Some Very Important Value of Increasing and Decreasing

अकल से नकल से

Remember / Questions

Question: Arrange than in increasing or decreasing order according to characteristics

1.	Decreasing ionic size	Mg ²⁺ , O ^{2–} , Na ⁺ , F [–]	
2.	Increasing acidic property	ZnO, Na ₂ O ₂ , P ₂ O ₅ , MgO	
3.	Increasing bond length	F_2 , N_2 , Cl_2 , O_2	
4.	Increasing size	Cl ⁻ , S ²⁻ , Ca ²⁺	
5.	Increasing acid strength	HClO ₃ , HClO ₄ , HClO ₂ , HClO	
6.	Increasing oxidation number of iodine	I ₂ , HI, HIO ₄ , ICl	
7.	Increasing thermal stability	HOCI, HOCIO ₂ , HOCIO ₃ , HOCIO	
8.	Increasing bond enthalpy	N ₂ , O ₂ , F ₂ , Cl ₂	
9.	Increasing acidic character	CO_2 , N_2O_5 , SiO_2 , SO_3	
10.	Increasing ionic size	N ^{3–} , Na ⁺ , F [–] , O ^{2–} , Mg ²⁺	
11.	Increasing strength of hydrogen bonding	O, S, F, Cl, N	
	$(H \cdots H - X)$		
12.	Increasing ionic radii in water	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	
13.	Increasing molar conductivity in water	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	
14.	Increasing reactivity with water	Li, Na, K, Rb, Cs	
15.	Increasing basic nature of hydroxides	LiOH, NaOH, KOH, RbOH, CsOH	
16.	Increasing covalent character	LiCl, LiBr, LiI	
17.	Increasing ionic character	CaCl ₂ , BeCl ₂ , MgCl ₂ , BaCl ₂ , SrCl ₂	
18.	Increasing solubility	BeCO ₃ , MgCO ₃ , CaCO ₃ , BaCO ₃	
19.	Increasing solubility	$\operatorname{Be}(\operatorname{OH})_2,\operatorname{Mg}(\operatorname{OH})_2,\operatorname{Ca}(\operatorname{OH}),\operatorname{Ba}(\operatorname{OH})_2$	
20.	Increasing basicity	$\operatorname{Be}(\operatorname{OH})_2, \operatorname{Mg}(\operatorname{OH})_2, \operatorname{Ca}(\operatorname{OH}), \operatorname{Ba}(\operatorname{OH})_2$	
21.	Increasing hydration of ions	Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺	
22.	Increasing reactivity with water	Be, Mg, Ca, Sr, Ba	
23.	Increasing reactivity towards air	Be, Mg, Ca, Sr, Ba	

– Inorganic In My Pocket

	Reference Inorganic In	
24.	Increasing solubility	BeSO ₄ , MgSO ₄ , CaSO ₄ , SrSO ₄ , BaSO ₄
25.	Increasing ionic character	BCl ₃ , AlCl ₃ , GaCl ₃
26.	Increasing strength of Lewis acid	BF ₃ , BCl ₃ , BBr ₃
27.	Increasing strength of Lewis acid	AlCl ₃ , GaCl ₃ , InCl ₃
28.	Increasing reducing power	GeCl_2 , SnCl_2 , PbCl_2
29.	Increasing oxidizing power	GeCl ₄ , SnCl ₄ , PbCl ₄
30.	Increasing basic character	NH ₃ , AsH ₃ , SbH ₃ , PH ₃
31.	Increasing thermal stability	NH ₃ , AsH ₃ , SbH ₃ , PH ₃
32.	Increasing acidic strength	HNO_3 , $\mathrm{H_3PO}_4$, $\mathrm{H_3AsO}_4$, $\mathrm{H_3SbO}_4$
33.	Increasing solubility in water	HNO_3 , $\mathrm{H_3PO}_4$, $\mathrm{H_3AsO}_4$, $\mathrm{H_3SbO}_4$
34.	Increasing order of +5 oxidsation state	N, P, As, Sb and Bi
35.	Increasing stability of hydrides	$\rm H_2O$, $\rm H_2S$, $\rm H_2Se$, $\rm H_2Te$
36.	Increasing poisonous nature	H_2S , H_2Se , H_2Te , H_2Po
37.	Increasing acidic strength	$\rm H_2O$, $\rm H_2S$, $\rm H_2Se$, $\rm H_2Te$
38.	Increasing strength of oxoacids	H_2SO_3 , H_2SeO_3 , H_2TeO_3
39.	Increasing stability of oxoacids	H_2SO_3 , H_2SeO_3 , H_2TeO_3
40.	Increasing stability of oxoacids	H_2SO_3 , H_2SeO_3 , H_2TeO_3
41.	Increasing stability of oxoacids	H_2SO_3 , H_2SeO_3 , H_2TeO_3
42.	Increasing electron affinity	F, Cl, Br, I
43.	Increasing reducing power	HF, HCl, HBr, HI
44.	Increasing affinity for hydrogen	F_2 , Cl_2 , Br_2 , I_2
45.	Increasing acidity	HF, HCl, HBr, HI
46.	Increasing boiling point	HF, HCl, HBr, HI
47.	Increasing stability	HFO ₃ , HClO ₃ , HBrO ₃ , HIO ₃
48.	Increasing covalent character	TiCl ₂ , TiCl ₃ , TiCl ₄
49.	Increasing magnetic moment	Ti^{3+} , Ni^{2+} , Cr^{2+} , Co^{2+} , Zn^{2+}
50.	Increasing ionic character	VCl_2, VCl_3, VCl_4
51.	Increasing basic characteristics	Li_2O , BeO, B_2O_3 , CO_2
52.	Increasing electronegativity	As, P, S, Cl
53.	Increasing acidity	HOCl, HOBr, HOI He HCl HBr HI
54. 55.	Increasing thermal stability Increasing bond enthalpy	HF, HCl, HBr, HI N ₂ , O ₂ , F ₂ ,Cl ₂
55. 56.	Increasing melting point	CaF_2 , CaCl_2 , CaBr_2 , CaI_2
50. 57.	Increasing oxidizing power	O, S, Se, Te
57. 58.	Increasing oxidizing power	F, Cl, Br, I
59.	Increasing single bond strength	N—N, O—O, F—F
	0 0	, -,

Or

- HELIOS

eusin	inity and Decketsing Characteristics		
60.	Increasing stability of hydrides	LiH, NaH, KH, CsH	
61.	Increasing pH of aqueous solution	LiCl, BeCl ₂ , MgCl ₂ , AlCl ₃	
62.	Increasing acidic oxide	Al ₂ O ₃ , MgO, SiO ₂ , P ₄ O ₁₀	
63.	Increasing basicity	F-, Cl-, Br-, I-	
64.	Increasing basic strength	F [–] , OH [–] , NH ₂ [–] , CH ₃ [–]	
65.	Increasing thermal stability	BeCO ₃ , MgCO ₃ , CaCO ₃ , BaCO ₃	
66.	Increasing paramagnetism	Ca, Al, N, O	
67.	Increasing ionic character	LiBr, NaBr, KBr, RbBr, CsBr	
68.	Increasing hydration energy	Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺	
69.	Increasing bond angle	NH ₃ , PH ₃ , AsH ₃	
70.	Increasing bond angle	NF ₃ , PH ₃ , AsF ₃	
71.	Increasing bond angle	H_2O , H_2S , H_2Se	
72.	Increasing bond angle	NF ₃ , NCl ₃	
73.	Increasing bond angle	NO ₂ ⁺ , NO ₂ , NO ₂ ⁻	
74.	Increasing bond angle	NH ₃ , NF ₃	

000

Answers

1. $O^{2-} > F^- > Na^+ > Mg^{2+}$

All the four species are isoelectronic $(1s^2 2s^2 2p^6)$. The number of positive charge in the nucleus decreases in the ${}_{12}Mg > {}_{11}Na > {}_{9}F > {}_{8}O$. Hence O^{2-} involved minimum nucleus-electrons attraction and maximum electron-electron repulsion while Mg^{2+} involves maximum nucleus electrons attraction and minimum electron-electron repulsion. These factors make the size of anion greater than the corresponding neutral atom and that of cation lesser than the corresponding atom.

 $2. \qquad Na_2O_2 < MgO < ZnO < P_2O_5$

Oxides of electropositive elements are alkaline while those of electronegative element are acidic. Alkaline property will increase with increase in electropositive character of metal and acidic characteristics increase with increase in electronegative characteristics of nonmetals. Since the electro-negativity increases in the order Na < Mg < Zn < P, the acidic character of oxide will also increase in the same order.

3. $N_2 < O_2 < F_2 < Cl_2$

Nitrogen contains triple bond, oxygen contains double bond and fluorine and chlorine contain a single bond each. Chlorine involves bonding of 3p orbitals while fluorine involves 2p orbitals.

4. $Ca^{2+} < Cl^{-} < S^{2-}$

The given species are isoelectronic. So more the number of proton more attraction on electrons so use radius.

 HClO < HClO₂ < HClO₃ < HClO₄
 These acids are better represented as More the oxidation number of central metal more acidic.

$$6. \quad \text{HI} < \text{I}_2 < \text{ICl} < \text{HIO}_4$$

The oxidation states of iodine in HI, I_2 , ICl and HIO₄ are -1, 0 + 1 and +7, respectively

7. HOCl < HOClO < HOClO₂ < HOClO₃

The stability is explained by the increasing number of electrons involved in the formation of σ and π bonds in going from HOcl to HOClO₃. In ClO₄⁻ ion all the valence orbitals and electrons of chlorine are involved in the formation bonds.

8.
$$F_2 < Cl_2 < O_2 < N_2$$

 N_2 involves a triple bond, O_2 involves a double bond, F_2 and Cl_2 involve a single bond each F_2 , has a lower bond enthalpy than Cl_2 . This is due to more repulsion of nonbonding electrons in F_2 . Besides this, there is a possibility of multiple bonding in Cl_2 involving d orbitals.

9. $SiO_2 < CO_2 < N_2O_5 < SO_3$

Increasing electronegativity of an element makes its oxide more acidic.

10. $Mg^{2+} < Na^+ < F^- < O^{2-}$

11.	S < Cl < N < O < F
	The negative charge on X in HX increases with increasing electronegative of X.
	Thismakes the hydrogen bonding more strong.
12.	$Cs^+ < Rb^+ < K^+ < Na^+ < Li^+$
	The ions in a solution are present as hydrated ions. The smaller the size of the
	on, the greater the extent of hydration. So the size of hydrated ions becomes
	larger for smaller sized ion and vice versa.
13.	$\mathrm{Li}^+ < \mathrm{Na}^+ < \mathrm{K}^+ < \mathrm{Rb}^+ < \mathrm{Cs}^+$
	Li ⁺ ion being heavily hydrated has the lowest mobility and Cs ⁺ ion being less
	hydrated has the highest mobility.
14.	Li < Na < K < Rb < Cs
	The reactivity increases on descending the group 1.
15.	LiOH < NaOH < KOH < RbOH < CsOH
	The basic nature of hydroxides of elements of Group I increases on descending
	the group.
16.	LiCl < LiBr < LiI
	The smaller sized Li ⁺ ions polarizes the larger anion more predominantly giving
	larger covalent character.
17.	$BeCl_2 < MgCl_2 < CaCl_2 < BaCl_2 < SrCl_2$
18.	$BaCO_3 < CaCO_3 < MgCO_3 < BeCO_3$
	On moving down the group, the lattice energies of carbonates do not decrease much while the degree of hydration of the metal ions increases significantly lead-
	ing to decreased solubility.
19.	$\ddot{Be(OH)}_2 < Mg(OH)_2 < Ca(OH)_2 < Ba(OH)_2$
20.	$\operatorname{Be}(OH)_2^2 < \operatorname{Mg}(OH)_2^2 < \operatorname{Ca}(OH)_2^2 < \operatorname{Ba}(OH)_2^2$
21.	$Ba^{2+} < Sr^{2+} < Ca^{2+} < Mg^{2+} < Be^{2+}$
	The extent of hydration of ion decreases with increase in ionic size.
22.	Be < Mg < Ca < Sr < Ba
	The reaction of alkaline-earth metals become increasingly vigorous with increas-
23.	ing atomic number. Be < Mg < Ca < Sr < Ba
23. 24.	$BaSO_4 < SrSO_4 < CaSO_4 < MgSO_4 < BeSO_4$
	Hydration of ion plays a dominating role as compared to lattice energy.
25.	$BCl_3 < AlCl_3 < GaCl_3$
	Increase in the electropositive of element increases its ionic character.
26.	$BF_3 < BCl_3 < BBr_3$
	Besides σ bond between boron and halogen atoms, there exist additional $p\pi$ - $p\pi$
	bond between the two atoms resulting from back-donation of electrons from fluoring to boron (back bonding)
	fluorine to boron (back bonding). The tendency to form $p\pi$ - $p\pi$ bond is maximum in BF ₃ ($2p\pi$ - $2p\pi$ back bonding)
	and falls rapidly on passing to BCl ₃ ($2p\pi$ - $3p\pi$ back bonding) and BBr ₃ ($3p\pi$ - $4p\pi$
	back bonding). The tendency to accept electron pair, therefore, increases from
	BF ₃ to BBr ₃ .
	12.5

RHELIOS		
27.	$InCl_3 < GaCl_3 < AlCl_3$	
	With increase in size of element of Group 13, the tendency to accept electron pair is decreased.	
28.	$PbCl_2 < SnCl_2 < GeCl_2$.	
20.	The stability of element in +H oxidation state increases on ascending the group	
	14. This is due to inert-pair effect.	
29.	$\text{GeCl}_4 < \text{SnCl}_4 < \text{PbCl}_4.$	
	The stability of element in +IV oxidation state decreases on ascending the Group	
	14. This is due to inert pair effect.	
30.	$SbH_3 < AsH_3 < PH_3$	
	The decrease in electronegativity and increase in size of element cause the decrease	
	in tendency to accept proton.	
31.	$SbH_3 < AsH_3 < PH_3 < NH_3$	
32.	$H_3SbO_4 < H_3AsO_4 < H_3AsO_3 < HNO_3$	
33.	$H_3SbO_4 < H_3AsO_4 < H_3AsO_3 < HNO_3$	
34.	Bi < Sb < As < P < N	
35.	$H_2Te < H_2Se < H_2S < H_2O$	
36.	$H_2S < H_2Se < H_2Te < H_2Po$	
37.	$H_2O < H_2S < H_2Se < H_2Te$	
	Larger the size of X (=O, S, Se, Te) weaker its bonds with hydrogen and more easily H^+ gets lost in aqueous solution.	
38.	$H_2 TeO_3 < H_2 SeO_3 < H_2 SO_3$	
	Decreasing size and increasing electronegativity from Te to S withdraws electrons	
	from O—H bond towards itself, thus, facilitating the release of proton.	
39.	$H_2 TeO_3 < H_2 SeO_3 < H_2 SO_3$	
40.	$H_2 TeO_4 < H_2 SeO_4 < H_2 SO_4$	
41.	$H_2 TeO_4 < H_2 SeO_4 < H_2 SO_4$	
42.	Cl > F > Br > I	
43.	HF < HCl < HBr < HI	
44.	$I_2 < Br_2 < Cl_2 < F_2$	
45. 46	HF < HCl < HBr < HI	
46.	HCl < HBr < HI < HF Anomalous behavour of HE is due to hydrogen bonding	
	Anomalous behavour of HF is due to hydrogen bonding.	

Inorganic In My Pocket

- $HFO_3 < HClO_3 < HBrO_3 < HIO_3$ 47. Ions of these acids are stabilized due to strong $p\pi$ - $p\pi$ bonding between full 2p orbital on oxygen and empty orbitals on the halogen atom. Fluorine has no d orbitals and cannot form $p\pi$ -d π bonds. Thus oxoacids of fluorine are not known.
- $TiCl_2 < TiCl_3 < TiCl_4$ **48**. Increasing oxidation state of Ti increases charge density on the metal leading to increase in the polarization of the anionic charge cloud and thus covalency increases.

Increasin	ng and Decreasing Characteristics ————————————————————————————————————
49.	$Zn^{2+} < Ti^{3+} < Ni^{2+} < Co^{2+} < Cr^{2+}$
	Increasing number of unpaired electrons increases magnetic moment. The number
	of unpaired electrons in the given species are as follows.
	Ti^{3+} one, Ni^{2+} two, Co^{2+} three, Cr^{2+} four and Zn^{2+} zero.
50.	$VCl_4 < VCl_3 < VCl_2$
	Decreasing oxidation state of element increases the ionic character.
51.	$CO_2 < B_2O_3 < BeO < Li_2O$
52.	As < P < S < Cl
53.	HOI < HOBr < HOCl
54.	HI < HBr < HCl < HF
55.	$F_2 < Cl_2 < O_2 < N_2$
56.	$CaI_2 < CaBr_2 < CaCl_2 < CaF_2$
57.	Te < Se < S < O
58.	I < Br < Cl < F
59.	N - N < O - O < F - F
60.	$C_{sH} < KH < N_{aH} < LiH$
61.	$LiCl > MgCl_2 > BeCl_2 > AlCl_3$
	Hydrolysis of cations depends on two factors; larger charge and smaller size favour more hydrolysis, hence more free H ⁺ (<i>i.e.</i> lesser pH).
62.	$MgO < Al_2O_3 < SiO_2 < P_4O_{10}$
63.	$I^- < Br^- < Cl^- < F^-$
	Stronger the acid, weaker it's the conjugate base.
64.	$F^- < OH^- < NH_2^- < CH_3^-$
	More electronegative the atom, lesser its tendency to give a lone pair of electrons.
65.	$BeCO_3 < MgCO_3 < CaCO_3 < BaCO_3$
	Increasing size of cation decreases its polarizing ability towards carbonate making the compound more stable.
66.	Ca < Al < O < N
	Paramagnetism increases with increase of number of unpaired electrons.
67.	LiBr < NaBr < KBr < RbBr < CsBr
	The larger the difference between the electro-negativities, greater the ionic character.
68.	$Ba^{2+} < Sr^{2+} < Ca^{2+} < Mg^{2+} < Be^{2+}$
	The smaller the size, more the hydration energy.
69.	
09.	$AsH_3 < PH_3 < NH_3$ The increasing size and leave electron participation of the control stars generic the
	The increasing size and lower electronegativity of the central atom permit the
	bonding electrons to be drawn out further, thus decreasing repulsion between
	bonding pairs.
70.	$AsH_3 < PH_3 < NH_3$

12.7

HELIOS E D U C O R E

71. $H_2Se < H_2S < H_2O$

- 72. NF₃ < NCl₃
 The bonding pair repulsion in NF₃ is less than that in NCl₃
- 73. $NO_2^+ < NO_2 < NO_2^-$

There is maximum repulsion between free electron(s) on nitrogen and bonding pairs.

74. $NF_3 < NH_3$

There is lesser repulsion in bonding pairs in NF_3 .

