CLASS TEST 2/6

ATOMIC STRUCTURE

CHEMISTRY (FOUNDATION)

Dear student following is an Easy level $[\bigcirc \bigcirc \bigcirc \bigcirc]$ test paper. Score of 19 Marks in 10 Minutes would be a satisfactory performance. Questions 1- 8 (+3, -1). (Only one option is correct)

- Q.1 The spectrum of He is expected to be similar to that of :
 - (A) H
- (B) Li+
- (C) Na
- (D) He+
- Q.2 Which of the following electron transition in a hydrogne atom will require the largest amount of energy?
 - (A) From n = 1 to n = 2
 - (B) From n = 2 to n = 3
 - (C) From $n = \infty$ to n = 1
 - (D) From n = 3 to n = 5
- Q.3 Which of the following statements is not true?s
 - (A) Lyman spectral series of hydrogen atom lies in the ultraviolet region of electromagnetic radiation
 - (B) Balmer spectral series of hydrogen atom lies in the visible region of electromagnetic radiation
 - (C) Pashen spectral series of hydrogen atom lies in the visible region of electromagnetic radiation
 - (D) Brackett spectral series of hydrogen atom lies in the infrared region of electromagnetic radiation
- Q.4 The first emission line in the atomic spectrum of hydrogen in the Balmer series apears at :
 - (A) $\frac{9R}{400}$ cm⁻¹
- (B) $\frac{7R}{144}$ cm⁻¹
- (C) $\frac{3R}{4}$ cm⁻¹
- (D) $\frac{5R}{36}$ cm⁻¹

- Q.5 In Balamer series of hydrogen atom spectrum which electronic transition causes third line?
 - (A) Fifth Bohr orbit to second one
 - (B) Fifth Bohr orbit to first one
 - (C) Fourth Bohr orbit to second one
 - (D) Fourth Bohr orbit to first one
- Q.6 What transition in the hydrogen spectrum would have the same wavelength as the Balamer transition, n = 4 to n = 2 in the He⁺ spectrum?
 - (A) n = 4 to n = 1
 - (B) n = 3 to n = 2
 - (C) n = 3 to n = 1
 - (D) n = 2 to n = 1
- Q.7 The spectrum produced by white light is
 - (A) Emission spectrum
 - (B) Continuous spectrum
 - (C) Absorption spectrum
 - (D) Both emission and continuous spectrum.
- Q.8 In hydroggen spectrum, the series of lines appearing in ultraviolet region of electromagnetic spectrum are called
 - (A) Lyman lines
 - (B) Balmer lines
 - (C) Pfund lines
 - (D) Brackett lines.

	CHEM	STRY	FOUN	DATION	(CLAS	S TES	T 2/6)	(ATON	IIC STR	UCTU	RE) AN	ISWER	KEY	
Name	e :								Roll No.	· :				
	Α	В	С	D		Α	В	С	D		Α	В	С	D
1	0	0	0	0	4		0	0	0	7	0	0	0	0
2	0	0	0	0	5	0	0	0	0	8	0	0	0	0
3	0	0	0	0	6	0	0	0	0					

ANSWER KEY

Que.	1	2	3	4	5	6	7	8
Ans.	В	Α	С	D	Α	D	D	Α

SOLUTIONS

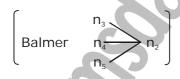
Sol.1 (B)

He and Li⁺ contain two electrons each.

- **Sol.2** (A) Energy is released for $n = \infty$ to 1 and energy difference is maximum between n = 1 and n = 2.
- Sol.3 (C)

Paschen spectral series lies in the near infrared region of electromagnetic radiation.

Sol.4 (D)


$$\overline{V} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$$

(: 1st line appears jump n = 3 to n = 2)

$$=\frac{5R}{36}cm^{-1}$$
.

Sol.5 (A)

Ist line is for $n_3 \rightarrow n_2$ 2nt line is for $n_4 \rightarrow n_2$ and 3rd line is for $n_s \rightarrow r$

Sol.6 (D)

For He^s spectrum, for Balmer transition, n = 4 to 2

$$\bar{V} = \frac{1}{I}RZ^2\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = R \times 4 \times \frac{3}{16} = \frac{3}{4}R$$

For H spectrum.

$$\hat{\mathbf{v}} = \frac{1}{I} R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = \frac{3}{4} R$$

or
$$\frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{3}{4}$$

It is clear $n_1 = 1$ and $n_2 = 2$

Alternative Method:

For He⁺,
$$\bar{V} = RZ^2 \left(\frac{1}{2^2} - \frac{1}{4^2} \right)$$

$$= R \times 4 \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = R \left(\frac{1}{1^2} - \frac{1}{2^2}\right) \dots (1)$$

For H,
$$\overline{V} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = R \left(\frac{1}{1^2} - \frac{1}{2^2} \right) \dots (2)$$

Hence, $n_1 = 1$ and $n_2 = 2$

- Sol.7 (D)
- Sol.8 (D)