

DAILY PRACTICE PAPER

(DPP) - 3

ELECTROCHEMISTRY – For Electrolysis

Uni	t - Electrochemistry	Topic - El	ectro	lysis	By - Arnay Girvan
	Objective Prob	lems	08.	Calculate the vol. of gas NTP from electrolysis	s liberated at anode at of $CuSO_4$ solution by passed for 10 minutes
01.	The density of copper is 8.9- charge needed to plate an at to a thickness of 10^{-2} cm usin as electrolyte : (atomic weig (A) 2.7 × 10^{4} C (C) 18.3 × 10^{4} C	4 g mL ² . Find the rea of 10 × 10 cm ² g a CuSO ₄ solution ght of Cu = 63.6) (B) 8.8 × 10^4 C (D) 1.7 × 10^4 C	09.	 (A) 0.07 litre (C) 0.0696 litre The cost of electricity re of Mg is Rs 5.00. How deposite 30 gm of Al. 	(B) 0.14 litre (D) None of these equired to deposite 1 g much would it cost to
02.	Acidified water was electroly electrode. The volume of gas was 168 mL. The amount o through the acidified water	ysed using an inert ses liberated at STF of electricity passed was	10.	 (A) 10.00 Rs (C) 66.67 Rs When 9.65 coulombs of through a solution of silvent 	(B) 27.00 Rs (D) 200 Rs of electricity is passed ver nitrate (atomic mass
03.	(A) 96,500C (B) 9,650C (C) A current of 2.6 ampere w CuSO ₄ solution for 380 sec. deposited is (at. wt. of Cu	C) 965C (D) 168C as passed through The amount of Cu = 63.5)		of Ag = 108 g mol ⁻¹), deposited is (A) 16.2 mg (C) 10.8 mg	(B) 21.2 mg (D) 6.4 mg
	(A) 0.325g (B) 0.635g (C	l) 6.35g (D) 3.175g	, 11.	The quantity of electric 127.08 g of copper is	city needed to deposit
04.	Salts of A (atomic weight 7) 27) and C (atomic weight 48 under identical condition usin of electricity. It was found t	 B (atomic weight) were electrolysed of the same quantity that when 2.1 g of 	12.	(A) 1 Faraday(C) 4 FaradayThe charge required to	(B) 4 coulombs (D) 1 ampere deposit 9 g of Al from
	A was deposited, the weigh posited were 2.7 and 7.2 g. B and C respectively	its of B and C de- The valencies of A		Al ³⁺ solution is (At. w (A) 3216.3 C (C) 9650 C	t. of Al = 27) (B) 96500 C (D) 32163 C
	(A) 3, 1 and 2(C) 3, 1 and 3	(B) 1, 3 and 2 (D) 2, 3 and 2	13.	A smuggler could not ca	arry gold by depositing
05.	Passage of three faraday of aqueous solution of AgNO ₃ and NaCl respectively will de the ratio(molar)	of charge through , CuSO ₄ , Al(NO ₃) ₃ eposit the metals in	1	(A) Gold of denser(B) Iron rusts(C) Gold has higher reduced	ction potential than iron
	(A) $1 : 2 : 3 : 1$ (C) $6 : 3 : 0 : 0$	(B) $6:3:2:6$ (D) $3:2:1:0$		(D) Gold has lower reduc	ction potential than iron
06.	Lead storage battery contair	(2) 0 · 2 · 1 · 0	14.	Which of the following anode ?	reaction is possible at
	(A) Pb rods battery contain	s		(A) $2Cr^{3+} + 7H_2O$ ————————————————————————————————————	$r_2O_7^{2-} + 14H^+$
	(B) Electrolyte is H_2SO_4		e	(B) $F_2 \longrightarrow 2F^-$	
	(C) Pb plates coated with P (D) All the above	bO_2 act as cathode		(C) $\frac{1}{2}O_2 + 2H^+ \longrightarrow H^-$ (D) None of these	I ₂ O
07.	How many coulomb are req gm Mg on passing through n presence of Pt electrodes (A) 229166.67 (C) 32600 C	uired to deposit 28 nolten MgCl ₂ in the (B) 225166.67 (D) 325166.75	15.	The most convenient meth of ship made of iron is (A) Coating it with red le (B) White tin plating (C) Connecting it with M (D) Connecting it with P	nod to protect the botom ead oxide Ig block b block
1				-	

1

CHI	MISTRY	DPP	LEARNAF INC.					
16.	Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out	24.	A solution of sodium sulphate in electrolysed using platinum electro	water is odes. The				
	(A) in the presence of NaCl(B) in the presence of fluorite(C) in the presence of cryolite which forms a melt with lower melting temperature.	25.	products at cathode and anode are re (A) H_2 , O_2 (B) O_2 , (C) O_2 , Na (D) O_2 , The amount of electricity that can d	H ₂ SO ₂ eposit 108				
	(D) in the presence of cryolite which forms a melt with higher melting temperature.		g of silver from silver nitrate solution (A) 1 Ampere (B) 1 C	on is Coulomb				
17.	What is the amount of chlorine evolved when 2 amperes of current is passed for 30 minutes in an aqueous solution of NaCl?	26.	(C) 1 Faraday (D) 2 A A certain current liberated 0.504 g of in 2 hours. How many grams of co	Ampere hydrogen opper can				
	(A) 66 g (B) 1.32 g (C) 33 g (D) 99 g		same time in CuSO ₄ solution?	ing for the				
18.	When the sample of copper with zinc impurity is to be purified by electrolysis, the appropriate electrodes are		(A) 12.7 g (C) 31.8 g (B) 15.9 (D) 63.9	9 g 5 g				
	Cathode Anode	27.	A 5 A current is passed through a s	solution of				
	(A) Pure zinc Pure copper		of zinc deposited at the cathode	le allouit				
	(B) Impure sample Pure copper		(A) 40.65σ (B) 4.06	65 σ				
	(C) Impure zinc Impure sample		(C) 0.4065 g (D) 65.0	04 g				
	(D) Pure copper Impure sample	28.	The current in a given wire is 1.8	A. In 1.36				
19.	Faraday's laws of electrolysis are related to the		minutes the number of coulombs transferred in					
	(A) Atomic number of carbon(B) Atomic number of anion		(A) 136.44 C (B) 138	8.88 C				
	(C) Equivalent mass of the products		(C) 146.88 C (D) 150).66 C				
20.	(D) Speed of cations The electric charge for electrode deposition of	29.	1 A of current is passed to supply 7 change in	72000 C of				
	one gram equivalent of a substance is		(A) 10 h (B) 5 h	1				
	(A) One ampere per second		(C) 10 h (D) 20	h				
	(B) 96500 coulombs per second (C) One ampere for one hour	30.	The metal that does not displace hydrogen from an acid is					
	(D) Charge on one mole of electrons		(A) Al (B) Ca (C) Zn	(D) Hg				
21.	A galvanic cell is set up from a zinc bar weighing 50 g and 1.0 litre of 1.0 M, $CuSO_4$ solution.	31.	Zn gives H_2 gas with H_2SO_4 and HO with HNO_3 because	Cl but not				
	a steady current of 1.0 ampere :		(A) Zn acts as oxidising agent when reacts with HNO_3					
	(A) 46 nrs (b) 41 nrs (c) 21 nrs (b) 1 nrs		(B) HNO_3 is weaker acid then H_2SO_4 and HCl					
22.	The quantity of electricity needed to deposit 127.08 g of copper is		(C) in electrochemical series Zn is abo gen	ove hydro-				
	(A) 2 Faraday(B) 4 coulombs(C) 4 Faraday(D) 1 Ampere		(D) NO_3^- is reduced in preference to h ion	nydronium				
23.	In the standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by using iodometry, the equivalent weight of	32.	In the silver plating of copper, K[A] used instead of AgNo ₃ . The reason	g(CN) ₂] is				
	$K_2 Cr_2 O_7$ is (A) molecular weight / 2		(A) a thin layer of Ag is formed o(B) more voltage is required	on Cu				
	(B) molecular weight / 6		(C) Ag ⁺ ions are completely removed fro	om solution				
	(C) molecular weight / 3(D) same as molecular weight		(D) less availability of Ag^+ ions, as displace Ag from $[Ag(CN)_2]^-$ ion	Cu cannot				

2

CHE	EMISTRY	OPP	LEARNAF INC.
33.	In electrolysis of NaCl when Pt electrode is taken then H_2 is liberated at cathode while with Hg cathode it forms sodium amalgam because	42.	The electroplating technique was given by(A) Brugan(B) Edison(C) Thomas Graham(D) Faraday
	(A) $H\sigma$ is more inert than Pt	43.	In an aqueous solution hydrogen will not reduce
	(B) more voltage is required to reduce H⁺ at Hg than at Pt	44.	(A) Ag^+ (B) Cu^{2+} (C) Zn^{2+} (D) Fe^{3+} When a Zn strip is placed in CuSO ₄ solution,
	(C) Na is dissolved in Hg while it does not dissolve in Pt		dation potential of Zn is (A) < Cu (B) > Cu (C) < SO ₄ (D) > SO ₄
	(D) conc. of H ⁺ ions is larger when Pt electrode is taken	45.	The efficiency of a fuel cell is given by
34.	Through a solution of $CuSO_4$ a current of 3 amperes was passed for 2 hours. At cathode 3 g of Cu^{2+} ions were discharged. The current		(A) $\frac{\Delta H}{\Delta G}$ (B) $\frac{\Delta G}{\Delta S}$ (C) $\frac{\Delta G}{\Delta H}$ (D) $\frac{\Delta S}{\Delta G}$
	efficiency is [At wt. of $Cu = 63.5$]	46.	In an electrolytic cell, which of the following statement is not true?
	(A) 33% (B) 42.2% (C) 48.7% (D) 54.4%		(A) Cathode is negative terminal.
35.	For reducing 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} the charge		(B) Cathode is positive terminal.
	required is $(A) = 0$ (FOD C $(B) = 0$ (FOD C		(C) Reduction occures at cathode.
	$ \begin{array}{c} (A) & 3 & x & 96500 \\ (C) & 0 & 2 \\ $		(D) Electorns enter into cathode from the ex- ternal cell.
26	(C) 0.5 F $(D) 0.6 F$	47.	In lead storage battery, during discharging
50.	a fuel cell?		process
	(A) Cd(s) + 2Ni(OH) ₃ (s) \rightarrow CdO(s) + 22Ni(OH) ₂ (s) + H ₂ O(l)		(A) PbO_2 gets oxidised (B) H_2SO_4 is produced
	(B) $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s)$ + $2H_2O(l)$		(C) density of H_2SO_4 solution decreases (D) density of H_2SO_4 solution increases
	(C) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	48.	Which of the following statements is correct for
	(D) $2Fe(s) + O_2(g) \rightarrow 2Fe^{2+}(aq) + 2H_2O(l)$		(A) The electrolate is mode of a polymorratorial
37.	Time required to deposit 1 milimol of aluminium metal by the passage of 9.65 amperes through aqueous solution of aluminium ion is		(A) The electrolyte is made of a polymer material that permits the passage of electrons but not ions, and the battery is not rechargable. (B) The electrolyte is made of a polymer material
	(A) 30 s (B) 10 s (C) 30000 s (D) 10000 s		that permits the passage of ions but not elec-
38.	Electrolysis rule of Faraday's states that mass		trons, and the battery is rechargable.
	deposited on electrode is proportional to $(A) = M = \pi$		(C) The voltage of the battery can go up to 12 Volt.
	(A) M α I (C) M α Q^2 (D) M α I^2		(D) The anode is made of what is known as an insertion compound.
39.	The amount of chlorine evolved by passing 2	49.	Electrolysis of a solutoin of $MnSO_4$ in aqueous
	for 30 minutes is		sulphuric acid is a method for the preparation of MnO_2 as per reaction
	(A) 0.84 g (B) 1.32 g (C) 3.34 g (D) 5.47 g		$Mn^{2+}(aq.) + 2H_2O \longrightarrow MnO_2(s) + 2H^+(aq) + H_2(g)$
40.	By passing 0.50 ampere current in an aqueous solution 0.5 g of an element (eq. wt. = 96.5)		Passing a current of 27 A for 24 hours gives one kg of MnO_2 . What is the value of current
	is liberated. The time of passing current in sec- onds is		(A) 50% (B) 94.8% (C) 95.9% (D) 78.3%
	(A) 100 s (B) 500 s (C) 1000 s (D) 2000 s	50.	Calculate the quantity of electricity that would be required to reduce 12.3 g of nitrobenzene
41.	The metal that does not displace hydrogen from an acid is		to aniline. If current efficient is 50%. If the potential drops across the cell is 3.0 volts
	(A) Al (B) Ca (C) Zn (D) Hg		(C) 32100 C (D) 521900 C (D) 521900 C

51. During the elctrolysis of $AgNO_3$ (using Pt electrodes) concentration around cathode as well	Subjective Problems
as anode falls from 4 M to 3 M. What will happen if this happened with Ag electrodes: (A) Result will remain same	01. 0.2864 g of Cu was deposited on passage of a current of 0.5 ampere for 30 minutes through a solution of copper sulphate. What is the
(B) Concentration around cathode will fall from 4 M to 3 M but around anode will increases	electrochemical equivalent of copper? (1 F = 96500 coulomb;At. wt. of Cu = 63.5)
(C) Reverse of statement 'h'	Ans. 3.18 x 10^4 g/coulomb
(D) Concentration increases from 4 M to 5 M on both the electrodes	02. Calculate how much current is necessary to produce hydrogen gas at the rate of 1 cc per second under standard conditions.
52. A solution containing one mole per litre of each $(A, B, B, A, B, B, A, B, B,$	Ans. 8.62 amp
$Cu(NO_3)_2$; AgNO ₃ ; Hg ₂ (NO ₃) ₂ ; Mg(NO ₃) ₂ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts are: Ag ⁺ /Ag = +0.80 V, Hg ₂ ²⁺ /Hg = +0.79 V;	03. In an industrial electrolytic cell it is desired to produce 36 kg of magnesium metal per hour. Calculate the current required. (Mg = 24)
$Cu^{2+}/Ci = +0.34$ V and $Mg^{2+}/Mg = -2.37$ V.	Ans. 8.04 x 10^4 amp
With increasing voltage, the sequence of depo- sition of metals on the cathode will be : (A) Ag, Hg, Cu, Mg (B) Mg, Cu, Hg, Ag (C) Ag, Hg, Cu (D) Cu, Hg, Ag	04. In the electrolysis of an aqueous $SnCl_2$ solution, 4.48 litres of chlorine (in standard conditions) is liberated at the anode. Find the mass of tin deposited at the cathode. (Sn = 119; Cl = 35.5)
53. In corrosion of iron:	Ans. 23.80g
(A) an electrochemical (galvanic cell) is formed in which Fe acts as anode and cathode where O_2 is reduced (B) electrons flow from anode to cathode through	05. In the electrolysis of an aqueous solution of NaOH, 2.8 litres of oxygen was liberated at the anode at NTP. Calculate the volume of hydrogen gas at NTP liberated at the cathode?
the metal while ions flow through the water	Ans. 5.6 litres
 droplets (C) dissolved O₂ oxidizes Fe²⁺ to Fe³⁺ before it is deposited as rust (Fe₂O₃. H₂O) (D) all of the above takes place. 54 When the electric current is passed through a	06. 30 ml of 0.13 M of NiSO ₄ is electrolysed using a current of 360 milliamperes for 35.3 minutes. How much of the metal would have been plated out if current efficiency was only 60%? (At. wt. of Ni = 58.7)
cell having an electrolyte, the positive ions move	Ans. 0.1391 g
towards cathode and negative ions towards the anode. If the cathode is pulled out of the solution (A) the positive and negative ions will move towards anode(B) the positive ions will start moving towards the anode while negative ions will stop moving	07. Calculate the quantity of electricity that would be required to reduce 12.3 g of nitrobenzene to aniline, if the current efficiency for the process is 50%. If the potential drop across the cell is 3 volts, how much energy will be consumed?
(C) the negative ions will continue to move	Ans. 115800C, 347.40kJ
 towards anode while positive ions will stop moving (D) the positive and negative ions will start moving randomly 55 The position of some metals in the electrochemi- 	10. How long a current of 3 amp has to be passed through a solution of $AgNO_3$ to coat a metal surface of 80 cm ² with 0.005 mm thick layer? Density of Ag is 10.5 g/cm ³ ; At. wt. of Ag = 108.
cal series in decreasing electropositive character	Ans. 125 sec (appox)
 is given as Mg > Al > Zn > Cu > Ag. What will happen if a copper spoon is used to stir a solution of aluminium nitrate? (A) The spoon will get coated with aluminium (B) An alloy of aluminium and copper nitrate (C) The solution becomes blue (D) There is no reaction 	 11. A 100-watt, 110-volt incandescent lamp is connected in series with an electrolytic cell containing Cadmium sulphate solution. What weight of cadmium will be deposited by the current flowing for 10 hours?(At. wt. of Cd = 112.4) Ans. 19.060 g

DPP

CHEMISTRY

LEARNAF INC.

CHE	MISTRY I	OPP	LEARNAF INC.
09. Ans	After electrolysis of a sodium chloride (NaCl) solution with inert electrodes for a certain period of time, 600 ml of the solution was left which was found to be 1 N in sodium hydroxide. During the same time 31.75 g of Cu was deposited in a Cu voltmeter in series with the electrolytic cell. Calculate the percentage of theoretical yield of the sodium hydroxide obtained. (At. wt. of Cu = 63.5)	16.	During the discharge of a lead storage battery the density of sulphuric acid fell from 1.294 to 1.139 g.ml ⁻¹ . H ₂ SO ₄ of density 1.294 g mL ⁻¹ is 39% and that of density 1.39 g mL ⁻¹ is 20% by weight. The battery holds 3.5L of acid and the volume practically remains constant during the discharge. Calculate the number of ampere hours for which the battery must have been used. The discharging reactions are:
08.	Potassium chlorate is prepared by electrolysis of KCl in basic solution:		$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$ (cathode)
	$6OH^{-} + Cl^{-} \rightarrow ClO_3^{-} + 3H_2O + 6e^{-}$	Ans.	265 Amp. hr.
	If only 60% of the current is utilised in the reaction, what time will be required to produce 10 g of KClO ₃ using a current of 2 amp? (At. wt.: K = 39; Cl = 35.5; O =16)	18.	A current of 1.70 ampere is passed through 300 mL of 0.160 M solution of zinc suphate for 230 seconds with a current efficiency of 90 per cent. Find out the molarity of Zn^{2+} ions after the
Ans.	10.95 hours		solution to remain constant during electrolysis.
12.	A mixture of hydrogen and oxygen is evolved when a dilute solution of NaOH is electrolysed. How many moles of each gas would be liberated by a current which deposited 20.942 g of Ag?(At. wt. of Ag = 108)	Ans. 19.	0.154M Same quantity of electricity is being used to liberate iodine (at anode) and a metal x (at cathode). The mass of x liberated is 0.617 g and
Ans.	9.695 x 10 ⁻² moles of H ₂ ; 4.848 x 10 ⁻² moles of O ₂	C	the iodine liberated is completely reduced by 46.3 cc of 0.124 M sodium thiosulphate. Find
13.	A current of 3.7 amp is passed for 6 hours between inert electrodes in 0.5 litre of a 2M solution of $Ni(NO_3)_2$. What will be the molarity of the solution at the end of electrolysis?	Ans. 20.	the equivalent mass of metal x. Eq.wt = 107.468 Assume that impure copper contains only iron,
Ans.	1.172 M		silver and a gold as impurities. After passage of 140 A, for 482.5 sec, of the mass of the anode
14.	A current of 1.70 A is passed through 300 ml of 0.16 M solution of $ZnSO_4$ for 230 seconds with a current efficiency of 90%. Find out molarity of Zn^{2+} after the deposition of Zn. Assume the volume of the solution to remain constant during the electrolysis.	Ans.	decreased by 22.260 g and the cathode increased in mass by 22.011 g. Estimate the %ge of iron and %ge of copper originally present. Cu = 98.88%, Fe = 0.85%
Ans.	0.153 M		
17.	19 g of molten SnCl ₂ is electrolysed for some time using inert electrodes until 0.119 g of Sn is deposited at the cathode. No substance is lost during electrolysis. Find the ratio of the masses of $SnCl_2$: $SnCl_4$ after electrolysis.		
Ans.	71.34 : 1		
15.	For the electrolytic production of NaClO ₄ from NaClO ₃ as per reactions:		
	$CIO_3^{-} + H_2O \rightarrow CIO_4^{-} + 2H^+ + 2e^-$		
	(1) How many faraday of electricity would be required to produce 1 mole of $NaClO_4$?		
	(11) What volume of H_2 at STP would be liberated at the cathode in the time that it takes to form 12.25 g of NaClO ₄ ?		
Ans.	2 F, 2.24 litres		

ANSWER KEYS

Chapter – Electrochemistry Topic – Electrolysis

DPP - 3

Q.	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Ans.	Α	C	Α	B	С	D	В	D	D	C	C	B	C	Α	C
Q.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	C	B	D	C	D	С	C	B	Α	C	B	B	C	D	D
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	D	D	B	В	В	C	Α	B	B	C	D	D	C	B	C
Q.	46	47	48	49	50	51	52	53	54	55					
Ans.	B	С	В	В	B	B	С	D	D	D]				

Thank you for your love and support, we hope you are always being happy and get success in your life, we are happy to see you again.

Regards from Learnaf team

Click on very top right corner for download and other more options.