
DAILY PRACTICE PAPER

(DPP) - 2

ELECTROCHEMISTRY – For Electrical Conduction

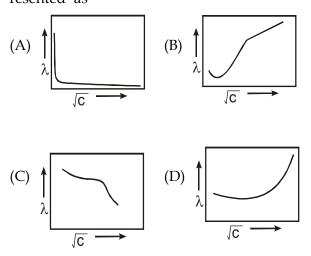
DAILY PRACTICE

PAPER DPP - 2

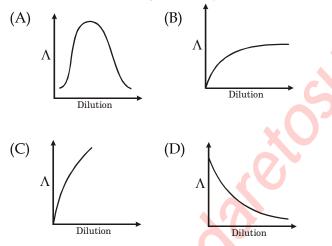
Un	it - Electrochemistry Topic - Galv	Cell By - Arnav Girvan	
01	Objective Problems	09.	Mob - 9470458687 The molar conductances of NaCl, HCl and CH ₃ COONa at infinite dilution are 126.45, 426.16 and $910hm^{-1}cm^{2}mol^{-1}$ respectively. The molar
01.	Acidified water was electrolysed using an inert electrode. The volume of gases liberated at STP was 168 mL. The amount of electricity passed through the acidified water was(A) 96,500 C(B) 9,650 C(C) 965 C(D) 168 C		conductance of CH_3COOH at infinite dilution is (A) 201.28 ohm ⁻¹ cm ² mol ⁻¹ (B) 390.71 ohm ⁻¹ cm ² mol ⁻¹ (C) 689.28 ohm ⁻¹ cm ² mol ⁻¹ (D) 540.48 ohm ⁻¹ cm ² mol ⁻¹
02.	Which of the following is arranged in order of increasing ionic conductance? (A) $NH_4^+ < Ag^+ < Na^+ < Li^+$ (B) $Na^+ < NH_4^+ < Ag^+ < Li^+$ (C) $Li^+ < Na^+ < Ag^+ < NH_4^+$ (D) $Ag^+ < Li^+ < Na^+ < NH_4^+$	10.	Equivalent conductance of NaCl, HCl and C_2H_5COONa at infinite dilution are 126.45, 426.16 and 91 ohm ⁻¹ equiv ⁻¹ cm ² , respectively. The equivalent conductance of C_2H_5COOH is: (A) 201.28 ohm ⁻¹ equiv ⁻¹ cm ² (B) 390.71 ohm ⁻¹ equiv ⁻¹ cm ²
03.	The specific conductance of a saturated AgCl solution is found to be 1.86×10^{-6} S cm ⁻¹ and that for water is 6.0×10^{-8} S cm ⁻¹ . The solubility of AgCl is (A) 1.7×10^{-3} mol L ⁻¹ (B) 1.3×10^{-5} mol L ⁻¹ (C) 1.3×10^{-4} mol L ⁻¹ (D) 1.3×10^{-6} mol L ⁻¹	11.	 (C) 698.28 ohm⁻¹ equiv⁻¹ cm² (D) 540.48 ohm⁻¹ equiv⁻¹ cm² The specific conductance of 0.1 N KCl solution at 23°C is 0.012 ohm⁻¹ cm⁻¹. The resistance of cell containing the solution at the same tem-
04.	The conductivity of 0.01 mol/dm ³ aqueous acetic acid at 300 K is 19.5×10^{-5} ohm ⁻¹ cm ⁻¹ and the limiting molar conductivity of acetic acid at the same temperature is 390 ohm ⁻¹ cm ² mol ⁻¹ . The degree of dissociation of acetic acid is :	12.	perature was found to be 55 ohm. The cell constant will be: (A) 0.142 cm^{-1} (B) 0.66 cm^{-1} (C) 0.918 cm^{-1} (D) 1.12 cm^{-1} The equivalent conductance of Ba ²⁺ and Cl ⁻ are respectively 127 and 76 ohm ⁻¹ cm ² equiv ⁻¹ at
05.	(A) 0.5 (B) 0.05 (C) 5×10^{-3} (D) 5×10^{-7} The ionization constant of a weak electrolyte is 25×10^{-4} while the equivalent conductance of its 0.01 M solution is 19.6 s cm ² eq ⁻¹ . The equivalent conductance of the electrolyte at infinite dilution (in s cm ² eq ⁻¹) will be : (A) 250 (B) 196 (C) 392 (D) 384		 infinite dilution. The equivalent conductance (in ohm⁻¹ cm² equiv⁻¹) of BaCl₂ at infinite dilution will be: (A) 139.5 (B) 203 (C) 279 (D) 101.5 0.04 N solution of a weak acid has specific conductance 4.23 x 10⁻⁴ mho cm⁻¹ and degree of dissociation is 0.0612. The equivalent con-
06.	The correct order of equivalent conductance at infinite dilution of LiCl, NaCl and KCl is : (A) LiCl > NaCl > KCl (B) KCl > NaCl > LiCl (C) NaCl > KCl > LiCl (D) LiCl > KCl > NaCl		ductance of weak acid at infinite dilution is:(A) 1.72 mho(B) 17.29 mho(C) 142.27 mho(D) 172.79 mho
07.	On increasing the dilution, the specific conduc- tance : (A) Increases (B) Decreases (C) Remains constant (D) None of the above	14.	The resistance of 0.1 N solution of salt is found to be 2.5 x 10 ³ ohms. The equivalent conduc- tance of solution (cell constant = 1.15 cm ⁻¹) in ohm ⁻¹ cm ² equiv ⁻¹ is: (A) 3.8 (B) 4.6 (C) 6.4 (D) 7.6
08.	The distance between two electrodes of a cell is 2.5 cm and area of each electrode is 5 cm ² . The cell constant is : (A) 2 (B) 12.5 (C) 7.5 (D) 0.5	15.	The best conductor of electricity is a 0.1 M solution of: (A) H_2SO_4 (B) CH_3COOH (C) CH_3CH_2COOH (D) boric acid

Learnaf

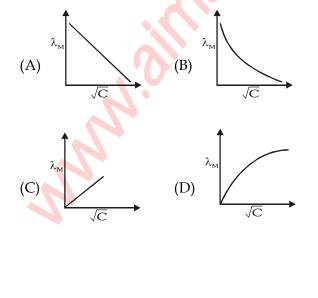
Educational Revolution


#Learnaf #Eduction #Success #Motivation #Fun #Stories & Many More, #All Available at Learnaf.com

CHE	EMISTRY	DPP	LEARNAF INC.
16.	Which of the following statement(s) is/are correct	t 25 .	The limiting molar conductivities L ⁰ for NaCl,
	about the conductance/resistance of a metalli	2	KBr and KCl are 126,152 and 150Scm ² mol ⁻¹
	conductor?		respectively. The L ⁰ for NaBr is
	(A) The resistance of a metal increases with	n	(A) 278 S cm ² mol ⁻¹ (B) 176 S cm ² mol ⁻¹
	increase in temperature and thus thermal co	-	(C) 128 S cm ² mol ⁻¹ (D) 302 S cm ² mol ⁻¹
	efficient of resistivity is found to be positive	. 26.	The highest electrical conducitivity of the fol-
	(B) The thermal coefficient of resistivity of	a	lowing aqueous solution is of
	metallic conductor is 1/273 per °C.		(A) 0.1 M fluoroacetic acid
	(C) The conductivities of non-conductors and	1	(B) 0.1 M difluoroacetic acid
	semi-conductors increase with increase in tem	-	(C) 0.1 M acetic acid 🖌 💛
	perature and thus a is found to be positive		(D) 0.1 M chloroacetic acid
	(D) The slope of V-I curve (V plotted on Y	- 27.	Resistance of a conductivity cell filled with a
	axis, I on X-axis) represents resistance.		solution of an electrolyte of concentration 0.1M
17.	The cell constant of a solution, whose specifi	c	is 100W. The conductivity of this solution is 1.29
	conductance and observed conductance ar	e	Sm ⁻¹ . Resistance of the same cell when filled
1	same, is equal to		with 0.02M of the same solution is 520W. The
	(A) 1 (B) 0 (C) 10 (D) 10)	molar conductivity of 0.02M solution of the
18.	The unit of equivalent conductivity is:		electrolyte will be
	(A) ohm ⁻¹ cm ² (equivalent) ⁻¹		(A) $124 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$
	(B) ohm cm ² (g-equivalent)		(B) $1240 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$
1	(C) ohm cm ²		(C) 1.24×10^4 Sm ² mol ⁻¹
	(D) ohm ⁻¹ m ⁻¹		(D) $12.4 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$
19.	What is the effect of dilution on the equivalent	t 28.	The molar conductivities \wedge^0_{NaOAc} and \wedge^0_{HCl} at
	conductance of strong electrolyte?		infinite dilution in water at 25°C are 91.0 and
	(A) decrease on dilution		426.2 S cm ² /mol respectively. To calculate \wedge^{0}_{HOAc}
	(B) remains unchanged		the additional value required is
	(C) increase on dilution		\sim (A) KCl (B) NaOH (C) NaCl (D) H ₂ O
	(D) none of the these	29.	Resistance of 0.2 M solution of an electrolyte
20.	Conductivity (Unit Siemen's 'S') is directly pro		is 50 W. The specific conductance of the solution
	portional to area of the vessel and the concen		is 1.3 S m ⁻¹ . If resistance of the 0.4M solution
	tration of the solution in it and is inversily pro		of the same electrolyte is 260 W, its molar
	portional to the length of the vessel, then the	5	conductivity is
	unit of constant of proportionality is		(A) $6250 \text{ S} \text{ m}^2 \text{ mol}^{-1}$
	(A) S m mol ⁻¹ (B) S m ² mol ⁻¹ (C) S ⁻² m ² mol (D) S ² m ² mol ⁻²	,	(B) $6.25 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$
			(C) $625 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$
21.	The specific conductance of a 0.1 N KCl solution		(D) $62.5 \text{ S} \text{ m}^2 \text{ mol}^{-1}$
	at 23°C is 0.0112 ohm ⁻¹ cm ⁻¹ . The resistanc	1 30	The correct order of equivalent conductance at
	of the cell containing the solution at the sam	e	infinite dilution of LiCl, NaCl and KCl is
1	temperature was found to be 55 ohm. The cel	1	(A) $LiCl > NaCl > KCl$
	constant will be $(A) = 0.142$ and $(B) = 0.018$ and $(B) = 0.018$		(B) KCl > NaCl > LiCl
1	(A) 0.142 cm^{-1} (B) 0.918 cm^{-1}		(C) NaCl > KCl > LiCl
22	(C) 1.12 cm^{-1} (D) 0.616 cm^{-1}		(D) LiCl > KCl > NaCl
22.	Cell constant is maximum in case of a (A) wire of length 100 cm and area 100 cm	² 31 .	Saturated solution of KNO ₃ is used to make salt
	(B) wire of length 10 cm and area 10 cm ²		bridge because
1	(C) one centimeter cube of a material		(A) velocity of K^{\dagger} is greater than that of NO ₃
1	(D) equal in all cases		(B) velocity of NO_3^- is greater than that of K^+
23.	$0.1M H_2SO_4$ is diluted to $0.01 M H_2SO_4$. Hence	e	(C) velocities of both K^+ and NO_3^- are nearly
1	its molar conductance will be		the same
1	(A) 10 times (B) 1/10th		(D) KNO_3 is highly soluble in water
	(C) 100 times (D) 10000 times	32.	Equivalent conductance of $BaCl_2$, H_2SO_4 & HCl
24.	$\Lambda_{\rm m}^{\infty}$ (BaSO ₄) is equal to		at infinite dilution are A_{\sharp}^{1} , A_{\sharp}^{2} & A_{\sharp}^{3} respec-
	(A) $\Lambda_{\infty}^{\infty}$ of (BaCl ₂ + H ₂ SO ₄ - HCl)		tively. Equivalent conductance of $BaSO_4$ solution
	(B) $\Lambda_{\rm m}^{\infty}$ of $({\rm BaCl}_2 + {\rm H}_2{\rm SO}_4 - 2{\rm HCl})$		is
1	(C) limiting molar conductance when graph between A and $\sqrt{2}$ is extrapolated to zero		
	between $\Lambda_{\rm m}$ and $\sqrt{\rm C}$ is extrapolated to zero (D) none of these		(A) $A_{\sharp}^{1} + A_{\sharp}^{2} - 2 A_{\sharp}^{3}$ (B) $A_{\sharp}^{1} + A_{\sharp}^{2} + A_{\sharp}^{3}$ (C) $A_{\sharp}^{1} + A_{\sharp}^{2} - A_{\sharp}^{3}$ (D) $A_{\sharp}^{1} - A_{\sharp}^{2} + A_{\sharp}^{3}$
	(D) none of these		$(c) n_{\underline{x}} n_{\underline{x}} n_{\underline{x}} n_{\underline{x}} (c) n_{\underline{x}} n_{\underline{x}} n_{\underline{x}} n_{\underline{x}}$


#Learnaf #Eduction #Success #Motivation #Fun #Stories & Many More, #All Available at Learnaf.com ²

LEARNAF INC.


33. The variation of equivalent conductance of a weak electrolyte with $(concentration)^{1/2}$ is represented as

- **34.** The specific conductance of a normal solution of KCl at 25°C is 0.002765 mho cm⁻¹. The resistance of cell containing this solution is 400 ohms. The cell constant is (in cm⁻¹):
- (A) 0.965 (B) 1.106 (C) 2.206 (D) 3.30635. Which of the following plots represents correctly variation of equivalent conductance (L) with dilution for a strong electrolyte ?

36. Which of the following curve represents the variation of l_M with \sqrt{C} for AgNO₃?

Subjective Problems

01. Equivalent conductivity of 0.01 N Na₂SO₄ solution is 112.4 ohm⁻¹ cm² equivalent⁻¹. The equivalent conductivity at infinite dilution is 129.9 ohm⁻¹ cm² equivalent⁻¹. What is the degree of dissociation in 0.01 N Na₂SO₄ solution?

Ans. 0.8653

O2. Specific conductance of a saturated solution of AgBr is 8.486 x 10⁻⁷ ohm⁻¹ cm⁻¹ at 25°C. Specific conductance of pure water at 25°C is 0.75 x 10⁻⁶ohm⁻¹ cm⁻². Molar conductances of KBr, AgNO₃ and KNO₃ are 137.4, 133, 131 (S cm² mol⁻¹) respectively. Calculate the solubility of AgBr. (Give: At. wt.: Ag = 108; Br = 80)

Ans. 1.33 x 10⁻⁴ gm/litre

03. The molar conductivity of 0.1 M CH₃COOH solution is 4.6 S cm² mol⁻¹. What is the specific conductance and resistivity of the solution ?

Ans. 4.6 x 10⁻⁴ S cm⁻¹; 2173.913 ohm cm

04. The resistance of a conductivity cell filled with 0.01N solution of NaCl is 210 ohm at 18°C. Calculate the equivalent conductivity of the solution. The cell constant of the conductivity cell is 0.88 cm⁻¹.

Ans. 419 S cm²equivalent ⁻¹

05. Given $\lambda_{Ag^+}^{\infty}$ =61.9 unit; $\lambda_{cl^-}^{\infty}$ =76.3 unit. Calculate solubility and solubility product of silver chloride solution with specific conductance 1.36 x 10⁻⁶ ohm⁻¹ cm⁻¹. (Given: At. wt.:- Ag = 108; Cl = 35.5)

Ans. 1.412x10⁻³gm/litre, 9.684x10⁻¹¹

06. Resistance of a 0.1M KCl solution in a conductance cell is 300 ohm and specific conductance of 0.1M KCl is 1.29 x 10⁻² ohm⁻¹ cm⁻¹. The resistance of 0.1M NaCl solution in the same cell is 380 ohm. Calculate the equivalent conductivity of the 0.1M NaCl solution.

Ans. 101.842 ohm⁻¹cm²/gm-equiv

07. A solution of 0.1acetic acid at 25°C has a specific conductance of 5.226x10⁻⁴ohm⁻¹cm ⁻¹.
(i) Find the equivalent conductivity of 0.1 M acetic acid.

(ii) Find the equivalent conductivity of acetic acid at infinite dilution (K_a for acetic acid =1.8x10⁻⁵).

- Ans. (i) 5.226 ohm⁻¹cm²/equiv. (ii) 389.523 mho cm²/ equiv.
- O8. Calculate the degree of dissociation of water at 298K. Conductivity of water is 6.33 x 10⁻⁸ ohm⁻¹ cm⁻¹.

Given $\lambda_{H^+}^{\infty}$ =349.8mhomol⁻¹cm²,

 $\lambda_{OH^-}^{\infty}$ =198.3mhomol⁻¹cm². Density of H₂O = 0.997 gm/ml

3

09. Dissociation constant of propionic acid is 1.35 x 10⁻⁵ mol litre⁻¹. It's equivalent conductivity at infinite dilution works out as 386 ohm⁻¹ cm²/ equiv. Calculate specific resistance of 0.1N solution of the acid.

Ans. 2229.697 ohm cm

- The conductivity of pure water in a conductivity cell with electrodes of cross sectional area 4 cm² and 2 cm apart is 8 x 10⁻⁷ S cm⁻¹.
 - (i) What is resistance of conductivity cell ?(ii) What current would flow through the cell under an applied potential difference of 1 volt?
- Ans. (i) 6.25 x 10⁵ ohm, (ii) 1.6 x 10⁻⁶ amp
- 11. Specific conductance of saturated solution of BaSO₄ at 25° C is 3.59 x 10⁻⁵ ohm⁻¹ cm⁻¹ and conductivity of water is 0.618 x 10-5 ohm⁻¹ cm⁻¹. Equivalent ionic conductances at infinite dilution of 1/2 Ba²⁺ and 1/2 SO₄²⁻ are 63.6 and 79.8 ohm⁻¹ cm² per equivalent respectively. Calculate the solubility and solubility product of BaSO₄ assuming complete dissociation in the saturated solution.
- Ans. 2.41 x 10⁻² gm/litre ; 1.07 x 10⁻⁸ mole/litre²
- Specific conductivity of acetic acid at a dilution of 70 litre (1 mole in 70 litre) is 5.3x10⁴ohm⁻¹cm⁻¹. The equivalent conductance at in finite dilution is 400 ohm⁻¹ cm² / equivalent. Calculate degree of dissociation, the coincentration of hydrogen ions.

Ans. 0.0927, 1.324 x 10⁻⁷ M

13. The equivalent conducatance at 25°C of N/50 acetic acid solution is 11.92 ohm⁻² cm²/ equiv. The equivalent ionic conductance at infinite dilution of H⁺ ions CH₃COO⁻ ion are 360 and 40 ohm⁻¹ cm²/equivalent respectively.Calculate dissociation constant of acetic acid.

Ans. 1.78 x 10⁻⁵

14. The specific conductance at 25° C of a saturated solution of SrSO₄ is 1.482×10^{-4} ohm⁻¹ cm⁻¹ while that of water used is 1.5×10^{-6} mho cm⁻¹. Determine at 25° C the solubility in gm per litre of SrSO₄ in water. Equivalent ionic conductance sof Sr²⁺ and SO₄² ions at infinite dilution are 59.46 and 79.8 respectively.

$$[Sr = 87.6, S = 32, O = 16]$$

Ans. 0.0967gm/L

- 15. The resistance of conductivity cell filled with 0.01M KCl was found to be 161.8 ohms at 25°C and when filled with 0.005 M NaOH was found to be 190 ohms. Specific conductance of 0.01M KCl at 25°C is 0.001408 ohm⁻¹ cm⁻¹. Find cell constant, specific conductance and equivalent conductance of sodium hydroxide solution.
 Ans. 0.2278cm⁻¹; 1.198 x 10⁻³ ohm⁻¹ cm⁻¹;
 - 239.6 ohm⁻¹cm²equiv⁻¹

16. Calculate the equivalent conductivity of Potash alum at infinite dilution Given: $\lambda_{equ.}^{\infty}(K^{+}) \rightarrow 50.1 \text{ W}^{-1}\text{cm}^{2}\text{equ}^{-1};$ $\lambda_{equ.}^{\infty}(Al^{3+}) \rightarrow 30.8 \text{ W}^{-1}\text{cm}^{2}\text{equ}^{-1};$ $\lambda_{equ.}^{\infty}(SO_{4}^{2-}) \rightarrow 43.2 \text{ W}^{-1}\text{cm}^{2}\text{equ}^{-1}$

Ans. 57.221 W⁻¹cm²equ⁻¹

- 17. In a fuel cell, $H_2 & O_2$ react to produce electricity. In the process, H_2 gas is oxidized at the anode & O_2 at the cathode . If 67.2 litre of H_2 at STP react in 15 minutes, what is the average current produced ? If the entire current is used for electrode deposition of Cu from Cu (II) solution, how many grams of Cu will be deposited? Anode : $H_2^{+2}OH^- \longrightarrow 2H_2O + 2$ e cathode : $O_2 + 2 H_2O + 4e^- \longrightarrow 4 OH^-$
- Ans. 643.33amp,190.5g
- 18. The conductivity of 0.001 M Na₂SO₄ solution is $2.6 \times 10^{-4} W^{-1} cm^{-1}$ and increases to $7.0 \times 10^{-4} W^{-1} cm^{-1}$ when the solution is saturated with CaSO₄. The molar conductivities of Na⁺ and Ca²⁺ are $50W^{-1} cm^2 mol^{-1}$ and $120W^{-1} cm^2$ mol⁻¹, respectively. Calculate (a) the conductivity of only CaSO₄ in the solution, (b) solubility of CaSO₄, and (c) solubility product of CaSO₄. The conductivity of water used is $0.50 \times 10^{-6} W^{-1} cm^{-1}$.
- Ans. (a) 279.5 W⁻¹ cm²mol⁻¹; (b)1.576 x 10⁻³mol dm⁻³;
 - (c) 4.056 x 10^{-6} M²
- 19. For a saturated solution of AgCl at 25°C, specific conductance is 3.41 x 10⁻⁶ ohm⁻¹ cm⁻¹ and that of water used for preparing the solution was 1.6 x 10⁻⁶ ohm⁻¹ cm⁻¹. What is the solubility product of AgCl? Given : Λ[∞]_{eqv} (AgCl) = 138.3 ohm⁻¹ cm⁻¹ equiv⁻¹.
- Ans. 1.72 x 10^{-10} M²
- **20.** The resistance of a solution 'A' is 50 ohms and that of solution 'B' is 100 ohms, both solutions being taken in the same conductivity cell. If equal volumes of solution A and B are mixed what will be the resistance of the mixture using the same cell. (Assume that there is no increase in the degree of dissociation of A and B on mixing.)

Ans. R = 66.67 ohms

- **21.** In a conductivity cell the two platinum electrodes, each of area 10 sq. cm. are fixed 1.5 cm apart. The cell contained 0.05 N solution of a salt. If the two electrodes are just half dipped into the solution which has a resistance of 50 ohms, find equivalent conductance of the salt solution.
- Ans. 120 mho cm² eq⁻¹

CHE		PP	LEARNAF INC.
22.	The equivalent conductance of 0.10 N solution of $MgCl_2$ is 97.1 mho cm ² eq ⁻¹ . A cell with electrodes that are 1.50 cm ² in surface are and 0.50 cm apart is filled with 0.1N MgCl ₂ solution. How much current will flow when the potential difference between the electrodes is 5 volts?	31. Ans	The resistance of an aqueous solution containing 0.624 g of $CuSO_4$. $5H_2O$ per 100 cm ³ of the solution in a conductance cell of cell constant 153.7 per meter is 520 ohms at 298 K. Calculate the molar conductivity. (CuSO ₄ . $5H_2O = 249.5$) 118.2 mho cm²mol⁻¹
	0.1456 amp At 18°C the mobilities of NH_4^+ and ClO_4^- ions are 6.6 × 10 ⁻⁴ and 5.7 × 10 ⁻⁴ cm ² volt ⁻¹ sec ⁻¹ at infinite dilution. Calculate equivalent conductance of ammonium chlorate solution.	32.	Given the equivalent conductance of sodium butyrate, sodium chloride and hydrogen chlo- ride as 83, 127 and 426 mho cm ² at 25°C respectively. Calculate the equivalent conduc- tance of butyric acid at infinite dilution.
Ans. 24.	118.67 mho cm² eq⁻¹ The equivalent conductance of an infinitely dilute solution NH_4Cl is 150 and the ionic conductances of OH^- and Cl^- ions are 198 and 76 respectively. What will be the equivalent conductance of the solution of NH_4OH at infinite dilution. If the equivalent conductance of a 0.01 N solution NH_4OH is 9.6, what will be its degree of discontant.	33.	382 mho cm ² eq ⁻¹ For 0.0128 N solution of acetic acid at 25°C, equivalent conductance of the solution is 1.4 mho cm ³ eq ⁻¹ and $I^{*} = 391$ mho cm ² eq ⁻¹ . Calculate dissociation constant (K _a) of acetic acid. 1.6 × 10 ⁻⁷ The specific conductance at 25°C of a saturated solution of SrSO ₄ is 1.482 × 10 ⁻⁴ ohm ⁻¹ cm ⁻¹ while
Ans. 25.	of dissociation? 272, 0.0353s Calculate the dissociation constant of water at 25°C from the following data. Specific conductance of $H_2O = 5.8 \times 10^{-8}$ mho cm ⁻¹ , $l_{H^+}^{\infty} = 350.0$ and $l_{OH^-}^{\infty} = 198.0$ mho cm ²		that of water used is 1.5×10^{-6} mho cm ⁻¹ Determine at 25°C the solubility in g per litre of SrSO ₄ in water. Molar ionic conductance of Sr ²⁺ and SO ₄ ²⁻ ions at infinite dilution are 59.46 and 79.8 ohm ⁻¹ cm ² mole ⁻¹ respectively. [Sr =
Ans. 26.	1.8×10⁻¹⁶mole/litre Calculate K _a of acetic acid if its 0.05 N solution has equivalent conductance of 7.36 mho cm ² at 25°C. ($I^{\infty}_{CH_{3}COOH}$ = 390.70)	Ans. 35.	87.6, S = 32, O = 16] 0.1934 g/L Specific conductance of pure water at 25°C is 0.58×10^{-7} mho cm ⁻¹ . Calculate ionic produc
Ans. 27.	1.76×10⁻⁵ mole/litre The sp. cond. of a saturated solution of AgCl at 25°C after substracting the sp. conductance of conductivity of water is 2.28×10^{-6} mhocm ⁻¹ . Find the solubility product of AgCl at 25°C. (l_{AgCl}° = 138.3 mho cm ²)	Ans.	of water (K_w) if ionic conductances of H ⁺ and OH ⁻ ions at infinite dilution are 350 and 198 mho cm ² respectively at 25°C. 1 × 10 ⁻¹⁴ (mole/litre) ²
Ans. 28.	2.70×10⁻¹⁰(mole/litre) ² The specific conductance of a N/10 KCl solution at 18°C is 1.12×10^{-2} mho cm ⁻¹ . The resistance of the solution contained in the cell is found to be 65 ohms. Calculate the cell constant.		
Ans. 29.	0.728 cm⁻¹ When a solution of conductance 1.342mho m ⁻¹ was placed in a conductivity cell with parallel electrodes, the resistance was found to be 170.5 ohm. The area of the electrodes is 1.86×10^{-4} sq.meter. Calculate the distance between the		
30.	two electrodes in meter. 4.25×10^{-2} metres The resistance of two electrolytes X and Y were found to be 45 and 100 respectively when equal volumes of both the solutions were taken in the same cell in two different experiments. If equal volumes of these solutions are mixed in the same cell, what will be the conductance of the mixture? 0.016 mho		

5

ANSWER KEYS

Chapter – Electrochemistry Topic – Electrical Conduction

DPP - 2

09

B

24

B

10

B

25

С

11

B

26

B

12

С

27

A

13

D

28

С

14

B

29

B

15

A

30

B

Q. 01 02 03 04 05 **06** 07 08 С С B B С B D Ans. Α 17 19 20 21 22 16 18 23 **Q**. С Α Α C A D D Ans. A 0. 31 32 33 34 35 36 С С B B Ans. Α A

Thank you for your love and support, we hope you are always being happy and get success in your life, we are happy to see you again.

Regards from Learnaf team

Click on very top right corner for download and other more options.