AIEEE - 2002

Physics and Chemistry

1.	Which statement is	incorrect?		4()
	(a) all reversible cyc	cles have same efficie	ncy	
	•		an an irreversible one	
	(c) Carnot cycle is a	·		
	•	s the maximum efficie	ncy in all cycles	
2.	•		s is 40 cm. Maximum lengt	th (wave length in cm) of a
	stationary wave pro		ŭ	
	(a) 20	(b) 80	(c) 40	(67120
3.	` '	· ,	esistance (R) and inductan	ce (L) connected in series
	and an angular velo			
	(a) R/ωL	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$	(c) ωL/R	d) $R/(R^2 - \omega^2 L^2)^{1/2}$
4.	An astronomical tele	escope has a large ap	erture to	•
	(a) reduce spherica	l aberration	(b) have high resolution	
	(c) increase span of	f observation	(d) have low dispersion	
5.	The kinetic energy	needed to project a b	ody of mass mirrom the e	arth surface (radius R) to
	infinity is			
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4
6.	If an ammeter is to I	be used in place of a v	oltmeter, then we must cor	nnect with the ammeter a
	(a) low resistance in	n parallel	high resistance in par	allel
	(c) high resistance i	in series	(d) low resistance in seri	es
7.	If in a circular coil A	of radius R, current Li	s flowing and in another co	oil B of radius 2R a current
	2I is flowing, then th	e ratio of the magnetic	edields B _A and B _B , produce	d by them will be
	(a) 1	(b) 2	(c) 1/2	(d) 4
8.	If two mirrors are ke	pt at 60° to each other	then the number of image	es formed by them is
	(a) 5	(b) 6	(c) 7	(d) 8
9.	A wire when connec	ted to 220 V mains sur	oply has power dissipation	P ₁ . Now the wire is cut into
	two equal pieces when	nich are connected in	parallel to the same supply	/. Power dissipation in this
	case is P_2 . Then P_2	Pis		
	(a) 1	(D) 4	(c) 2	(d) 3
10.	If 13.6 eV energy is	regulired to ionize the h	ydrogen atom, then the ene	ergy required to remove an
	electron from n=2	is		
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV
11.	Tube A has both en	ds open while tube B h	nas one end closed, otherw	vise they are identical. The
	ratio of fundamental	I frequency of tube A a	ind B is	
	(a) (a)	(b) 1:4	(c) 2:1	(d) 4:1
12.	A tuning fork arrang	gement (pair) produce:	s 4 beats / sec with one fo	ork of frquency 288 cps. A
K	hittle wax is placed o	n the unknown fork an	d it then produces 2 beats	/sec. The frequency of the
	unknown fork is			
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps

13.	A wave $y = a \sin(\omega)$	t – kx) on a string mee	ts with another wave produ	ucing a node at $x = 0$. Then
	the equation of the	unknown wave is		
	(a) $y = a \sin(\omega t + kt)$	x)	(b) $y = -a \sin(\omega t + kx)$	
	(c) $y = a \sin(\omega t - kt)$	x)	(d) $y = -a \sin(\omega t - kx)$	
14.	On moving a charg	e of 20 coulombs by 2	cm, 2 J of work is done, the	en the potentia difference
	between the points	is		
	(a) 0.1 V	(b) 8 V	(c) 2 V	(d) 0.5
15.		•	nomenta enter perpendicula	
	(a) curved path of e(b) they will move u	•	be same (ignoring the sen	ise of revolution)
	• •		I than that of the proton	
	(d) path of proton is		(
16.	In a simple harmon	ic oscillator, at the mea	an position	
	. ,	s minimum, potential er	7./ //	
	` '	potential energies are	$\alpha \forall$	
	. ,	maximum, potential e		
4-		potential energies are		
17.			mass M S . Ethen two sm	
			oints on the edge of the dis	c. What is the final angular
	velocity of the disc?	?		
	$\left(a\left(\frac{M+m}{m}\right)\omega\right)$	(b) $\left(\frac{M+m}{m}\right)\omega_1$	$M \longrightarrow M$	(d) $\left(\frac{M}{M+2m}\right)\omega_1$
	$^{(a)}(M)^{m}$	(0) (m)	M + 4m)	$(M+2m)^{M}$
18.	The minimum velo	city (in ms ⁻¹) with white	en a car driver must trave	rse a flat curve of radius
		ent of friction 0.6 to avo	-	
4.0	(a) 60	(b) 30	(c) 15 ed with water. The velocity	(d) 25
19.				
	(a) 10	e on the side wall of the	e cylinder near its bottom is (c) 25.5	s (d) 5
20.	` '		an extension of 5 cm. The	
	from 5 cm to 15 cm	7 \\))*		J
	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J
21.	~ ~ ` ` `	/	other with velocity 2v and	v respectively. The velocity
	of centre of mass is		(-) (0	(d) =
22.	(a) v	(b) v/3 ed through a spring the	(c) v/2	(d) zero
ZZ.	(a) expand	(b) compress	(c) remains same	(d) none of these
23.		dy which raises its tem	` '	(-) 31 11.000
8		t (b) thermal capacity	•	(d) temperature gradient
24	At absolute zero, S	i acts as		
	(a) non metal	(b) metal	(c) insulator	(d) none of these

25.	Electromagnetic waves are transver	rse in nature is evident by	
	(a) polarization (b) interference	e (c) reflection	(d) diffraction
26.	Wires 1 and 2 carrying currents i,	and i ₂ respectively are inc	
	angle θ to each other. What is the fo	orce on a small element dl	of wire 2 at
	a distance of r from wire 1 (as shown	in the figure) due to the ma	gnetic field i
	of wire 1?		-r - 1/2
	П	11	0
	(A) $\frac{\mu_0}{2\pi r}i_1i_2$ dltan θ	(b) $\frac{\mu_0}{2\pi r}i_1i_2$ dlsin θ	
		2701	
	(c) $\frac{\mu_0}{2\pi r}i_1i_2$ dlcos θ	(d) $\frac{\mu_0}{4\pi r}i_1i_2$ dIsin θ	
	$\frac{1}{2\pi r}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	(a) $\frac{1}{4\pi r} \frac{1}{1} \frac{1}{2} = \frac{1}{4\pi r}$	
27.	At a specific instant emission of ra	dioactive compound is de	flected in a magnetic field. The
	compound can emit		
	(i) electrons (ii) protons	(iii) He ²⁺	(iv) neutrons
	The emission at instant can be		
	(a) i, ii, iii (b) i, ii, iii, iv	(c) iv	(d) ii, iii
28.	Sodium and copper have work func	tions 2.3 eV and 4.5 eV to	espectively. Then the ratio of the
	wave lengths is nearest to		
	(a) 1 : 2 (b) 4 : 1	(c) 2:	(d) 1 : 4
29.	Formation of covalent bonds in com		
	(a) wave nature of electron	(b) particle nature	e of electron
20	(c) both wave and particle nature of A conducting square loop of side L a		+ +++++
30.	with a uniform velocity v perpendicu		
	induction B constant in time and spa	\ \ P)	$T_1 TTTTTT 1 = 1.77$
	the plane at the loop exists everyw		
	field, as shown in figure. The induce	d emf is	+ +++++
	(a) zero (b) RVB	(c) VBL/R	(d) VBL
31.	Infra red radiation is defected by		
	(a) spectrometer (b) pyrometer	(c) nanometer	(d) photometer
32.	If N ₀ is the original mass of the subs	stance of half- life period t ₁	$_{/2}$ = 5 years, then the amount of
	substance left after 15 years is		
	(a) N ₀ /8 (b) N ₀ /16	(c) $N_0/2$	$(d)N_0/4$
33.	By increasing the temperature, the	•	
	(a) increases for both	(b) decreases for b	
0.4	(c) increases	(d) decreases, incr	
34.	If there are on capacitors in parallel co	onnected to V voit source, th	•
	(b) $\frac{1}{2}$ nCV ²	(c) CV ²	(d) $\frac{1}{2n}$ CV ²
^	1/2	. ,	`

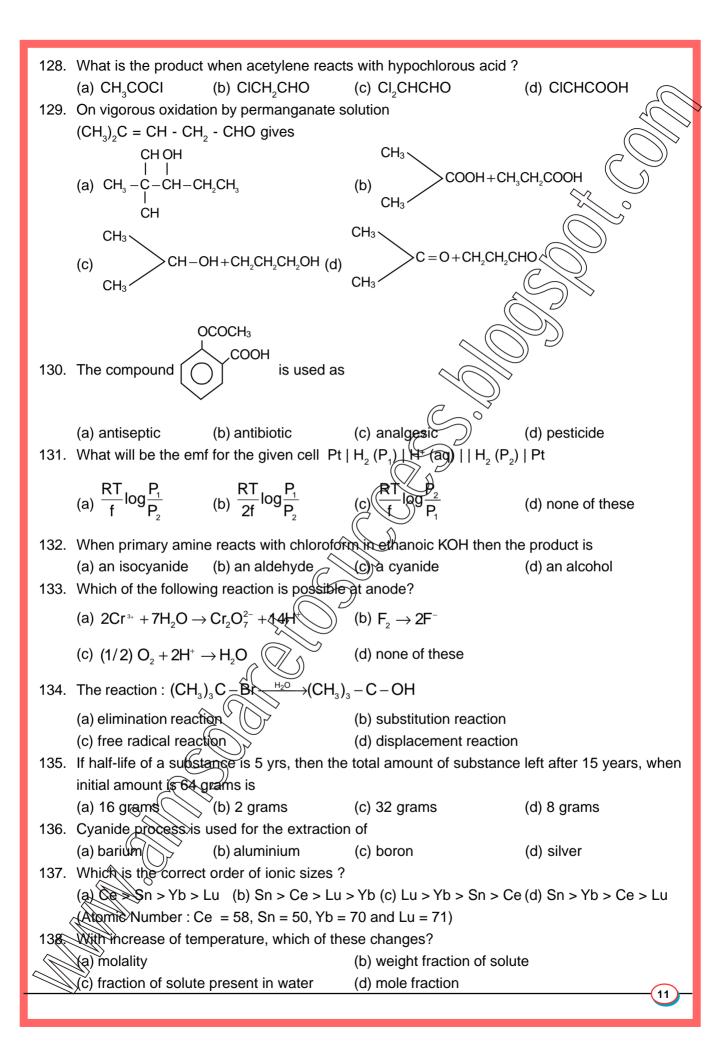
Which of the following is more closed to a black body?

(c) black holes

(d) red roses

36.	The inductance between A and D is	
	(a) 3.66 H (b) 9 H (c) 0.66 H	(d) 1 H $\frac{1}{A}$ $\frac{1}{3H}$ $\frac{1}{3H}$ $\frac{1}{3H}$
37.	A ball whose kinetic energy is E, is proje	cted at an
	angle of 45° to the horizontal. The kinetic e	nergy of the ball at the highest point of its flight will be
	(a) E (b) $E/\sqrt{2}$	(c) E/2 (d) zero
38.	From a building two balls A and B are throw	vn such that A is thrown upwards A and B downwards
	(both vertically). If $v_{\scriptscriptstyle A}$ and $v_{\scriptscriptstyle B}$ are their respectively.	ective velocities on reaching the ground, then
	(a) $V_B > V_A$	(b) $V_A = V_B$
	(c) $V_A > V_B$	(d) their velocities depend on their masses
39.	If a body looses half of its velocity on pene	etrating 3 cm in a wooden block, then how much will it
	penetrate more before coming to rest?	
	(a) 1 cm (b) 2 cm	(c) 3 cm (d) 4 cm
40.	If suddenly the gravitational force of attract	tion between Earth and a satellite revolving around it
	becomes zero, then the satellite will	
	(a) continue to move in its orbit with same	velocity
	(b) move tangentially to the originally orbit	
	(c) become stationary in its orbit	(d) move towards the earth.
41.		moving with uniterm speed. The temperature of the
	gas molecules inside will	
	(a) increase	(b) decrease
	(c) remain same	(d) decrease for some, while increase for others
42.	When temperature increases, the frequen	
	(a) increases	(b) decreases
40	(c) remains same	increases or decreases depending on the material
43.		ocount, when water is cooled to form ice, the mass of
	water should	(h) romain unabangad
	(a) increase	(b) remain unchanged
44.	(c) decrease The energy band gap is maximum in	(d) first increase then decrease
44.	(a) metals (b) (superconductors	(c) insulators (d) semiconductors
45.	() () () ()	y doped to produce large number of majority carriers is
- 10.	(a) emmiter	(b) base
	(c) collector	(d) can be any of the above three
46.	Energy required to move a body of mass r	
	(a) GMm/3R ² (b) GMm/3R ²	(c) GMm/8R (d) GMm/6R
47.		n equal parts, then the time period of each part will be
	(a) $T_{\sqrt{n}}$ (b) T/\sqrt{n}	(a) nT
	(d) T	
48.	A charged particle q is placed at the centre	e O of cube of length L
	(ABCDEFGH). Another same charge q	is placed at a distance
_	Efform O. Then the electric flux through AE	
	q/ $4\pi \in_{_0} L$ (b) zero (c) q/ 2π	$\in_{0} L$ (d) $q/3 \pi \in_{0} L$
	<u> </u>	

49.	If in the circuit, power	er dissipation is 150 W	/, then R is	^R^
	(a) 2Ω	(b) 6Ω		\sim
	(c) 5Ω	(d) 4Ω		15 V
50.	Wavelength of light	used in an optical in	strument are $\lambda_1 = 4000 \text{\AA}$	and $\lambda = 5000$ A then
			(corresponding to λ_1 and	// ^
	(a) 16:25	(b) 9 : 1	(c) 4:5	(d) 5 : 4
51.	()	` '	ion, stands up, then the tim	```
•	(a) increase	(b) decrease	(c) remains same	is policing that
	•	` '	ses if the child is short	
52.	` '		n in the lift drops a ball inside th	pe Iff The acceleration of the
<u></u> -			an standing stationary on the	
	(a) g, g		(c) g - a, g	rolla o
53.			n an electrochemical cell de	epends on
	(a) $(lt)^{1/2}$	(b) IT	(c) I/t	(d) I ² t
	. , . ,	period, for which the o	``	(9)
54.	•		of a hydrogen motecule e	qual to that of an oxygen
	molecule at 47° C?	ĺ		7.5
	(a) 80 K	(b) - 73 K	(c) 3 K	(d) 20 K
55.	The time period of a	charged particle unde	rgoing a circular motion in	a uniform magnetic field is
	independent of its			
	(a) speed	(b) mass	(c) charge	(d) magnetic induction
56.			are released from top of an i	
		Z-1	aximum acceleration down	
5 7	(a) solid sphere	(b) hollow sphere)]	(d) all same
57.			rimary coil are 140 and tha nat in the secondary coil is	t in the secondary con are
	(a) 4 A	(b) 2 A	(c) 6 A	(d) 10 A
58.	Even Carnot engine	cannot give 100% ef	ficiency because we canno	ot
	(a) prevent radiation		(b) find ideal sources	
	(c) reach absolute z	ero temperature	(d) eliminate friction	
59.	Moment of inertia of	a circular wire of mas	ss M and radius R about its	diameter is
	(a) MR ² /2	(b) MR ²	(c) 2MR ²	(d) MR ² /4
60.	When forces F ₁ ,	F ₃)are acting on a p	article of mass m such that	at F ₂ and F ₃ are mutually
			stationary. If the force F ₁	
	acceleration of the	oarticle is		
	(a) F ₁ /m	(b) $F_{2}F_{3}/mF_{1}$	(c) $(F_2 - F_3)/m$	(d) F_2/m
61.	Two forces are such	that the sum of their	magnitudes is 18 N and the	eir resultant is 12 N which
	is perpendicular to t	he smaller force. Then	the magnitudes of the force	ces are
	(a) 12/14, 6 N	(b) 13 N, 5 N	(c) 10 N, 8 N	(d) 16 N, 2 N
62.	Speeds of two ident	tical cars are u and 4	u at the specific instant. T	he ratio of the respective
	distances in which the	he two cars are stopp	ed from that instant is	
	(a) 1 : 1	(b) 1:4	(c) 1:8	(d) 1:16


63.	1 mole of a gas with	$\gamma = 7/5$ is mixed with	n 1 mole of a gas with $\gamma=5$	$5/3$, then the value of γ for
	the resulting mixture	e is		
	(a) 7/5	(b) 2/5	(c) 24/16	(d) 12/7
64.	If a charge q is place	ed at the centre of the	line joining two equal charg	ges Q such that the system
	is in equilibrium ther	n the value of q is		
	(a) Q/2	(b) -Q/2	(c) Q/4	(d) -Q/4
65.	Capacitance (in F)	of a spherical conduct	or with radius 1 m is	
	(a) 1.1×10^{-10}	(b) 10 ⁻⁶	(c) 9×10^{-9}	(d) 10 ⁻³
66.	A light string passir	ng over a smooth ligh	nt pulley connects two blo	cks of masses m, and m,
	(vertically). If the ac-	celeration of the syste	em is g/8, then the ratio of	the masses is
	(a) 8 : 1	(b) 9:7	(c) 4:3	(0)5.3
67.	Two spheres of the s	same material have ra	dii 1 m and 4m and tempe	atures 4000 K and 2000 K
	respectively. The rat	io of the energy radiate	ed per second by the first s	phere to that by the second
	is			
	(a) 1 : 1	(b) 16:1	(c) 4:1	'(d) 1 : 9
68.	Three identical bloc	ks of masses m = 2kg	g are drawn by a force	
	F = 10.2 N with an a	acceleration of 0.6 ms ⁻²	on a frictions sufface,	$C \longrightarrow B \longrightarrow A \longrightarrow F$
	then what is the tens	sion (in N) in the string	g between the blocks B ''''	///////////////////////////////////////
	and C?			
	(a) 9.2	(b) 7.8	(c) A	(d) 9.8
69.	One end of a mass	less rope, which pass	es over a massless and fr	ictionless
	pulley P is tied to a	hook C while the othe	r end is free. Maximum tei	nsion thatC
	the rope can bear is	360 N. With what value	ue of maximum safe accele	eration (in
	ms ⁻²) can a man of 6	60 kg climb on the rop	ē.	Ш
	(a) 16	(b) 6	刘(c) 4	(d) 8
70.		$\langle \wedge \rangle$	C with velocity v as show	n.
		momentum of the par		_{>} C
	(a) mvL		(b) mvl	
	(c) mvr		(d) zero	P
71.		ng is used in optical fil		r
		ection (b) scattering	(c) diffraction	102
	(d) refraction			
72.	. (of a body depends u		
	(a) m ⁰	(b) m¹	(c) m ²	(d) m ³
73.	\sim // $^{\vee}$	ng are not electromag	netic waves?	
	(a) cosmic rays	(b) gamma rays	(c) β-rays	(d) X- rays
74.	Identify the pair who	se dimensions are eq	ıual	
	(a) torque and work	(b) stress and energ	y(c) force and stress	(d) force and work
75.				is the temperature of the
8	cold junction, then	·	. , ,	•
	→ AN A + A − A	(b) $\theta_i - \theta_c = 2\theta_n$	(c) $\frac{\theta_i + \theta_c}{\theta_i} = \theta$	(d) $\theta_c - \theta_i = 2\theta_n$
	$\tau_{\rm ey}$ $\sigma_{\rm i} + \sigma_{\rm c} - \sigma_{\rm n}$	$(D) U_i - U_c - ZU_n$	2 - on	(a) $O_c - O_i - 2O_n$

76.	When H ₂ S is passed	d through Hg ₂ S we ge	t	
	(a) HgS	(b) HgS + Hg $_2$ S	(c) Hg ₂ S	(d) Hg_2S_2
77.	Alum helps in purify	-		4
		lex with clay particles		
		nich combines with the	dirt and removes it	
	(c) coagulating the	•		
	(d) making mud wat			
78.	A square planar cor	nplex is formed by hyb	oridisation of which atomic	orbitals
	(a) s, p_x , p_y , d_{yz}	(b) $s, p_x, p_y, d_{x^2-y^2}$	(c) s, p_x, p_y, d_{z^2}	(d) $(\mathbf{q}, \mathbf{p}_y, \mathbf{p}_z, \mathbf{d}_{xy})$
79.	Polymer formation f	rom monomers starts	by	
	(a) condensation rea	action between monor	ners ((
	(b) coordinate react	ion between monome	rs	
	(c) conversion of mo	onomer to monomer ic	ons by protons	
	(d) hydrolysis of mo	nomers		
80.	The type of isomeris	sm present in nitropen	tamine chromium (III) chlor	ride is
	(a) optical	(b) linkage	(c) ionizatio	(d) polymerisation
81.	Arrangement of (CH	$(S_3)_3 - C_7, (CH_3)_2 - CH_7, C$	CH ₃ - CH ₂ - When attached to	benzyl or an unsaturated
		order of inductive effe		
			H_2 (b) CH_3 - CH_2 - CH_3)	
	* -		$(CH_{3})_{3}-C-CH_{3}-C$	CH ₂ - (CH ₃) ₂ - CH-
82.	CH ₃ - Mg - Br is an o	organo metallic compo		
	(a) Mg - Br bond	(b) C - Mg bond	G C - Br bond	(d) C - H bond
83.		() _	greous solution. The solut	
	(a) not a buffer solu	11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	b) not a buffer solution w	
	(c) a buffer solution		(d) a buffer solution with p	oH > 7
84.		oth Bronsted acid and		
	(a) (HSO ₄) ⁻¹	(b) Na (0)	(c) NH ₃	(d) OH ⁻¹
85.		\sim \sim	$f Mg(OH)_2$ be x then its k_{sp}	
	(a) $4x^3$	(b)(108x5>	(c) 27x ⁴	(d) 9x
86.		((//-	r reactions in terms of mola	•
	(a) sec ⁻¹ , Msec ⁻¹	(b) sec-1, M	(c) Msec ⁻¹ , sec ⁻¹	(d) M, sec ⁻¹
87.			airs of Xe are respectively	
	(a) 2, 3, 1	V ()	(c) 4, 1, 2	(d) 3, 2, 1
88.	\sim \sim \sim	wng species the intera	atomic bond angle is 109°2	8′?
	(a) NH ₃ , (BF)	•	(c) NH ₃ , BF ₄	_ •
89.	For the reaction A +	\cdot 2B \longrightarrow C, rate is g	iven by $R = [A] [B]^2$ then th	e order of the reaction is
	(a) 3	(b) 6	(c) 5	(d) 7
90.		m DNA because RNA		
	(a) ribose sugar and		(b) ribose sugar and urac	
	(c) deoxyribose sug	ar and thymine	(d) deoxyribose sugar an	d uracil

91.	Which of the following	ng are arranged in an	increasing order of their bo	nd strengths?
	(a) $O_2^- < O_2^- < O_2^+ <$	(O_2^{2-})	(b) $O_2^{2-} < O_2^- < O_2^+$	
	(c) $O_2^- < O_2^{2-} < O_2$	$< O_2^+$	(d) $O_2^+ < O_2^- < O_2^- < O_2^{2-}$	
92.	If an endothermic re at its boiling point, the		eous at freezing point of wa	ater and becomes feasible
	(a) ΔH is – ve, ΔS	is + ve	(b) ΔH and ΔS both are	e + ve
	(c) ΔH and ΔS bo	th are – ve	(d) ΔH is + ve, ΔS is -	ve 💮
93.	the engine is $J(Q_1 +$ (a) violates 1 st law (c) violates 1 st law (c)	· Q ₂). This data	- (\ (\	
94.	Most common oxida	ation states of Ce (cer	. // //	
	(a) +2, +3	(b) +2, +4	(c) +3, +4	(d) +3, +5
95.			easing order of their ionic ra	
	(a) $Yb^{+3} < Pm^{+3} < C$		(b) Ce ⁺³ (Yb ⁺³ < Pm ⁺³ < (d) Pm ⁺³ > La ⁺⁹ < Ce ⁺³ < '	
06	(c) $Yb^{+3} < Pm^{+3} < L$		(d) Prive Lag < Ce < <	
96.	=		nt (b) eliminates moisture	id submannes because it
	(c) absorbs CO_2 and	d increases O ₂ conten	(d) produces ozone.	
97.	. ,	n optical and geomet્રાં		
01.	•	al number of isomers f		
	•	one is present then s		
	• •		(d) they have no similarity	/
98.		ng does not show ged		•
	(a) 1, 2-dichloro - 1-	(()/ .	(b) 1, 3 - dichloro - 2- pen	tene
	(c) 1, 1- dichloro - 1	- pentene	(d) 1, 4 - dichloro - 2- pen	tene
99.	In case of nitrogen,	NC is possible but no	ot NCI ₅ while in case of pho	sphorous, PCl ₃ as well as
	PCI ₅ are possible. It	is due to		
	(a) availability of yar	cant d orbitals in P but	t not in N	
	(b) lower electroneg	pativity of P than N		
	~ M	H - bond formation		
	(d) occurrence of P	in solid while N in gas	seous state at room temper	ature
100.	For an ideal gas, notemperature This	number of moles per	litre in terms of its pressu	re P, gas contant R and
	(a) RT/R 0	(b) PRT	(c) P/RT	(d) RT/P
101.	The formation of ga	s at the surface of tun	gsten due to adsorption is t	the reaction of order
^	(a) (a)	(b) 1	(c) 2	(d) insufficient data
102.	The solubility of Mg	$(OH)_2$ is S moles/litre.	The solubility product unde	er the same condition is
	(a) 4S ³	(b) 3S ⁴	(c) 4S ²	(d) S ³

103.	How do we different	ate between Fe3+ and	Cr3+ in group III?	
	(a) by taking excess	of NH ₄ OH solution	(b) by increasing NH ₄ ⁺ ior	n concentration
	(c) by decreasing O	H ion concentration	(d) both (b) and (c)	4()
104.	In a compound C, H	I and N atoms are pr	esent in 9:1:35 by wei	ght. Molecular weight of
	compound is 108. M	olecular formula of co	mpound is	
	(a) $C_2H_6N_2$	(b) C_3H_4N	(c) $C_6H_8N_2$	(d) $C_9 H_{12} N_3$
105.	The functional group	, which is found in am	ino acid is	
	(a) -COOH group	(b) - NH ₂ group	(c) - CH ₃ group	(d) both (a) and (b)
106.	Conductivity (unit Sie	emen's S) is directly pro	pportional to area of the ves	sel and the concentration
	of the solution in it a	nd is inversely proport	tional to the length of the v	essel then the unit of the
	constant of proportion	onality is	\$	
	(a) Sm mol ⁻¹	(b) Sm ² mol ⁻¹	(c) S ⁻² m ² mol	(d) S ² m ² mol ⁻²
107.	In a hydrogen atom,	if energy of an electr	on in ground state is 13.6	eV,then that in the 2nd
	excited state is)
	(a) 1.51 eV	(b) 3.4 eV	(c) 6.04 eV	(d) 13.6 eV
108.	Which of the following	ng statements is true?		
	(a) HF is less polar	han HBr		
		vater does not contain	any ions	
			forces of attraction overcome	the forces of repulsion
		sference of electron t		·
109.		ng compounds has wro		
	(a) $CH_3 - CH_2 - CH_3$	$_{2}$ – COO – CH $_{2}$ CH $_{3}$ $\overline{\sim}$	ethyl butanoate	
	(b) CH CH CH	I CHO 3 month	bulkhutanal	
		I_2 – CHO \longrightarrow 3 - met	nya—bu tarrai	
	СН)	
	(c) CH ₃ -CH-CH	-CH 2-methy	yl-3-butanol	
			,	
	OH CH	3		
	O			
	(d) $CH_3 - CH - \ddot{C} >$	$CH_3 \longrightarrow 2-$	methyl-3-pentanone	
	CH ₃			
	CII3			
110.	CH ₃ CH ₂ COOH red	$A \xrightarrow{\text{alc. KOH}} B. Wh$	nat is B?	
	(a) CH CH COCK	(b) CH CH CHO	(c) CH ₂ = CHCOOH	(4) CICH CH COOH
111.		ed by the electrolysis	-	(a) 51511 ₂ 511 ₂ 55511
	(a) bauxite	(b) alumina	(c) alumina mixed with me	olten cryolite
	(d) molten cryolite	(b) didiffilia	(o) alamina mixoa with mix	onon oryonto
112.	11/11	by leaching with a cya	anida is	
112.	YOUNG CALLACICO		(c) Cu	(d) Na
112	Value of gas consta	(b) Ag	(c) Cu	(d) Na
	, 💙	(b) 0.987 cal mol ⁻¹ K ⁻¹	(c) 8 3 mol-1 K-1	(d) 83 org mol-1 1/-1
	va) 0.002 iiile aiiil	(n) 0.301 cal lilol .K.	(C) 0.3 J IIIOI K	(d) 83 erg mol ⁻¹ K ⁻¹

114.	Freezing point of an	aqueous solution is (-0	.186)°C. Elevation of boiling	point of the same solution
	is $K_b = 0.512 {}^{\circ}\text{C}$, $K_f =$	= 1.86 °C, find the incre	ease in boiling point.	
	(a) 0.186 °C	(b) 0.0512 °C	(c) 0.092 °C	(d) 0.2372 °C
115.	EMF of a cell in term	ns of reduction potenta	al of its left and right electro	odes is
	(a) $E = E_{left} - E_{right}$	(b) $E = E_{left} + E_{right}$	(c) $E = E_{right} - E_{left}$	(d) $E = -(E_{right} + E_{left})$
116.	•	•	of mass 25 $\overset{\circ}{g}$ in space is 10 $^{\text{-}5}$	P/ \ \ \ \ \
	in its velocity (in ms	$^{-1}$) ? (h = 6.6 \times 10 ⁻³⁴ J	s)	
	(a) 2.1×10^{-34}	(b) 0.5×10^{-34}	(c) 2.1×10^{-28}	(d) 0.5 10 ²⁸
117.	Which of these will r	not react with acetylen	e ?	
	(a) NaOH	(b) ammonical AgNC) ₃ (c) Na	(d)(HCI)
118	Change in volume of	of the system does not	t alter the number of moles	in which of the following
	equilibria?			
	(a) $N_2(g) + O_2(g)$	2 NO(g)	(b) PCI ₅ (g)PC	(g) (g)
	(c) $N_2(g) + 3H_2(g)$	2NH ₃ (g)	(b) PCI ₅ (g) PCI (d) SO ₂ CI ₂ (g)	(g) + Cl ₂ (g)
119.	For the reactions,	Ç		
	$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$		
	$2Zn+O_2 \longrightarrow 2Z$	nO; $\Delta H = -412J$		
	(a) carbon can oxidi	se Zn	(b) oxidation of carbon is	not feasible
	(c) oxidation of Zn is	not feasible	(d) Zn ean oxidise carbon	l
120.	Which of the following	ng ions has the maxim	um magnetic moment?	
	(a) Mn ⁺²	(b) Fe ⁺²	(c) (ti+2)	(d) Cr ⁺²
121.	In which of the follow	ving species is the unc	derlined carbon having sp³	hybridisation?
	(a) CH ₃ COOH	(b) CH ₃ CH ₂ OH	CCH3 COCH3	(d) $CH_2 = \underline{C}H - CH_3$
122.	Racemic mixture is	formed by mixing two		
	(a) isomeric compou	unds	b) chiral compounds	
	(c) meso compound	s	(d) optical isomers	
123.	The differential rate	law for the reaction H	$_{2}$ + $I_{2} \rightarrow 2HI$ is	
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt}$		$d[H_2] = d[I_2] = 1 d[HI]$]
	(a) $-\frac{dt}{dt} - \frac{dt}{dt}$	al	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[HI]}{dt}$	_
	1 d[H ₂] 1 d[l ₂]	(ditril)	$\int_{\Omega} d[H_2] = 2d[I_2]$	d[HI]
	(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt}$		(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	dt
124.	Number of sigma bo	onds in P ₄ O ₁₀ is		
	(a) 6	(b) 7	(c) 17	(d) 16
125.	Kinetic theory of gas	ses proves		
	(a) only Boxle's law	(b) only Charles' law	(c) only Avogadro's law	(d) all of these
126.	A metal M readily for	rms its sulphate MSO ₄	which is water - soluble. It	forms its oxide MO which
	becomes inert on h	eating. It forms an ins	soluble hydroxide M(OH) ₂ v	which is soluble in NaOH
	solution. Then M is			
	(a) Mg	(b) Ba	(c) Ca	(d) Be
127	Recenotes reduction	on potential, then whic	h is true ?	
				(a) [0
	$ \mathbf{E}_{\text{cell}} = \mathbf{\Phi}_{\text{right}} - \mathbf{\Phi}_{\text{left}} $	(D) $\mathbf{L}_{\text{cell}} = \mathbf{\Phi}_{\text{left}} + \mathbf{\Phi}_{\text{right}}$	(c) $E_{cell}^{0} = \varphi_{left} - \varphi_{right}$	(a) $\mathbf{E}_{\text{cell}} = -(\mathbf{\Phi}_{\text{left}} + \mathbf{\Phi}_{\text{right}})$

139.	The integrated rate plotting	equation is Rt = log	C_0 - log C_t . The straight	line graph is obtained by
		1		1 1
	(a) time vs $\log C_t$	(b) $\frac{1}{\text{time}}$ vs C_t	(c) time vs C _t	(d) time VS C.
140.		· -	se in the volume at const	11 // ~
	affect the number of	moles at equilibrium		
	(a) $2NH_3 \rightarrow N_2 + 3H_3$	\mathbf{H}_{2}	(b) $C(g) + (1/2)O_2(g) \rightarrow$	CO(g) 💢 💍
	(c) $H_2(g) + O_2(g) -$	→ H₂O₂(q)	(d) none of these	
141.	2 (0)	2 2 (0)	urity is to be purified by ele	ectrolysis, the appropriate
	electrodes are			
	cathode	anode	cathode	anode
	(a) pure zinc	pure copper	(b) impure sample	pure copper
	(c) impure zinc	impure sample	(d) pure copper	impure sample
142.	The most stable ion			J
	(a) [Fe(OH) ₃] ³⁻	· ·	(c) [Fe(CN) ₆]	(d) $[Fe(H_2O)_6]^{3+}$
143.	β - particle is emitte	d in radioactivity by		
	(a) conversion of pro	oton to neutron	(b) from outermost orbit	
	(c) conversion of ne	utron to proton	(d) β particle is not emit	ted
144.	In mixture A and B	component show -ve o	deviation as	
	(a) $\Delta V_{mix} > 0$		(B) $\Delta H_{mix} < 0$	
	(c) A - B interaction	is weaker than A - A's	and B B interaction	
		is stronger than A		
145.	The heat required to	raise the temperature	of body by 1 K is called	
	(a) specific heat	(b) thermal capacity	(c) water equivalent	(d) none of these
146.	Na and Mg crystalliz	e in BCC and FCC typ	pe crystals respectively, the	en the number of atoms of
	Na and Mg present	in the unit cell of their	respective crystal is	
	(a) 4 and 2	(b) 9 and 14	(c) 14 and 9	(d) 2 and 4
147.			of Fe = 55.85 g mol^{-1}) is	
	(a) twice that in 60	((b) 6.023×10^{22}	
4.40	(c) half that in 8g He	$\langle \mathcal{O} \rangle$	(d) $558.5 \times 6.023 \times 10^{23}$	
148.			and ultimately forms [Mn	
		(b) 1, 5, 3, 7	n each case respectively i	(d) 3, 5, 7, 1
149		ng is a redox reaction		(u) 3, 3, 7, 1
110.	() ///			0.01.11.0.0
	(a) NaCI+KNO ₃ \rightarrow	NanO ₃ + KCI	(b) $CaC_2O_4 + 2HCI -$	\rightarrow CaCl ₂ + H ₂ C ₂ O ₄
	(6) Mg(OH) ₂ + 2NH	$_4\text{CI} \rightarrow \text{MgCl}_2 + 2\text{NH}_4\text{C}$	OH (d) $Zn+2AgCN \rightarrow 2A$	$Ag + Zn(CN)_2$
150	For the reaction CC	$O(g) + (1/2)O_2(g) = CC$	$O_2(g), K_p/K_c$ is	
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) (RT) ^{1/2}
		· · · · ·		

AIEEE - 2002

Mathematics

- 1. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha 3$ and $\beta^2 = 5\beta 3$ then the equation having α/β and β/α as its posts is
 - (a) $3x^2 19x + 3 = 0$

(b) $3x^2 + 19x - 3 = 0$

(c) $3x^2 - 19x - 3 = 0$

- (d) $x^2 5x + 3 = 0$
- 2. If $y = (x + \sqrt{1 + x^2})^n$, then $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is
 - (a) n²v
- (b) $-n^2y$
- (c) -v
- 3. If 1, $\log_9 (3^{1-x} + 2)$, $\log_3 (4.3^x 1)$ are in A.P. then x equals
 - (a) log₂ 4
- (b) 1+ log₃ 4
- (c) 1 log₄ 3
- 4. A problem in mathematics is given to three students A, B, C and their respective probability of

solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved is

- (a) $\frac{3}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{2}{3}$

(d) $\frac{1}{3}$

- 5. The period of $\sin^2 \theta$ is
 - (a) π^{2}
- (b) π
- (F) 2π
- (d) $\pi/2$
- 6. I, m, n are the pth, qth and rth term of a S-Pall positive, then logm q 1 logn r 1
 - (a) -1
- (b) 2
- (c) 1

(d) 0

- 7. $\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x} is$
 - (a) 1

(c) zero

(d) does not exist

- 8. A triangle with vertices (4, 0), (-1, -1), (3, 5) is
 - (a) isosceles and right angled
- (b) isosceles but not right angled
- (c) right angled but not isosceles
- (d) neither right angled nor isoceles
- 9. In a class of 100 students there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class is 72, then what is the average of the girls?
 - (a) 73
- (b) 65
- (c) 68

(d) 74

- 10. $\cot(\sqrt{\cos\alpha}) = \tan^{-1}(\sqrt{\cos\alpha}) = x$, then $\sin x =$
 - (a) $tan^2 \left(\frac{\alpha}{2}\right)$
- (b) $\cot^2 \left(\frac{\alpha}{2}\right)$
- (c) $tan \alpha$
- (d) $\cot \left(\frac{\alpha}{2}\right)$

- The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are
 - (a) $(1, \frac{2}{3})$
- (b) (3, 1)
- (c) (3, 3)
- (d) (1, 2)
- A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5}$ 12.
- (a) x y + z = 1 (b) x + y + z = 5 (c) x + 2y z = 1

- The solution of the equation $\frac{d^2y}{dv^2} = e^{-2x}$

 - (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$

- 14. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$
 - (a) e4
- (b) e²

(d) 1

- The domain of $\sin^{-1} [\log_3 (x/3)]$ is 15.
 - (a) [1, 9]
- (b) [-1,9]
- (d) [-9, -1]

- The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6}$ + ∞ is 16.

- (d) 4
- Fifth term of a GP is 2, then the product of its 9 terms is 17.
 - (a) 256
- (b) 512
- (c) 1024

(d) none of these

- $\int_{0}^{\infty} |\sin x| dx is$ 18.
- (c) 10

(d) 18

- 19. $I_n = \int_{1}^{\pi/4} \tan^n x \, dx$ then $\lim_{n \to \infty} \int_{1}^{\pi/4} [I_n + I_{n-2}]$ equals
- (c) ∞

(d) zero

- $\int_{1}^{2} [x^{2}] dx i \hat{s}$
- (b) $2 + \sqrt{2}$
- (c) $\sqrt{2}-1$
- (d) $\sqrt{2} 2$

- (b) π^{2}
- (c) zero

(d) $\frac{\pi}{2}$

22.	Let $f(x) = 4$ and $f'($	$x) = 4$. Then $\lim_{x\to 2} \frac{xf(2)}{x}$	$\frac{2}{x-2}$ is given by	
	(a) 2	(b) - 2	(c) - 4	(d) 3
23.	` '	()	()	$gz + Argw = \pi$ then z equals
	(a) ₩	(b) _ w	(c) w	(d) - w
24.		s solution is given by	()	
	(a) $Re(z) > 0$	-	(c) Re $(z) > 3$	(d) Re(z) 2 0
25.	The locus of the ce			= a and $ z(z_1) = b$ externally
		omplex numbers) will I		
	(a) an ellipse	(b) a hyperbola	(c) a circle	(d) none of these
26.	Sum of infinite num	nber of terms of GP is:	20 and sum of their square	e is 190. The common ratio of
	GP is		_	
	(a) 5	(b) 3/5	(c) 8/5	(0) 1/3
27.	$1^3 - 2^3 + 3^3 - 4^3 + \dots$	+9³ =		
	(a) 425	(b) - 425	(c) 475	(d) - 475
28.	Difference betwee	n the corresponding ro	$\text{pots of } x^2 + \text{ax} + \text{b} = 0 \text{ and } x$	$dx^2 + bx + a = 0$ is same and
	$a \neq b$, then			
		(b) $a + b - 4 = 0$		(d) $a - b + 4 = 0$
29.	Product of real roo	ots of the equation t ² x ²	· · · · · · · · · · · · · · · · · · ·	
	(a) is always posit	ive	(b) is always negative	
	(c) does not exist		(d) none of these	
30.		oots of the equation x		
	(a) $p = 1$, $q = -2$		//)/ ·	(d) $p = -2$, $q = 1$
31.			$pda^{2} + b^{2} + c^{2} = 1$ then ab	
	(a) less than 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(d) any real no.
32.		ar digit odd nymbers th	at can be formed using 0	, 1, 2, 3, 5, 7 (using repetition
	allowed) are		() 400	
00	(a) 216	(b) 37 <i>\$</i>		/ I\ 7 00
33.			(c) 400	(d) 720
	-		` '	(d) 720 digits 0, 1, 2, 3, 4 (repetition
	allowed) is	an 1000 but less than	4000 is formed using the	digits 0, 1, 2, 3, 4 (repetition
24	allowed) is (a) 125	an 1000 but less than	4000 is formed using the (c) 375	digits 0, 1, 2, 3, 4 (repetition (d) 625
34.	allowed) is (a) 125 Five digit number	an 1000 but less than (b) 105 divisible by 3 is forme	4000 is formed using the (c) 375	digits 0, 1, 2, 3, 4 (repetition
34.	allowed) is (a) 125 Five digit number of such numbe	an 1000 but less than (b) 105 divisible by 3 is formed imbers are	(c) 375 ed using 0, 1, 2, 3, 4, 6 a	digits 0, 1, 2, 3, 4 (repetition) (d) 625 nd 7 without repetition. Total
	allowed) is (a) 125 Five digit number number of such number of suc	an 1000 but less than (b) 105 divisible by 3 is forme imbers are (b) 3125	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120	digits 0, 1, 2, 3, 4 (repetition (d) 625
34. 35.	allowed) is (a) 125 Five digit number number of such number of suc	an 1000 but less than (b) 105 divisible by 3 is formed imbers are (b) 3125 rs from 1 to 100 that a	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120 are divisible by 2 or 5 is	digits 0, 1, 2, 3, 4 (repetition) (d) 625 and 7 without repetition. Total (d) 216
35.	allowed) is (a) 125 Five digit number number of such number of suc	an 1000 but less than (b) 05 divisible by 3 is formed imbers are (b) 3125 rs from 1 to 100 that an (b) 3050	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120 are divisible by 2 or 5 is (c) 3600	digits 0, 1, 2, 3, 4 (repetition) (d) 625 nd 7 without repetition. Total
	allowed) is (a) 125 Five digit number number of such number of s	an 1000 but less than (b) 105 divisible by 3 is formed imbers are (b) 3125 rs from 1 to 100 that a	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120 are divisible by 2 or 5 is (c) 3600 ansion of (1+x) ^{p+q} are	digits 0, 1, 2, 3, 4 (repetition) (d) 625 nd 7 without repetition. Total (d) 216 (d) 3250
35.	allowed) is (a) 125 Five digit number number of such number of s	an 1000 but less than (b) 105 divisible by 3 is former (b) 3125 rs from 1 to 100 that a (b) 3050 f x ^p and x ^q in the expan	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120 are divisible by 2 or 5 is (c) 3600 ansion of (1+x) ^{p+q} are (b) equal with opposite	digits 0, 1, 2, 3, 4 (repetition) (d) 625 nd 7 without repetition. Total (d) 216 (d) 3250
35. 36.	allowed) is (a) 125 Five digit number number of such number of s	an 1000 but less than (b) 105 divisible by 3 is former (b) 3125 rs from 1 to 100 that a (b) 3050 xop and xop in the expansion	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120 are divisible by 2 or 5 is (c) 3600 are (b) equal with opposite (d) none of these	digits 0, 1, 2, 3, 4 (repetition) (d) 625 (d) 7 without repetition. Total (d) 216 (d) 3250 e signs
35.	allowed) is (a) 125 Five digit number number of such number of s	an 1000 but less than (b) 105 divisible by 3 is former (b) 3125 rs from 1 to 100 that a (b) 3050 xop and xop in the expansion	(c) 375 ed using 0, 1, 2, 3, 4, 6 a (c) 120 are divisible by 2 or 5 is (c) 3600 are (b) equal with opposite (d) none of these	digits 0, 1, 2, 3, 4 (repetition) (d) 625 nd 7 without repetition. Total (d) 216 (d) 3250

38.	The positive integer just greater than (1+0.0001) ¹⁰⁰⁰⁰ is				
	(a) 4	(b) 5	(c) 2	(d) 3	
39.	r and n are positive	e integers r > 1, n > 2	2 and coefficient of (r + 2)	th term and 3rth term in the	
expansion of $(1+x)^{2n}$ are equal, then n equals					
	(a) 3r	(b) 3r + 1	(c) 2r	(d) 2r + 1	
			a b a	ax+b	
40.	If a > 0 discriminant	of ax2 + 2bx + c is -v	ve, then a b a a b c b a c b ax + b bx + c	OX + C is	
			ax+p bx+c	0	
	(a) +ve	(b) (ac - b²) (ax² + 2	(a) vo		
			(
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7}}}$	7+ having n radi	ical signs then by methods	of mathematical induciton	
	which is true				
	(a) $a_n > 7 \ \forall \ n \ge 1$	(b) $a_n > 7 \ \forall \ n \ge 1$	(c) $a_n < 4 \forall n \ge 1$	(d) $a_n < 3 \forall n \ge 1$	
42.	The sides of a triang	gle are 3x + 4y, 4x+3	7 and 5x + 57 where x, y >	0 then the triangle is	
	(a) right angled	(b) obtuse angled	(c) equilateral	(d) none of these	
43.	Locus of mid point of	of the portion between	n the axes of x cos α + y sir	$\alpha = p$ where p is constant	
	is				
				1 1 1	
	(a) $x^2 + y^2 = \frac{4}{2}$	(b) $x^2 + y^2 = 4p^2$	$\frac{1}{y^2} = \frac{2}{p^2}$	(d) $\frac{1}{x^2} + \frac{1}{v^2} = \frac{4}{p^2}$	
44.			+2ty + c = 0 intersect on		
45		(b) $bg^2 \neq ch^2$		(d) none of these	
45.			$xy + (a^2-2)y^2 = 0$ and perpe		
	(a) two values of a	(b) ∀ a ()	(c) for one value of a	(d) for no values of a	
46.	(a) two values of a (b) \forall a (c) for one value of a (d) for no values of a If the chord $y = mx + 1$ of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45° at the major				
	segment of the circl	<u> </u>			
	(a) $2 \pm \sqrt{2}$	(b) $\sqrt{2}$ $\sqrt{2}$	(c) $-1 \pm \sqrt{2}$	(d) none of these	
47.	The centres of a	t of circles, each of ra	adius 3, lie on the circle x^2	+ y^2 = 25. The locus of any	
	point in the set is				
			(c) $x^2 + y^2 \ge 25$		
48.	The centre of the cir	rcle passing through	(0, 0) and (1, 0) and touchi	ng the circle $x^2 + y^2 = 9$ is	
	(1 4/0)	$\left(1 \frac{7}{2}\right)$	(3 1)	(13)	
	(a) $\frac{1}{2}$	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $\left(\frac{2}{2},\frac{2}{2}\right)$	(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$	
	(11 / 41)				

The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length 3a is

(b) $x^2 + y^2 = 16a^2$ (c) $x^2 + y^2 = 4a^2$

(d) $x^2 + y^2 = a^2$

50.	Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are					
	(a) $x = \pm (y + 2a)$	(b) $y = \pm (x + 2a)$	(c) $x = \pm (y + a)$	(d) $y = \pm (x + a)$		
51.	In a triangle with sides a, b, c, $r_1 > r_2 > r_3$ (which are the ex-radii) then					
	(a) $a > b > c$	(b) a < b < c	(c) a > b and b < c	(d) a < b and b		
52.	The number of solut	ion of $\tan x + \sec x =$	$2\cos x$ in $[0, 2\pi)$ is			
	(a) 2	(b) 3	(c) 0	(d) 1		
53.	Which one is not pe	riodic				
		(b) $\cos\sqrt{x} + \cos^2 x$	(c) $\cos 4x + \tan^2 x$	(d) cos 2x + sin x		
54.	$\lim_{n\to\infty} \frac{1^{p} + 2^{p} + 3^{p} +}{n^{p+1}}$	is				
	(a) $\frac{1}{p+1}$	(b) $\frac{1}{1-p}$	(c) $\frac{1}{p} - \frac{1}{p-1}$	(d) 12+2		
55.	$\underset{x\to 0}{\text{Lim}}\frac{\log x^{n}-[x]}{[x]},n\!\in\!$	N ([x] denotes greates	st integer less than or equi	a) to x)		
	(a) has value -1	(b) has value 0	(c) has value 1	(d) does not exist		
56.	If $f(1) = 1$, $f'(1) = 2$,	then $\lim_{x\to 1} \frac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ is				
	(a) 2	(b) 4	(c) 1	(d) 1/2		
57.			nal and 🖅 is irrational. Th	en		
		s at every x, except x				
	(b) f(x) is discontinuous at every x, except (= 0)					
	(c) f(x) is continuous	^				
	(d) f(x) is discontinu	((_		"() 0		
58.			s on $[0, 2]$ such that $f''(x)$	$-g^{n}(x)=0$		
		=3g(2)=9 then $f(x)$ -	g(x) at $x = 3/2$ is			
	(a) 0	(b) 2	(c) 10	(d) 5		
59.	If $f(x + y) = f(x)$. $f(y) \forall x.$ and $f(5) = 2$, $f'(0) = 3$ then $f'(5)$ is					
	(a) 0	(b)(1)	(c) 6	(d) 2		
60.	The maximum distance from origin of a point on the curve $x = a \sin t - b \sin \left(\frac{at}{b}\right)$					
	$y = a \cos t - b \cos \frac{at}{b}$, both a, b > 0 is					
	(a) a - b	(b) a + b	(c) $\sqrt{a^2 + b^2}$	(d) $\sqrt{a^2 - b^2}$		
61.	If $2a + 36 + 6c = 0$ ($a,b,c \in R$) then the qu	adratic equation ax ² + bx	+ c = 0 has		
	(a) at least one root	= =	(b) at least one root in [2,	3]		
62.	(c) at least one root		(d) none of these	d encloses an area of 2/4		
υ ∠ .	If $x = 10$ makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area of 3/4					
	square unit with the axes then $\int\limits_0^x xf'(x) dx$ is					
	(a) 3/2	(b) 1	(c) 5/4	(d) -3/4		

63.	The area bounded to (a) 4 sq. units	by the curves y = lnx, y (b) 6 sq. units	y = In x , y = In x and y (c) 10 sq. units	= In x is (d) none of these			
64.	If $ \vec{a} =4$, $ \vec{b} =2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a}\times\vec{b})^2=2$ is equal to						
	(a) 48	(b) 16	(c) ā	(d) none of these			
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$						
	(a) 16	(b) 64	(c) 4	(d) 8			
66.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors	s such that $\vec{a} + \vec{b} + \vec{c} =$	=0 and $ \vec{a} = 7$, $ \vec{b} = 5$, $ \vec{c} $	= 3 then angle between			
	vector \vec{b} and \vec{c} is						
	(a) 60	(b) 30°	(c) 45°	(a) 500			
67.	If $ a =5$, $ b =4$, $ c =3$ thus what will be the value of $ a.b+b.c+c.a $ given that $\vec{a}+\vec{b}+\vec{c}=0$						
	(a) 25	(b) 50	(c) - 25	(d) - 50			
68.	$3\lambda \vec{c} + 2\mu(\vec{a} \times \vec{b}) = 0 \text{ then}$						
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$			
69.	$\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c} = \vec{a} \times \vec{b}$ then						
	ā : b : c						
	(a) $\sqrt{34}$: $\sqrt{45}$: $\sqrt{39}$	$\sqrt{34}:\sqrt{45}:39$	39:45	(d) 39 : 35 : 34			
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ then $\vec{a} + \vec{b} + \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$						
	(a) abc	(b) -1	(c) 0	(d) 2			
71.	A and B are events	such that $P(A \cup B) = 3$	$B/4$, $P(A \cap B) = 1/4$, $P(\overline{A})$	= $2/3$ then $P(\overline{A} \cap B)$ is			
	(a) 5/12	(b) 3/8	(c) 5/8	(d) 1/4			
72.	A die is tossed 5 tim distribution of succe		mber is considered a succe	ess. Then the variance of			
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4			
73.	()	the plane through (1, (0, 0) , (0, 1, 0) which makes	an angle $\pi/4$ with plane			
	x + y = 3 are						
	0 // //		(c) 1, 1, 2	(d) $\sqrt{2}$,1,1			
74.			ant whose direction is at rig	ght angles to the smaller			
	(a) 13, 5	nagnitude of the two fo (b) 12, 6	(c) 14, 4	(d) 11, 7			
75.	` ` ~ ^	. , .	` ' '	, ,			
	. A bead of weight w can slide on smooth circular wire in a vertical plane. The bead is attach by a light thread to the highest point of the wire and in equilibrium, the thread is taut and ma						
	an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are						
	(a) $T = w \cos \theta$	$R = w \tan \theta$	(b) $T = 2w \cos \theta$	R = w			
	(c) T = w	$R = w \sin \theta$	$(d)T = w \sin \theta$	$R = w \cot \theta$			