LEVEL-I

	2				
1.	Number of critical points of f (x) = $\frac{ x^2 - 4 }{ x^2 - 4 }$	are			
	(A) 1 (C) 3	(B) 2 (D) no	ne of these		
2.	If the function f (x) = cos $ x - 2ax + b$ increat (A) $a \le b$ (C) $a < -1/2$	ases for (B) a = (D) a ≧	all x ∈ R, then = b/2 ≥ −3/2		
3.	Area of the triangle formed by the positive x-axis and the normal and the tangent to $x^2 + y^2 = 4$ at (1, $\sqrt{3}$) is				
	(A) $2\sqrt{3}$ sq. units (C) $4\sqrt{3}$ sq. units	(B) √3 (D) no	sq. units ne of these		
4.	A tangent to the curve $y = \frac{x^2}{2}$ which is para	allel to t	he line y = x cuts off an intercept from the		
	y-axis is (A) 1 (C) 1/2	(B) –1. (D) –1.	/3 /2		
5.	A particle moves on a co-ordinate line so Then distance travelled by the particle durin (A) 4/3 (C) 16/3	that its g the ti (B) 3/4 (D) 8/3	velocity at time t is v (t) = $t^2 - 2t$ m/sec. me interval $0 \le t \le 4$ is		
6.	The derivative of f (x) = $ x $ at x = 0 is (A) 1 (C) -1	(B) 0 (D) do	es not exist		
7.	f (x) = $-[x^2 + 3x^4 + 5x^6 + 5]$ have only	· val	ue in (–∞,∞) at x =		
8.	If $y = a \log x + bx^2 + x$ has its extremum v	alues a	t x = -1 and x =2 then a=		
	b =				
9.	The value of b for which the function f (x) = is given by (A) $b < 1$ (C) $b > 1$	sin x –b (B) b ≥ (D) b ≤	for $x + c$ is decreasing in the interval $(-\infty,\infty)$ 1 1		
10.	Equation of the tangent to the curve $y = e^{- x }$ (A) is $ey + x = 2$ (C) is $ex + y = 1$	at the	point where it cuts the line x=1 (B) is x + y = e (D) does not exist		
11.	The greatest and least values of the functio	n f(x) =	ax + b \sqrt{x} + c, when a > 0, b > 0, c > 0 in		
	(A) $a+b+c$ and c a+b+c	(B)	a/2 b√2+c, c		
	(C) $\frac{\alpha + \beta + \beta}{\sqrt{2}}$, c	(D)	None of these		

12.	The absolute minimum value of $x^4 - x^2 - 2x$ (A) is equal to 5 (C) is equal to 7	+ 5 (B) is equal to 3 (D) does not exist
13.	Through the point P (α , β) where $\alpha\beta$ >0 the co-ordinates axes a triangle of area S. If ab (A) 2 α β	straight line $\frac{x}{a} + \frac{y}{b} = 1$ is drawn so as to form with >0, then the least value of S is (B) 1/2 $\alpha\beta$
	(C) α β	(D) None of these
14.	If $f(x) = A \ln x + B x^2 + x$ has its extreme va (A) $A = 2, B = -1/2$ (C) $A = 2, B = 1$	alues at $x = 2$ and $x = 1$ then (B) $A = -2$, $B = 1/2$ (D) None of these
15.	The function $2tan^3x-3tan^2x+12tanx + 3, x \in$	$\left(0,\frac{\pi}{2}\right)$ is
	(A) increasing (C) increasing in (0, $\pi/4$) and decreasing in (D) none of these	(B) decreasing $(\pi/4, \pi/2)$
16.	The tangent to the curve $y = 2^x$ at the point point of the curve $y = 2^x$ at the point point.	nt whose ordinate is 1, meets the $x - axis$ at the
	point (A) (0, ln2) (C) (-ln2, 0)	(B) (ln 2, 0) (D) (-1/ln2, 0)
17.	The minimum value of $ax + by$, where $xy = 1$	r ² , is (r, ab >0)
	(A) $2r\sqrt{ab}$ (C) $-2r\sqrt{ab}$	(B) 2ab √r(D) None of these
18.	The range of the function $f(x) = \sin^{-1} \left[x^2 + \frac{1}{2} \right]$	$\left[\frac{1}{2}\right] + \cos^{-1}\left[x^2 - \frac{1}{2}\right]$, where [.] is the greatest
	integer function, is (A) $\left\{\frac{\pi}{2},\pi\right\}$ (B) $\left\{0,\frac{\pi}{2}\right\}$	(C) { π } (D) $\left(0,\frac{\pi}{2}\right)$
19.	The domain of $f(x) = \sqrt{\log_{\frac{1}{4}} \left(\frac{5x - x^2}{4}\right)} + {}^{10}$	C _x is
	(A) (0, 1]U [4, 5) (C) {1, 4}	(B) (0, 5) (D) None of these
20.	A function whose graph is symmetrical above (A) f (x) = $e^x + e^{-x}$ (C) f (x + y) = f (x) + f (y)	ut the origin is given by (B) f (x) = log _e x (D) none of these
21.	Let f (x) be a function whose domain is [-5,	7]. Let g (x) = $ 2x + 5 $, then the domain of fog (x)
	(A) [-5, 1] (B) [-4, 0]	(C) [-6, 1] (D) none of these
22.	$\lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\cos^4 x - \cos^2 x + 1}$ is equal to,	
	(A) 0	(B) –1

	(C) 1	(D) does not exist
23.	Pick up the correct statement of the followin (A) If f (x) is continuous at $x = a$ then [f (x)] (B) If f (x) is continuous at $x = a$ then [f (x)] (C) If f (x) is continuous at $x = a$ then f (x) (D) None of these	g where $[\cdot]$ is the greatest integer function, is also continuous at x = a. is differentiable at x = a. is also continuous at x = a.
24.	The greatest value of f (x) = $\cos (xe^{[x]} + 7x^2)$ (A) -1 (C) 0	–3x), x ∈ [-1, ∞) is (B) 1 (D) none of these.
25.	The equation of the tangent to the curv y = 2 is (A) $x + 2y = 2$ (C) $x - 2y = 1$	e f (x) = 1 + e^{-2x} where it cuts the line (B) 2x + y = 2 (D) x - 2y + 2 = 0
26.	The angle of intersection of curves $y = 4 - x^2$	² and y = x ² is
27.	The greatest value of the function $f(x) = \frac{1}{\sin^2 x}$	$\frac{\sin 2x}{\left(x+\frac{\pi}{4}\right)}$ on the interval $\left[0,\frac{\pi}{2}\right]$ is
28.	Let $f(x) = x - \sin x$ and $g(x) = x - \tan x$, when (A) $f(x)$. $g(x) > 0$ (C) $\frac{f(x)}{g(x)} > 0$	e x $\in \left(0, \frac{\pi}{2}\right)$. Then for these value of x. (B) f(x) . g(x) < 0 (D) none of these
29.	Suppose that $f(x) \ge 0$ for all $x \in [0, 1]$ and	d f is continuous in [0, 1] and $\int_{0}^{1} f(x) dx = 0$, then

 $\begin{array}{ll} \forall \ x \in [0, \ 1], \ f \ is \\ (A) & entirely \ increasing \\ (C) & constant \\ \end{array} \begin{array}{ll} (B) & entirely \ decreasing \\ (D) & None \ of \ these \\ \end{array}$

LEVEL-II

Let h (x) = f (x) + ln{f(x)} + {f (x)}² for every real number x, then 1. (A) h (x) is increasing whenever f (x) is increasing (B) h(x) is increasing whenever f(x) is decreasing (C) h (x) is decreasing whenever f (x) is increasing (D) nothing can be said in general Let $f(x) = a_0 + a_1x^2 + a_2x^4 + \dots + a_nx^{2n}$, where $0 < a_0 < a_1 < a_2 < \dots < a_n$, then f(x) has 2. (A) no minimum (B) only one minimum (C) no maximum (D) neither a maximum nor a minimum The maximum value of $\frac{\sin x \cos x}{\sin x + \cos x}$ in the interval $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ is 3. (A) 1/2 (B) 1/4 (C) $\frac{1}{2\sqrt{2}}$ (D) 1/3 If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots \dots \infty}}}$, then the value of $\frac{dy}{dx}$ is 4. (A) $\sqrt{\frac{\sin x}{y+1}}$ (B) $\frac{\sin x}{y+1}$ (D) $\frac{\cos x}{2y-1}$ (C) $\frac{\cos x}{2y+1}$ 5. The curve $y - e^{xy} + x = 0$ has a vertical tangent at the point (A) (1, 1) (B) at no point (C) (0, 1) (D) (1, 0) 6. A differentiable function f(x) has a relative minimum at x = 0 then the function y = f(x) + ax + b has a relative minimum at x = 0 for (A) all a and all b (B) all b if a = 0(D) all $a \ge 0$ (C) all b > 0Let $f(x) = \begin{cases} 1 + \sin x, \ x < 0 \\ x^2 - x + 1, \ x \ge 0 \end{cases}$. Then 7. (A) f has a local maximum at x = 0(B) f has a local minimum at x = 0(C) f is increasing every where (D) f is decreasing everywhere Let $f(x) = x^{n+1} + a$. x^n , where 'a' is a positive real number, $n \in I^+$. Then x = 0 is a point of 8. (A) local minimum for any integer n (B) local maximum for any integer n (C) local minimum if n is an even integer (D) local minimum if n is an odd integer 9. $f(x) = \max(\sin x, \cos x) \quad \forall x \in \mathbb{R}$. Then number of critical points $\in [-2\pi, 2\pi]$ is /are; (A) 5 (B) 7 (C) 9 (D) none of these Let $\phi(x) = (f(x))^3 - 3(f(x))^2 + 4f(x) + 5x + 3 \sin x + 4 \cos x$ 10. $\forall x \in R$, then (A) (B) (C)

(D) Nothing can be said

11.	A function $f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x - 3}$ is:	
	(A) Maximum at $x = -3$ (C) No point of maxima or minima	(B) Minimum at $x = -3$ and maximum at $x = 1$ (D) Function is decreasing in it's domain.
12.	Let $f(x) = \begin{cases} \sin(x^2 - 3x) & x \leq 0 \\ 5x^2 + 6x & x > 0 \end{cases}$. Then $f(x)$ is	nas
	(A) local maxima at x = 0(C) Global maxima at x = 0	(B) Local minima at x = 0(D) Global minima at x = 0
13.	If a, b, c, d are four positive real numbers $(1+b)(1+c)(1+d)$ is	such that abcd =1, then minimum value of (1+a)
	(A) 8 (C) 16	(B) 12 (D) 20
14.	If $f(x) + 2f(1 - x) = x^2 + 2 \forall x \in R$, then $f(x)$ is	given as
	(A) $\frac{(x-2)^2}{3}$	(B) x ² – 2
	(C) 1	(D) None of these
15.	$\lim_{x\to 5\pi/4} [\sin x + \cos x], \text{ where } [.] \text{ denotes the}$	Integral part of x.
	(A) is equal to −1(C) is equal to −3	(B) is equal to –2 (D) Does not exist
16.	If f (x) = $\frac{\ln(1+x)^{1+x}}{x^2} - \frac{1}{x}$, then the value of f	(0) so that f (x) is continuous at $x = 0$, is;
	(A) 2 (C)1/2	(B) 1 (D) None of these
17.	If f (x) = $\frac{x}{1+ x }$, then	
	(A) f (x) is differentiable $\forall x \in R$ (C) f (x) is not differentiable at finite no. of p (D) None of these	(B) f (x) is no where differentiable oint
18.	If $f_1(x) = \sin x + \tan x$, $f_2(x) = 2x$ then (A) $f_1(x) > f_2(x) \forall x \in (0, \pi/2)$ (B) $f_1(x) < f_2(x) \forall x \in (0, \pi/2)$ (C) $f_1(x) - f_2(x) = 0$ has exactly one root $\forall x$ (D) None of these	x ∈ (0, π/2)
19.	.Let f (x) = $\begin{cases} x - 1 + a, & x \le 1\\ 2x + 3, & x > 1 \end{cases}$. If f (x) has a lo	tocal minima at $x = 1$. Then exhaustive set of
	values of 'a' is; (A) $a \le 4$	(B) a ≤ 5
	(C) a ≤ 6	(D) a ≤ 7

20. A differentiable function f (x) has a relative minimum at x = 0 then the function y = f(x) + ax + b has a relative minimum at x = 0 for

	(B) all a and all b (D) all b > 0	(B) all b if $a = 0$ (D) all $a \ge 0$			
21.	The maximum value of $f(x) = x \ln x $ in $x \in (0,1)$ is;				
	(A) 1/e (C) 1	(B) e (D) none of these			
22.	If f (x) = $\int_{0}^{x} (t+1) (e^{t}-1) (t-2) (t+4) dt$ then f	(x) would assume the local minima at;			
	(A) $x = -4$ (C) $x = 1$	(B) $x = 0$ (D) $x = 2$.			
23.	f(x) = tan ⁻¹ (sinx + cosx) is an increasing function (A) $(0, \pi/4)$ (C) $(-\pi/4, \pi/4)$	ction in (Β) (0, π/2) (D) none of these.			
24.	Let f: $R \rightarrow R$, where $f(x) = x^3 - ax$, $a \in R$. Then its entire domain is; (A) $(-\infty, 0)$ (C) $(-\infty, \infty)$	set of values of 'a' so that $f(x)$ is increasing in (B) $(0, \infty)$ (D) none of these			
25.	The curves $y = 4x^2 + 2x - 8$ and $y = x^3 - x + 3$	10 touch each other at the point			
26.	Let f be differentiable for all x. if f (1) = -2 ar (A) f (6) < 8 (C) f (6) ≥ 5	and f' (x) ≥ 2 for all x \in [1, 6], then (B) f (6) ≥ 8 (D) f (6) ≤ 5			
27.	The function f (x) = $\frac{2x^2 - 1}{x^4}$ decreases in the	e interval			
28.	The function f (x) = (x + 2) e $^{-x}$ increases in decreases in	and			
29.	The function $y = x - \cot^{-1} x - \log (x + \sqrt{x^2 + 1})$ (A) $(-\infty, 0)$ (C) $(0, \infty)$) is increasing on (B) (-∞,∞) (D) R − {0}			
30.	Let f : $(0, \infty) \rightarrow R$ defined by f(x) = x + $\frac{9\pi^2}{x}$ (A) $10\pi - 1$	+ $\cos x$. Then minimum value of f(x) is (B) $6\pi - 1$			
	(C) 3π - 1	(D) none of these			
31.	Let a, $n \in N$ such that $a \ge n^3$ then $\sqrt[3]{a+1} - 1$	³ √a is always			
	(A) less than $\frac{1}{3n^2}$	(B) less than $\frac{1}{2n^3}$			
	(C) more than $\frac{1}{n^3}$	(D) more than $\frac{1}{4n^2}$			
32.	The global minimum value of function $f(x) = (A)$ 0	$x^{3} + 3x^{2} + 10x + \cos \pi x$ in [-2,3] is (B) $3-2\pi$			

- (C) 16-2π (D) -15
- 33. The minimum value of the function defined by $f(x) = Maximum \{x, x+1, 2-x\}$ is

(A)	0	(B)	1/2
(C)	1	(D)	3/2

LEVEL-III

1. If the parabola $y = ax^2 + bx + c$ has vertex at (4, 2) and $a \in [1, 3]$, then difference between the extreme values of abc is equal to, (A) 3600

(A) 3000 (B) 14	+4
(C) 3456 (D) No	one of these

2. Let α , β and γ be the roots of $f(x) = x^3 + x^2 - 5x - 1 = 0$. Then $[\alpha] + [\beta] + [\gamma]$, where [.] denotes the greatest integer function, is equal to (A) 1 (B) - 2 (C) 4 (D) - 3

3. The number of solutions of the equation $x^3 + 2x^2 + 5x + 2\cos x = 0$ in [0, 2π] is (A) 0 (B) 1 (C) 2 (D) 3

4. Let S be the set of real values of parameter λ for which the equation $f(x) = 2x^3 - 3(2+\lambda)x^2 + 12\lambda x$ has exactly one local maximum and exactly one local minimum. Then S is a subset of (A) (-4, ∞) (B) (-3, 3) (C) (3, ∞) (D) (- ∞ , 3)

5. Consider a function y = f (x) defined parametrecally as x = 2t +|t|, y = t |t|, ∀t ∈ R. then function is
(A) Differentiable at x = 0
(B) non-differentiable at x = 0
(C) nothing can be said about differentiablity at x = 0
(D) None of these

6. If the line ax + by + c = 0 is normal to the curve x y + 5 = 0 then

(A) a > 0 , b > 0	(B) b > 0, a < 0
(C) a < 0 , b < 0	(D) b < 0, a > 0

- 7. The number of roots of $x^3-3x+1 = 0$ in [1,2] is/are; (A) One (B) Two (C) Three (D) none of these
- 8. A cubic f(x) vanishes at x = -2 and has extrema at x = -1 and x = $\frac{1}{3}$ such that $\int_{1}^{1} f(x) dx = \frac{14}{3}$ then f (x) =
- 9. If g(x) = f(x) + f(1-x) and f''(x) < 0, $0 \le x \le 1$, then (A) g(x) is decreasing in (0, 1) (B) g(x) is decreasing in $\left(0, \frac{1}{2}\right)$

	(C) g(x) is decreasing in $\left(\frac{1}{2}, 1\right)$	(D) g(x) is increasing in (0, 1)
10.	Let $g'(x) > 0$ and $f'(x) < 0 \forall x \in R$ then (A) $g(f(x + 1)) > g(f(x - 1))$ (C) $g(f(x + 1) < g(f(x - 1))$	(B) $f(g(x - 1)) < f(g(x + 1))$ (D) $g(g'(x + 1)) < g(g(x + 1))$
11.	The function $f(x) = \frac{ax+b}{(x-1)(x-4)}$ has a loc	cal maxima at (2, –1) then
12.	(A) $b = 1, a = 0$ (C) $b = -1, a = 0$ $f_1(x) = 2x, f_2(x) = 3\sin x - x - \cos x$, then	(B) $a = 1, b = 0$ (D) None of these for $x \in (0, \pi/2)$:
	(A) $f_1(x) < f_2(x)$ (C) $f_1(x) > f_2(x)$	(B) $f_1 x < f_2 x $ (D) $f_1 x > f_2 x $
13.	y = f(x) is a parabola, having its axis paralle at $x = 1$ then	I to $y - axis$. If the line $y = x$ touches this parabola
	(A) $f''(1) - f'(0) = 1$ (C) $f''(1) + f'(0) = 1$	(B) $f''(0) - f'(1) = 1$ (D) $f''(0) + f'(1) = 1$
14.	If $f(x) = 2e^x - ae^{-x} + (2a+1)x - 3$ is increasing (A) $2 = (ax - ax) = (0)$	ng for all values of 'x' then
	(C) $a \in (-\infty, \infty) - \{0\}$ (C) $a \in (0, \infty)$	(D) $a \in (-\infty, 0]$ (D) $a \in [0, \infty)$
15.	If $2a + 3b + 6c = 0$, then equation $ax^2 + bx + (A) (0, 1)$ (C) (1, 2)	c = 0 has roots in the interval (B) (2, 3) (D) (0, 2)
16.	The equation $3x^2 + 4ax + b = 0$ has at least (A) $4a + b + 3 = 0$ (C) $b = 0, a = -4/3$	one root in $(0, 1)$ if (B) $2a + b + 1 = 0$ (D) None of these
17.	If f(x) satisfies the conditions of Rolle's theo	rem in [1, 2] then $\int_{-\infty}^{2} f'(x) dx$ is equal to
	(A) 3 (C) 1	(B) 0 (D) -1
18.	If $f(x) = x^2 e^{-x^2/a^2}$ is a non-decreasing function (A) $x \in [a, 2a)$ (C) $x \in (-a, 0)$	on then for a > 0; (B) $x \in (-\infty, -a] \cup [0, a]$ (D) None of these
19.	The function $f(x) = \frac{x}{1 + x \tan x}$ has	
20.	(A) One point of minimum in the interval (0, (B) One point of maximum in the interval (0, (C) No point of maximum, no point of minim (D) Two points of maximum in $(0, \pi/2)$ The number of solutions of the equation a^{f}	$\pi/2$) , $\pi/2$) num in (0, $\pi/2$) $f^{(x)} + g(x) = 0$, where a > 0, g(x) \neq 0 and has
	(A) 1 (C) 4	(B) 2 (D) 0

ANSWERS

LEVEL -I

	1. 5. 9. 13. 17. 21. 25. 29.	A C C C A C B C	2. 6. 10. 14. 18. 22. 26.	C D A D C C 2√2	3. 7. 11. 15. 19. 23. 27.	$ \begin{array}{c} A \\ 0 \\ A \\ A \\ C \\ C \\ \sqrt{2} \end{array} $	4. 8. 12. 16. 20. 24. 28.	D 2, -1/2 B D D B B
LEVE	L –II							
	1. 5. 9. 13. 17. 21. 25. 28. 31.	A D B C C A $3, 34; -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}$ (0, 1); R - (0)	2. 6. 10. 14. 22. 7 <u>4</u> 9 , 1) 32.	B A A D	3. 7. 11. 15. 19. 23. 26. 29. 33.	C A C B C B C B C	4. 8. 12. 16. 20. 24. 27. 30.	$D C B C B C B A \left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right) B$
LEVE	L –III							
	1. 5.	C A	2. 6. A,	С	3. 7.	A A	4. 8.	D $-x^3 - x^2 + x - 2$
	9. 13. 17.	C C B	10. 14. 18.	C D B	11. 15. 19.	B A B	12. 16. 20.	C B D