AIEEE 2003 PHYSICS & CHEMISTRY

1. A particle of mass M and charge Q moving with velocity \vec{v} describe a circular path of radius R when subjected to a uniform transverse magnetic field of induction B. The work done by the field when the particle completes one full circle is

(a)
$$\left(\frac{Mv^2}{R}\right) 2\pi R$$
 (b) Zero

2. A particle of charge -16×10^{-18} coulomb moving with velocity 10ms^{-1} along the x-axis enters a region where a magnetic field of induction B is along the y-axis, and an electric field of magnitude 10° V/m is along the negative z-axis. If the charged particle continues moving along the x-axis, the magnitude of B is

(c) BQ2 π R

(a)
$$10^3$$
Wb/m² (b) 10^5 Wb/m² (c) 10^{16} Wb/m²

3. A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same

field. If its period of oscillation is T', the ratio $\frac{T'}{T}$ is

- (a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 2
- 4. A magnetic needle lying parallel to a magnetic field requires \mathcal{W} units of work to turn it through 60°. The torque needed to maintain the needle in this position will be

(c) $\frac{\sqrt{3}}{\sqrt{3}}$

(a) $\sqrt{3}W$ (b) W

(d) 2W

(d) BQ v $2\pi R$

(d) 10^{-3} Wb/m²

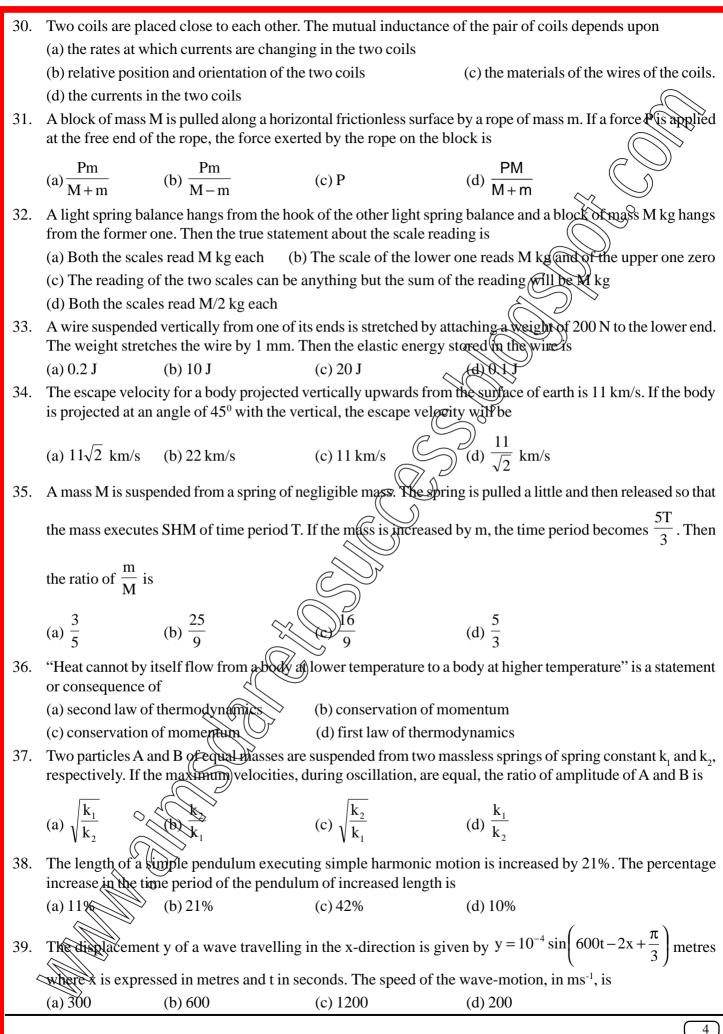
5. The magnetic lines of force inside a bar magnet(a) are from north-pole to south-pole of the magnet

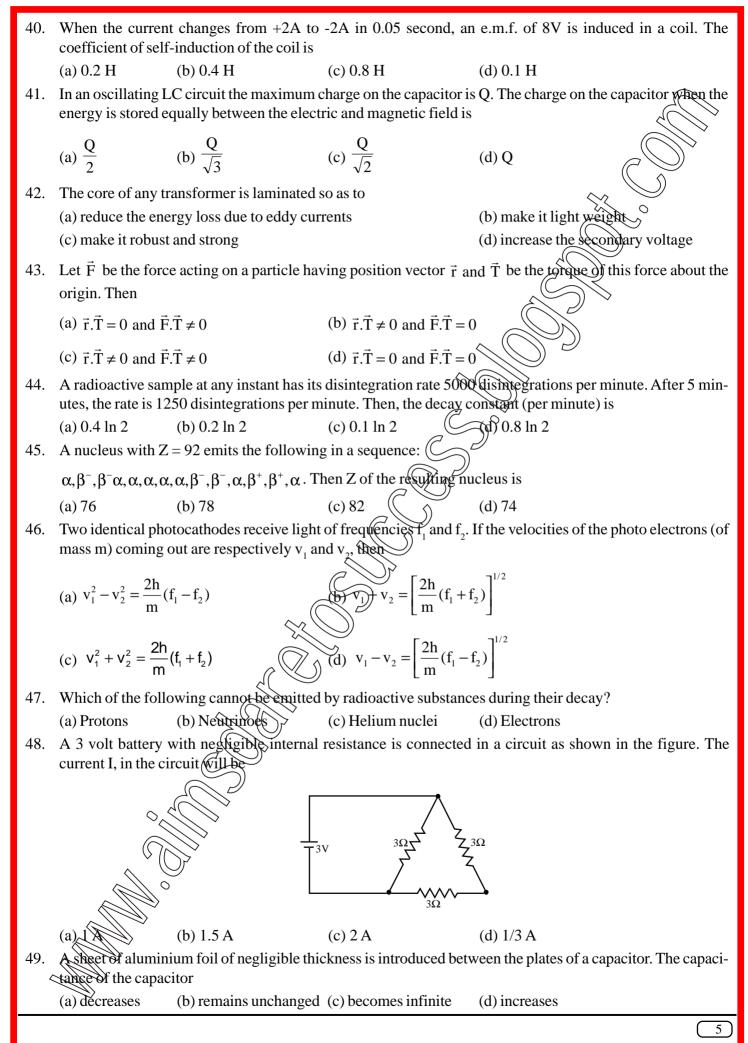
(b) do not exist

- (c) depend upon the area of cross-section of the bar magnet
- (d) are from south-pole to north-pole of the magnet
- 6. Curie temperature is the temperature above which

(a) a ferromagnetic material becomes paramagnetic
 (b) a paramagnetic material becomes diamagnetic
 (c) a ferromagnetic material becomes diamagnetic
 (d) a paramagnetic material becomes ferromagnetic

7. A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N, when the lift is stationary. If the lift moves downward with an acceleration of 5m/s², the reading of the spring balance will be


(a)
$$24 \text{ N}$$
 (c) 15 N (d) 49 N


- 8. The length of a wire of a potentiometer is 100 cm, and the e.m.f. of its standard cell is E volt. It is employed to measure the entry of a battery whose internal resistance is 0.5Ω . If the balance point is obtained at l = 30 cm from the positive end, the e.m.f. of the battery is
 - (a) $\frac{30E}{1005}$ (b) $\frac{30E}{(100-0.5)}$ (c) $\frac{30(E-0.5i)}{100}$, where i is the current in the potentiometer wire (d) $\frac{30E}{100}$
- 9. A strip of copper and another of germanium are cooled from room temperature to 80 K. The resistance of (a) each of these decreases
 (b) copper strip increases and that of germanium decreases
 (c) copper strip decreases and that of germanium increases
 (d) each of these increases

			www.estudentzone.	com	
10.	Consider telecommunication through optical fibres. Which of the following statements is not true?				
	(a) Optical fibres can be of graded refractive index				
	(b) Optical fibres are subjective to electromagnetic interference from outside				
	(c) Optical fibres have extremely low transmission loss				
	(d) Optical fibres may have homogeneous core with a suitable cladding.				
11.	The thermo e.m.f. of a thermo-couple is $25 \mu V/^{0}C$ at room temperature. A galvanometer of 40 mm resis-				
	tance, capable of detecting current as low as 10^{-5} A, is connected with the thermo couple. The smallest temperature difference that can be detected by this sytem is				
	(a) 16°C	(b) 12°C	(c) 8°C	(d) 20°C	
12.		In pole of a Daniel	l cell, sending a constant	current through a circuit, decreases in mass by	
	0.13 g in 30 m	inutes. If the elect	rochemical equivalent of	Zn and Cu are 32.5 and 31.5 respectively, the	
		-	re Cu pole in this time is		
	(a) 0.180 g	(b) 0.141 g	(c) 0.126 g	(d) 0.242	
13.	Dimension of	where sym	ools have their usual mear	ning are	
15.					
			(c) $[L^2 T^{-2}]$	(HILL)	
14.				f thickness t) and another disc Y of radius $4R$ i	
	made from an i	iron plate of thickn	ess $\frac{t}{4}$. Then the relation b	perween the moment of inertia I_x and I_y is	
15.	(a) $I_{\rm Y} = 32 I_{\rm X}$ The time period	(b) $I_{Y} = 10 I_{X}$	(c) $I_y = I_x$	$I_{\rm Y} = 64 I_{\rm X}$ eparation between the earth and the satellite i	
15.	increased to 4	times the previous	value, the new time perior	d will become	
	(a) 10 hours	(b) 80 hours	(c) 40 hours	(d) 20 hours	
16.				requency is doubled & its kinetic energy halved	
	then the new a	ngular momentum	is Contraction		
	(a) $\frac{L}{4}$	(b) 2L		(d) $\frac{L}{2}$	
	4			2	
17.	Which of the fo		s has the least wavelength		
	(a) γ-rays	(b) β -rays		(d) X-rays	
18.			rest, decays by emitting	an alpha particle having a speed 'u', the recoi	
	-	sidual nucleus is)ŗ		
	(a) $\frac{4u}{238}$	(b) (124)	(c) $\frac{4u}{234}$	(d) $-\frac{4u}{238}$	
19.		hadita at page Ma	20.	spectively are released in free space with initia	
19.				et each other due to gravitational force only, the	
	-	$\langle \langle \rangle \rangle$	er body just before collisio		
	(a) 2.5 R	(J)) 4.5 R	(c) 7.5 R	(d) 1.5 R	
20.			resistance with temperatu	are in a metal and a semiconductor arises essen	
	(a) crystal struc	difference in the	(b) variation of t	he number of charge carriers with temperature	
	(a) crystal struct (c) type of bon			cattering mechanism with temperature	
21.	A car moving	with a speed of 50 k	cm/hr, can be stopped by b	rakes after at least 6 m. If the same car is moving	
	~~~		num stopping distance is $(a) 24 m$		
	(a) 12 m	(b) 18 m	(c) 24 m	(D) 6 m	

22. A boy playing on the roof of a 10 m high building throws a ball with a speed of 10 m/s at an angle of  $30^{\circ}$  with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?

$$[g = 10m/s^2, \sin 30^\circ = \frac{1}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}$$
(a) 5.20m (b) 4.33m (c) 2.60m (d) 8.66m  
(3) An ammeter reads up to 1 ampere. Its internal resistance is 0.81 ohm. To increase the range to 0.0 the value of the required shunt is  
(a) 0.03  $\Omega$  (b) 0.3  $\Omega$  (c) 0.9  $\Omega$  (d) 0.09  $\Omega$   
(a) torque and work (b) momentum and Planck's constant (c) stress and Young's modulus (d) speed and  $(\mu_{n}e_{n})^{1/2}$   
(c) stress and Young's modulus (d) speed and  $(\mu_{n}e_{n})^{1/2}$   
(e) stress and Young's modulus (f) speed and  $(\mu_{n}e_{n})^{1/2}$   
(f) three forces start acting simultaneously on a particle moving with velocity. These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will how move with velocity is  $\phi_1$  and  $\phi_2$ , the electric charge inside the surface will be  
(a) less than  $\bar{v}$  (b) greater than  $\bar{v}$  (c)  $|v|$  in the direction of the largest force BC (d)  $\bar{v}$ , remaining unchanged  
(a) less than  $\bar{v}$  (b) greater than  $\bar{v}$  (c)  $|v|$  in the direction of the largest force BC (d)  $\bar{v}$ , the electric charge inside the surface will be  
(a)  $(\phi_1 - \phi_1) \xi_n$  (b)  $(\phi_1 + \phi_2) / \varepsilon_n$  (c)  $(\phi_1 - \phi_1) \xi_n$  (d)  $(\phi_1 + \phi_2) \xi_n$   
7. A horizontal force of 10 N is necessary to guit hold a block stationary against a wall. The co-efficient of friction between the block and the wall  $\xi_0$ . The weight of the block is  
(a) 20 N (c) 100 N (d) 2 N  
(b)  $(0, 0, 0, 0, 0, 0)$  (c)  $0.04$  (d)  $0.01$   
(c) Consider the following two statements:  
(A) Lifetar momentum of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke ciencry of a system of particles is zero  
(B) Könke cienc





- The displacement of a particle varies according to the relation  $x = 4(\cos \pi t + \sin \pi t)$ . The amplitude of the 50. particle is
  - (c)  $4\sqrt{2}$ (a) -4 (b) 4 (d) 8
- 51. A thin spherical conducting shell of radius R has a charge q. Another charge Q is placed at the centre of the

shell. The electrostatic potential at a point P a distance  $\frac{R}{2}$  from the centre of the shell is

(a) 
$$\frac{2Q}{4\pi\epsilon_0 R}$$
 (b)  $\frac{2Q}{4\pi\epsilon_0 R} - \frac{2q}{4\pi\epsilon_0 R}$  (c)  $\frac{2Q}{4\pi\epsilon_0 R} + \frac{q}{4\pi\epsilon_0 R}$  (d)  $\frac{(q+Q)2}{4\pi\epsilon_0 R}$ 

The work done in placing a charge of  $8 \times 10^{-18}$  coulomb on a condenser of capacity 100 micro-farad is 52. (a)  $16 \times 10^{-32}$  joule (b)  $3.1 \times 10^{-26}$  joule (c)  $4 \times 10^{-10}$  joule (d)  $32 \times 10^{-32}$  (ould

53. The co-ordinates of a moving particle at any time 't' are given by  $x = \alpha t^3$  and  $\gamma$  $\mathcal{B}$ t³. The speed of the particle at time 't' is given by

a) 
$$3t\sqrt{\alpha^2 + \beta^2}$$
 (b)  $3t^2\sqrt{\alpha^2 + \beta^2}$  (c)  $t^2\sqrt{\alpha^2 + \beta^2}$ 

During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute 54. temperature. The ratio  $C_p/C_y$  for the gas is

 $(d)(\sqrt{\alpha})$ 

(d) 25 Hz

(a) 
$$\frac{4}{3}$$
 (b) 2 (c)  $\frac{5}{3}$  (d)

- 55. Which of the following parameters does not characterize the thermodynamic state of matter?
  - (c) Work (b) Volume (a) temperature (b) Pressure
- 56. A Carnot engine takes  $3 \times 10^6$  cal. of heat from a reservoir at  $627^{\circ}$ C, and gives it to a sink at  $27^{\circ}$ C. The work done by the engine is
- (c),16.8,10° J (a)  $4.2 \times 10^6$  J (b)  $8.4 \times 10^6$  J (d) Zero 57. A spring of spring constant  $5 \times 10^3$  N/m is stretched initially by 5 cm from the unstretched position. Then the
- work required to stretch it further by another 5 cm is (b) 18.75 N-m (c) 25.00 N-m (a) 12.50 N-m (d) 6.25 N-m
- 58. A metal wire of linear mass density of 28 g/m is stretched with a tension of 10 kg-wt between two rigid supports 1 metre apart. The wire passes at its middle point between the poles of a permanent magnet, and it vibrates in resonance when carrying an alternating current of frequency n. The frequency n of the alternating source is (b) 100 Hz

(c) 200 Hz

60.

(

59. A tuning fork of known frequency 256 Hz makes 5 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per second when the tension in the piano string is slightly increased. The frequency of the pianostring before increasing the tension was (d) 256 + 5 Hz

(a) 256 + 2 Hz (b) 256 - 2 Hz (c) 256 - 5 Hz

- A body executes simple harmonic motion. The potential energy (P.E), the kinetic energy (K.E) and total energy (T.E) are measured as a function of displacement x. Which of the following statements is true?
- (a) K.E. is maximum when x = 0(b) T.E is zero when x = 0
- (c) K.E. is maximum when x is maximum (d) P.E. is maximum when x = 0
- In the nuclear fusion reaction  ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + n$  given that the repulsive potential energy between the two 61. nuclei  $7.7 \times 10^{-14}$  J, the temperature at which the gases must be heated to initiate the reaction is nearly [Boltzmann's Constant  $k = 1.38 \times 10^{-23} \text{ J/K}$ ] (a)  $10^7$  K (b) 10⁵ K (c)  $10^3$  K (d) 10⁹ K

(2)				10	
62.	Which of the following atoms has the lowest ionization potential?				
	(a) ${}^{14}_{7}$ N	(b) $^{133}_{55}$ Cs	(c) $^{40}_{18}$ Ar	(d) $\frac{^{16}}{^{8}}$ O	
63.	The wavelength	s involved in the spec	trum of deuterium	$\binom{2}{1}$ D are slightly different from that of hydrogen	
	spectrum, becaus				
	(a) the size of the	e two nuclei are differ	ent (b) the nuclear	forces are different in the two cases	
	(c) the masses of	the two nuclei are dif	ferent	$\sim$	
	(d) the attraction	between the electron	and the nucleus is c	lifferent in the two cases	
64.	In the middle of	the depletion layer of	a reverse biased p-r	n junction, the	
	(a) electric field	is zero	(b) potential is	maximum	
	(c) electric field		(d) potential is		
65.		nergy of the electron e first excited state of I		m is 13.6eV, the energy techired to remove the	
	(a) 30.6eV	(b) 13.6 eV	(c) 3.4 eV	(d) 1224 eV	
66.	A body is moved body in time 't' i		by a machine delive	ring a constant power. The distance moved by the	
	(a) $t^{3/4}$	(b) $t^{3/2}$	(c) $t^{1/4}$	$\mathcal{A}(\mathcal{A},\mathcal{B})^{2}$	
67.	initial thrust of th	ne blast is		Is with an initial acceleration of $10 \text{m/s}^2$ . Then the	
	(a) $3.5 \times 10^5$ N	(b) $7.0 \times 10^5$ N	(c) $14.0 \times 10^5$ N	(d) $1.75 \times 10^5$ N	
68.	To demonstrate	he phenomenon of in	terference, we requi	re two sources which emit radiation	
	(a) of nearly the		b) of the same frequ		
	(c) of different w			acy and having a definite phase relationship	
69.	Three charges -	$\mathbf{q}_1$ , $+\mathbf{q}_2$ and $-\mathbf{q}_3$ are pla	ced as shown in the	e figure. The x-component of the force on $-q_1$ is	
	proportional to				
	-03				
				·>	
			-q ₁	$+q_2$	
	(a) $\frac{q_2}{b^2} - \frac{q_3}{a^2} \cos \theta$	(b) $b^2 + \frac{3}{2}\sin\theta$	(c) $\frac{q_2}{b^2} + \frac{q_3}{a^2} \cos \theta$	$s\theta$ (d) $\frac{q_2}{b^2} - \frac{q_3}{a^2} \sin\theta$	
70.	A 220 volt, 1000	) watt bulb is connected	ed across a 110 volt	mains supply. The power consumed will be	
	(a) 750 watt $\sim$	(D) 500 watt	(c) 250 watt	(d) 1000 watt	
71.	The image form	ed by an objective of a	a compound micros	cope is	
	(a) virtual and diminished (b) real and diminished (c) real and enlarged (d) virtual and enlarged				
72.			on of the spectrum.	The spectrum is correctly given by	
	(a) Rayleigh Jea		(b) Planck's lav	w of radiation	
	(c) Stefan's law		(d) Wien's law		
73.	No get three ima			o plane mirrors at an angle of	
	(a) 00°	(b) $90^{\circ}$	(c) $120^{\circ}$	(d) $30^{\circ}$	

74.	According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta \theta)^n$ , where $\Delta \theta$ is					
	the difference of the temperature of the body and the surroundings, and n is equal to					
	(a) two (b) three (c) four (d) one					
75.	The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the					
	change in the resistance of the wire will be					
	(a) 200% (b) 100% (c) 50% (d) 300%					
76.	Which of the following could act as apropellant for rockets?					
70.						
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen					
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen					
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms					
	(a) $H_3C \longrightarrow N_2Cl$ (b) $H_3C \longrightarrow NHCHCl_2$ (c) $H_3C \longrightarrow NC$ (d) $H_3C \longrightarrow CN$					
-0						
78.	Nylon threads are made of					
	(a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer					
79.	The correct order of increasing basic nature for the bases $NH_3$ , $CH_3NH_2$ and $(CH_3)_2$ NH is					
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$					
	(c) $CH_3NH_2 < (CH_3)_2NH < NH_3$ (d) $CH_3NH_2 < NH_3$ (e) $CH_3NH_2$					
80.	Bottles containing $C_6H_5l$ and $C_6H_5CH_2l$ lost their original labels. They were labelled A and B for testing A					
	and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was					
	made acidic with dilute $HNO_3$ and then some $AgNO_3$ solution was added. Substance B gave a yellow					
	precipitate. Which one of the following statements is true for this experiment?					
	(a) A and $C_6H_5CH_2I$ (b) B and $C_6H_5I$					
	(c) Addition of HNO was unnecessary (d) A was C H I					
81.	The internal energy change when a system goes from state A to B is 40 kJ/mole. If the system goes from A					
	to B by a reversible path and returns to state A by an ineversible path what would be the net change in internal energy?					
	(a)>40 kJ (b)<40 kJ (c) $2 c_0$ (d) 40 kJ					
82.	If at 298 K the bond energies of C-H, C-C, C=C and H-H bonds are respectively 414, 347, 615 and 435 kJ					
	mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be					
	(a) $-250 \text{ kJ}$ (b) $+ 125 \text{ kJ}$ (c) $+ 125 \text{ kJ}$ (d) $+ 250 \text{ kJ}$					
83.	The radionucleide $\frac{234}{90}$ Th undergoes two successive $\beta$ -decays followed by one $\alpha$ -decay. The atomic num-					
	ber and the mass number respectively of the resulting radionucleide are					
	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234					
84.	The half-life of a radioactive softepe is three hours. If the initial mass of the isotope were 256 g, the mass of					
	it remaining undecayed after 18 hours would be					
07	(a) $8.0 \text{ g}$ (b) $12.0 \text{ g}$ (c) $16.0 \text{ g}$ (d) $4.0 \text{ g}$					
85.	If liquids A and B form an ideal solution					
	(a) the entropy of mixing is zero (b) the free energy of mixing is zero					
86.	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero The radius of La (Atomic number of La = 57) is 1.06Å. Which one of the following given values will be					
80.	closest to the radius of Lu ³⁺ (Atomic number of Lu = 71)?					
	(a) $1.40\text{\AA}$ (b) $1.06\text{\AA}$ (c) $0.85\text{\AA}$ (d) $1.60\text{\AA}$					
87.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic solu-					
	tions. What is the reason for it?					
	(a) In activity solutions protons coordinate with ammonia molecules forming $NH_4^+$ ions and $NH_3$ molecules					
	are not available					
	(p) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali					
4	Copper hydroxide is an amphoteric substance					
	(d) In acidic solutions hydration protects copper ions.					

88.	One mole of the complex compound $Co(NH_3)_5Cl_3$ , gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of AgNO ₃ solution to yield two moles of AgCl (s). The structure of the complex is
	(a) $[Co(NH_3)_3Cl_3]$ . 2NH ₃ (b) $[Co(NH_3)_4Cl_2]$ Cl. NH ₃ (c) $[Co(NH_3)_4Cl]Cl_2$ . NH ₃ (d) $[Co(NH_3)_4Cl_2]$ Cl.
89	In the coordination compound, $K_4[Ni(CN)_4]$ , the oxidation state of nickel is
0,	(a) 0 (b) +1 (c) +2 (d) -1
90.	In curing cement plasters water is sprinkled from time to time. This helps in
20.	(a) developing interlocking needle-like crystals of hydrated silicates
	(b) hydrating sand and gravel mixed with cement
	(c) converting sand into silicic acid (d) keeping it cool
91.	Which one of the following statements is not true?
11.	(a) $pH + pOH = 14$ for all aqueous solutions (b) The pH of 1 × 10 ⁻⁸ M HCI is 8
	(c) 96,500 coulombs of electricity when passed through a $CuSO_4$ solution deposits 1 gram equivalent of
	copper at the cathode $(a) = b^{-1} + $
	(d) The conjugate base of $H_2PO_4^-$ is $HPO_4^{2-}$
92.	On mixing a certain alkane with chlorine and irradiating it with uttravioletlight, it forms only one
	monochloroalkane. This alkane could be
	(a) pentane (b) isopentane (c) neopentane (d) propane
93.	Butene-1 may be converted to butane by reaction with
	(a) Sn - HCI (b) Zn - Hg (c) $Pd/H_2$ (d) Zn - HCI
94.	What may be expected to happen when phosphine gas is maxed with chlorine gas?
	(a) PCI ₃ and HCI are formed and the mixture warms ( $p$
	(b) $PCI_5$ and HCI are formed and the mixture cools down
	(c) $PH_3.Cl_2$ is formed with warming up (d) The mixture only cools down
95.	The number of d-electrons retained in $Fe^{2+}$ (At.no.0) $Fe = 26$ ) ion is
	(a) 4 (b) 5 (d) 3
96.	Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that
	(a) oxygen in air reacts with the emitted HCI gas to form a cloud of chlorine gas
	(b) strong affinity of HCI gas for mosture in air results in forming of droplets of liquid solution which appears
	like a cloudy smoke.
	(c) due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air towards it self. This moisture forms droplets of water and hence the cloud.
	(d) concentrated hydrochloric acid emits strongly smelling HCI gas all the time.
97.	An ether is more volutile than an alcohol having the same molecular formula. This is due to
	(a) alcohols having resonance structures (b) inter-molecular hydrogen bonding in ethers
	(c) inter-molecular hydrogen bonding in alcohols (d) dipolar character of ethers
98.	Graphite is a soft solf d lubricant extremely difficult to melt. The reason for this anomalous behaviour is that
	graphite
	(a) is an all out opic form of diamond (b) has molecules of variable molecular masses like polymers
	(a) is an all ot opic form of diamond (b) has molecules of variable molecular masses like polymers (c) has earbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds
99.	(c) has earbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds

ſ

100. Which one of the following statements is correct?					
(a) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl					
(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution					
(c) On boiling a solution having $K^+$ , $Ca^{2+}$ and $HCO_3^-$ ions we get a precipitate of $K_2Ca(CO_3)_2$ .					
(d) Manganese salts give a violet borax bead test in the reducing flame					
101. Glass is a					
(a) super-cooled liquid (b) gel (c) polymeric mixture (d) micro-crystalline solid					
102. The orbital angular momentum for an electron revolving in an orbit is given by $\sqrt{l(l+1)}$ . This momentum					
for an s-electron will be given by					
(a) zero (b) $\frac{h}{2\pi}$ (c) $\sqrt{2} \cdot \frac{h}{2\pi}$ (d) $+\frac{1}{2} \cdot \frac{h}{2\pi}$					
103. How many unit cells are present in a cubeshaped ideal crystal of NaCl of mass 1,00 g? [Atomic masses: Na = 23, Cl = 35.5]					
(a) $5.14 \times 10^{21}$ unit cells (b) $1.28 \times 10^{21}$ unit cells					
(a) $5.14 \times 10^{-1}$ unit cells (b) $1.23 \times 10^{-1}$ unit cells (c) $1.71 \times 10^{21}$ unit cells (d) $2.57 \times 10^{21}$ unit cells					
104. In the anion HCOO ⁻ the two carbon-oxygen bonds are found to be of equal length. What is the reason for it?					
(a) The C = O bond is weaker than the C-O bond $(a)$					
(b) The anion HCOO ⁻ has two resonating structures $(b)$					
(c) The anion is obtained by removal of a proton from the acid molecule					
(d) Electronic orbitals of carbon atom are hybridised					
105. Which one of the following characteristics is not correct for physical adsorption?					
(a) Adsorption increases with incresse in temperature					
(b) Adsorption is spontaneous (c) Both enthalpy and entropy of adsorption are negative					
(d) Adsorption on solids is reversible					
106. For a cell reaction involving a two-electron change, the standard e.m.f. of the cell is found to be 0.295 V at					
$25^{\circ}$ C. The equilibrium constant of the reaction at $25^{\circ}$ C will be					
(a) $29.5 \times 10^{-2}$ (b) 10 (d) $1 \times 10^{-10}$					
107. In an irreversible process taking place at constant T and P and in which only pressure-volume work is being					
done, the change in Gibbs free energy (dG) and change in entropy (dS), satisfy the criteria					
(a) $(dS)_{V,E} > 0$ , $(dG)_{T,P} < 0$ (c) $(dS)_{V,E} = 0$ , $(dG)_{T,P} = 0$ (c) $(dS)_{V,E} = 0$ , $(dG)_{T,P} > 0$ (d) $(dS)_{V,E} < 0$ , $(dG)_{T,P} < 0$					
108. The solubility in water of a sparingly soluble salt AB ₂ is $1.0 \times 10^{-5}$ mol L ⁻¹ . Its solubility product number will be					
(a) $4 \times 10^{-10}$ (b) $1 \times 10^{-10}$ (c) $1 \times 10^{-10}$ (d) $4 \times 10^{-15}$					
109. What volume of hydrogen gas, at 273 K and 1 atm, pressure will be consumed in obtaining 21.6 g of					
elemental boron (atomic mass = $10.8$ ) from the reducti on of boron trichloride by hydrogen?					
(a) 67.2 L (b) 44.8 L (c) 22.4 L (d) 89.6 L					
110. For the reaction equilibrium $N_2O_4(g) \Longrightarrow 2 NO_2(g)$ the concentrations of $N_2O_4$ and $NO_2$ at equilibrium are					
$4.8 \times 10^{-2}$ and $1.2 \times 10^{-2}$ mol L ⁻¹ respectively. The value of K _c for the reaction is					
(a) $3 \times 10^{-1}$ mol L ⁻¹ (b) $3 \times 10^{-3}$ mol L ⁻¹ (c) $3 \times 10^{3}$ mol L ⁻¹ (d) $3.3 \times 10^{2}$ mol L ⁻¹					
111. Consider the reaction equilibrium $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g); \Delta H^0 = -198 \text{ kJ}$ . On the basis of Le Chatelier's					
principle, the condition favourable for the forward reaction is					
(a) furchasing temperature as well as pressure (b) lowering the temperature and increasing the pressure					
(c) any value of temperature and pressure (d) lowering of temperature as well as pressure					

www.estudentzone.com

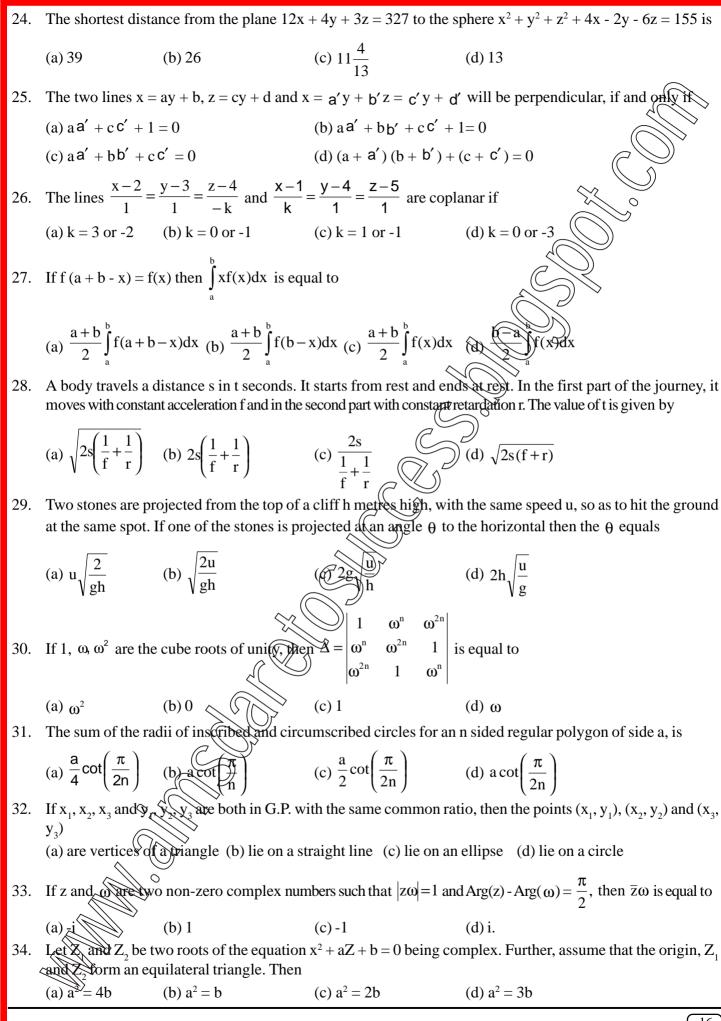
112. Which one of the following is an amphoteric oxide?				
(a) Na ₂ O (b) SO ₂ (c) $B_2O_3$ (d) ZnO				
113. A red solid is insoluble in water. However it becomes soluble if some KI is added to water. Heating the red				
solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the				
cooler parts of the test tube. The red solid is				
(a) HgI ₂ (b) HgO (c) Pb ₃ O ₄ (d) $(NH_4)_2Cr_2O_7$				
114. Standard reduction electrode potentials of three metals A,B&C are respectively +0.5 V, -3.0 V & -1)2 V. The				
reducing, powers of these metals are				
$(a) A > B > C \qquad (c) C > B > A \qquad (c) A > C > B \qquad (d) B > C > A \qquad (c) A > C > B \qquad (c) A > C > B \qquad (c) A > C > A \qquad (c) A > C > A \qquad (c) A > C > B \qquad (c) A > C > A \qquad (c) A > C > B \qquad (c) A > C > A \qquad (c) A > C > A \qquad (c) A > C > B \qquad (c) A > C > A \qquad (c) A > C > $				
115. Which one of the following substances has the highest proton affinity?				
(a) $H_2S$ (b) $NH_3$ (c) $PH_3$ (d) $H_2O$				
116. In a 0.2 molal aqueous solution of a weak acid HX the degree of ionization is 0.3. Taking k _r for water as 1.85, the freezing point of the solution will be nearest to				
(a) $-0.360^{\circ}$ C (b) $-0.260^{\circ}$ C (c) $+0.480^{\circ}$ C (d) $-0.480^{\circ}$ C				
117. When during electrolysis of a solution of $AgNO_3$ 9650 coulombs of charge pass through the electroplating				
bath, the mass of silver deposited on the cathode will be				
(a) $10.8 \text{ g}$ (b) $21.6 \text{ g}$ (c) $108 \text{ g}$				
118. For the redox reaction $Zn(s) + Cu^{2+}(0.1 \text{ M}) \rightarrow Zn^{2+}(1\text{ M}) + Cu(s)$ taking place in a cell, $E_{cell}^0$ is 1.10 volt. $E_{cell}$				
$\left(2202^{\text{RT}} - 0.0501\right)$				
for the cell will be $\left(2.303 \frac{\text{RT}}{\text{F}} = 0.0591\right)$				
(a) 1.80 volt (b) 1.07 volt (c) 0.82 volt (d) 2.14 volt				
119. In respect of the equation $k = Ae^{-E_a/RT}$ in chemical kinetics, which one of the following statements is correct?				
(a) A is adsorption factor (b) Existenergy of activation				
(c) R is Rydberg's constant (d) K is equilibrium constant				
120. A reduction in atomic size with increase in atomic number is a characteristic of element of				
(A) d-block (b) f-block (c) radioactive series (d) high atomic masses				
121. The IUPAC name of CH ₃ COCH(CH ₃ ) is				
(a) 2-methyl-3-butanone (b) 4-methylixopropyl ketone (c) 3-methyl-2-butanone (d) Isopropylmethyl ketone				
122. When $CH_2 = CH - COOH$ is reduced with LiAlH ₄ , the compound obtained will be				
(a) $CH_2 = CH - CH_2OH$ (b) $CH_3 - CH_2 - CH_2OH$				
(c) $CH_3 - CH_2 - CHO$ (d) $CH_3 - CH_2 - COOH$				
123. According to the kinetic theory of gases, in an ideal gas, between two successive collisions a gas molecule				
travels				
(a) in a wavy path (b) in a straight line path (c) with an accelerated velocity (d) in a circular path				
124. The general formula $C_n H_{2n} O_2$ could be for open chain (a) corboxylic could be for open chain (b) dials				
(a) carboxylic acids(b) diols(c) dialdehydes(d) deketones125. Among the following four structures I to IV.				
$CH_3$ $O$ $CH_3$ $H$ $CH_3$				
H-C				
$\wedge$ ( $\hat{N}$ $>$ ( $\hat{I}$ )				
(a) only I and II are chiral compounds (b) only III i a chiral compound				
(c) only II and IV are chiral compounds (d) all four are chiral compounds				

 $\boxed{11}$ 

www.estudentzone.com

126. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?					
(a) $\operatorname{Cr}_2\operatorname{O^{2-}}_7$ and $\operatorname{H}_2\operatorname{O}$ are formed (b) $\operatorname{CrO^{2-}}_4$ is reduced to +3 state of Cr					
(c) $\text{CrO}_{4}^{2-}$ is oxidized to +7 state of Cr (d) $\text{Cr}_{4}^{3+}$ and $\text{Cr}_{2}\text{O}_{7}^{2-}$ are formed					
127. For making good quality mirrors, plates of float glass are used. These are obtained by floating molten glass					
over a liquid metal which does not solidify before glass. The metal used can be					
(a) tin (b) sodium (c) magnesium (d) mercury					
128. The substance not likely to contain $CaCO_3$ is					
(a) calcined gypsum (b) sea shells (c) dolomite (d) a marble statue					
129. Complete hydrolysis of cellulose gives					
(a) D-ribose (b) D-glucose (c) L-glucose (d) D-fructose					
130. Which one of the following nitrates will leave behind a metal on strong heating					
(a) Copper nitrate (b) Manganese nitrate (c) Silver nitrate (d) Ferric mirate					
131. During dehydration of alcohols to alkenes by heating with conc. $H_2SO_4$ the initiation step is					
(a) formation of carbocation (b) elimination of water					
(c) formation of an ester (d) protonation of alcohol molecule					
132. The solubilities of carbonates decrease down the magnesium group the to a decrease in					
(a) hydration energies of cations (b) inter-ionic attraction					
(c) entropy of solution formation (d) lattice energies of solids					
133. When rain is accompanied by a thunderstorm, the collected fain water will have a pH value					
(a) slightly higher than that when the thunderstorm is not there					
(b) uninfluenced by occurence of thunderstorm					
(c) which depends on the amount of dust in air					
(d) slightly lower than that of rain water without thunderstorm					
134. The reason for double helical structure of DNA is operation of					
(a) dipole-dipole interaction (b) hydrogen bonding (c) electrostatic attractions (d) van der Waals' forces					
135. 25 ml of a solution of barrium hydroxide on titration with a 0.1 molar solution of hydrochloric acid gave a					
litre value of 35 ml. The molarity of parine hydroxide solution was					
(a) 0.14 (b) 0.28 (c) 0.35 (d) 0.07					
136. The correct relationship between free energy change in a reaction and the corresponding equilibrium con-					
stant K _c is					
(a) $-\Delta G = RT \ln K_c$ (b) $\Delta G = RT \ln K_c$ (c) $-\Delta G^0 = RT \ln K_c$ (d) $\Delta G = RT \ln K_c$					
137. The rate law for a reaction between the substances A and B is given by Rate = $k[A]^n$ [B] ^m On doubling the					
concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the					
reaction will be as					
(a) $(m + n)$ (c) $2^{(n-m)}$ (d) $\frac{1}{2^{(m+n)}}$					
138. Ethyl isocyanide on hydrolysis in acidic medium generates					
(a) propanoic acid and ammonium salt (b) ethanoic acid and ammonium salt					
(c) methylaunae salt and ethanoic acid (d) ethylamine salt and methanoic acid					
139. The enthalpy change for a reaction does not depend upon					
(a) use of different reactants for the same product (b) the nature of intermediate reaction steps					
(a) the differences in initial or final temperatures of involved substances					
(d) the physical states of reactants and products					
(12)					

140. A pressure cooker reduces cooking time for food because (a) boiling point of water involved in cooking is increased (b) the higher pressure inside the cooker crushes the food material (c) cooking involves chemical changes helped by a rise in temperature (d) heat is more evenly distributed in the cooking space 141. For the reaction system:  $2NO(g) + O_{2}(g) \rightarrow 2NO_{2}(g)$  volume is suddenly reduce to half its value by increasing the pressure on it. If the reaction is of first order with respect to O2 and second order with respect to NO, the rate of reaction will (a) diminish to one-eighth of its initial value (b) increase to eight times of its initial value (c) increase to four times of its initial value (d) diminish to one-fourth of its initial value 142. Several blocks of magnesium are fixed to the bottom of a ship to (a) make the ship lighter (b) prevent action of water and salt (c) prevent puncturing by under-sea rocks (d) keep away the sharks 143. Which one of the following pairs of molecules will have permanent dipole moments for both members? (c) SiF₄ and CO₆ $\sim$  $(\mathcal{A})$  SiF₄ and NO₂ (b) NO₂ and O₃ (a) NO₂ and CO₂ 144. Which one of the following groupings represents a collection of isoelectronic species? (At. nos,: 55, Br:35) (b) Be,  $Al^{3+}$ ,  $Cl^{-}$ (a)  $N^{3-}$ ,  $F^{-}$ ,  $Na^{+}$ (d)  $Na^+$ ,  $Ca^{2+}$ ,  $Mg^{2+}$ (c)  $Ca^{2+}$ ,  $Cs^{+}$ , Bt145. Which one of the following processes will produce hard water? (a) Saturation of water with  $MgCO_{2}$ (b) Saturation of water with  $CaSO_{4}$ (c) Addition of  $Na_2SO_4$  to water (d) Saturation of water with  $CaCO_{2}$ 146. Which one of the following compounds has the smallest bond angle in its molecule? Ye) NH (a) OH (b) SH₂ (d) SO₂ 147. The pair of species having identical shapes for molecules of both species is (b)  $BF_3$ ,  $PCl_3$ (a)  $XeF_2$ ,  $CO_2$ (c)  $PF_5$ ,  $IF_5$ (d)  $CF_4$ ,  $SF_4$ 148. The atomic numbers of variadium (V), Chromium (Cr), manganese (Mn) and iron (Fe) are respectively 23, 24, 25 and 26. Which one of these may be expected to have the highest second ionization enthalpy? (a) Cr (c) Fe (d) V (b) Mn 149. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen (c)  $2 \rightarrow 5$ (d)  $3 \rightarrow 2$ (a)  $5 \rightarrow 2$  $3674 \rightarrow 1$ 150. The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately (a)  $10^{-3}$  metres (b) 10 metres Q²⁵ metres ³ metres Planck's constant,  $h = 6.63 \times 10^{-34}$  Js. 13


## AIEEE 2003 MATHEMATICS

MA	MATHEMATICS						
1.	Let $\frac{d}{dx}F(x) = \left(\frac{e^{\sin x}}{x}\right)$	$\left( \frac{x}{1} \right) x > 0$ . If $\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} dx =$	=F(k)-F(1) then one of the	he possible values of k, i	s		
	(a) 64	(b) 15	(c) 16	(d) 63			
2.				of the largest 4 observation	ons of the set is		
	-	en median of the new se			0		
		me as that of the origina	l set	(b) is increased by 2	$\mathfrak{S}$		
	(c) is decreased b	y 2		(d) is two times the orig	inal median		
3.	$\lim_{n \to \infty} \frac{1+2^4+3^4+\dots}{n^5}$	$\frac{n^4}{n} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots n^3}{n^5}$					
	(a) $\frac{1}{5}$	(b) $\frac{1}{30}$	(c) Zero				
4.	The normal at the	e point $(bt_1^2, 2bt_1)$ on a pa	arabola meets the parabo	ola again in the point (bt	$\frac{1}{2}^{2}$ , 2bt ₂ ), then		
	(a) $t_2 = t_1 + \frac{2}{t_1}$	(b) $t_2 = -t_1 - \frac{2}{t_1}$	(c) $t_2 = -t_1 + \frac{2}{t_1}$	$(d) t_2 = t_1 - \frac{2}{t_1}$			
5.	If the two circles	$(x-1)^2 + (y-3)^2 = r^2$ and x	$x^2 + y^2 - 8x + 2y + 8 = 0$	$\overrightarrow{f_1}$ intersect in two distinct (d) $r = 2$ .	point, then		
	(a) r > 2	(b) 2 < r < 8	(c) r < 2	(d) $r = 2$ .			
6.	The degree and c respectively.	order of the differential	equation of the family of	of all parabolas whose a	kis is X-axis, are		
	(a) 2, 3	(b) 2, 1	(c) 1, 2	(d) 3, 2			
7.	The foci of the el	lipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the	e hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{2}$	$\frac{1}{5}$ coincide. Then the val	ue of b ² is		
	(a) 9	(b) 1	7675	(d) 7			
8.		= y; y > 0 and F(t) F(t)	)				
	(a) $F(t) = te^{-t}$	(b) $F(t) = 1 - te^{t}(1+t)$	(c) $F(t) = e^t - (1 + t)$	(d) $F(t) = te^t$ .			
9.	The function $f(x)$	$=\log(x+x^2+y)$					
	(a) neither an eve	n nor an odd function		(b) an even function			
	(c) an odd functio	$\langle \cdot \rangle$		(d) a periodic function			
10.	If the sum of the	toots of the quadratic eq	y = 1 + bx + c = 0	is equal to the sum of the	squares of their		
	reciprocals, then	$\frac{b}{b}$ and $\frac{c}{b}$ are in					
		eometric Progression	(b) Arithmetic Progress				
	(c) Geometrie Pro		(d) Harmonic Progress	sion			
11.	If the system of li	near equations					
	$x \neq zaz + az = 0$	lada a da l	$\mathbf{x} + 3\mathbf{b}\mathbf{y} + \mathbf{b}\mathbf{z} = 0$	$\mathbf{x} + 4\mathbf{c}\mathbf{y} + \mathbf{c}\mathbf{z} = 0$			
4	(a) satisfy $a + 2b$	lution, then a, b, c + $3c = 0$	(b) are in A.P.	(c) are in G.P.	(d) are in H.P.		
	(a) satisfy $a + 20$	+ JC $-$ U	(0) are in A.I.	(c) at III 0.1.	(u) are ill 11.F.		

 $\left(14\right)$ 

makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is (a) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ (b) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$ (c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ (d) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$ . 13. If the pair of straight lines $x^2 - 2px - y^2 = 0$ and $x^2 - 2px - y^2 = 0$ be such that each pair breeves the angle between the other pair, then (a) $pq = -1$ (b) $p = q$ (c) $p = -q$ (d) $pq = 1$ (c) $x + (a + a + a + a + a + a + a + a + a + $	12.	A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin				
through the origin is (a) $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ (b) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$ (c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ (d) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$ . 13. If the pair of straight lines $x^3 - 2pxy - y^2 = 0$ and $x^2 - 2pxy - y^2 = 0$ be such that each pair bracks the angle between the other pair, then (a) $pq = -1$ (b) $p = q$ (c) $p = -q$ (d) $pq = 1$ 14. Locus of a centriol of the triangle whose vertices are (a cos t, a sin t), (b sin t, -b cos (and (1.70)), where t is a parameter, is (a) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (b) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ (c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ 15. If $\frac{e^{-\alpha}}{x}$ (b) $0$ (c) $-\frac{1}{3}$ 16. A couple is of moment $\tilde{G}$ and the force forming the couple is $(2n + 1)^2 + (3y)^2 = a^2 + b^2$ (a) $-\frac{2}{3}$ (b) $0$ (c) $-\frac{1}{3}$ 16. A couple is of moment $\tilde{G}$ and the force forming the couple is $(2n + 1)^2 + (3y)^2 = a^2 + b^2$ (d) $\tilde{G}\sin\alpha + \tilde{H}\cos\alpha$ (a) $\frac{1}{H\sin\alpha} - \tilde{G}\cos\alpha$ (b) $\tilde{G}\sin\alpha - \tilde{H}\cos\alpha$ (c) $\tilde{H}\sin\alpha - \tilde{G}\cos\alpha$ (d) $\tilde{G}\sin\alpha + \tilde{H}\cos\alpha$ 17. The resultant of forces $\tilde{P}$ and $\tilde{Q}$ is $\tilde{R}$ . If $\tilde{Q}$ is doubled then $\tilde{R}$ is doubled. If the direction of $\tilde{Q}$ is reversed, then $\tilde{k}$ is again doubled. Then $P^2: Q^2 : R^2$ is (a) $2:3:1$ (b) $3:1:1$ (c) $4i$ (d) $1:2:3$ 18. The mean and variance of a random variable staying binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{2} + \frac{r'(0)}{3} + \frac{r'(0)}{r!} \frac{r'(0)}{r!} \frac{1}{6}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^a$ , then the value of $the (10, \frac{r'(0)}{2} + \frac{r'(0)}{2} + \frac{r'(0)}{r!} \frac{r}{1!}$ (d) $1:2:3$ 18. The mean and variance of a random variable staying binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $1$ (b) $2^a$ (c) $2^a - 1$ (d) $0$ 20. Let $\bar{u} = i + \frac{1}{3}, \bar{v} = \frac{i}{-3}, \frac{1}{3}, $						
(a) $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ (b) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$ (c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ (d) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$ . 13. If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2pxy - y^2 = 0$ be such that each pair breaces the angle between the other pair, then (a) $pq = -1$ (b) $p = q$ (c) $p = -q$ (d) $pq = 1$ (c) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (e) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ (c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ 15. If $\frac{1}{12m} \frac{\log 2(3 + x) - \log(3 - x)}{x} = k$ , the value of k is (a) $-\frac{2}{3}$ (b) 0 (c) $-\frac{1}{3}$ 16. A couple is of moment $\tilde{G}$ and the force forming the couple is $(1 + 1)^2$ is turned through a right angle the moment of the couple bus formed is $\tilde{H}$ . If instead, the force $\tilde{v}$ are turned through a n angle $\alpha$ , then the moment of the couple bus formed is $\tilde{H}$ . If $\tilde{h}$ is doubled through an angle $\alpha$ , then the moment of couple becomes (a) $\tilde{H}\sin\alpha - \tilde{G}\cos\alpha$ (b) $\tilde{G}\sin\alpha - \tilde{H}\cos\alpha$ (c) $\tilde{H}\sin\alpha - \tilde{G}\cos\alpha$ (d) $\tilde{G}\sin\alpha + \tilde{H}\cos\alpha$ 17. The resultant of forces $\tilde{P}$ and $\tilde{Q}$ is $\tilde{R}$ . If $\tilde{Q}$ is doubled through $\tilde{R}$ is doubled. If the direction of $\tilde{Q}$ is reversed, then $\tilde{R}$ is again doubled. Then $P^2 : Q^2 : R^2$ is (a) $2 \cdot 3 \cdot 1$ (b) $3 \cdot 1 \cdot 1$ (c) $2 \cdot 3$ (d) $1 \cdot 2 \cdot 3$ 18. The mean and variance of a random variable. Sharing binomial distribution are 4 and 2 respectively, then P $(X = 1)$ is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $2^2 - 1$ (d) $0$ 20. Let $\tilde{u} = 1^2 + 1^2 + a^2 $			( .)			
(c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ (d) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$ . 13. If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2pxy - y^2 = 0$ be such that each pair directs the angle between the other pair, then (a) $pq = -1$ (b) $p = q$ (c) $p = -q$ (d) $pq = 1$ 14. Locus of a centriod of the triangle whose vertices are (a cos t, a sin t), (b sin t, -b cost (and (1; 0)), where t is a parameter, is (a) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (b) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ (c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ 15. If $f_{x=0}^{im} \frac{\log(3+x) - \log(3-x)}{x} = k$ , the value of k is (a) $-\frac{2}{3}$ (b) 0 (c) $-\frac{1}{3}$ 16. A couple is of moment $\hat{G}$ and the force forming the couple (c) [167 is turned through a right angle the moment of the couple thus formed is $\hat{H}$ . If instead, the force $\hat{p}$ are turned through an angle $\alpha$ , then the moment of couple becomes (a) $\hat{H}\sin\alpha - \hat{G}\cos\alpha$ (b) $\hat{G}\sin\alpha - \hat{H}\cos\alpha$ (c) $\hat{H}\sin\alpha + \hat{G}\cos\alpha$ (d) $\hat{G}\sin\alpha + \hat{H}\cos\alpha$ 17. The resultant of forces $\hat{p}$ and $\hat{q}$ is $\hat{R}$ . If $\hat{q}$ is doubled there $\hat{R}$ is doubled. If the direction of $\bar{q}$ is reversed, then $\hat{R}$ is again doubled. Then $P^2: Q^2: R^2$ is (a) $2: 3: 1$ (b) $3: 1: 1$ (c) $4: 3: 3$ (d) $1: 2: 3$ 18. The mean and variance of a random variable that may binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{7} - \frac{f'(0)}{31} + \frac{1}{6} - \frac{1}{6} - \frac{1}{6} - \frac{1}{6} + \frac{1}{2} - \frac{1}{6} - \frac{1}{6} + \frac{1}{6} + 1$		e e		(b) $y(\cos \alpha - \sin \alpha)$	$-x(\sin\alpha - \cos\alpha) = a$	
between the other pair, then (a) $pq = -1$ (b) $p = q$ (c) $p = -q$ (d) $pq = 1$ 14. Locus of a centriod of the triangle whose vertices are (a cos t, a sin t), (b sin t, -b cost (and (1; 0)), where t is a parameter, is (a) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (b) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ (c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ 15. If $\int_{x \to 0}^{tim} \frac{\log(3+x) - \log(3-x)}{x} = k$ , the value of k is (a) $-\frac{2}{3}$ (b) 0 (c) $-\frac{1}{3}$ (d) 16. A couple is of moment $\hat{G}$ and the force forming the couple ( $\hat{G}$ - $\hat{I}$ f $\hat{G}$ is turned through a right angle the moment of the couple thus formed is $\hat{H}$ . If instead, the force $\hat{p}$ are turned through an angle $\alpha$ , then the moment of couple becomes (a) $\hat{H}\sin\alpha - \hat{G}\cos\alpha$ (b) $\hat{G}\sin\alpha - \hat{H}\cos\alpha$ (c) $\hat{H}\sin\alpha + \hat{G}\cos\alpha$ (d) $\hat{G}\sin\alpha + \hat{H}\cos\alpha$ 17. The resultant of forces $\hat{p}$ and $\hat{Q}$ is $\hat{R}$ . If $\hat{Q}$ is doubled there $\hat{R}$ is doubled. If the direction of $\hat{Q}$ is reversed, then $\hat{R}$ is again doubled. Then $P^2: Q^2: R^2$ is (a) $2:3:1$ (b) $3:1:1$ (c) $2:3$ (d) $1:2:3$ 18. The mean and variance of a random variable X having binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{4}(\frac{1}{4}) + \frac{1}{42}(\frac{1}{3}) + \frac{1}{16}(\frac{1}{3}) + \frac{1}{16}(\frac{1}{3})$				· · • • ·		
<ul> <li>14. Locus of a centric of the triangle whose vertices are (a cos t, a sin t), (b sin t, -b cos (and t); 0), where t is a parameter, is <ul> <li>(a) (3x + 1)² + (3y)² = a² - b²</li> <li>(b) (3x - 1)² + (3y)² = a² - b²</li> <li>(c) (3x - 1)² + (3y)² = a² - b²</li> <li>(d) (3x + 1)² + (3y)² = a² - b²</li> <li>(e) (3x - 1)² + (3y)² = a² - b²</li> <li>(f) (3x - 1)² + (3y)² = a² - b²</li> <li>(g) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x + 1)² + (3y)² = a² - b²</li> <li>(c) (3x - 1)² + (3y)² = a² - b²</li> <li>(d) (3x + 1)² + (3y)² = a² - b²</li> <li>(e) (3x - 1)² + (3y)² = a² - b²</li> <li>(f) (3x - 1)² + (3y)² = a² - b²</li> <li>(g) (3x + 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(g) (3x + 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (3x - 1)² + (3y)² = a² - b²</li> <li>(h) (0) (1) (2) (3x - 1)² + (3y)² = a² - b²</li> </ul> </li> <li>16. A couple is of moment <i>G</i> and the force forming the couple <i>i</i> b² + <i>i</i> - <i>i</i></li> <li>(h) <i>i</i> - <i>i</i> - <i>i</i></li> <li>(h) <i>i</i></li> <li(h) <i="">i <li>(h) <i>i</i></li> <li>(h) <i>i</i></li> <li>(h) <i>i</i></li></li(h)></ul>	13.			$x^{2} = 0$ and $x^{2} - 2pxy - y$	$h^2 = 0$ be such that each pair bisects the angle	
parameter, is (a) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (b) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ (c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ (e) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (f) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ 15. If $\int_{a=0}^{a} \frac{\log(3+x) - \log(3-x)}{x} = k$ , the value of k is (a) $-\frac{2}{3}$ (b) 0 (c) $-\frac{1}{3}$ 16. A couple is of moment $\tilde{G}$ and the force forming the couple if $\tilde{P}$ If $\tilde{\Phi}$ is turned through a right angle the moment of the couple thus formed is $\tilde{H}$ . If instead, the force $\tilde{p}$ are turned through an angle $\alpha$ , then the moment of couple becomes (a) $\tilde{H}\sin\alpha - \tilde{G}\cos\alpha$ (b) $\tilde{G}\sin\alpha - \tilde{H}\cos\alpha$ (c) $\tilde{H}\sin\alpha + \tilde{G}\cos\alpha$ (d) $\tilde{G}\sin\alpha + \tilde{H}\cos\alpha$ 17. The resultant of forces $\tilde{P}$ and $\tilde{Q}$ is $\tilde{R}$ . If $\tilde{Q}$ is doubled there $\tilde{k}$ is doubled. If the direction of $\tilde{Q}$ is reversed, then $\tilde{R}$ is again doubled. Then $P^2 : Q^2 : R^2$ is (a) $2:3:1$ (b) $3:1:1$ (c) $2:3$ (d) $1:2:3$ 18. The mean and variance of a random variable. Atoming binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $2^n - 1$ (d) 0 20. Let $\tilde{u} = \hat{i} + \hat{j}, \tilde{v} = \hat{i} - \hat{j}$ and $\tilde{v} + 4^2 + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\bar{u} \hat{n} = 0$ and $\bar{v} \hat{n} = 0$ , then $ \tilde{w}\hat{a} $ is equal to (a) 3 (b^2 (c) 1 (d) 2 21. A particle acted on two constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) $50$ units (c) $30$ units (d) 40 units 22. The vector $3\hat{i} + 4\hat{k} \in A\hat{C} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $50$ units (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		(a) pq = -1	(b) $p = q$	(c) $p = -q$	(d) $pq = 1$	
(c) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (d) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ 15. If $\lim_{x \to 0} \frac{\log(3 + x) - \log(3 - x)}{x} = k$ , the value of k is (a) $-\frac{2}{3}$ (b) 0 (c) $-\frac{1}{3}$ 16. A couple is of moment $\vec{G}$ and the force forming the couple if $\vec{P}$ . If $\vec{P}$ is turned through a right angle the moment of the couple thus formed is $\vec{H}$ . If instead, the force $\vec{p}$ are turned through an angle $\alpha$ , then the moment of couple becomes (a) $\vec{H} \sin \alpha - \vec{G} \cos \alpha$ (b) $\vec{G} \sin \alpha - \vec{H} \cos \alpha$ (c) $\vec{H} \sin \alpha + \vec{G} \cos \alpha$ (d) $\vec{G} \sin \alpha + \vec{H} \cos \alpha$ 17. The resultant of forces $\vec{P}$ and $\vec{Q}$ is $\vec{R}$ . If $\vec{Q}$ is doubled then $\vec{L}$ is doubled. If the direction of $\vec{Q}$ is reversed, then $\vec{R}$ is again doubled. Then $P^2 : Q^2 : R^2$ is (a) $2 : 3 : 1$ (b) $3 : 1 : 1$ (c) $2 : 3$ (d) $1 : 2 : 3$ 18. The mean and variance of a random variable. Attaining binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $2^n - 1$ (d) $0$ 20. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ and $\vec{e} = 1 + 2\hat{i} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}. \hat{n} = 0$ and $\vec{v}. \hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (b) (c) (2^n - 1) (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) $50 \text{ units}$ (c) $30 \text{ units}$ (d) $40 \text{ units}$ 22. The vector $4\hat{n} + \hat{k} + \hat{k} + \hat{k} - \hat{k} - \hat{s} - \hat{s}_1 - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $50 \text{ units}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$	14.		od of the triangle whose	e vertices are (a cos t, a	$a \sin t$ ), (b sin t, -b cost (and (1, 0), where t is a	
<ul> <li>15. If ^{lm}_{x→0} log(3+x)-log(3-x)/x = k, the value of k is <ul> <li>(a) -2/3</li> <li>(b) 0</li> <li>(c) -1/3</li> </ul> </li> <li>16. A couple is of moment G and the force forming the couple if 0-1f G is turned through a right angle the moment of the couple thus formed is H. If instead, the force p are turned through an angle α, then the moment of couple becomes <ul> <li>(a) H sinα - G cosα</li> <li>(b) G sinα - H cosα</li> <li>(c) H sinα + G cosα</li> <li>(d) G sinα + H cosα</li> </ul> </li> <li>17. The resultant of forces F and Q is R. If Q is doubled then B is doubled. If the direction of Q is reversed, then R is again doubled. Then P²: Q²: R² is <ul> <li>(a) 2: 3: 1</li> <li>(b) 3: 1: 1</li> <li>(c) 3: 3</li> <li>(d) 1: 2: 3</li> </ul> </li> <li>18. The mean and variance of a random variable. Theory is doubled then are 4 and 2 respectively, then P (X = 1) is <ul> <li>(a) 1/4</li> <li>(b) 1/32</li> <li>(c) 2ⁿ - 1</li> <li>(d) 0</li> </ul> </li> <li>20. Let u = 1 + j, v = 1 - j and 0 = 1 + 3 + 3 k. If n is a unit vector such that un = 0 and vn = 0, then  w.n  is equal to (a) 3</li> <li>(c) 1</li> <li>(d) 2</li> </ul> <li>21. A particle acteor of by constant forces 41 + j - 3k and 31 + j - k to the point 51 + 4j - k. The total work done by the forces is <ul> <li>(a) 50 units</li> <li>(b) √18</li> <li>(c) √72</li> <li>(d) √33</li> </ul> </li>		-	$(3y)^2 = a^2 - b^2$	(b) $(3x - 1)^2 + (3y)^2$	$a^2 = a^2 - b^2$	
<ul> <li>(a) -²/₃</li> <li>(b) 0</li> <li>(c) -¹/₃</li> &lt;</ul>		(c) $(3x - 1)^2 + (3)^2$	$\mathbf{y})^2 = \mathbf{a}^2 + \mathbf{b}^2$	(d) $(3x + 1)^2 + (3y)$	$b^2 = a^2 + b^2$	
<ul> <li>(a) -²/₃</li> <li>(b) 0</li> <li>(c) -¹/₃</li> <li>16. A couple is of moment G and the force forming the couple is 11 G³ is turned through a right angle the moment of the couple thus formed is H. If instead, the force p are turned through an angle α, then the moment of couple becomes</li> <li>(a) H sinα - G cosα (b) G sinα - H cosα</li> <li>(c) H sinα + G cosα (d) G sinα + H cosα</li> <li>(d) G sinα + H cosα</li> <li>17. The resultant of forces P and Q is R. If Q is doubled there R is doubled. If the direction of Q is reversed, then R is again doubled. Then P²: Q²: R² is</li> <li>(a) 2: 3:1</li> <li>(b) 3:1:1</li> <li>(c) 2: 3</li> <li>(d) 1:2:3</li> <li>18. The mean and variance of a random variable X farming binomial distribution are 4 and 2 respectively, then P (X = 1) is</li> <li>(a) 1/4</li> <li>(b) 1/32</li> <li>(c) 2ⁿ - 1</li> <li>(d) 0</li> <li>20. Let u = î + ĵ, v = î - ĵ and C = 1 + 3 + 3 + 1 + ĵ is a unit vector such that un = 0 and vn = 0, then  w.n  is equal to (a) 3</li> <li>(b) 2ⁿ</li> <li>(c) 1</li> <li>(d) 2</li> <li>21. A particle acted on by constant forces 4î + ĵ - 3k and 3î + ĵ - k̂ to the point 5î + 4ĵ - k̂. The total work done by the forces is</li> <li>(a) 50 units</li> <li>(b) $\sqrt{18}$</li> <li>(c) $\sqrt{72}$</li> <li>(d) $\sqrt{33}$</li> </ul>	15.	If $\lim_{x\to 0} \frac{\log(3+x)-1}{\log(3+x)}$	$\frac{\log(3-x)}{\log(3-x)} = k$ , the value of	of k is		
<ul> <li>16. A couple is of moment Ğ and the force forming the couple if 1 G² is turned through a right angle the moment of the couple thus formed is ñ. If instead, the force p are turned through an angle α, then the moment of couple becomes <ul> <li>(a) H̄sinα - Ḡ cosα (b) Ḡ sinα - H̄cosα (c) H̄sinα + Ḡ cos (d) Ḡ sinα + H̄cosα</li> </ul> </li> <li>17. The resultant of forces p̃ and Q̄ is Ř. If Q̄ is doubled then k̄ is doubled. If the direction of Q̄ is reversed, then k̄ is again doubled. Then P²: Q²: R² is <ul> <li>(a) 2: 3: 1</li> <li>(b) 3: 1: 1</li> <li>(c) 3:</li> <li>(d) 1: 2: 3</li> </ul> </li> <li>18. The mean and variance of a random variable that the force is and 2 respectively, then P (X = 1) is <ul> <li>(a) 1/4</li> <li>(b) 1/32</li> <li>(c) 2ⁿ - 1</li> <li>(d) 0</li> </ul> </li> <li>20. Let ū = î + ĵ, v̄ = î - ĵ and c = 1 + 3k. If n̂ is a unit vector such that ūn² = 0 and v̄n² = 0, then  w̄n  is equal to (a) 3</li> <li>(c) 1</li> <li>(d) 2</li> </ul> <li>21. A particle acted of the constant forces 4î + ĵ - 3k̂ and 3î + ĵ - k̂ to the point 5î + 4ĵ - k̂. The total work done by the forces is <ul> <li>(a) 50 units</li> <li>(c) 30 units</li> <li>(d) 40 units</li> </ul> </li> <li>22. The vector the 3î + 4k &amp; ĀC = 5î - 2ĵ + 4k̂ are the sides of a triangle ABC. The length of the median through A is (a) to 18</li> <li>(b) 18</li> <li>(c) 172</li> <li>(d) 133</li>		-				
moment of the couple thus formed is $\vec{H}$ . If instead, the force $\vec{p}$ are turned through an angle $\alpha$ , then the moment of couple becomes (a) $\vec{H}\sin\alpha - \vec{G}\cos\alpha$ (b) $\vec{G}\sin\alpha - \vec{H}\cos\alpha$ (c) $\vec{H}\sin\alpha + \vec{G}\cos\alpha$ (d) $\vec{G}\sin\alpha + \vec{H}\cos\alpha$ 17. The resultant of forces $\vec{P}$ and $\vec{Q}$ is $\vec{R}$ . If $\vec{Q}$ is doubled then $\vec{R}$ is again doubled. Then $P^2: Q^2: R^2$ is (a) $2:3:1$ (b) $3:1:1$ (c) $3:0$ (d) $1:2:3$ 18. The mean and variance of a random variable. That might be bound distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of the value of $t(1 + \frac{r(1)}{2} - \frac{f'(1)}{3!} + \dots + \frac{(-1)^n f'(1)}{n!}$ is (a) $1$ (b) $2^n$ (c) $2^n - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = \hat{i} + \hat{j} + \hat{3}\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) $3$ (b) (c) $1$ (d) $2$ 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) $50$ units (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		(a) $-\frac{2}{3}$	(b) 0	(c) $-\frac{1}{3}$		
moment of couple becomes (a) $\tilde{H}\sin\alpha - \tilde{G}\cos\alpha$ (b) $\tilde{G}\sin\alpha - \tilde{H}\cos\alpha$ (c) $\tilde{H}\sin\alpha + \tilde{G}\cos\alpha$ (d) $\tilde{G}\sin\alpha + \tilde{H}\cos\alpha$ 17. The resultant of forces $\tilde{P}$ and $\tilde{Q}$ is $\tilde{R}$ . If $\tilde{Q}$ is doubled then $\tilde{R}$ is doubled. If the direction of $\tilde{Q}$ is reversed, then $\tilde{R}$ is again doubled. Then $P^2: Q^2: R^2$ is (a) $2:3:1$ (b) $3:1:1$ (c) $3:0$ (d) $1:2:3$ 18. The mean and variance of a random variable. That ing binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of the va	16.	A couple is of m	noment $\vec{G}$ and the force	e forming the couple i	$\vec{P}$ If $\vec{P}$ is turned through a right angle the	
(a) $\overline{H}\sin\alpha - \overline{G}\cos\alpha$ (b) $\overline{G}\sin\alpha - \overline{H}\cos\alpha$ (c) $\overline{H}\sin\alpha + \overline{G}\cos\alpha$ (d) $\overline{G}\sin\alpha + \overline{H}\cos\alpha$ 17. The resultant of forces $\overline{P}$ and $\overline{Q}$ is $\overline{R}$ . If $\overline{Q}$ is doubled then $\overline{R}$ is again doubled. Then $P^2: Q^2: R^2$ is (a) $2:3:1$ (b) $3:1:1$ (c) $3:1$ (d) $1:2:3$ 18. The mean and variance of a random variable than ing binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (d) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of the $\frac{f'(1)}{4} + \frac{f'(1)}{2!} - \frac{f'(1)}{3!} + \dots + \frac{(-1)^n f'(1)}{n!}$ is (a) $1$ (b) $2^n$ (c) $2^n - 1$ (d) $0$ 20. Let $\overline{u} = \hat{i} + \hat{j}, \overline{v} = \hat{i} - \hat{j}$ and $\overline{v} = 1 + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\overline{u}. \hat{n} = 0$ and $\overline{v}. \hat{n} = 0$ , then $ \overline{w}. \hat{n} $ is equal to (a) $3$ (b) $Q^n$ (c) $1$ (d) $2$ 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) $20$ units (c) 30 units (d) 40 units 22. The vector $\overline{v} = 3\hat{i} + 4\hat{k} & \overline{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $\overline{v} = 0$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$				i. If instead, the force	$\vec{p}$ are turned through an angle $\alpha$ , then the	
17. The resultant of forces $\bar{p}$ and $\bar{Q}$ is $\bar{R}$ . If $\bar{Q}$ is doubled then $\bar{R}$ is doubled. If the direction of $\bar{Q}$ is reversed, then $\bar{R}$ is again doubled. Then $P^2: Q^2: R^2$ is (a) 2: 3: 1 (b) 3: 1: 1 (c) 2.3 (d) 1: 2: 3 18. The mean and variance of a random variable. That ing binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of $f(1) + \frac{f'(1)}{2!} - \frac{f''(1)}{3!} + \dots + \frac{(-1)^n f''(1)}{n!}$ is (a) 1 (b) $2^n$ (c) $2^n - 1$ (d) 0 20. Let $\bar{u} = \hat{i} + \hat{j}$ , $\bar{v} = \hat{i} - \hat{j}$ and $\bar{v} = 1 + 2\hat{j} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\bar{u} \cdot \hat{n} = 0$ and $\bar{v} \cdot \hat{n} = 0$ , then $ \bar{w} \cdot \hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) $20$ units (c) 30 units (d) 40 units 22. The vector $x_0 = 3\hat{i} + 4\hat{k} & 4\overline{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $\sqrt{16}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		-		(c) $\vec{H}_{\sin\alpha} + \vec{G}_{\cos\alpha}$	$d) \vec{G} \sin \alpha + \vec{H} \cos \alpha$	
$\bar{R} \text{ is again doubled. Then P}^2: Q^2: R^2 \text{ is}$ (a) 2: 3: 1 (b) 3: 1: 1 (c) 2: 3 (d) 1: 2: 3 18. The mean and variance of a random variable. The value of the mean double distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of the valu	17.			$\mu \sim$		
(a) 2 : 3 : 1 (b) 3 : 1 : 1 (c) 3 (d) 1 : 2 : 3 18. The mean and variance of a random variable. This ing binomial distribution are 4 and 2 respectively, then P (X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of $f(1) + \frac{f'(1)}{2!} - \frac{f''(1)}{3!} + \dots + \frac{(-1)^n f''(1)}{n!}$ is (a) 1 (b) $2^n$ (c) $2^n - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = 1 + 2i + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $y_1 = 4\hat{k} & AC = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $\sqrt{18}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$						
(X = 1) is (a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of $f(1) + \frac{f'(1)}{2!} - \frac{f''(1)}{3!} + \dots + \frac{(-1)^n f''(1)}{n!}$ is (a) 1 (b) $2^n$ (c) $2^n - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $3\hat{v} = 3\hat{i} + 4\hat{k} & \overline{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $53\hat{v}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		(a) 2 : 3 : 1	(b) 3 : 1 : 1	(c) 2:3:2	(d) 1 : 2 : 3	
(a) $\frac{1}{4}$ (b) $\frac{1}{32}$ (c) $\frac{1}{16}$ (d) $\frac{1}{8}$ 19. If $f(x) = x^n$ , then the value of $f(1) + \frac{f'(1)}{2!} - \frac{f''(1)}{3!} + \dots + \frac{(-1)^n f'(1)}{n!}$ is (a) 1 (b) $2^n$ (c) $2^n - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $Ap = 3\hat{i} + 4\hat{k} & A\vec{C} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $53w$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$	18.		riance of a random vari	able X having binomia	al distribution are 4 and 2 respectively, then P	
19. If $f(x) = x^n$ , then the value of $(1)$ $f'(1) + \frac{f''(1)}{2!} - \frac{f''(1)}{3!} + \dots + \frac{(-1)^n f^n(1)}{n!}$ is (a) 1 (b) $2^n$ (c) $2^n - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}$ , $\vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $3\hat{v} = 3\hat{i} + 4\hat{k} & 4\hat{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $53\hat{v}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$			$\sim$			
(a) 1 (b) $2^{n}$ (c) $2^{n} - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}$ , $\vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $\hat{n} = 3\hat{i} + 4\hat{k} & A\hat{C} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $42\hat{v}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		(a) $\frac{1}{4}$	(b) $\frac{1}{32}$	$\frac{1}{16}$	(d) $\frac{1}{8}$	
(a) 1 (b) $2^{n}$ (c) $2^{n} - 1$ (d) 0 20. Let $\vec{u} = \hat{i} + \hat{j}$ , $\vec{v} = \hat{i} - \hat{j}$ and $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If $\hat{n}$ is a unit vector such that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to (a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $\hat{v}_{n} = 3\hat{i} + 4\hat{k} & A\hat{c} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $42\hat{v}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$			f'(1)	$\int_{f''(1)} f'''(1)$	$(-1)^{n} f^{n}(1)$	
<ul> <li>20. Let u = î + ĵ, v = î - ĵ and v = i + 2j + 3k. If n is a unit vector such that un = 0 and vn = 0, then  wn   is equal to (a) 3 (b) (c) 1 (d) 2</li> <li>21. A particle acted on by constant forces 4î + ĵ - 3k and 3î + ĵ - k to the point 5î + 4ĵ - k. The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units</li> <li>22. The vector AP=3î + 4k &amp; AC = 5î - 2ĵ + 4k are the sides of a triangle ABC. The length of the median through A is (a) 528 (b) √18 (c) √72 (d) √33</li> </ul>	19.	If $f(x) = x^n$ , then	the value of the value of	$+\frac{1}{2!}-\frac{1}{3!}+\dots$	$\frac{(1)}{n!}$ is	
(a) 3 (b) (c) 1 (d) 2 21. A particle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vectors $A\hat{p} = 3\hat{i} + 4\hat{k} & A\hat{C} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) 50 units (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		(a) 1	(b) $2^n$	(c) $2^{n} - 1$	(d) 0	
<ul> <li>21. A particle acted on by constant forces 4î + ĵ - 3k̂ and 3î + ĵ - k̂ to the point 5î + 4ĵ - k̂. The total work done by the forces is <ul> <li>(a) 50 units</li> <li>(b) 20 units</li> <li>(c) 30 units</li> <li>(d) 40 units</li> </ul> </li> <li>22. The vectors Ag = 3î + 4k̂ &amp; AC = 5î - 2ĵ + 4k̂ are the sides of a triangle ABC. The length of the median through A is <ul> <li>(a) 508</li> <li>(b) √18</li> <li>(c) √72</li> <li>(d) √33</li> </ul> </li> </ul>	20.	Let $\vec{u} = \hat{i} + \hat{j}$ , $\vec{v} = \hat{i} + \hat{j}$	$-\hat{j}$ and $\hat{w} = \hat{j} + 2\hat{j} + 3\hat{k}$ . If	$\hat{n}$ is a unit vector such	that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$ , then $ \vec{w}.\hat{n} $ is equal to	
the forces is (a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vectors $AB = 3\hat{i} + 4\hat{k} & AC = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) 50 units (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$		(a) 3	(b) to	(c) 1	(d) 2	
(a) 50 units (b) 20 units (c) 30 units (d) 40 units 22. The vector $Ag = 3\hat{i} + 4\hat{k} & AC = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) 500 (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$	21.	A particle acted	on by constant forces 4	$\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ to	the point $5\hat{i} + 4\hat{j} - \hat{k}$ . The total work done by	
22. The vectors $AB = 3\hat{i} + 4\hat{k} & \overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is (a) $\sqrt{33}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$						
A is (a) 588 (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$			$\bigcirc$			
(a) $\sqrt{18}$ (b) $\sqrt{18}$ (c) $\sqrt{72}$ (d) $\sqrt{33}$	22.		$\overrightarrow{3i} + 4\hat{k} & \overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$	$\hat{k}$ are the sides of a tria	angle ABC. The length of the median through	
22 The state of the region bounded by the surger $y =  y  = 1$ and $y = 2$ $ y  = 1$						
23. The area of the region bounded by the curves $y =  x - 1 $ and $y = 3 -  x $ is	23.	The area of the r	egion bounded by the c	surves $y =  x - 1 $ and $y = 3$	$3- \mathbf{x} $ is	
(a) $\overrightarrow{6}$ sq. units (b) 2 sq. units (c) 3 sq. units (d) 4 sq. units		(a) 6 sq. units	(b) 2 sq. units	(c) 3 sq. units	(d) 4 sq. units	

(15



(16

35. The solution of the differential equation  $(1 + y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$ , is

(a)  $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$  (b)  $(x-2) = ke^{2\tan^{-1}y}$  (c)  $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$  (d)  $xe^{\tan^{-1}y} = \tan^{-1}y + k$ 

36. Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies  $f(x) \neq g(x)$ 

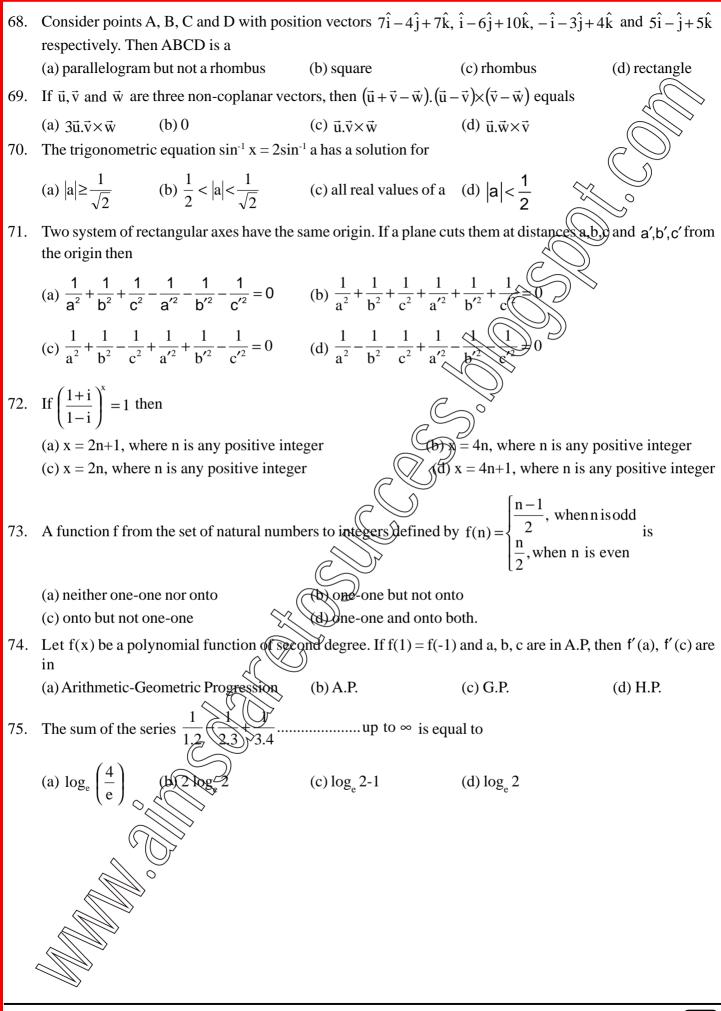
Then the value of the integral  $\int_{0}^{0} f(x)g(x)dx$ , is

- (a)  $e + \frac{e^2}{2} + \frac{5}{2}$  (b)  $e \frac{e^2}{2} \frac{5}{2}$  (c)  $e + \frac{e^2}{2} \frac{3}{2}$  (d)  $e \frac{e^2}{2} \frac{3}{2}$
- 37. The lines 2x 3y = 5 and 3x 4y = 7 are diameters of a circle having area as 154 structures. Then the equation of the circle is

(a) 
$$x^2 + y^2 - 2x + 2y = 62$$
  
(b)  $x^2 + y^2 + 2x - 2y = 62$   
(c)  $x^2 + y^2 + 2x - 2y = 47$   
(d)  $x^2 + y^2 - 2x + 2y = 47$ 

38. Events A, B, C are mutually exclusive events such that  $P(A) = \frac{3x + 4}{4}$  and  $P(C) = \frac{1 - 2x}{4}$ . The set of possible values of x are in the interval.

- (a) [0, 1] (b)  $\left[\frac{1}{3}, \frac{1}{2}\right]$  (c)  $\left[\frac{1}{3}, \frac{2}{3}\right]$   $\left[\frac{1}{3}, \frac{13}{3}\right]$
- 39. Five horses are in a race. Mr. A selects two of the horses a random and bets on them. The probability that Mr. A selected the winning horse is
  - (a)  $\frac{2}{5}$  (b)  $\frac{4}{5}$  (c)  $\frac{3}{5}$  (d)  $\frac{1}{5}$
- 40. The value of 'a' for which one root of the quadratic equation  $(a^2 5a + 3)x^3 + (3a 1)x + 2 = 0$  is twice as large as the other is
  - (a)  $-\frac{1}{3}$  (b)  $\frac{2}{3}$  (c)  $\frac{2}{3}$  (d)  $\frac{1}{3}$
- 41. If x is positive, the first negative term is the expansion of  $(1 + x)^{27/5}$  is (a) 6th term (b) 7th term (c) 5th term (d) 8th term
- 42. The number of integral terms in the expansion of  $(\sqrt{3} + 8\sqrt{5})^{256}$  is (a) 35 (b) 32 (c) 33 (d) 34


43. If ⁿC_r denotes the number of combination of n things taken r at a time, then the expression ⁿC_{r+1} + ⁿC_{r-1} + 2xⁿC_r equals (a) ⁿ⁺¹C_{r+1} (c) ⁿ⁺²C_r (c) ⁿ⁺²C_{r+1} (d) ⁿ⁺¹C_r

44. Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity  $\vec{u}$  and the other from rest with uniform acceleration  $\vec{f}$ . Let  $\alpha$  be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time.

(a) 
$$\frac{u\cos\alpha}{f}$$
 (b)  $\frac{u\sin\alpha}{f}$  (c)  $\frac{f\cos\alpha}{u}$  (d)  $u\sin\alpha$ .  
45. The upper  $\frac{3}{4}$  th portion of a vertical pole subtends an angle  $\tan^{-1}\frac{3}{5}$  at a point in the horizontal plane through its foot and at a distance 40 m from the foot.  
(a) 80 m (b) 20 m (c) 40 m (d) 60 m

46. In a triangle ABC, medians AD and BE are drawn. If AD = 4,  $\angle DAB = \frac{\pi}{6}$  and  $\angle ABE = \frac{\pi}{3}$ , then the area of the  $\triangle ABC$  is (a)  $\frac{64}{3}$  (b)  $\frac{8}{3}$ (c)  $\frac{16}{2}$ (d)  $\frac{32}{2}$ 47. If in a triangle ABC  $a\cos^2\left(\frac{C}{2}\right) + \cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$ , then the sides a, b and c (d) are in H.P. (a) satisfy a+b=c (b) are in A.P. (c) are in G.P.  $\vec{a}, \vec{b}, \vec{c}$  are 3 vectors, such that  $\vec{a} + \vec{b} + \vec{c} = 0$ ,  $|\vec{a}| = 1$ ,  $|\vec{b}| = 2|\vec{c}|$  then  $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$  is equal to 48. (a) 1 (b) 0(c) -7 (d) 7 The value of the integral  $I = \int x(1-x)^n dx$  is 49. (a)  $\frac{1}{n+1} + \frac{1}{n+2}$  (b)  $\frac{1}{n+1}$ (c)  $\frac{1}{n+2}$ 50. The value of  $\lim_{x \to 0} \frac{\int_{0}^{x^2} \sec^2 t \, dt}{x \sin x}$  is (d) 1 (a) 0 (b) 3 (c) 251. The radius of the circle in which the sphere  $x^{2} + y^{2} + z^{2} + 2x - 2y - 4z - 19 = 0$  is cut by the plane +2y + 2z + 7 = 0 is (b) 1 (a) 4(d) 3(c)  $2_{\ell}$ A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1) B(2, 1, 3) and C(-1, 1, 2). Then the angle between the 52. faces OAB and ABC will be (b)  $\cos^{-1}\left(\frac{19}{35}\right)$  (c)  $\cos^{-1}\left(\frac{17}{31}\right)$ (a)  $90^{\circ}$ (d)  $30^{\circ}$ 53. Let f(a) = g(a) = k and their nth derivatives  $f^n(a)$ ,  $g^n(a)$  exist and are not equal for some n. Further if  $\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + f(a)}{g(x) - f(x)} \leq$  then the value of k is (b) 4 (a) 0(c) 2 (d) 1 54. (d)  $\frac{1}{32}$ (c)0(a) ∞ If the equation of the locus of a point equidistant from the point  $(a_1, b_1)$  and 55.  $(a_2, b_2)$  is  $(a_1, b_2)x + (a_1 - b_2)y + c = 0$ , then the value of 'c' is (b)  $\frac{1}{2}a_2^2 + b_2^2 - a_1^2 - b_1^2$ (d)  $\frac{1}{2} \left( a_1^2 + a_2^2 + b_1^2 + b_2^2 \right)$  $-a_2^2 + b_1^2 - b_2^2$ 

 $a^2$  1+ $a^3$ 56. If  $|\mathbf{b} \ \mathbf{b}^2 \ 1+\mathbf{b}^3| = 0$  and vectors  $(1, \mathbf{a}, \mathbf{a}^2)$ ,  $(\mathbf{a}, \mathbf{b}, \mathbf{b}^2)$  and  $(\mathbf{a}, \mathbf{c}, \mathbf{c}^2)$  are non-coplanar, then the product abc equals c  $c^2 1+c^3$ (c) - 1(d) 1 (a) 0(b) 257. The number of real solutions of the equation  $x^2 - 3|x| + 2 = 0$  is (a) 3(b) 2(c) 4 (d) 1 58. If the function  $f(x) = 2x^2 - 9ax^2 + 12a^2x + 1$ , where a > 0, attains its maximum and minimum at p and q respectively such that  $p^2 = q$ , then a equals (a)  $\frac{1}{2}$ (b) 3 (c) 1 (d) 259. If  $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, & x \neq 0 \text{ then } f(x) \text{ is} \\ 0, & x = 0 \end{cases}$ (b) continuous as well as differentiable for all x (a) discontinuous every where (c) continuous for all x but not differentiable at x = 0 (d) neither differentiable nor continuous at x = 060. Domain of definition of the function  $f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x^2)$ , is (c) (-1, 0) (0, 2)  $(d) (1, 2) \cup (2, \infty)$ (a)  $(-1, 0) \cup (1, 2) \cup (2, \infty)$  (b) (0, 2)61. If f: R  $\rightarrow$  R satisfies f(x + y) = f(x) + f(y), for all x,  $y \in \mathbb{R}$  and f(1) = 7, then  $\sum_{i=1}^{n} f(r)$  is (c)  $\frac{7(n+1)}{(+1)}$ (a)  $\frac{7n(n+1)}{2}$  (b)  $\frac{7n}{2}$ (d) 7n+(n+1)The real number x when added to its inverse gives the minimum value of the sum at x equal to 62. (a) -2 (b) 2(d) - 163. Let  $R_1$  and  $R_2$  respectively be the maximum ranges up and down an inclined plane and R be the maximum range on the horizontal plane. Then R. R. R. are in (c) A.P (a) H.P (b) A.G.P (d) G.P. In an experiment with 15 observations on x, the following results were available:  $\Sigma x^2 = 2830$ ,  $\Sigma x = 170$ 64. One observation that was 20 was found to be wrong and was replaced by the correct value 30. The corrected variance is (b) 78.00 (a) 8.33 (c) 188.66 (d) 177.33 A student is to answer Room of 13 questions in an examination such that he must choose at least 4 from the 65. first five questions. The number of choices available to him is **(b)}**}40 (a) 346 (c) 196 (d) 280 b and  $A_2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$ , then 66. If A = (a)  $\alpha = a^2 + b^2$  (b)  $\alpha = a_2 + b_2, \beta = ab$  (c)  $\alpha = a^2 + b^2, \beta = 2ab$  (d)  $\alpha = a^2 + b^2, \beta = a^2 - b^2$ The number of ways in which 6 men and 5 women can dine at a found table if no two women are to sit 67. together is given by  $(a) \not \rightarrow 5$ (c) 30 (b)  $6 \times 5$ (d)  $5 \times 4$ 

