the charge on the smaller shell is enclosed by the Gaussian surface and part (b) the
charge on both shells is enclosed.

ans: (a) 2.50× 104 N/C; (b) 1.35× 104 N/C



CHAPTER 23 HINT FOR PROBLEM 53

Use a spherical Gaussian surface with radius r, concentric with the charge distribution. The
electric field is radially outward, normal to the surface, and has a uniform magnitude over the
surface, so the electric flux through the surface is 4πr2E, where E is the magnitude of the
electric field a distance r from the center of the charge distribution. The charge enclosed by the
Gaussian surface is

qenc =
r

0
4π(rI)2ρ drI

Thus
4πr260E =

r

0
4π(rI)2ρ drI .

Differentiate with respect to r and solve for ρ.

ans: 660Kr3



CHAPTER 24 SOLUTION FOR PROBLEM 25

The disk is uniformly charged. This means that when the full disk is present each quadrant
contributes equally to the electric potential at P , so the potential at P due to a single quadrant
is one-fourth the potential due to the entire disk. First find an expression for the potential at P
due to the entire disk.
Consider a ring of charge with radius r and width dr. Its area is 2πr dr and it contains charge
dq = 2πσr dr. All the charge in it is a distance

√
r2 +D2 from P , so the potential it produces

at P is
dV =

1
4π60

2πσr dr√
r2 +D2

=
σr dr

260
√
r2 +D2

.

The total potential at P is

V =
σ

260

R

0

r dr√
r2 +D2

=
σ

260

√
r2 +D2

R

0
=

σ

260

√
R2 +D2 −D .

The potential Vsq at P due to a single quadrant is

Vsq =
V

4
=

σ

860

√
R2 +D2 −D

=
7.73× 10−15 C/m2

8(8.85× 10−12 C2/N ·m2) (0.640m)2 + (0.259m)2 − 0.259m
= 4.71× 10−5 V .



CHAPTER 24 SOLUTION FOR PROBLEM 37

The work required is equal to the potential energy of the system, relative to a potential energy of
zero for infinite separation. Number the particles 1, 2, 3, and 4, in clockwise order starting with
the particle in the upper left corner of the arrangement. The potential energy of the interaction
of particles 1 and 2 is

U12 =
q1q2
4π60a

=
(8.99× 109 N ·m2/C2)(2.30× 10−12 C)(−2.30× 10−12 C)

0.640m
= −7.43× 10−14 J .

The distance between particles 1 and 3 is
√
2a and both these particles are positively charged,

so the potential energy of the interaction between particles 1 and 3 is U13 = −U12/
√
2 = +5.25×

10−14 J. The potential energy of the interaction between particles 1 and 4 is U14 = U12 =
−7.43 × 10−14 J. The potential energy of the interaction between particles 2 and 3 is U23 =
U12 = −7.43 × 10−14 J. The potential energy of the interaction between particles 2 and 4 is
U24 = U13 = 5.25× 10−14 J. The potential energy of the interaction between particles 3 and 4 is
U34 = U12 = −7.43× 10−14 J.
The total potential energy of the system is

U = U12 + U13 + U14 + U23 + U24 + U34
= −7.43× 10−14 J + 5.25× 10−14 J− 7.43× 10−14 J− 7.43× 10−14 J
− 7.43× 10−14 J + 5.25× 10−14 J = −1.92× 10−13 J .

This is equal to the work that must be done to assemble the system from infinite separation.



CHAPTER 24 SOLUTION FOR PROBLEM 55

(a) The electric potential is the sum of the contributions of the individual spheres. Let q1 be
the charge on one, q2 be the charge on the other, and d be their separation. The point halfway
between them is the same distance d/2 (= 1.0m) from the center of each sphere, so the potential
at the halfway point is

V =
q1 + q2
4π60d/2

=
(8.99× 109 N ·m2/C2)(1.0× 10−8 C− 3.0× 10−8 C)

1.0m
= −1.80× 102 V .

(b) The distance from the center of one sphere to the surface of the other is d− R, where R is
the radius of either sphere. The potential of either one of the spheres is due to the charge on that
sphere and the charge on the other sphere. The potential at the surface of sphere 1 is

V1 =
1
4π60

q1
R
+

q2
d− R

= (8.99× 109 N ·m2/C2) 1.0× 10
−8 C

0.030m
− 3.0× 10−8 C
2.0m− 0.030m

= 2.9× 103 V .
(c) The potential at the surface of sphere 2 is

V2 =
1
4π60

q1
d− R +

q2
R

= (8.99× 109 N ·m2/C2) 1.0× 10−8 C
2.0m− 0.030m −

3.0× 10−8 C
0.030m

= −8.9× 103 V .



CHAPTER 24 HINT FOR PROBLEM 9

The magnitude of the electric field a distance r from the sphere center, inside the sphere, is
E = qr/4π60R3. Integrate the negative of this from r = 0 to r = 1.45 cm in part (a) and to r = R
in part (b).

ans: (a) −0.268mV; (b) −0.681mV



CHAPTER 24 HINT FOR PROBLEM 19

The electric potential due to an electric dipole is given by V = (1/4π60)(p/r) cos θ, where p is
the magnitude of the dipole moment and the angle θ is measured from the dipole axis. Here
θ = 0.

ans: 16.3µV



CHAPTER 24 HINT FOR PROBLEM 27

All the charge on any of the rods is equidistant from the origin so the electric potential produced
at the origin by any rod is V = (1/4π60)q/R, where Q is the charge on the rod and R is the
radius of the rod. Add the contributions of the three rods.

ans: 13 kV



CHAPTER 24 HINT FOR PROBLEM 35

The force on the electron is nF = −e nE, where nE is the electric field at the position of the electron.
The electric field components are Ex = −∂V/∂x, Ey = −∂V/∂y, and Ez = ∂V/∂z. The first
two partial derivatives are the slopes of the graphs.

ans: (−4.0× 10−16 N) î + (1.6× 10−16 N) ĵ



CHAPTER 24 HINT FOR PROBLEM 51

Use conservation of mechanical energy. The potential energy when the positron is at some
coordinate x is U = eV , where values of V can be read from the graph. When the positron
is at x = 0 the potential energy is zero, so the mechanical energy is the same as the positron’s
kinetic energy there: it is 12mv

2, where v is the speed of the positron as it enters the field. If
the mechanical energy is greater than the potential energy when the positron is at x = 50 cm,
then the positron will continue in the positive x direction and will exit the field at x = 50 cm. If
the mechanical energy is less than the potential energy with the positron at x = 50 cm then the
direction of motion of the positron will reverse at some point before x = 50 cm and the positron
will exit the field at x = 0.

ans: (a) 0; (b) 1.0× 107 m/s



CHAPTER 25 SOLUTION FOR PROBLEM 17

(a) After the switches are closed, the potential differences across the capacitors are the same and
the two capacitors are in parallel. The potential difference from a to b is given by Vab = Q/Ceq,
where Q is the net charge on the combination and Ceq is the equivalent capacitance.
The equivalent capacitance is Ceq = C1 +C2 = 4.0×10−6 F. The total charge on the combination
is the net charge on either pair of connected plates. The charge on capacitor 1 is

q1 = C1V = (1.0× 10−6 F)(100V) = 1.0× 10−4 C

and the charge on capacitor 2 is

q2 = C2V = (3.0× 10−6 F)(100V) = 3.0× 10−4 C ,

so the net charge on the combination is 3.0×10−4 C−1.0×10−4 C = 2.0×10−4 C. The potential
difference is

Vab =
2.0× 10−4 C
4.0× 10−6 F = 50V .

(b) The charge on capacitor 1 is now q1 = C1Vab = (1.0× 10−6 F)(50V) = 5.0× 10−5 C.
(c) The charge on capacitor 2 is now q2 = C2Vab = (3.0× 10−6 F)(50V) = 1.5× 10−4 C.



CHAPTER 25 SOLUTION FOR PROBLEM 31

(a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate capacitor
is given by 60A/d, the charge is q = CV = 60AV/d. After the plates are pulled apart, their
separation is dI and the potential difference is V I. Then q = 60AV I/dI and

V I =
dI

60A
q =

dI

60A

60A

d
V =

dI

d
V =

8.00mm
3.00mm

(6.00V) = 16.0V .

(b) The initial energy stored in the capacitor is

Ui =
1
2
CV 2 =

60AV
2

2d
=
(8.85× 10−12 F/m)(8.50× 10−4 m2)(6.00V)

2(3.00× 10−3 mm) = 4.51× 10−11 J

and the final energy stored is

Uf =
1
2
CI(V I)2 =

1
2
60A

dI
(V I)2 =

(8.85× 10−12 F/m)(8.50× 10−4 m2)(16.0V)
2(8.00× 10−3 mm) = 1.20×10−10 J .

(c) The work done to pull the plates apart is the difference in the energy: W = Uf − Ui =
1.20× 10−10 J− 4.51× 10−11 J = 7.49× 10−11 J.



CHAPTER 25 SOLUTION FOR PROBLEM 45

(a) The electric field in the region between the plates is given by E = V/d, where V is the
potential difference between the plates and d is the plate separation. The capacitance is given by
C = κ60A/d, where A is the plate area and κ is the dielectric constant, so d = κ60A/C and

E =
V C

κ60A
=

(50V)(100× 10−12 F)
5.4(8.85× 10−12 F/m)(100× 10−4 m2) = 1.0× 10

4 V/m .

(b) The free charge on the plates is qf = CV = (100× 10−12 F)(50V) = 5.0× 10−9 C.
(c) The electric field is produced by both the free and induced charge. Since the field of a large
uniform layer of charge is q/260A, the field between the plates is

E =
qf
260A

+
qf
260A

− qi
260A

− qi
260A

,

where the first term is due to the positive free charge on one plate, the second is due to the
negative free charge on the other plate, the third is due to the positive induced charge on one
dielectric surface, and the fourth is due to the negative induced charge on the other dielectric
surface. Note that the field due to the induced charge is opposite the field due to the free charge,
so the fields tend to cancel. The induced charge is therefore

qi = qf − 60AE
= 5.0× 10−9 C− (8.85× 10−12 F/m)(100× 10−4 m2)(1.0× 104 V/m)
= 4.1× 10−9 C = 4.1 nC .



CHAPTER 25 HINT FOR PROBLEM 9

C1 and C2 are in parallel and the combination is in series with C3. First find the equivalent
capacitance C12 of C1 and C2, then the equivalent capacitance of C12 and C3.

ans: 3.16µF



CHAPTER 25 HINT FOR PROBLEM 15

C3 and C5 are in series and this combination is in parallel with C2 and C4. C1 and C6 are in
parallel and this combination is in series with the combination of C3, C5, C2, and C4. The charge
stored by the equivalent capacitor is CeqV . Find the charge and potential difference of any of the
capacitors by remembering that the potential differences are the same across two capacitors in
parallel and that the charges are the same for two capacitors in series. In addition, the potential
difference for a parallel connection is the same as the potential difference across the equivalent
capacitor and the charge on each capacitor of a series connection is the same as the charge for
the equivalent capacitor.

ans: (a) 3.00µF; (b) 60µC; (c) 10V; (d) 30.0µC; (e) 10V; (f) 20.0µC; (g) 5.00V;
(h) 20.0µC



CHAPTER 25 HINT FOR PROBLEM 25

The energy stored in a capacitor is 12CV
2, where C is its capacitance and V is the potential

difference across its plates. You need to convert 10 kW · h to joules.

ans: 72 F



CHAPTER 25 HINT FOR PROBLEM 33

The three capacitors each carry the same charge, so the one with the smallest capacitance has
the greatest potential difference. Take this to be 100V. Calculate the charge on this capacitor
(and hence on each of the others) and then the potential differences across the other capacitors.
The potential difference between points A and B is the sum of the potential differences across
the capacitors.

ans: (a) 190V; (b) 95mJ



CHAPTER 25 HINT FOR PROBLEM 49

The capacitance of the capacitor before the slab is inserted is C = 60A/d, where A is a plate
area and d is the plate separation. You may think of the capacitor after the slab is inserted
as two capacitors in series. One has capacitance 60A/(d − b) and the other has capacitance
κ60A/b, where b is the thickness of the slab. The charge on the capacitor before the slab is
inserted is q = CV , where V is the potential difference across the battery and, since the battery
is then disconnected, no charge leaves the capacitor as the slab is inserted. The electric field
between a plate and the dielectric is given by E = q/60 and the electric field in the dielectric
is given by E/κ. The potential difference across the plates is the charge on a plate divided by
the capacitance. The work done in inserting the slab is the change in the energy stored by the
capacitor, calculated using U = 1

2q
2/C.

ans: (a) 89 pF; (b) 0.12 nF; (c) 11 nC; (d) 11 nC; (e) 10 kV/m; (f) 2.1 kV/m; (g) 88V; (h)
−0.17µJ



CHAPTER 26 SOLUTION FOR PROBLEM 5

(a) The magnitude of the current density is given by J = nqvd, where n is the number of
particles per unit volume, q is the charge on each particle, and vd is the drift speed of the
particles. The particle concentration is n = 2.0 × 108 cm−3 = 2.0 × 1014 m−3, the charge is
q = 2e = 2(1.60× 10−19 C) = 3.20× 10−19 C, and the drift speed is 1.0× 105 m/s. Thus,

J = (2× 1014 m−3)(3.2× 10−19 C)(1.0× 105 m/s) = 6.4A/m2 .

(b) Since the particles are positively charged, the current density is in the same direction as their
motion, to the north.
(c) The current cannot be calculated unless the cross-sectional area of the beam is known. Then
i = JA can be used.



CHAPTER 26 SOLUTION FOR PROBLEM 23

The resistance of conductor A is given by

RA =
ρL

πr2A
,

where rA is the radius of the conductor. If ro is the outside radius of conductor B and ri is its
inside radius, then its cross-sectional area is π(r2o − r2i ) and its resistance is

RB =
ρL

π(r2o − r2i )
.

The ratio is
RA
RB

=
r2o − r2i
r2A

=
(1.0mm)2 − (0.50mm)2

(0.50mm)2
= 3.0 .



CHAPTER 26 SOLUTION FOR PROBLEM 47

(a) and (b) Calculate the electrical resistances of the wires. Let ρC be the resistivity of wire C,
rC be its radius, and LC be its length. Then the resistance of this wire is

RC = ρC
LC
πr2C

= (2.0× 10−6Ω ·m) 1.0m
π(0.50× 10−3 m)2 = 2.54Ω .

Let ρD be the resistivity of wire D, rD be its radius, and LD be its length. Then the resistance
of this wire is

RD = ρD
LD
πr2D

= (1.0× 10−6Ω ·m) 1.0m
π(0.25× 10−3 m)2 = 5.09Ω .

If i is the current in the wire, the potential difference between points 1 and 2 is

∆V12 = iRC = (2.0A)(2.54Ω) = 5.1V

and the potential difference between points 2 and 3 is

∆V23 = iRD = (2.0A)(5.09Ω) = 10V .

(c) and (d) The rate of energy dissipation between points 1 and 2 is

P12 = i2RC = (2.0A)2(2.54Ω) = 10W

and the rate of energy dissipation between points 2 and 3 is

P23 = i2RD = (2.0A)2(5.09Ω) = 20W .



CHAPTER 26 HINT FOR PROBLEM 7

The cross-sectional area of wire is given by A = πr2, where r is its radius. The magnitude of
the current density is J = i/A. Solve for r and double the result to obtain the diameter.

ans: 0.38mm



CHAPTER 26 HINT FOR PROBLEM 13

The conductivity is given by σ = J/E, where J is the magnitude of the current density and E
is the magnitude of the electric field in the wire. The magnitude of the current density is the
current divided by the cross-sectional area and the magnitude of the electric field is the potential
difference divided by the length.

ans: 2.0× 106 (Ω ·m)−1



CHAPTER 26 HINT FOR PROBLEM 29

The current is the potential difference divided by the resistance. The magnitude of the current
density is the current divided by the cross-sectional area. To calculate the drift speed vd use
J = nevd, where J is the magnitude of the current density and n is the free-electron concentration.
The magnitude of the electric field is the potential difference divided by the front-to-rear length.

ans: (a) 38.3mA; (b) 109A/m2; (c) 1.28 cm/s; (d) 227V/m



CHAPTER 26 HINT FOR PROBLEM 37

The rate of energy dissipation is given by P = V2/R, where V is the potential difference across
the resistor and R its resistance. For the same resistor connected to two different batteries the
ratio of the dissipation rates is P1/P2 = V 21 /V 22 .

ans: 0.135W



CHAPTER 26 HINT FOR PROBLEM 43

Multiply the power of the bulb by the duration of a month in hours and divide by 1000 to get
the energy dissipated in kilowatt·hours. Finally, multiply by the cost of a kilowatt·hour to get the
total cost. Use P = V 2/R, where P is the power of the bulb, V is the potential difference, and
R is the resistance, to calculate the resistance of the bulb and V = iR to calculate the current i.

ans: (a) $4.46US; (b) 144Ω; (c) 0.833A



CHAPTER 27 SOLUTION FOR PROBLEM 5

(a) Let i be the current in the circuit and take it to be positive if it is to the left in R1. Use
Kirchhoff’s loop rule: E1 − iR2 − iR1 − E2 = 0. Solve for i:

i =
E1 − E2
R1 +R2

=
12V− 6.0V
4.0Ω + 8.0Ω

= 0.50A .

A positive value was obtained, so the current is counterclockwise around the circuit.
(b) and (c) If i is the current in a resistor R, then the power dissipated by that resistor is given
by P = i2R. For R1, the power dissipated is

P1 = (0.50A)2(4.0Ω) = 1.0W

and for R2, the power dissipated is

P2 = (0.50A)2(8.0Ω) = 2.0W .

(d) and (e) If i is the current in a battery with emf E , then the battery supplies energy at the rate
P = iE provided the current and emf are in the same direction. The battery absorbs energy at
the rate P = iE if the current and emf are in opposite directions. For battery 1 the power is

P1 = (0.50A)(12V) = 6.0W

and for battery 2 it is
P2 = (0.50A)(6.0V) = 3.0W .

(f) and (g) In battery 1, the current is in the same direction as the emf so this battery supplies
energy to the circuit. The battery is discharging. The current in battery 2 is opposite the direction
of the emf, so this battery absorbs energy from the circuit. It is charging.



CHAPTER 27 SOLUTION FOR PROBLEM 33

(a) First find the currents. Let i1 be the current in R1 and take it to be positive if it is to the
right. Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 be the current
in R3 and take it to be positive if it is to downward. The junction rule produces

i1 + i2 − i3 = 0 .

The loop rule applied to the left-hand loop produces

E1 − i1R1 − i3R3 = 0

and applied to the right-hand loop produces

E2 − i2R2 − i3R3 = 0 .

Substitute i3 = −i1 + i2, from the first equation, into the other two to obtain

E1 − i1R1 − i1R3 − i2R3 = 0

and
E2 − i2R2 − i1R3 − i2R3 = 0 .

The first of these yields

i1 =
E1 − i2R3
R1 +R3

.

Substitute this into the second equation and solve for i2. You should obtain

i2 =
E2(R1 +R3)− E1R3
R1R2 +R2R3 +R1R3

=
(1.00V)(4.00Ω + 5.00Ω)− (3.00V)(5.00Ω)

(4.00Ω)(2.00Ω) + (2.00Ω)(5.00Ω) + (4.00Ω)(5.00Ω)
= −0.158A .

Substitute this into the expression for i1 to obtain

i1 =
E1 − i2R3
R1 +R3

=
3.00V− (−0.158A)(5.00Ω)

4.00Ω + 5.00Ω
= 0.421A .

Finally,
i3 = i1 + i2 = (0.421A) + (−0.158A) = 0.263A .

Note that the current in R2 is actually to the right. The current in R1 is to the right and the
current in R3 is downward.



(a), (b), and (c) The rate with which energy is dissipated in R1 is

P1 = i21R1 = (0.421A)
2(4.00Ω) = 0.709W .

The rate with which energy is dissipated in R2 is

P2 = i22R2 = (−0.158A)2(2.00Ω) = 0.0499W ,

and the rate with which energy is dissipated in R3 is

P3 = i23R3 = (0.263A)2(5.00Ω) = 0.346W ,

(d) and (e) The power of battery 1 is

i1E1 = (0.421A)(3.00V) = 1.26W

and the power of battery 2 is

i2E2 = (−0.158A)(1.00V) = −0.158W .

The negative sign indicates that battery 2 is actually absorbing energy from the circuit.



CHAPTER 27 SOLUTION FOR PROBLEM 53

(a), (b), and (c) At t = 0, the capacitor is completely uncharged and the current in the capacitor
branch is as it would be if the capacitor were replaced by a wire. Let i1 be the current in R1 and
take it to be positive if it is to the right. Let i2 be the current in R2 and take it to be positive if it is
downward. Let i3 be the current in R3 and take it to be positive if it is downward. The junction
rule produces i1 = i2+i3, the loop rule applied to the left-hand loop produces E−i1R1−i2R2 = 0,
and the loop rule applied to the right-hand loop produces i2R2− i3R3 = 0. Since the resistances
are all the same, you can simplify the mathematics by replacing R1, R2, and R3 with R. The
solution to the three simultaneous equations is

i1 =
2E
3R

=
2(1.2× 103 V)
3(0.73× 106Ω) = 1.1× 10

−3 A

and
i2 = i3 =

E
3R

=
1.2× 103 V

3(0.73× 106Ω) = 5.5× 10
−4 A .

(d), (e), and (f) At t =∞, the capacitor is fully charged and the current in the capacitor branch
is zero. Then i1 = i2 and the loop rule yields

E − i1R1 − i1R2 = 0 .

The solution is
i1 = i2 =

E
2R

=
1.2× 103 V

2(0.73× 106Ω) = 8.2× 10
−4 A .

(g) and (h) The potential difference across resistor 2 is V2 = i2R2. At t = 0 it is

V2 = (5.5× 10−4 A)(0.73× 106Ω) = 4.0× 102 V

and at t =∞ it is
V2 = (8.2× 10−4 A)(0.73× 106Ω) = 6.0× 102 V .

(i) The graph of V2 versus t is shown to the right.
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.................................................................................



CHAPTER 27 HINT FOR PROBLEM 7

Since the battery is being charged the potential difference across its terminals is given by E + ir,
where E is its emf and r is its internal resistance. Energy is dissipated at a rate that is given
by i2r and is being converted to chemical energy at a rate of Ei. When the battery is being
discharged the potential difference across its terminals is given by E − ir.

ans: (a) 14V; (b) 1.0× 102W; (c) 6.0× 102W; (d) 10V, 1.0× 102W



CHAPTER 27 HINT FOR PROBLEM 17

R1 and R2 are in parallel and their equivalent resistor is in series with R3.

ans: 4.50Ω



CHAPTER 27 HINT FOR PROBLEM 25

The dissipation rate in R3 is given by i23R3, where i3 is the current in R3. Use the loop and
junction rules to find an expression for i3 in terms of R3, then set its derivative with respect to
R3 equal to zero and solve for R3.

ans: 1.43Ω



CHAPTER 27 HINT FOR PROBLEM 37

Write one junction and two loop equation, then solve them simultaneously for the current in R3.
Assume the ammeter has zero resistance.

ans: 0.45A



CHAPTER 27 HINT FOR PROBLEM 43

Use the loop equation for the loop containing R1, R2, Rs, and Rx. Write an expression for the
potential difference Vb − Va and set it equal to zero. Solve these two equations for Rx.



CHAPTER 27 HINT FOR PROBLEM 51

The energy initially stored by the capacitor is given by q20/2C, where q0 is the initial charge.
Solve for q0. At any time t the charge on the capacitor is given by q = q0e−t/τ , and the current
is given by i = (q0/τ )e−t/τ , where τ (= RC) is the capacitive time constant. The potential
difference across the capacitor is q/C, the potential difference across the resistor is iR, and the
rate of thermal energy production in the resistor is given by i2R.

ans: (a) 1.0 × 10−3 C; (b) 1.0 × 10−3 A; (c) (1.0 × 103 V) e−t; (d) (1.0 × 103 V) e−t; (e)
P = e−2tW



CHAPTER 28 SOLUTION FOR PROBLEM 9

For the particle to be undeflected the only component of the net force that does not vanish is
the component that is parallel to the particle velocity. The electric field is the smallest possible
if all components of the net force vanish. Thus e(nE + nv × nB) = 0. The electric field nE must
be perpendicular to both the particle velocity nv and the magnetic field nB. The magnetic field
is perpendicular to the velocity, so nv × nB has magnitude vB and the magnitude of the electric
field is given by E = vB. Since the particle has charge e and is accelerated through a potential
difference V , 12mv

2 = eV and v = 2eV/m. Thus

E = B
2eV
m

= (1.2 T)
2(1.60× 10−19 C)(10× 103 V)

9.99× 10−27 kg = 6.8× 105 V/m .



CHAPTER 28 SOLUTION FOR PROBLEM 23

(a) If v is the speed of the positron, then v sinφ is the component of its velocity in the plane
that is perpendicular to the magnetic field. Here φ is the angle between the velocity and the field
(89◦). Newton’s second law yields eBv sinφ = m(v sinφ)2/r, where r is the radius of the orbit.
Thus r = (mv/eB) sinφ. The period is given by

T =
2πr
v sinφ

=
2πm
eB

=
2π(9.11× 10−31 kg)

(1.60× 10−19 C)(0.100 T) = 3.58× 10
−10 s .

The expression for r was substituted to obtain the second expression for T .
(b) The pitch p is the distance traveled along the line of the magnetic field in a time interval of
one period. Thus p = vT cosφ. Use the kinetic energy to find the speed: K = 12mv

2 means

v =
2K
m
=

2(2.0× 103 eV)(1.60× 10−19 J/eV)
9.11× 10−31 kg = 2.651× 107 m/s .

Thus
p = (2.651× 107 m/s)(3.58× 10−10 s) cos 89.0◦ = 1.66× 10−4 m .

(c) The orbit radius is

r =
mv sinφ
eB

=
(9.11× 10−31 kg)(2.651× 107 m/s) sin 89.0◦

(1.60× 10−19 C)(0.100 T) = 1.51× 10−3 m .



CHAPTER 28 SOLUTION FOR PROBLEM 37

The magnetic force must push horizontally on the rod to overcome the force of friction. But it
can be oriented so it also pulls up on the rod and thereby reduces both the normal force and the
maximum possible force of static friction.
Suppose the magnetic field makes the angle θ with the vertical. The
diagram to the right shows the view from the end of the sliding rod.
The forces are also shown: FB is the force of the magnetic field if
the current is out of the page, mg is the force of gravity, N is the
normal force of the stationary rails on the rod, and f is the force
of friction. Notice that the magnetic force makes the angle θ with
the horizontal. When the rod is on the verge of sliding, the net
force acting on it is zero and the magnitude of the frictional force
is given by f = µsN , where µs is the coefficient of static friction.
The magnetic field is perpendicular to the wire so the magnitude
of the magnetic force is given by FB = iLB, where i is the current
in the rod and L is the length of the rod.
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The vertical component of Newton’s second law yields

N + iLB sin θ −mg = 0

and the horizontal component yields

iLB cos θ − µsN = 0 .

Solve the second equation for N and substitute the resulting expression into the first equation,
then solve for B. You should get

B =
µsmg

iL(cos θ + µs sin θ)
.

The minimum value of B occurs when cos θ + µs sin θ is a maximum. Set the derivative of
cos θ + µs sin θ equal to zero and solve for θ. You should get θ = tan−1 µs = tan−1(0.60) = 31◦.
Now evaluate the expression for the minimum value of B:

Bmin =
0.60(1.0 kg)(9.8m/s2)

(50A)(1.0m)(cos 31◦ + 0.60 sin 31◦)
= 0.10 T .



CHAPTER 28 HINT FOR PROBLEM 7

Take the magnetic field to be perpendicular to both the electric field and the particle velocity.
Since the net force on the electron is zero the magnitudes of the fields are related by E = vB,
where E is the magnitude of the electric field, B is the magnitude of the magnetic field, and
v is the speed of the electron. The magnitude of the electric field is E = V/d, where V is the
potential difference between the plates and d is the plate separation. The electric field points
from the positive plate toward the negative plate. Choose the direction of the magnetic field so
that the direction of the magnetic force is opposite to the direction of the electric force.

ans: −0.267mT



CHAPTER 28 HINT FOR PROBLEM 13

Since the net force on electrons in the solid is zero the electric field is given by nE = nv × nB,
where nv is the velocity of the solid and nB is the magnetic field. The potential difference across
the solid is Ed, where d is the width of the solid along the direction of the electric field.

ans: (a) (−600mV/m) k̂; (b) 1.20V



CHAPTER 28 HINT FOR PROBLEM 21

The magnitude of the magnetic force is FB = ev⊥B, where v⊥ is the component of the particle
velocity perpendicular to the magnetic field and B is the magnitude of the field. The pitch is
p = v,T , where v, is the component of the particle velocity along the direction of the field and
T is the period of the motion. The period is T = 2πm/eB.

ans: 65.3m/s



CHAPTER 28 HINT FOR PROBLEM 27

Linear momentum is conserved in the decay and the particles have the same mass, so they move
away in opposite directions with the same speed. They collide after they have gone halfway
around their circular orbits. This occurs after a time equal to half a period of the motion. The
period is given by T = 2πm/eB.

ans: (a) 5.06 ns



CHAPTER 28 HINT FOR PROBLEM 35

The magnetic force on the wire must be upward and equal in magnitude to the weight of the
wire. The magnetic force is given by inL × nB, where i is the current, nB is the magnetic field,
and L is the length of the wire. The vector nL is in the direction of the current.

ans: (a) 467mA; (b) right



CHAPTER 28 HINT FOR PROBLEM 53

The magnitude of the magnetic dipole moment is the product of the loop area (πR2, where R is
the radius) and the current in the loop. Multiply this by the unit vector in the direction of the
dipole moment to find the vector moment. The torque is the vector product of the dipole moment
and the magnetic field. The magnetic potential energy is the negative of the scalar product of the
dipole moment and the field.

ans: (a) (−9.7× 10−4 N ·m) î− (7.2× 10−4 N ·m) ĵ + (8.0× 10−4 N ·m) k̂;
(b) −6.0× 10−4 J



CHAPTER 29 SOLUTION FOR PROBLEM 5

First find the magnetic field of a circular arc at its center.
Let dns be an infinitesimal segment of the arc and nr be
the vector from the segment to the arc center. dns and nr
are perpendicular to each other, so the contribution of the
segment to the field at the center has magnitude

dB =
µ0i

4πr2
ds .
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The field is into the page if the current is from left to right in the diagram and out of the page
if the current is from right to left. All segments contribute magnetic fields in the same direction.
Furthermore, r is the same for all of them. Thus the magnitude of the net field at the center is
given by

B =
µ0is

4πr2
=
µ0iθ

4πr
.

Here s is the arc length and θ is the angle (in radians) subtended by the arc at its center. The
second expression was obtained by replacing s with rθ. θ must be in radians for this expression
to be valid.
Now consider the circuit of Fig. 29–36. The magnetic field produced by the inner arc has
magnitude µ0iθ/4πb and is out of the page. The field produced by the outer arc has magnitude
µ0iθ/4πa and is into the page. The two straight segments of the circuit do not produce fields
at the center of the arcs because the vector nr from any point on them to the center is parallel or
antiparallel to the current at that point. If the positive direction is out of the page, then the net
magnetic field at the center is

B =
µ0iθ

4π
1
b
− 1
a

=
(4π × 10−7 T ·m/A)(0.411A)(79.0◦)(1.745× 10−2 rad/deg)

4π
1

0.107m
− 1
0.135m

= 1.03× 10−7 T .

Since b < a, the net field is out of the page.



CHAPTER 29 SOLUTION FOR PROBLEM 17

Put the x axis along the wire with the origin at the midpoint
and the current in the positive x direction. All segments of
the wire produce magnetic fields at P1 that are into the page
so we simply divide the wire into infinitesimal segments and
sum the fields due to all the segments. The diagram shows
one infinitesimal segment, with length dx. According to the
Biot-Savart law, the magnitude of the field it produces at P1
is given by

dB =
µ0i

4π
sin θ
r2

dx .

θ and r are functions of x. Replace r with
√
x2 +R2 and
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P1

R

x dx

nr

θ

sin θ with R/r = R/
√
x2 +R2, then integrate from x = −L/2 to x = L/2. The net field is

B =
µ0iR

4π

L/2

−L/2

dx

(x2 +R2)3/2
=
µ0iR

4π
1
R2

x

(x2 +R2)1/2
L/2

−L/2
=
µ0i

2πR
L√

L2 + 4R2

=
4π × 10−7 T ·m/A)(0.0582A)

2π(0.131m)
0.180m

(0.180m)2 + 4(0.131m)2
= 5.03× 10−8 T .



CHAPTER 29 SOLUTION FOR PROBLEM 45

(a) Assume that the point is inside the solenoid. The field of the solenoid at the point is parallel
to the solenoid axis and the field of the wire is perpendicular to the solenoid axis. The net field
makes an angle of 45◦ with the axis if these two fields have equal magnitudes.
The magnitude of the magnetic field produced by a solenoid at a point inside is given by Bsol =
µ0isoln, where n is the number of turns per unit length and isol is the current in the solenoid.
The magnitude of the magnetic field produced by a long straight wire at a point a distance r
away is given by Bwire = µ0iwire/2πr, where iwire is the current in the wire. We want µ0nisol =
µ0iwire/2πr. The solution for r is

r =
iwire
2πnisol

=
6.00A

2π(10.0× 102 m−1)(20.0× 10−3 A) = 4.77× 10
−2 m = 4.77 cm .

This distance is less than the radius of the solenoid, so the point is indeed inside as we assumed.
(b) The magnitude of the either field at the point is

Bsol = Bwire = µ0nisol = (4π × 10−7 T ·m/A)(10.0× 102 m−1)(20.0× 10−3 A) = 2.51× 10−5 T .

Each of the two fields is a component of the net field, so the magnitude of the net field is the square
root of the sum of the squares of the individual fields: B = 2(2.51× 10−5 T)2 = 3.55×10−5 T.



CHAPTER 29 HINT FOR PROBLEM 11

Since the velocity of the proton is perpendicular to the magnetic field, the magnitude of the force
on the proton is given by F = evB, where v is the speed of the proton and B is the magnitude
of the field. The magnitude of the field is given by B = µ0i/2πr, where i is the current in the
wire and r is the distance of the proton from the wire. The direction of the field is given by the
fingers of your right hand when your thumb is along the wire in the direction of the current. The
direction of the force on the proton is the direction of the vector product nv ×nB.

ans: (−7.76× 10−23 N) î



CHAPTER 29 HINT FOR PROBLEM 25

The magnitude of the magnetic field produced by a straight wire of length L at a point that is a
distance R from an end of the wire on a line that is perpendicular to the wire is given by

B =
µ0i

4πR
L√

L2 +R2
.

(See problem 19.) To find the direction of the field point the thumb of your right hand along the
wire in the direction of the current. Your fingers then curl around the wire in the direction of the
field lines. Vectorially add the field of the six wires.

ans: (a) 20µT; (b) into



CHAPTER 29 HINT FOR PROBLEM 31

The magnitude of the force per unit length of a long straight current-carrying wire on a parallel
long straight current-carrying wire is given by F/L = µ0iaib/2πd, where ia and ib are the currents
in the wires and d is the separation of the wires. If the currents are in the same direction, the force
is one of attraction along a line joining the wires and if the currents are in opposite directions,
the force is one of repulsion along such a line. To find the net force on wire 4 sum the forces of
the other wires on it.

ans: (−125µN/m) î + (41.7µN/m) ĵ



CHAPTER 37 HINT FOR PROBLEM U

se Ampere’s law with an Amperian loop that is a circle of radius r, concentric with the wire.
The law gives B2πr = µ0ienc, where B is the magnitude of the magnetic field a distance r from
the central axis of the wire and ienc is the current through the loop. If r < a, then ienc = (r/a)2i,
where i is the total current in the wire. If r > a, then Ienc = i.

ans: (a) 0; (b) 0.850mT; (c) 1.70mT; (d) 0.850mT



CHAPTER 41 HINT FOR PROBLEM T

he magnitude of the magnetic field inside a solenoid is given by B = µ0ni, where n is the number
of turns per unit length of the solenoid and i is the current in the solenoid.

ans: 0.30mT



CHAPTER 30 SOLUTION FOR PROBLEM 5

The magnitude of the magnetic field inside the solenoid is B = µ0nis, where n is the number
of turns per unit length and is is the current. The field is parallel to the solenoid axis, so the
flux through a cross section of the solenoid is ΦB = AsB = µ0πr2snis, where As (= πr2s) is the
cross-sectional area of the solenoid. Since the magnetic field is zero outside the solenoid, this is
also the flux through the coil. The emf in the coil has magnitude

E = NdΦB
dt

= µ0πr2sNn
dis
dt

and the current in the coil is
ic =

E
R
=
µ0πr

2
sNn

R

dis
dt
,

where N is the number of turns in the coil and R is the resistance of the coil. The current
changes linearly by 3.0A in 50ms, so dis/dt = (3.0A)/(50× 10−3 s) = 60A/s. Thus

ic =
(4π × 10−7 T ·m/A)π(0.016m)2(120)(220× 102 m−1)

5.3Ω
(60A/s) = 3.0× 10−2 A .



CHAPTER 30 SOLUTION FOR PROBLEM 25

(a) Suppose each wire has radius R and the distance
between their axes is a. Consider a single wire and
calculate the flux through a rectangular area with the
axis of the wire along one side. Take this side to have
length L and the other dimension of the rectangle to be
a. The magnetic field is everywhere perpendicular to
the rectangle. First consider the part of the rectangle
that is inside the wire. The field a distance r from the
axis is given by B = µ0ir/2πR2 and the flux through
the strip of length L and width dr at that distance is
(µ0ir/2πR2)Ldr. Thus the flux through the area inside
the wire is

................................................................................ ...................................................... .................
R

←−−−−− a −−−−−→

↑||
L
||↓

←dr→

Φin =
R

0

µ0iL

2πR2
r dr =

µ0iL

4π
.

Now consider the region outside the wire. There the field is given by B = µ0i/2πr and the flux
through an infinitesimally thin strip is (µ0i/2πr)Ldr. The flux through the whole region is

Φout =
a

R

µ0iL

2π
dr

r
=
µ0iL

2π
ln

a

R
.

The total flux through the area bounded by the dashed lines is the sum of the two contributions:

Φ =
µ0iL

4π
1 + 2 ln

a

R
.

Now include the contribution of the other wire. Since the currents are in the same direction, the
two contributions have the same sign. They also have the same magnitude, so

Φtotal =
µ0iL

2π
1 + 2 ln

a

R
.

The total flux per unit length is

Φtotal
L

=
µ0i

2π
1 + 2 ln

a

R
=
(4π × 10−7 T ·m/A)(10A)

2π
1 + 2 ln

20mm
1.25mm

= 1.31× 10−5 Wb/m .

(b) Again consider the flux of a single wire. The flux inside the wire itself is again Φin = µ0iL/4π.
The flux inside the region due to the other wire is

Φout =
a

a−R

µ0iL

2π
dr

r
=
µ0iL

2π
ln

a

a−R .



Add Φin and Φout, then double the result to include the flux of the other wire and divide by L to
obtain the flux per unit length. The total flux per unit length that is inside the wires is

Φwires
L

=
µ0i

2π
1 + 2 ln

a

a− R
=
(4π × 10−7 T ·m/A)(10A)

2π
1 + 2 ln

20mm
20mm− 1.25mm

= 2.26× 10−6 Wb/m .
The fraction of the total flux that is inside the wires is

2.26× 10−6 Wb/m
1.31× 10−5 Wb/m = 0.17

or 17%.
(c) The contributions of the two wires to the total flux have the same magnitudes but now the
currents are in opposite directions, so the contributions have opposite signs. This means Φtotal = 0.



CHAPTER 30 SOLUTION FOR PROBLEM 33

(a) Let x be the distance from the right end of the rails to the rod and find an expression for the
magnetic flux through the area enclosed by the rod and rails. The magnetic field is not uniform
but varies with distance from the long straight wire. The field is normal to the area and has
magnitude B = µ0i/2πr, where r is the distance from the wire and i is the current in the wire.
Consider an infinitesimal strip of length x and width dr, parallel to the wire and a distance r
from it. The area of this strip is A = x dr and the flux through it is dΦB = (µ0ix/2πr) dr. The
total flux through the area enclosed by the rod and rails is

ΦB =
µ0ix

2π

a+L

a

dr

r
=
µ0ix

2π
ln

a + L
a

.

According to Faraday’s law, the emf induced in the loop is

E = dΦ
dt
=
µ0i

2π
dx

dt
ln

a + L
a

=
µ0iv

2π
ln

a + L
a

=
(4π × 10−7 T ·m/A)(100A)(5.00m/s)

2π
ln

1.00 cm + 10.0 cm
1.00 cm

= 2.40× 10−4 V .
(b) If R is the resistance of the rod, then the current in the conducting loop is

if =
E
R
=
2.40× 10−4 V
0.400Ω

= 6.00× 10−4 A .

Since the flux is increasing, the magnetic field produced by the induced current must be into the
page in the region enclosed by the rod and rails. This means the current is clockwise.
(c) Thermal energy is generated at the rate

P = i2fR = (6.00× 10−4 A)2(0.400Ω) = 1.44× 10−7 W .
(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the
external agent must have the same magnitude as the magnetic force and must be in the opposite
direction. The magnitude of the magnetic force on an infinitesimal segment of the rod, with
length dr and a distance r from the long straight wire, is dFB = ifB dr = (µ0ifi/2πr) dr. The
total magnetic force on the rod has magnitude

FB =
µ0ifi

2π

a+L

a

dr

r
=
µ0ifi

2π
ln

a + L
a

=
(4π × 10−7 T ·m/A)(6.00× 10−4 A)(100A)

2π
ln

1.00 cm + 10.0 cm
1.00 cm

= 2.87× 10−8 N .
Since the field is out of the page and the current in the rod is upward in the diagram, this force
is toward the right. The external agent must apply a force of 2.87× 10−8 N, to the left.



(e) The external agent does work at the rate

P = Fv = (2.87× 10−8 N)(5.00m/s) = 1.44× 10−7 W .

This is the same as the rate at which thermal energy is generated in the rod. All the energy
supplied by the agent is converted to thermal energy.



CHAPTER 30 SOLUTION FOR PROBLEM 57

(a) Assume i is from left to right through the closed switch. Let i1 be the current in the resistor
and take it to be downward. Let i2 be the current in the inductor and also take it to be downward.
The junction rule gives i = i1 + i2 and the loop rule gives i1R−L(di2/dt) = 0. Since di/dt = 0,
the junction rule yields (di1/dt) = −(di2/dt). Substitute into the loop equation to obtain

L
di1
dt
+ i1R = 0 .

This equation is similar to Eq. 30–44, and its solution is the function given as Eq. 30–45:

i1 = i0e−Rt/L ,

where i0 is the current through the resistor at t = 0, just after the switch is closed. Now, just
after the switch is closed, the inductor prevents the rapid build-up of current in its branch, so at
that time, i2 = 0 and i1 = i. Thus i0 = i, so

i1 = ie−Rt/L

and
i2 = i− i1 = i 1− e−Rt/L .

(b) When i2 = i1,
e−Rt/L = 1− e−Rt/L ,

so
e−Rt/L =

1
2
.

Take the natural logarithm of both sides and use ln(1/2) = − ln 2 to obtain (Rt/L) = ln 2 or

t =
L

R
ln 2 .



CHAPTER 30 HINT FOR PROBLEM 11

The magnetic flux though the coil is the product of the magnitude of the magnetic field, the area
of the coil, the number of turns, and the cosine of the angle between the normal to the coil and
the magnetic field. This angle, in radians, is given by 2πft, where f is the frequency of rotation
and t is the time. Differentiate the flux with respect to time to find the emf.

ans: (b) 0.786m2



CHAPTER 30 HINT FOR PROBLEM 15

Use Faraday’s law. The area of the circuit is AR + AS cos(ωt), where AR is the area of the
rectangular portion, AS is the area of the semicircle, and ω is the angular frequency of rotation.
The magnetic flux through the circuit is the product of the area and the magnitude of the magnetic
field. Differentiate the flux with respect to time to find the induced emf.

ans: (a) 40Hz; (b) 3.2mV



CHAPTER 30 HINT FOR PROBLEM 31

Use Faraday’s law. The area of the circuit is changing. The magnetic flux through the circuit is
Bwx, where B is the magnitude of the magnetic field, w is the width of the circuit, and x is the
distance of the rod from the right end of the rails. The rate of change of the flux is Bwv, where
v (= dx/dt) is the speed of the rod. The current in the circuit is the induced emf divided by the
resistance. The rate of production of thermal energy is i2R, where i is the current and R is the
resistance. Since the rod moves with constant velocity, the force that must be applied is equal in
magnitude to the magnetic force on the rod. The rate with which the external force does work is
the product of the force and the speed of the rod.

ans: (a) 0.60V; (b) up; (c) 1.5A; (d) clockwise; (e) 0.90W; (f) 0.18N; (g) 0.90W



CHAPTER 30 HINT FOR PROBLEM 45

The current is the same in the two inductors and the total emf is the sum of their emfs. The
equivalent inductance is the total emf divided by the rate of change of the current.

ans: (b) Leq =
N

j=1

Lj



CHAPTER 30 HINT FOR PROBLEM 51

The current is given by i = i0e−t/τL , where i0 is the current at time t = 0 and τL is the inductive
time constant. Solve for τL by taking the natural logarithm of both sides, then use τL = L/R to
compute R. Here L is the inductance and R is the resistance.

ans: 46Ω



CHAPTER 30 HINT FOR PROBLEM 65

The electric energy density is given by 1260E
2 and the magnetic energy density is given by B2/2µ0.

Here E is the magnitude of the electric field and B is the magnitude of the magnetic field. Equate
the two energy densities and solve for E.

ans: 1.5× 108 V/m



CHAPTER 31 SOLUTION FOR PROBLEM 15

(a) Since the frequency of oscillation f is related to the inductance L and capacitance C by
f = 1/2π

√
LC, the smaller value of C gives the larger value of f . Hence, fmax = 1/2π

√
LCmin,

fmin = 1/2π
√
LCmax, and

fmax
fmin

=
√
Cmax√
Cmin

=
√
365 pF√
10 pF

= 6.0 .

(b) You want to choose the additional capacitance C so the ratio of the frequencies is

r =
1.60MHz
0.54MHz

= 2.96 .

Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds to that
of the tuning capacitor. If C is in picofarads, then

√
C + 365 pF√
C + 10 pF

= 2.96 .

The solution for C is
C =

(365 pF)− (2.96)2(10 pF)
(2.96)2 − 1 = 36 pF .

(c) Solve f = 1/2π
√
LC for L. For the minimum frequency, C = 365 pF + 36 pF = 401 pF and

f = 0.54MHz. Thus,

L =
1

(2π)2Cf 2
=

1
(2π)2(401× 10−12 F)(0.54× 106 Hz)2 = 2.2× 10

−4 H .



CHAPTER 31 SOLUTION FOR PROBLEM 45

(a) For a given amplitude Em of the generator emf, the current amplitude is given by

I =
Em
Z
=

Em
R2 + (ωdL− 1/ωdC)2

,

where R is the resistance, L is the inductance, C is the capacitance, and ωd is the angular
frequency. To find the maximum, set the derivative with respect to ωd equal to zero and solve
for ωd. The derivative is

dI

dωd
= −Em R2 + (ωdL− 1/ωdC)2 −3/2 ωdL− 1

ωdC
L +

1
ω2dC

.

The only factor that can equal zero is ωdL − (1/ωdC) and it does for ωd = 1/
√
LC. For the

given circuit,

ωd =
1√
LC

=
1

(1.00H)(20.0× 10−6 F) = 224 rad/s .

(b) For this value of the angular frequency, the impedance is Z = R and the current amplitude is

I =
Em
R
=
30.0V
5.00Ω

= 6.00A .

(c) and (d) You want to find the values of ωd for which I = Em/2R. This means
Em

R2 + (ωdL− 1/ωdC)2
=
Em
2R

.

Cancel the factors Em that appear on both sides, square both sides, and set the reciprocals of the
two sides equal to each other to obtain

R2 + ωdL− 1
ωdC

2

= 4R2 .

Thus

ωdL− 1
ωdC

2

= 3R2 .

Now take the square root of both sides and multiply by ωdC to obtain

ω2d (LC)± ωd
√
3CR − 1 = 0 ,

where the symbol ± indicates the two possible signs for the square root. The last equation is a
quadratic equation for ωd. Its solutions are

ωd =
±√3CR±

√
3C2R2 + 4LC

2LC
.



You want the two positive solutions. The smaller of these is

ω2 =
−√3CR +

√
3C2R2 + 4LC

2LC

=
−√3(20.0× 10−6 F)(5.00Ω)
2(1.00H)(20.0× 10−6 F)

+
3(20.0× 10−6 F)2(5.00Ω)2 + 4(1.00H)(20.0× 10−6 F)

2(1.00H)(20.0× 10−6 F)
= 219 rad/s

and the larger is

ω1 =
+
√
3CR +

√
3C2R2 + 4LC
2LC

=
+
√
3(20.0× 10−6 F)(5.00Ω)
2(1.00H)(20.0× 10−6 F)

+
3(20.0× 10−6 F)2(5.00Ω)2 + 4(1.00H)(20.0× 10−6 F)

2(1.00H)(20.0× 10−6 F)
= 228 rad/s .

(e) The fractional width is

ω1 − ω2
ω0

=
228 rad/s− 219 rad/s

224 rad/s
= 0.04 .



CHAPTER 31 SOLUTION FOR PROBLEM 55

(a) The power factor is cosφ, where φ is the phase angle when the current is written i =
I sin(ωdt− φ). Thus φ = −42.0◦ and cosφ = cos(−42.0◦) = 0.743.
(b) Since φ < 0, ωdt− φ > ωdt and the current leads the emf.
(c) The phase angle is given by tanφ = (XL − XC)/R, where XL is the inductive reactance,
XC is the capacitive reactance, and R is the resistance. Now tanφ = tan(−42.0◦) = −0.900, a
negative number. This means XL − XC is negative, or XC > XL. The circuit in the box is
predominantly capacitive.
(d) If the circuit is in resonance, XL is the same as XC , tanφ is zero, and φ would be zero.
Since φ is not zero, we conclude the circuit is not in resonance.
(e), (f), and (g) Since tanφ is negative and finite, neither the capacitive reactance nor the resistance
is zero. This means the box must contain a capacitor and a resistor. The inductive reactance may
be zero, so there need not be an inductor. If there is an inductor, its reactance must be less than
that of the capacitor at the operating frequency.
(h) The average power is

Pav =
1
2
EmI cosφ = 12(75.0V)(1.20A)(0.743) = 33.4W .

(i) The answers above depend on the frequency only through the phase angle φ, which is given.
If values are given for R, L, and C, then the value of the frequency would also be needed to
compute the power factor.



CHAPTER 31 HINT FOR PROBLEM 11

When the capacitor has maximum charge Q the potential difference across it is a maximum. Use
Q = CV to compute the maximum charge. Here V is the maximum potential difference. The
maximum current is related to the maximum charge by I = ωQ, where ω (= 1/

√
LC) is the

angular frequency of oscillation. The maximum energy stored in the inductor is 12LI
2.

ans: (a) 3.0 nC; (b) 1.7mA; (c) 4.5 nJ



CHAPTER 31 HINT FOR PROBLEM 17

The total energy is the sum of the energy stored in the capacitor and the energy stored in the
inductor. The total energy is also the energy in the capacitor when it has maximum charge and
is the energy in the inductor when the current is maximum. If q = Q cos(ωt + φ) the charge on
the capacitor at time t = 0 is q0 = Q cosφ. There are two solutions for φ. To answer part (a)
you want the one for which the current is positive and to answer part (b) you want the one for
which the current is negative. The current at t = 0 is −ωQ sinφ.

ans: (a) 1.98µJ; (b) 5.56µC; (c) 12.6mA; (d) −46.9◦; (e) +46.9◦



CHAPTER 31 HINT FOR PROBLEM 29

The current amplitude is given by Em/XL, where XL (= ωL) is the inductive reactance. The
angular frequency ω is related to the frequency f by ω = 2πf .

ans: (a) 95.5mA; (b) 11.9mA



CHAPTER 31 HINT FOR PROBLEM 35

Removing the capacitor is equivalent to setting the capacitance C equal to infinity (think about a
parallel-plate capacitor with a plate separation of zero). Set the capacitive reactance equal to zero
in the equations for the impedance and phase angle. Use I = Em/Z, where Em is the maximum
emf and Z is the impedance, to compute the maximum current I . Use VR = IR and VL = IXL

to compute the voltage amplitudes for the resistor and inductor, then draw the phasor diagram.
Here XL (ωL) is the inductive reactance, L is the inductance, ω is the angular frequency, and R
is the resistance.

ans: (a) 218Ω; (b) 23.4◦; (c) 165mA



CHAPTER 31 HINT FOR PROBLEM 41

The phase constant φ obeys tanφ = (XL−XC)/R, where XL (= ωL) is the inductive reactance,
XC (= 1/ωC) is the capacitive reactance, R is the resistance, L is the inductance, C is the
capacitance, and ω is the angular frequency. Recall that the angular frequency and frequency F
are related by ω = 2πf .

ans: 89Ω



CHAPTER 31 HINT FOR PROBLEM 49

Replace the three capacitors, which are in parallel, with their equivalent capacitor and the two
inductors, which are in series, with their equivalent inductor. The circuit is now a series LC
circuit and its resonant frequency is determined by the equivalent capacitance and equivalent
inductance.

ans: (a) 796Hz; (b) no change; (c) decreased; (d) increased



CHAPTER 31 HINT FOR PROBLEM 61

The power supplied by the generator is the product of the rms voltage Vt and the rms current
irms. The rate of energy dissipation is i2rms, where R is the total resistance of the two cables.

ans: (a) 2.4V; (b) 3.2mA; (c) 0.16A



CHAPTER 32 SOLUTION FOR PROBLEM 19

If the electric field is perpendicular to a region of a plane and has uniform magnitude over the
region then the displacement current through the region is related to the rate of change of the
electric field in the region by

id = 60A
dE

dt
,

where A is the area of the region. The rate of change of the electric field is the slope of the
graph.
For segment a

dE

dt
=
6.0× 105 N/C− 4.0× 105 N/C

4.0× 10−6 s = 5.0× 1010 N/C · s

and id = (8.85× 10−12 F/m)(1.6m2)(5.0× 1010 N/C · s = 0.71A.
For segment b dE/dt = 0 and id = 0.
For segment c

dE

dt
=
4.0× 105 N/C− 0
2.0× 10−6 s = 2.0× 1011 N/C · s

and id = (8.85× 10−12 F/m)(1.6m2)(2.0× 1011 N/C · s = 2.8A.



CHAPTER 32 SOLUTION FOR PROBLEM 31

(a) The z component of the orbital angular momentum is given by Lorb, z = m h/2π, where h is
the Planck constant. Since m = 0, Lorb, z = 0.
(b) The z component of the orbital contribution to the magnetic dipole moment is given by
µorb, z = −m µB, where µB is the Bohr magneton. Since m = 0, µorb, z = 0.
(c) The potential energy associated with the orbital contribution to the magnetic dipole moment
is given by U = −µorb, zBext, where Bext is the z component of the external magnetic field. Since
µorb, z = 0, U = 0.
(d) The z component of the spin magnetic dipole moment is either +µB or −µB , so the potential
energy is either

U = −µBBext = −(9.27× 10−24 J/T)(35× 10−3 T) = −3.2× 10−25 J .

or U = +3.2× 10−25 J.
(e) Substitute m into the equations given above. The z component of the orbital angular
momentum is

Lorb, z =
m h

2π
=
(−3)(6.626× 10−34 J · s)

2π
= −3.2× 10−34 J · s .

(f) The z component of the orbital contribution to the magnetic dipole moment is

µorb, z = −m µB = −(−3)(9.27× 10−24 J/T) = 2.8× 10−23 J/T .

(g) The potential energy associated with the orbital contribution to the magnetic dipole moment
is

U = −µorb, zBext = −(2.78× 10−23 J/T)(35× 10−3 T) = −9.7× 10−25 J .
(h) The potential energy associated with spin does not depend on m . It is ±3.2× 10−25 J.



CHAPTER 32 SOLUTION FOR PROBLEM 49

(a) If the magnetization of the sphere is saturated, the total dipole moment is µtotal = Nµ, where
N is the number of iron atoms in the sphere and µ is the dipole moment of an iron atom. We
wish to find the radius of an iron sphere with N iron atoms. The mass of such a sphere is Nm,
where m is the mass of an iron atom. It is also given by 4πρR3/3, where ρ is the density of
iron and R is the radius of the sphere. Thus Nm = 4πρR3/3 and

N =
4πρR3

3m
.

Substitute this into µtotal = Nµ to obtain

µtotal =
4πρR3µ
3m

.

Solve for R and obtain

R =
3mµtotal
4πρµ

1/3

.

The mass of an iron atom is

m = 56 u = (56 u)(1.66× 10−27 kg/u) = 9.30× 10−26 kg .

So

R =
3(9.30× 10−26 kg)(8.0× 1022 J/T)
4π(14× 103 kg/m3)(2.1× 10−23 J/T)

1/3

= 1.8× 105 m .

(b) The volume of the sphere is

Vs =
4π
3
R3 =

4π
3
(1.82× 105 m)3 = 2.53× 1016 m3

and the volume of Earth is

Ve =
4π
3
(6.37× 106 m)3 = 1.08× 1021 m3 ,

so the fraction of Earth’s volume that is occupied by the sphere is

2.53× 1016 m3
1.08× 1021 m3 = 2.3× 10

−5 .

The radius of Earth was obtained from Appendix C.



CHAPTER 32 HINT FOR PROBLEM 9

Use the Maxwell law of induction. The magnetic field lines are circles concentric with the
boundary of the region and the magnitude of the field is uniform on a line. Thus nB · dns = 2πrB.
Set this equal to µ060 dΦEenc/dt and solve for B. The region of electric flux extends only to
r = R.

ans: (a) 3.54× 10−17 T; (b) 2.13× 10−17 T



CHAPTER 32 HINT FOR PROBLEM 23

The magnetic field a distance r from the central axis of a uniform distribution of displacement
current is given by B = µoid/2πr, where id is the displacement current though a cross-section.
For part (a) the point is inside the displacement current distribution so you should take id to be
πr2Jd. For part (b) the point is outside so you should take it to be πR2Jd.

ans: (a) 75.4 nT; (b) 67.9 nT



CHAPTER 32 HINT FOR PROBLEM 33

For each of the original levels there is a new level associated with each possible value of m .
Thus one value of m is associated with level E1 and three values are associated with level E2.
Use µorb z = m µB and U = −µorb zBext to compute the difference in energy of the levels for
which m = 0 and m = 1, say.

ans: (a) 0; (b) −1, 0, 1; (c) 4.64× 10−24 J



CHAPTER 32 HINT FOR PROBLEM 41

The magnitude of the dipole moment is iA where i is the current and A (= πr2, where r is the
orbit radius) is the area bounded by the electron’s path. The current is e/T = ev/2πr, where T is
the period of the motion and v is the speed of the electron. The radius of the orbit is r = mv/eB
(see Chapter 28). Make substitutions to write the expression for the dipole moment in terms of
v, then use K = 1

2mv
2 to write it in terms of the kinetic energy K. Since the magnetic force

must be inward toward the center of the path you can find the direction of travel for a given field
direction and hence can find the direction of the dipole moment.To find the magnetization of the
gas, vectorially add the dipole moments per unit volume of the electrons and ions.

ans: (b) Ki/B; (b) −z; (c) 0.31 kA/m



CHAPTER 32 HINT FOR PROBLEM 47

The magnitude of the magnetic field inside a toroid, a distance r from the center, is given by
B0 = µ0ipNp/2πr, where Np is the number of turns in the primary and i is the current (see
Eq. 29–24). Use the average of the inside and outside radii for r and solve for ip. The total
field is B = B0 +BM and the magnetic flux through one turn of the secondary coil is ΦB = BA,
where A is the cross-sectional area of the toroid. According to Faraday’s law the emf generated
in the secondary is E = dΦB/dt, so the current is is = E/R, where R is the resistance of the
secondary coil. The charge is the integral of the current with respect to time.

ans: (a) 0.14A; (b) 79µC



CHAPTER 33 SOLUTION FOR PROBLEM 23

(a) Since c = λf , where λ is the wavelength and f is the frequency of the wave,

f =
c

λ
=
3.00× 108 m/s

3.0m
= 1.0× 108 Hz .

(b) The angular frequency is

ω = 2πf = 2π(1.0× 108 Hz) = 6.3× 108 rad/s .

(c) The angular wave number is

k =
2π
λ
=
2π
3.0m

= 2.1 rad/m .

(d) The magnetic field amplitude is

Bm =
Em
c
=

300V/m
3.00× 108 m/s = 1.00× 10

−6 T .

(e) nB must be in the positive z direction when nE is in the positive y direction in order for nE× nB

to be in the positive x direction (the direction of propagation).
(f) The time-averaged rate of energy flow or intensity of the wave is

I =
E2m
2µ0c

=
(300V/m)2

2(4π × 10−7 H/m)(3.00× 108 m/s) = 1.2× 10
2 W/m2 .

(g) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is delivered
to it is I/c, so

dp
dt
=
IA

c
=
(119W/m2)(2.0m2)
3.00× 108 m/s = 8.0× 10−7 N .

(h) The radiation pressure is

pr =
dp/dt
A

=
8.0× 10−7 N
2.0m2

= 4.0× 10−7 Pa .



CHAPTER 33 SOLUTION FOR PROBLEM 43

(a) The rotation cannot be done with a single sheet. If a sheet is placed with its polarizing
direction at an angle of 90◦ to the direction of polarization of the incident radiation, no radiation
is transmitted.
It can be done with two sheets. Place the first sheet with its polarizing direction at some angle
θ, between 0 and 90◦, to the direction of polarization of the incident radiation. Place the second
sheet with its polarizing direction at 90◦ to the polarization direction of the incident radiation.
The transmitted radiation is then polarized at 90◦ to the incident polarization direction. The
intensity is I0 cos2 θ cos2(90◦− θ) = I0 cos2 θ sin2 θ, where I0 is the incident radiation. If θ is not
0 or 90◦, the transmitted intensity is not zero.
(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of θ = 90◦/n
with the direction of polarization of the incident radiation and with the polarizing direction of
each successive sheet rotated 90◦/n in the same direction from the polarizing direction of the
previous sheet. The transmitted radiation is polarized with its direction of polarization making
an angle of 90◦ with the direction of polarization of the incident radiation. The intensity is
I = I0 cos2n(90◦/n). You want the smallest integer value of n for which this is greater than
0.60I0.
Start with n = 2 and calculate cos2n(90◦/n). If the result is greater than 0.60, you have obtained
the solution. If it is less, increase n by 1 and try again. Repeat this process, increasing n by 1
each time, until you have a value for which cos2n(90◦/n) is greater than 0.60. The first one will
be n = 5.



CHAPTER 33 SOLUTION FOR PROBLEM 53

Look at the diagram on the right. The two angles la-
beled α have the same value. θ2 is the angle of re-
fraction. Because the dotted lines are perpendicular to
the prism surface θ2 + α = 90◦ and α = 90◦ − θ2.
Because the interior angles of a triangle sum to 180◦,
180◦ − 2θ2 + φ = 180◦ and θ2 = φ/2.
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Now look at the next diagram and consider the triangle
formed by the two normals and the ray in the interior.
The two equal interior angles each have the value θ−θ2.
Because the exterior angle of a triangle is equal to the
sum of the two opposite interior angles, ψ = 2(θ − θ2)
and θ = θ2+ψ/2. Upon substitution for θ2 this becomes
θ = (φ + ψ)/2.
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According to the law of refraction the index of refraction of the prism material is

n =
sin θ
sin θ2

=
sin(φ + ψ)/2
sinφ/2

.



CHAPTER 33 HINT FOR PROBLEM 13

The intensity is given by E2m/2cµ0, where Em is the electric field amplitude. The magnetic and
electric field amplitudes are related by Bm = Em/c.

ans: (a) 1.03 kV/m; (b) 3.43µT



CHAPTER 33 HINT FOR PROBLEM 21

The radiation pressure on a perfectly absorbing object is given by pr = I/c, where I is the
intensity at the object. The intensity a distance r from an isotropically emitting source of power
Ps is I = Ps/4πr2.

ans: 5.9× 10−8 Pa



CHAPTER 33 HINT FOR PROBLEM 35

The transmitted intensity is I = I0/2, where I0 is the incident intensity. The intensity is related
to the electric field amplitude EM by I = E2m/2µ0c. Since the sheet is absorbing the radiation
pressure is pr = Ia/c, where Ia is the intensity of the absorbed light. This is Ia = I0 − I .

ans: (a) 1.9V/m; (b) 1.7× 10−11 Pa



CHAPTER 33 HINT FOR PROBLEM 47

Use the law of refraction. The angle of refraction is 90◦ and the angle of incidence is given by
tanθ = L/D.

ans: 1.26



CHAPTER 33 HINT FOR PROBLEM 57

The angle of incidence for the light approaching the boundary between materials 2 and 3 is φ.
This is the critical angle for total internal reflection, so n2 sinφ = n3. Apply the law to the
refraction at the interface between materials 1 and 2: n1 sin θ = n2 sin(90◦ − φ). Solve for θ.

ans: (a) 1.39 (b) 28.1◦; (c) no



CHAPTER 34 SOLUTION FOR PROBLEM 5

The light bulb is labeled O and its image is la-
beled I on the digram to the right. Consider the
two rays shown on the diagram to the right. One
enters the water at A and is reflected from the
mirror at B. This ray is perpendicular to the wa-
ter line and mirror. The second ray leaves the
lightbulb at the angle θ, enters the water at C,
where it is refracted. It is reflected from the mir-
ror at D and leaves the water at E. At C the angle
of incidence is θ and the angle of refraction is
θI. At D the angles of incidence and reflection
are both θI. At E the angle of incidence is θI and
the angle of refraction is θ. The dotted lines that
meet at I represent extensions of the emerging
rays. Light appears to come from I. We want to
compute d3.
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Consideration of the triangle OBE tells us that the distance d2 + d3 is L tan(90◦ − θ) = L/ tan θ,
where L is the distance between A and E. Consideration of the triangle OBC tells us that the
distance between A and C is d1 tan θ and consideration of the triangle CDE tells us that the
distance between C and E is 2d2 tan θprime, so L = d1 tan θ + 2d2 tan θI, d2 + d3 = (d1 tan θ +
2d2 tan θI)/ tan θ, and

d3 =
d1 tan θ + 2d2 tan θI

tan θ
− d2 .

Apply the law of refraction at point C: sin θ = n sin θI, where n is the index of refraction of
water. Since the angles θ and θI are small we may approximate their sines by their tangents and
write tan θ = n tan θI. Us this to substitute for tan θ in the expression for d3 to obtain

d3 =
nd1 + 2d2

n
− d2 = (1.33)(250 cm) + 2(200 cm)1.33

− 200 cm = 350 cm ,

where the index of refraction of water was taken to be 1.33.



CHAPTER 34 SOLUTION FOR PROBLEM 43

Use the lens maker’s equation, Eq. 34–10:

1
f
= (n− 1) 1

r1
− 1
r2

,

where f is the focal length, n is the index of refraction, r1 is the radius of curvature of the first
surface encountered by the light and r2 is the radius of curvature of the second surface. Since
one surface has twice the radius of the other and since one surface is convex to the incoming
light while the other is concave, set r2 = −2r1 to obtain

1
f
= (n− 1) 1

r1
+
1
2r1

=
3(n− 1)
2r1

.

Solve for r1:
r1 =

3(n− 1)f
2

=
3(1.5− 1)(60mm)

2
= 45mm .

The radii are 45mm and 90mm.



CHAPTER 34 SOLUTION FOR PROBLEM 83

Lens 1 is converging and so has a positive focal length. Solve (1/p1) + (1/i1) = (1/f1) for the
image distance i1 associated with the image produced by this lens. The result is

i1 =
p1f1
p1 − f1 =

(20 cm)(+9.0 cm)
(20 cm)− (9.0 cm) = 16.4 cm .

This image is the object for lens 2. The object distance is d−p2 = (8.0 cm)−(16.4 cm) = −8.4 cm.
The negative sign indicates that the image is behind the second lens. The lens equation is still
valid. The second lens has a positive focal length and the image distance for the image it forms
is

i2 =
p2f2
p2 − f2 =

(−8.4 cm)(5.0 cm)
(−8.4 cm)− (5.0 cm) = +3.1 cm .

The overall magnification is the product of the individual magnifications:

m = m1m2 = − i1
p1

− i2
p2

= −16.4 cm
20 cm

− 3.1 cm
−8.4 cm = −0.30 .

Since the final image distance is positive the final image is real and on the opposite side of lens
2 from the object. Since the magnification is negative the image is inverted.



CHAPTER 34 HINT FOR PROBLEM 15

The focal length of a concave spherical mirror is positive. Solve (1/p) + (1/i) = (1/f ) for i. The
magnification is given by m = −i/p. If i is positive the image is real; otherwise it is virtual. If
m is positive the image is no inverted, otherwise it is. A real image is on the same side of the
mirror as the object; a virtual image is on the opposite side.

ans: (a) −16 cm; (b) −4.4 cm; (c) +0.44; (d) V; (e) NI; (f) opposite



CHAPTER 34 HINT FOR PROBLEM 21

The type of mirror is found from the sign of the focal length. Solve (1/p) + (1/i) = (1/f ) for i.
If i is positive the image is real and is on the same side of the mirror as the object; otherwise it
is virtual and is on the opposite side. The magnification is given by m = −i/p. If m is positive
the image is not inverted; otherwise it is.

ans: (a) concave; (c) +40 cm; (e) +60 cm; (f) −2.0; (g) R; (h) I; (i) same



CHAPTER 34 HINT FOR PROBLEM 39

Use (n1/p) + (n2/i) = (n2 − n1)/r. Solve for i. If i is positive the image is real and is on the
opposite side of the surface from the object; if i is negative the image is virtual and is on the
same side of the surface as the object.

ans: (d) −26 cm; (e) V; (f) same



CHAPTER 47 HINT FOR PROBLEM T

he height of the image on the film is hI = |m|h, where h is the height of the person and m is the
magnification of the lens. Solve (1/p) + (1/i) = (1/f ) for i, then use m = −i/p to calculate the
magnification. Here p is the object distance, i is the image distance, and f is the focal length of
the lens.

ans: 5.0mm



CHAPTER 34 HINT FOR PROBLEM 55

The type of lens tells the sign of the focal length. Solve (1/p) + (1/i) = (1/f ) for i and use
m = −i/p. The sign of i tells if the image is real or virtual and where its position is relative to
the lens. The sign of m tells if the image is inverted or not.

ans: (a) −8.6 cm; (b) +0.39 (c) V; (d) NI; (e) same



CHAPTER 34 HINT FOR PROBLEM 71

Use m = −i/p to obtain i. Solve (1/p) + (1/i) = (1/f ) for f . The sign of f tells the type of
lens. The sign of i tells if the image is real or virtual and indicates the side of the lens on which
the image is formed. The sign of m tells if the image is inverted or not.

ans: (a) D; (b) −5.3 cm; (d) −4.0 cm; (f) V; (g) NI; (h) same



CHAPTER 34 HINT FOR PROBLEM 85

The type of lens tells the sign of the focal length. Solve (1/p1) + (1/i1) = (1/f1) for i1, then
calculate p2 = d− i1 and solve (1/p2) + (1/i2) = (1/f2) for i2. The sign of i2 tells if the image is
real or virtual and gives the side of lens 2 on which the image is formed. The magnification is
the product of the individual magnifications and so is given by m = (i1/p1)(i2/p2). Its sign tells
if the image is inverted or not.

ans: (a) −4.6 cm; (b) +0.69; (c) V; (d) NI; (e) same



CHAPTER 34 HINT FOR PROBLEM 97

(a) The image produced by the lens must be 4.00 cm in front of the mirror and therefore 6.00 cm
behind the lens. Solve (1/p) + (1/i) = (1/f ) for p. (b) The image in the mirror now becomes the
object for the lens. The object distance is 14.0 cm. Solve (1/p) + (1/i) = (1/f ) for i.

ans: (a) 3.00 cm; (b) 2.33 cm



CHAPTER 34 HINT FOR PROBLEM 109

Solve (1/p)+ (1/i) = (1/f ) for i and explain what happens to i if p is less than f and decreasing.
The angle in radians subtended at the eye by the image is θI = hI/|i|, where hI is the height of
the image. Since hI = |m|h, and |m| = |i|/p, θI = h/p, where h is the height of the object. The
maximum usable angular magnification occurs if the image is at the near point of the eye.

ans: (b) Pn



CHAPTER 34 HINT FOR PROBLEM 121

Use (n1/p1) + (n2/i1) = (n2 − n1)/r to find the image distance i2 for the image formed by the
left surface of the sphere. Here medium 1 is air and medium 2 is glass. Set n1 equal to 1 and
replace n2 with n, the index of refraction for the glass. The incident rays are parallel, so P1 =∞.
The surface is convex so r is positive. The object distance for the right side of the sphere is
p2 = 2r − i1. Solve (n1/p2) + (n2/i2) = (n1 − n2)/r for i2. Now medium 1 is glass, so n1 = n,
and medium 2 is air, so n2 = 1. The surface is concave to the incident light, so r is negative.
The sign of i2 tells if the image is to the right or left of the right side of the sphere.

ans: (a) (0.5)(2− n)x/(n− 1); (b) right



CHAPTER 37 SOLUTION FOR PROBLEM 17

The proper time is not measured by clocks in either frame S or frame SI since a single clock at rest
in either frame cannot be present at the origin and at the event. The full Lorentz transformation
must be used:

xI = γ[x− vt]
tI = γ[t− βx/c] ,

where β = v/c = 0.950 and γ = 1/ 1− β2 = 1/ 1− (0.950)2 = 3.2026. Thus,

xI = (3.2026) 100× 103 m− (0.950)(3.00× 108 m/s)(200× 10−6 s
= 1.38× 105 m = 138 km

and

tI = (3.2026) 200× 10−6 s− (0.950)(100× 10
3 m)

3.00× 108 m/s = −3.74× 10−4 s = −374µs .



CHAPTER 37 SOLUTION FOR PROBLEM 31

Calculate the speed of the micrometeorite relative to the spaceship. Let SI be the reference frame
for which the data is given and attach frame S to the spaceship. Suppose the micrometeorite is
going in the positive x direction and the spaceship is going in the negative x direction, both as
viewed from SI. Then, in Eq. 38–28, uI = 0.82c and v = 0.82c. Notice that v in the equation
is the velocity of SI relative to S. Thus, the velocity of the micrometeorite in the frame of the
spaceship is

u =
uI + v

1 + uIv/c2
=

0.82c + 0.82c
1 + (0.82c)(0.82c)/c2

= 0.9806c .

The time for the micrometeorite to pass the spaceship is

∆t =
L

u
=

350m
(0.9806)(3.00× 108 m/s) = 1.19× 10

−6 s .



CHAPTER 37 SOLUTION FOR PROBLEM 41

Use the two expressions for the total energy: E = mc2 + K and E = γmc2, where m is the
mass of an electron, K is the kinetic energy, and γ = 1/ 1− β2. Thus, mc2 +K = γmc2 and
γ = (mc2 +K)/mc2. This means 1− β2 = (mc2)/(mc2 +K) and

β = 1− mc2

mc2 +K

2

.

Now mc2 = 0.511MeV so

β = 1− 0.511MeV
0.511MeV + 100MeV

2

= 0.999987 .

The speed of the electron is 0.999987c or 99.9987% the speed of light.



CHAPTER 37 HINT FOR PROBLEM 5

The time interval in the laboratory frame is ∆t = (∆x)/v, where ∆x is the length of the track
and v is the speed of the particle. A clock traveling with the particle measures the proper time
interval.

ans: 0.446 ps



CHAPTER 37 HINT FOR PROBLEM 23

Use ∆xI = γ(∆x− v∆t). Since the flashes occur at the same place in SI set ∆xI equal to zero
and solve for v. You can tell the direction of motion of SI from the sign of v. To find the time
between the flashes as measured in SI, use ∆tI = γ(∆t− v∆x/c2). The sign of ∆tI tells which
flash occurs first.

ans: (a) 0.480c; (b) negative; (c) big flash; (d) 4.39µs



CHAPTER 37 HINT FOR PROBLEM 37

Substitute values into v = (|∆λ|/λ0)c.

ans: 0.13c



CHAPTER 37 HINT FOR PROBLEM 45

The page width in the proton’s reference frame is L = L0/γ, where L0 is the width in your
frame. The time for the trip as measured in your frame is L0/v and the time in the proton’s
frame is L/v, where v is the speed of the proton in your frame. Use E = γmc2 to find γ and
γ = 1/ 1− (v/c)2 to find v.

ans: (a) 0.222 cm; (b) 70.1 ns; (c) 0.740 ns



CHAPTER 37 HINT FOR PROBLEM 59

Conservation of energy yields Kα +mαc
2 +mN c

2 = KO +mOc
2 +Kp +mpc

2. Here Kα is the
kinetic energy of the alpha particle and mα is its mass, KO is the kinetic energy of the oxygen
nucleus and mO is its mass, Kp is the kinetic energy of the proton and mp is its mass, and mN is
the mass of the nitrogen nucleus. Solve forKO. The Q of the reaction is (mα+mN−mO−mp)c2.
Use (1 u)c2 = 931.494MeV to obtain the requested units.

ans: (a) 2.08MeV; (b) −1.18MeV



CHAPTER 38 SOLUTION FOR PROBLEM 9

(a) Let R be the rate of photon emission (number of photons emitted per unit time) and let E be
the energy of a single photon. Then, the power output of a lamp is given by P = RE if all the
power goes into photon production. Now, E = hf = hc/λ, where h is the Planck constant, f is
the frequency of the light emitted, and λ is the wavelength. Thus P = Rhc/λ and R = λP/hc.
The lamp emitting light with the longer wavelength (the 700 nm lamp) emits more photons per
unit time. The energy of each photon is less so it must emit photons at a greater rate.
(b) Let R be the rate of photon production for the 700 nm lamp Then,

R =
λP

hc
=

(700× 10−9 m)(400 J/s)
(6.626× 10−34 J · s)(3.00× 108 m/s) = 1.41× 10

21 photon/s .



CHAPTER 38 SOLUTION FOR PROBLEM 45

(a) The kinetic energy acquired is K = qV , where q is the charge on an ion and V is the
accelerating potential. Thus K = (1.60 × 10−19 C)(300V) = 4.80 × 10−17 J. The mass of
a single sodium atom is, from Appendix F, m = (22.9898 g/mol)/(6.02 × 1023 atom/mol) =
3.819× 10−23 g = 3.819× 10−26 kg. Thus the momentum of an ion is

p =
√
2mK = 2(3.819× 10−26 kg)(4.80× 10−17 J) = 1.91× 10−21 kg ·m/s .

(b) The de Broglie wavelength is

λ =
h

p
=

6.63× 10−34 J · s
1.91× 10−21 kg ·m/s = 3.47× 10

−13 m .



CHAPTER 38 SOLUTION FOR PROBLEM 65

(a) If m is the mass of the particle and E is its energy, then the transmission coefficient for a
barrier of height U and width L is given by

T = e−2kL ,

where

k =
8π2m(U − E)

h2
.

If the change ∆U in U is small (as it is), the change in the transmission coefficient is given by

∆T =
dT
dU

∆U = −2LT dk
dU

∆U .

Now,
dk
dU

=
1

2
√
U − E

8π2m
h2

=
1

2(U − E)
8π2m(U − E)

h2
=

k

2(U − E) .

Thus
∆T = −LTk ∆U

U − E .
For the data of Sample Problem 38–7, 2kL = 10.0, so kL = 5.0 and

∆T

T
= −kL ∆U

U − E = −(5.0) (0.010)(6.8 eV)
6.8 eV− 5.1 eV = −0.20 .

There is a 20% decrease in the transmission coefficient.
(b) The change in the transmission coefficient is given by

∆T =
dT
dL

∆L = −2ke−2kL∆L = −2kT ∆L

and
∆T

T
= −2k∆L = −2(6.67× 109 m−1)(0.010)(750× 10−12 m) = −0.10 .

There is a 10% decrease in the transmission coefficient.
(c) The change in the transmission coefficient is given by

∆T =
dT
dE

∆E = −2Le−2kL dk
dE

∆E = −2LT dk
dE

∆E .

Now, dk/dE = −dk/dU = −k/2(U − E), so
∆T

T
= kL

∆E

U − E = (5.0)
(0.010)(5.1 eV)
6.8 eV− 5.1 eV = 0.15 .

There is a 15% increase in the transmission coefficient.



CHAPTER 38 HINT FOR PROBLEM 15

The kinetic energy of the fastest ejected electron is the difference between the photon energy and
the work function.

ans: 676 km/s



CHAPTER 38 HINT FOR PROBLEM 21

Write the photoelectric effect equation K = hf − Φ twice, once for each wavelength and solve
the two equations simultaneously for the second wavelength and for the work function.

ans: (a) 382 nm; (b) 1.82 eV



CHAPTER 38 HINT FOR PROBLEM 31

The fractional change in photon energy is (fI − f )/f , where f is the frequency associated with
the incident photon and f I is the frequency of the scattered photon. Calculate the wavelength
shift and then the wavelength for the scattered photon. Use f = c/λ to compute both frequencies.

ans: (a) −8.1× 10−9 %; (b) −4.9× 10−4 %; (c) −8.8%; (d) −66%



CHAPTER 38 HINT FOR PROBLEM 43

The frequency associated with a photon of energy E is f = E/h and the wavelength is λ = c/f .
The wavelength associated with an electron is λ = h/p, where p is the magnitude of its momentum.
A 1.00 eV electron is nonrelativistic and you can use K = p2/2m to compute its momentum. A
1.00GeV electron is relativistic and you should use (K +mc2)2 = (pc)2 + (mc2)2 but K is so
much larger than mc2 that the expression reduces to K = pc. The energies given here are kinetic
energies.

ans: (a) 1.24µm; (b) 1.22 nm; (c) 1.24 fm; (d) 1.24 fm



CHAPTER 38 HINT FOR PROBLEM 59

Assume the electron is moving along the x axis and use ∆x · ∆px ≥ h, where ∆x in the
uncertainty in position and ∆px is the uncertainty in momentum. If ∆px is to have its least
possible value ∆x ·∆Px = h. Solve for ∆px.

ans: 2.1× 10−24 kg ·m/s



CHAPTER 39 SOLUTION FOR PROBLEM 13

The probability that the electron is found in any interval is given by P = |ψ|2 dx, where the
integral is over the interval. If the interval width∆x is small, the probability can be approximated
by P = |ψ|2∆x, where the wave function is evaluated for the center of the interval, say. For an
electron trapped in an infinite well of width L, the ground state probability density is

|ψ|2 = 2
L
sin2

πx

L
,

so
P =

2∆x
L

sin2
πx

L
.

(a) Take L = 100 pm, x = 25 pm, and ∆x = 5.0 pm. Then,

P =
2(5.0 pm)
100 pm

sin2
π(25 pm)
100 pm

= 0.050 .

(b) Take L = 100 pm, x = 50 pm, and ∆x = 5.0 pm. Then,

P =
2(5.0 pm)
100 pm

sin2
π(50 pm)
100 pm

= 0.10 .

(c) Take L = 100 pm, x = 90 pm, and ∆x = 5.0 pm. Then,

P =
2(5.0 pm)
100 pm

sin2
π(90 pm)
100 pm

= 0.0095 .



CHAPTER 39 SOLUTION FOR PROBLEM 21

The energy levels are given by

Enx ny =
h2

8m
n2x
L2x
+
n2y
L2y

=
h2

8mL2
n2x +

n2y
4

,

where the substitutions Lx = L and Ly = 2L were made. In units of h2/8mL2, the energy
levels are given by n2x + n2y/4. The lowest five levels are E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25,
E2,1 = 4.25, and E2,2 = E1,4 = 5.00. A little thought should convince you that there are no other
possible values for the energy less than 5.
The frequency of the light emitted or absorbed when the electron goes from an initial state i to a
final state f is f = (Ef −Ei)/h and in units of h/8mL2 is simply the difference in the values of
n2x + n2y/4 for the two states. The possible frequencies are 0.75 (1,2−→ 1,1), 2.00 (1,3−→ 1,1),
3.00 (2,1−→ 1,1), 3.75 (2,2−→ 1,1), 1.25 (1,3−→ 1,2), 2.25 (2,1−→ 1,2), 3.00 (2,2−→ 1,2),
1.00 (2,1−→ 1,3), 1.75 (2,2−→ 1,3), 0.75 (2,2−→ 2,1), all in units of h/8mL2.
There are 8 different frequencies in all. In units of h/8mL2 the lowest is 0.75, the second lowest
is 1.00, and the third lowest is 1.25. The highest is 3.75, the second highest is 3.00, and the
third highest is 2.25.



CHAPTER 39 SOLUTION FOR PROBLEM 37

The proposed wave function is

ψ =
1√
πa3/2

e−r/a ,

where a is the Bohr radius. Substitute this into the right side of Schrödinger’s equation and show
that the result is zero. The derivative is

dψ

dr
= − 1√

πa5/2
e−r/a ,

so
r2
dψ

dr
= − r2√

πa5/2
e−r/a

and
1
r2
d

dr
r2
dψ

dr
=

1√
πa5/2

−2
r
+
1
a
e−r/a =

1
a
−2
r
+
1
a

ψ .

Now the energy of the ground state is given by E = −me4/8620h2 and the Bohr radius is given
by a = h260/πme2, so E = −e2/8π60a. The potential energy is given by U = −e2/4π60r, so

8π2m
h2

[E − U ]ψ = 8π
2m

h2
− e2

8π60a
+

e2

4π60r
ψ =

8π2m
h2

e2

8π60
−1
a
+
2
r

ψ

=
πme2

h260
−1
a
+
2
r

ψ =
1
a
−1
a
+
2
r

ψ .

The two terms in Schrödinger’s equation obviously cancel and the proposed function ψ satisfies
that equation.



CHAPTER 39 HINT FOR PROBLEM 11

Allowed values of the energy are given by En = n2h2/8mL2 and you want the difference between
the energies of the n = 4 and n = 2 states. Use 1 eV = 1.60× 10−19 J to convert from joules to
electron volts. When the electron is de-excited the energy of the photon emitted is equal to the
energy difference ∆E of these states. The wavelength of the light is λ = ch/∆E. The electron
might jump directly to the n = 1 state, or it might jump to the n = 2 state and then to the n = 1
state, or it might make various other jumps.

ans: (a) 72.2 eV; (b) 13.7 nm; (c) 17.2 nm; (d) 68.7 nm; (e) 41.2 nm; (f) 68.7 nm



CHAPTER 39 HINT FOR PROBLEM 19

The allowed values of the energy are

Enx,ny,nz =
h2

8m
n2x
L2x
+
n2y
L2y
+
n2z
L2z

.

Since none of the integers can be zero, the ground state has nx = 1, ny = 1 and nz = 1. Use
1 eV = 1.60× 10−19 J to convert the result to electron volts.

ans: 3.08 eV



CHAPTER 39 HINT FOR PROBLEM 27

The energy levels for hydrogen are given by En = −(13.6 eV)/n2. The energy of the photon is
the energy difference ∆E for the n = 3 and n = 1 states. Its momentum is p = ∆E/c and its
wavelength is λ = h/p.

ans: (a) 12.1 eV; (b) 6.45× 10−27 kg ·m/s; (c) 102 nm



CHAPTER 39 HINT FOR PROBLEM 35

The total energy is the sum of the kinetic and potential energies. The potential energy is U =
−e2/4π60r.

ans: (a) 13.6 eV; (b) −27.2 eV



CHAPTER 40 SOLUTION FOR PROBLEM 9

(a) For f = 3, the magnitude of the orbital angular momentum is L =
√
f(f + 1)h =

√
3(3 + 1)h =√

12h = 3.46h.
(b) The magnitude of the orbital dipole moment is µorb =

√
f(f + 1)µB =

√
12µB = 3.46µB.

(c) The largest possible value of mf is f, which is +3.
(d) The corresponding value of the z component of the angular momentum is Lz = fh = +3h.
(e) The direction of the orbital magnetic dipole moment is opposite that of the orbital angular
momentum, so the corresponding value of the z component of the orbital dipole moment is
µorb, z = −3µB .
(f) The angle θ between nL and the z axis is

θ = cos−1
Lz
L
= cos−1

3h
3.46h

= 30.0◦ .

(g) The second largest value of mf is mf = f− 1 = 2 and the angle is

θ = cos−1
Lz
L
= cos−1

2h
3.46h

= 54.7◦ .

(h) The most negative value of mf is −3 and the angle is

θ = cos−1
Lz
L
= cos−1

−3h
3.46h

= 150◦ .



CHAPTER 40 SOLUTION FOR PROBLEM 27

(a) All states with principal quantum number n = 1 are filled. The next lowest states have n = 2.
The orbital quantum number can have the values f = 0 or 1 and of these, the f = 0 states have the
lowest energy. The magnetic quantum number must be mf = 0 since this is the only possibility
if f = 0. The spin quantum number can have either of the values ms = − 12 or +12. Since there
is no external magnetic field, the energies of these two states are the same. Thus, in the ground
state, the quantum numbers of the third electron are either n = 2, f = 0, mf = 0, ms = − 12 or
n = 2, f = 0, mf = 0, ms = +12 .
(b) The next lowest state in energy is an n = 2, f = 1 state. All n = 3 states are higher in energy.
The magnetic quantum number can be mf = −1, 0, or +1; the spin quantum number can be
ms = − 12 or +12. If both external and internal magnetic fields can be neglected, all these states
have the same energy. The possible states are (2, 1, 1, +1/2), (2, 1, 1, −1/2), (2, 1, 0, +1/2),
(2, 1, 0, −1/2), (2, 1, −1, +1/2), and (2, 1, −1, −1/2).



CHAPTER 40 SOLUTION FOR PROBLEM 33

(a) The cut-off wavelength λmin is characteristic of the incident electrons, not of the target
material. This wavelength is the wavelength of a photon with energy equal to the kinetic energy
of an incident electron. Thus

λ =
hc

∆E
=
(6.626× 10−34 J · s)(3.00× 108 m/s)
(35× 103 eV)(1.60× 10−19 J/eV) = 3.55× 10−11 m = 35.5 pm .

(b) A Kα photon results when an electron in a target atom jumps from the L-shell to the K-shell.
The energy of this photon is 25.51 keV− 3.56 keV = 21.95 keV and its wavelength is

λ =
hc

∆E
=
(6.626× 10−34 J · s)(3.00× 108 m/s)
(21.95× 103 eV)(1.60× 10−19 J/eV) = 9.94×10

−11 m = 5.65×10−11 m = 56.5 pm .

(c) A Kβ photon results when an electron in a target atom jumps from theM -shell to theK-shell.
The energy of this photon is 25.51 keV− 0.53 keV = 24.98 keV and its wavelength is

λ =
hc

∆E
=
(6.626× 10−34 J · s)(3.00× 108 m/s)
(24.98× 103 eV)(1.60× 10−19 J/eV) = 4.96× 10

−11 m = 49.6 pm .



CHAPTER 40 HINT FOR PROBLEM 7

The magnitude of mf must be less than or equal to f and n must be greater than f.

ans:



CHAPTER 40 HINT FOR PROBLEM 19

The allowed values of the single-electron energies are given by h2n2/8mL2, where n is a positive
integer. Two electrons can have each value of n. Find the value of n for each of the electrons
so the total energy is the least possible.

ans: 44



CHAPTER 40 HINT FOR PROBLEM 25

Add the electrons one at time, with each electron going into the lowest-energy unfilled state.
Remember that an s subshell holds 2 electrons, a p subshell holds 6, and a d subshell holds 10.

ans: (a) 4p; (b) 4; (c) 4p; (d) 5; (e) 4p; (f) 6



CHAPTER 40 HINT FOR PROBLEM 39

The kinetic energy of the electron must be sufficient to knock a K electron out of the atom and
this energy is eV , where V is the accelerating potential. A photon associated with the minimum
wavelength is emitted if the electron gives all its kinetic energy to the photon. The wavelength
is λmin = hc/K, where K is the electron’s kinetic energy. The energy of a Kα photon is the
difference in the L and K energy levels and the energy of a Kβ photon is the difference in the M
and K energy levels.

ans: (a) 69.5 kV; (b) 17.8 pm; (c) 21.3 pm; (d) 18.5 pm



CHAPTER 40 HINT FOR PROBLEM 45

The length of the pulse is given by c∆t, where ∆t is the duration. The energy in the pulse is
Nhf , where N is the number of photons and f is the frequency. Use c = λf to substitute for
the frequency.

ans: (a) 3.60mm; (b) 5.25× 1017



CHAPTER 41 SOLUTION FOR PROBLEM 9

The Fermi-Dirac occupation probability is given by PFD = 1/ e∆E/kT + 1 and the Boltzmann
occupation probability is given by PB = e−∆E/kT . Let f be the fractional difference. Then

f =
PB − PFD
PB

=
e−∆E/kT − 1

e∆E/kT + 1
e−∆E/kT

.

Using a common denominator and a little algebra yields

f =
e−∆E/kT

e−∆E/kT + 1
.

The solution for e−∆E/kT is
e−∆E/kT =

f

1− f .

Take the natural logarithm of both sides and solve for T . The result is

T =
∆E

k ln f
1− f

.

(a) Put f equal to 0.01 and evaluate the expression for T :

T =
(1.00 eV)(1.60× 10−19 J/eV)

(1.38× 10−23 J/K) ln 0.010
1− 0.010

= 2.50× 103 K .

(b) Put f equal to 0.10 and evaluate the expression for T :



CHAPTER 41 SOLUTION FOR PROBLEM 19

(a) According to Appendix F the molar mass of silver is 107.870 g/mol and the density is
10.49 g/cm3. The mass of a silver atom is

M =
107.870× 10−3 kg/mol
6.022× 1023 mol−1 = 1.791× 10−25 kg .

The number of atoms per unit volume is

n =
ρ

M
=
10.49× 103 kg/m3
1.791× 1025 kg = 5.86× 1028 m−3 .

Since silver is monovalent this is the same as the number density of conduction electrons.
(b) The Fermi energy is

EF =
0.121h2

m
n2/3 =

(0.121)(6.626× 10−34 J · s)2
9.109× 10−31 kg (5.86× 1028 m−1)2/3

= 8.80× 10−19 J = 5.49 eV .

(c) Since EF = 1
2mv

2
F ,

vF =
2EF
m

=
2(8.80× 10−19 J)
9.109× 10−31 kg = 1.39× 10

6 m/s .

(d) The de Broglie wavelength is

λ =
h

pF
=

h

mvF
=

6.626× 10−34 J · s
(9.109× 10−31 kg)(1.39× 106 m/s) = 5.23× 10

−10 m .



CHAPTER 41 SOLUTION FOR PROBLEM 31

Sample Problem 41–6 gives the fraction of silicon atoms that must be replaced by phosphorus
atoms. Find the number the silicon atoms in 1.0 g, then the number that must be replaced, and
finally the mass of the replacement phosphorus atoms. The molar mass of silicon is 28.086 g/mol,
so the mass of one silicon atom is (28.086 g/mol)/(6.022×1023 mol−1) = 4.66×10−23 g and the
number of atoms in 1.0 g is (1.0 g)/(4.66×10−23 g) = 2.14×1022. According to Sample Problem
41–6 one of every 5× 106 silicon atoms is replaced with a phosphorus atom. This means there
will be (2.14×1022)/(5×106) = 4.29×1015 phosphorus atoms in 1.0 g of silicon. The molar mass
of phosphorus is 30.9758 g/mol so the mass of a phosphorus atom is (30.9758 g/mol)/(6.022×
10−23 mol−1) = 5.14× 10−23 g. The mass of phosphorus that must be added to 1.0 g of silicon
is (4.29× 1015)(5.14× 10−23 g) = 2.2× 10−7 g.



CHAPTER 41 HINT FOR PROBLEM 11

Solve P = 1/[e(E−EF )/kT +1] for E by taking the natural logarithm of both sides. Then evaluate
N (E) = (8

√
2πm3/2/h3)E1/2 for the density of states and N0 = N (E)P (E) for the density of

occupied states.

ans: (a) 6.81 eV; (b) 1.77× 1028 m−3 · eV−1; (c) 1.59× 1028 m−3 · eV−1



CHAPTER 41 HINT FOR PROBLEM 17

The Fermi energy of a metal is given by EF = (3/16
√
2π)(h2/m)n2/3, where m is the electron

mass and n is the number of conduction electrons per unit volume. Solve for n. Now you need
the number of atoms per unit volume. This the density divided by the mass of an atom. The
mass of an atom is the molar mass divided by the Avogadro constant. Be sure to use consistent
units.

ans: 3



CHAPTER 41 HINT FOR PROBLEM 25

According to Problem 24 the fraction of the conduction electrons in a metal that have energies
greater than the Fermi energy is given by fract = 3kT/2EF , where T is the temperature on the
Kelvin scale, k is the Boltzmann constant, and EF is the Fermi energy.

ans: 4.7× 102 K



CHAPTER 41 HINT FOR PROBLEM 33

Use P (E) = 1/[e(E−EF )/kT +1] to calculate the occupation probability. For a state at the bottom
of the conduction band E−EF is half the gap for the pure semiconductor and is 0.11 eV for the
doped semiconductor. For the donor state E − EF is 0.11 eV− 0.15 eV = −0.04 eV.

ans: (a) 4.79× 10−10; (b) 0.0140; (c) 0.824



CHAPTER 42 SOLUTION FOR PROBLEM 19

If a nucleus contains Z protons and N neutrons, its binding energy is ∆Ebe = (ZmH +Nmn −
m)c2, where mH is the mass of a hydrogen atom, mn is the mass of a neutron, and m is
the mass of the atom containing the nucleus of interest. If the masses are given in atomic
mass units, then mass excesses are defined by ∆H = (mH − 1)c2, ∆n = (mn − 1)c2, and
∆ = (m − A)c2. This means mHc

2 = ∆H + c2, mnc
2 = ∆n + c2, and mc2 = ∆ + Ac2. Thus

E = (Z∆H +N∆n −∆) + (Z +N − A)c2 = Z∆H +N∆n −∆, where A = Z +N was used.
For 19779Au, Z = 79 and N = 197− 79 = 118. Hence

∆Ebe = (79)(7.29MeV) + (118)(8.07MeV)− (−31.2MeV) = 1560MeV .

This means the binding energy per nucleon is ∆Eben = (1560MeV)/(197) = 7.92MeV.



CHAPTER 42 SOLUTION FOR PROBLEM 25

(a) The half-life T1/2 and the disintegration constant are related by T1/2 = (ln 2)/λ, so T1/2 =
(ln 2)/(0.0108 h−1) = 64.2 h.
(b) At time t, the number of undecayed nuclei remaining is given by

N = N0 e−λt = N0 e
−(ln 2)t/T1/2 .

Substitute t = 3T1/2 to obtain
N

N0
= e−3 ln 2 = 0.125 .

In each half-life, the number of undecayed nuclei is reduced by half. At the end of one half-
life, N = N0/2, at the end of two half-lives, N = N0/4, and at the end of three half-lives,
N = N0/8 = 0.125N0.
(c) Use

N = N0 e−λt .

10.0 d is 240 h, so λt = (0.0108 h−1)(240 h) = 2.592 and

N

N0
= e−2.592 = 0.0749 .



CHAPTER 42 SOLUTION FOR PROBLEM 51

Since the electron has the maximum possible kinetic energy, no neutrino is emitted. Since
momentum is conserved, the momentum of the electron and the momentum of the residual sulfur
nucleus are equal in magnitude and opposite in direction. If pe is the momentum of the electron
and pS is the momentum of the sulfur nucleus, then pS = −pe. The kinetic energy KS of
the sulfur nucleus is KS = p2S/2MS = p2e/2MS, where MS is the mass of the sulfur nucleus.
Now, the electron’s kinetic energy Ke is related to its momentum by the relativistic equation
(pec)2 = K2

e + 2Kemc
2, where m is the mass of an electron. See Eq. 37–54. Thus

KS =
(pec)2

2MSc2
=
K2
e + 2Kemc

2

2MSc2
=
(1.71MeV)2 + 2(1.71MeV)(0.511MeV)

2(32 u)(931.5MeV/u)
= 7.83× 10−5 MeV = 78.3 eV ,

where mc2 = 0.511MeV was used.



CHAPTER 42 HINT FOR PROBLEM 13

Let f24 be the abundance of 24Mg, f25 be the abundance of 25Mg, and f26 be the abundance of
26Mg. Let M24, M25, and M26 be the masses of the nuclei. Then the average atomic mass is
f24M24 + f25M25 + f26M26. Furthermore, the abundances must sum to 1: F24 + f25 + f26 = 1.
Solve these two equation simultaneously for f25 and f26.

ans:



CHAPTER 42 HINT FOR PROBLEM 33

Calculate the mass of the undecayed nuclei at t = 14.0 h and at t = 16.0 h. The difference is
the mass of the nuclei that decayed between those two times. The number of undecayed nuclei
at time t is given by N = N0e−λt, where N0 is the number at t = 0 and λ is the disintegration
constant, which is related to the half-life by λ = (ln 2)/T1/2. Multiply by the mass of a nucleus
to obtain m = Me−λt for the mass of undecayed nuclei at time t. Here M is the mass of the
sample.

ans: 265mg



CHAPTER 42 HINT FOR PROBLEM 43

Assume the 238U nucleus is initially at rest and the 234Th nucleus is in its ground state. Then
the disintegration energy is given by Q = KTh + Kα, where KTh is the kinetic energy of the
recoiling 234Th nucleus and Kα is the kinetic energy of the alpha particle (4.196MeV). Linear
momentum is conserved, so 0 = pTh + pα, where pTh is the momentum of the 234Th nucleus and
pα is the momentum of the alpha particle. Use KTh = p2Th/2mTh and Kα = p2α/2mα along with
pTh = −pα, where mTh and mα are the masses, to show that KTh = (mα/mTh)Kα.

ans: 4.269MeV



CHAPTER 42 HINT FOR PROBLEM 53

The number of 238U nuclei in the rock is given by M/m, where M is the total mass of that
isotope and m is the mass of a single nucleus (238 u). A similar expression holds for 206Pb. A
206Pb nucleus is created for every 238U nucleus lost so the number of 238U nuclei in the rock is
the sum of the number of nuclei of both types now present. Use N = N0e−λt to find the age t
of the rock. The disintegration constant λ is related to the half-life by λ = (ln 2)/T1/2.

ans: (a) 1.06× 1019; (b) 0.624× 1019; (c) 1.68× 1019; (d) 2.97× 109 y



CHAPTER 43 SOLUTION FOR PROBLEM 9

(a) If X represents the unknown fragment, then the reaction can be written

235
92U + 10n→ 83

32Ge + AZX ,

where A is the mass number and Z is the atomic number of the fragment. Conservation of charge
yields 92 + 0 = 32 + Z, so Z = 60. Conservation of mass number yields 235 + 1 = 83 + A, so
A = 153. Look in Appendix F or G for nuclides with Z = 60. You should find that the unknown
fragment is 15360Nd.
(b) and (c) Ignore the small kinetic energy and momentum carried by the neutron that triggers the
fission event. Then Q = KGe +KNd, where KGe is the kinetic energy of the germanium nucleus
and KNd is the kinetic energy of the neodymium nucleus. Conservation of momentum yields
pGe + pNd = 0, where pGe is the momentum of the germanium nucleus and pNd is the momentum
of the neodymium nucleus. Since pNd = −pGe, the kinetic energy of the neodymium nucleus is

KNd =
p2Nd
2MNd

=
p2Ge
2MNd

=
MGe

MNd
KGe .

Thus the energy equation becomes

Q = KGe +
MGe

MNd
KGe =

MNd +MGe

MNd
KGe

and
KGe =

MNd

MNd +MGe
Q =

153 u
153 u + 83 u

(170MeV) = 110MeV .

Similarly,

KNd =
MGe

MNd +MGe
Q =

83 u
153 u + 83 u

(170MeV) = 60MeV .

The mass conversion factor can be found in Appendix C.
(d) The initial speed of the germanium nucleus is

vGe =
2KGe
MGe

=
2(110× 106 eV)(1.60× 10−19 J/eV)

(83 u)(1.661× 10−27 kg/u) = 1.60× 107 m/s .

(e) The initial speed of the neodymium nucleus is

vNd =
2KNd
MNd

=
2(60× 106 eV)(1.60× 10−19 J/eV)
(153 u)(1.661× 10−27 kg/u) = 8.69× 106 m/s .



CHAPTER 43 SOLUTION FOR PROBLEM 23

Let P0 be the initial power output, P be the final power output, k be the multiplication factor, t
be the time for the power reduction, and tgen be the neutron generation time. Then according to
the result of Problem 23,

P = P0 kt/tgen .

Divide by P0, then take the natural logarithm of both sides of the equation and solve for ln k.
You should obtain

ln k =
tgen
t
ln
P

P0
.

Hence
k = eα ,

where
α =

tgen
t
ln
P

P0
=
1.3× 10−3 s
2.6000 s

ln
350.00MW
1200.0MW

= −6.161× 10−4 .

This yields k = .99938.



CHAPTER 43 SOLUTION FOR PROBLEM 39

(a) The mass of a carbon atom is (12.0 u)(1.661× 10−27 kg/u) = 1.99× 10−26 kg, so the number
of carbon atoms in 1.00 kg of carbon is (1.00 kg)/(1.99× 10−26 kg) = 5.02 × 1025. (The mass
conversion factor can be found in Appendix C.) The heat of combustion per atom is (3.3 ×
107 J/kg)/(5.02× 1025 atom/kg) = 6.58× 10−19 J/atom. This is 4.11 eV/atom.
(b) In each combustion event, two oxygen atoms combine with one carbon atom, so the total mass
involved is 2(16.0 u) + (12.0 u) = 44 u. This is (44 u)(1.661 × 10−27 kg/u) = 7.31 × 10−26 kg.
Each combustion event produces 6.58×10−19 J so the energy produced per unit mass of reactants
is (6.58× 10−19 J)/(7.31× 10−26 kg) = 9.00× 106 J/kg.
(c) If the Sun were composed of the appropriate mixture of carbon and oxygen, the number of
combustion events that could occur before the Sun burns out would be (2.0× 1030 kg)/(7.31×
10−26 kg) = 2.74× 1055. The total energy released would be E = (2.74× 1055)(6.58× 10−19 J) =
1.80 × 1037 J. If P is the power output of the Sun, the burn time would be t = E/P =
(1.80× 1037 J)/(3.9× 1026 W) = 4.62× 1010 s. This is 1460 y.



CHAPTER 43 HINT FOR PROBLEM 7

The rate of spontaneous fission decays is given by λN , where λ is the disintegration constant for
that type decay and N is the number of 235U nuclei in the sample. The disintegration constant is
related to the half-life by λ = (ln 2)/T1/2 and the number of nuclei in the sample is M/m, where
M is the mass of the sample and m is the mass of a nucleus (235 u). The ratio of the decay
rates is equal to the ratio of the disintegration constants and also to the reciprocal of the ratio of
the half-lives.

ans: (a) 16 fissions/day; (b) 4.3× 108



CHAPTER 43 HINT FOR PROBLEM 17

Consider 1.00 g of 90Sr, which produces thermal energy at a rate of 0.93W. The rate of thermal
energy generation is given by P = QeffR, where R is the fission rate. The fission rate is
R = λN , where N is the number of λ is the disintegration constant and is related to the half-life
by λ = (ln 2)/T1/2. The number of nuclei is given by M/m, where M is 1.00g and m is the
mass of a 90Sr nucleus.

ans: (a) 1.2MeV; (b) 3.2 kg



CHAPTER 43 HINT FOR PROBLEM 31

The barrier height is q2/4π60d, where q is the charge on a nucleus and d is the center-to-center
separation of the nuclei. That is, d = 2r, where r is the radius of a nucleus. Use r = r0A1/3,
where A is the mass number and r0 = 1.2 fm, to compute the radius.

ans: 1.41MeV



CHAPTER 43 HINT FOR PROBLEM 37

The number of fusion events per unit time is P/Q, where P is the rate of energy radiation and
Q is the energy produced per event. P is given in Problem 35 and Q is given in Section 43–7.
Each event produces 2 neutrinos. The fraction of the neutrinos that reach Earth is equal to the
ratio of the cross-sectional area of Earth to the surface area of a sphere with radius equal to the
Earth-Sun distance.

ans: (a) 1.8× 1038 s−1; (b) 8.2× 1028 s−1



CHAPTER 44 SOLUTION FOR PROBLEM 11

(a) The conservation laws considered so far are associated with energy, momentum, angular
momentum, charge, baryon number, and the three lepton numbers. The rest energy of the muon
is 105.7MeV, the rest energy of the electron is 0.511MeV, and the rest energy of the neutrino is
zero. Thus the total rest energy before the decay is greater than the total rest energy after. The
excess energy can be carried away as the kinetic energies of the decay products and energy can
be conserved. Momentum is conserved if the electron and neutrino move away from the decay
in opposite directions with equal magnitudes of momenta. Since the orbital angular momentum
is zero, we consider only spin angular momentum. All the particles have spinh/2. The total
angular momentum after the decay must be eitherh (if the spins are aligned) or zero (if the spins
are antialigned). Since the spin before the decay ish/2, angular momentum cannot be conserved.
The muon has charge −e, the electron has charge −e, and the neutrino has charge zero, so the
total charge before the decay is −e and the total charge after is −e. Charge is conserved. All
particles have baryon number zero, so baryon number is conserved. The muon lepton number
of the muon is +1, the muon lepton number of the muon neutrino is +1, and the muon lepton
number of the electron is 0. Muon lepton number is conserved. The electron lepton numbers of
the muon and muon neutrino are 0 and the electron lepton number of the electron is +1. Electron
lepton number is not conserved. The laws of conservation of angular momentum and electron
lepton number are not obeyed and this decay does not occur..
(b) Analyze the decay in the same way. You should find that only charge is not conserved.
(c) Here you should find that energy and muon lepton number cannot be conserved.



CHAPTER 44 SOLUTION FOR PROBLEM 23

(a) Look at the first three lines of Table 44–5. Since the particle is a baryon, it must consist of
three quarks. To obtain a strangeness of −2, two of them must be s quarks. Each of these has a
charge of −e/3, so the sum of their charges is −2e/3. To obtain a total charge of e, the charge
on the third quark must be 5e/3. There is no quark with this charge, so the particle cannot be
constructed. In fact, such a particle has never been observed.
(b) Again the particle consists of three quarks (and no antiquarks). To obtain a strangeness of
zero, none of them may be s quarks. We must find a combination of three u and d quarks with
a total charge of 2e. The only such combination consists of three u quarks.



CHAPTER 44 HINT FOR PROBLEM 5

The kinetic energy K of a relativistic particle is related to it speed v by K = (γ − 1)mc2, where
m is its mass and γ = 1/ 1− (v/c)2. Solve for v. Since the energy is so much greater than the
rest energy you should find the algebraic solution and then make a binomial expansion in powers
of the ratio of the rest energy to the total energy.

ans: 0.0266m/s.



CHAPTER 44 HINT FOR PROBLEM 17

Use conservation of charge, baryon number, and angular momentum to find the values of these
quantities for the unknown particle. Conservation of angular momentum requires that if an odd
number of fermions enter the reaction then an odd number must leave and if an even number
(including 0) enter then an even number must leave.

ans: (a) K+; (b) n; (c) K0



CHAPTER 44 HINT FOR PROBLEM 31

The number of molecules in an excited state with energy E above the ground state is given by
N = N0e−E/kT , where N0 is the number in the ground state, k is the Boltzmann constant, and
T is the temperature on the Kelvin scale. Put N/N0 equal to 0.25 and solve for E.

ans: (a) 256µeV; (b) 4.84mm
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