

DAILY PRACTICE PAPER (DPP) GASEOUS STATE - FOR REAL GASES

Arnav Girvan

CHEMISTRY FACULTY

Learnaf Educational Revolution

DAILY PRACTICE PAPER

Ur	nit - Gaseous State Topic - Rea	al Gase	es DPP - 1
	Objective Problems	07.	Compressibility constant of an ideal gas is :(A) 0(B) 1(C) 2(D) 3
01-05	The extent of deviation of real gases from ideal behavior, can be expressed in terms of compressibility factor (Z). Corrected ideal gas equation is written as : PV = nZRT	08.	For a hypothetical gas containing molecules as point masses and having non-zero intermolecular forces, which of the following is correct :
	Where symbols have their usual meaning. The reasons why real gases deviate from ideal behavior can be explained by kinetic theory of gases. For a real gas, compressibility factors (Z) have different values in different pressure zones, but its value is fixed at critical state.		(A) The gas will show positive deviation from ideal behavior. (B) The compressibility factor $\frac{PV}{nRT}$ >1. (C) The gas is more compressible than the ideal gas under equivalent conditions.
01.	Compressibility factor of a real gas at very high temperature and very low pressure, is : (A) < 1 (B) = 1		(D) The gas is difficult to be compressed compared to ideal gas.
	(C) > 1 (D) Slightly more than one	09.	Amongst the following statements, the correct one is :
02.	Compressibility factor (Z) for a real gas at moderately low pressure is given as :		(A) The gas can not be compressed below the critical temperature.
	(A) $\frac{PV}{RT}$ (B) $\left[1 + \frac{bP}{RT}\right]$ (C) $\left[1 - \frac{a}{RTV}\right]$ (D) None of these		(B) Below critical temperature thermal motion of the molecules is slow enough for the intermolecular forces to come into play leading to condensation of the gas.
03.	At critical state, compressibility factor (Z) is		(C) At critical temperature liquid and gaseous phase can be distinguished.
	equal to : (A) $\frac{3}{8}$ (B) $\frac{8}{2}$ (C) $\frac{4}{2}$ (D) $\frac{3}{4}$		(D) An ideal gas has a characteristic critical temperature.
04.	Identify the conditions of pressure and	10.	The Van der Waal's equation for 1 mol of a real gas may be rearranged to give :
	temperature at which a real gas shows maximum deviation from ideality : (A) 10 atm, 273 K (B) 5 atm, 273 K		$V_m^3 - \left(b + \frac{RT}{P}\right)V_m^2 - \frac{a}{P}V_m - \frac{ab}{P} = O$
05	(C) 10 atm, 373 K (D) 5 atm, 373 K		V _m being the molar volume of the gas, indicate the correct statement amongst the following :
05.	A real gas can be liquefied by :(A) First cooling it upto its critical temperature and then applying a minimum pressure over it.(B) First applying a definite pressure and then		 (A) At temperature greater than T_c, there are three values of V_m, one real and two imaginary. (B) At temperature T_c, the three real values of
	cooling it upto its critical temperature. (C) Decreasing the temperature only.		V_m are identical. (C) At temperature less than T_c there are three real values of V_m .
	(D) Increasing the pressure only.		(D) All are correct.
06.	The compressibility factor $z = \frac{PV}{nRT}$ of a gas above $T = \frac{a}{Rb}$ will be :	11.	A real gas most approaches the behaviour of an ideal gas at: (A) 1 atm and 273 K (B) 0.5 atm and 500 K
	(A) less than unity(B) greater than unity(C) equal to unity(D) none of these		(C) 15 atm and 200 K (D) 15 atm and 500 K

#Learnaf #Eduction #Success #Motivation #Fun #Stories & Many More, #All Available at Learnaf.com

CHI	EMISTRY			DPP	
12.	The compressibility fac	tor $Z = \frac{1}{2}$	$\frac{PV}{PT}$ for 1 mol	19.	Wl
	of a real gas is greater t of 1 atm and 273.15 K. the gas at STP will be	han unity The mol	at a pressure		Bei
	(A) less than 22.4 L (B) greater			(A)
13.	(C) equal to 22.4 L (E) The vander Waal's constant	,			(B)
	C are as follows : Gas $a(L^2 atm)$	mol ⁻²)	b(L mol ⁻¹)		
		024	0.027		(C)
		17	0.037		
		59	0.043		(D)
	Based upon the abov following statements is		which of the	20.	Po
	(i) The gas B has the high	est critica	l temperature.		beł
	(ii)The gas A has minim ideal behavior.	um depa	rture from the		(A)
	(iii)The gas C has larg	est molec	ular volume.		(B)
	(A) (i) (C) (ii) $a = 1$ (iii)	(B) (i) an $(D) \land H$	· · ·		C
	(C) (ii) and (iii)	(D) All	the three		
14.	Compressiblility factor Waals gas at 0°C and 10	0 atmosp	heric pressure	~	(C)
	is found to be 0.5, the v is:			\mathbb{Q}	(D)
		5) 1.4666 I 2) 0.1119		21.	Va
5.	A gas has non-zero val between the molecules h	ue of forc	e of attraction		gas
	be point masses. The va for the gas will be :	ın der Wa	al's equations		(A)
	(A) $PV = nRT + nbP$ (C) $PV = nRT$		(-nb) = nRT = $nRT - \frac{an^2}{V}$		(B)
6.	Van dar Waal's real gas		, v		(C)
	which condition? (A) High temperature, l	ow press	ure		(D)
	(B) Low temperature, h (C) High temperature, l	nigh press	sure	22.	Aı
	(D) Low temperature, le	ow pressi	ure		at
17.	van der Waals equatior is applicable for:	$\int \left[P + \frac{a}{V^2} \right]$	$\left[(V - b) = RT \right]$		(A) (B) (C)
		(B) non-i (D) none	deal gas of these		(D)
18.	If V is the volume of one			23.	The
10.	given conditions, the V		U		gase and

(A) 4 V (B) $\frac{4V}{N_0}$ (C) $\frac{N_0}{4V}$ (D) $4VN_0$

b is:

. Which equation shows correct form of Berthelot's equation?

(A)
$$\left(P + \frac{a}{T(V+C)^2}\right)(V-b) = RT$$

(B) $\left(P + \frac{a}{T(V-C)^2}\right)(V-b) = RT$
(C) $\left(P + \frac{a}{TV^2}\right)(V-b) = RT$
(D) $\left(V + \frac{a}{TV^2}\right)(V+b) = RT$

20. Positive deviation of real gases from ideal behavior takes place because of :

(A) molecular interactions and $\frac{PV}{nRT}$ >1 (B) molecular interactions and $\frac{PV}{nRT}$ <1

(C) finite size of molecules and $\frac{PV}{nRT} < 1$

- D) finite size of molecules and $\frac{PV}{nRT}$ >1
- 1. Van der Waals equation for one mol of CO_2 gas at low pressure will

(A)
$$P(V - b) = RT - \frac{a}{V^2}$$

(B) $P = \left(\frac{RT}{V - b} - \frac{a}{V^2}\right)$
(C) $P = \frac{RT}{(V - b)}$
(D) $\left(P + \frac{a}{V^2}\right)V = RT$

- **22.** A real gas is expected to be behave non-ideally at
 - (A) low temperature and low pressure
 - (B) low temperature and high pressure
 - (C) high temperature and low pressure
 - (D) high temperature and high pressure
- **23.** The value of van der Waals constant '*a*' for the gases O_2 , N_2 , CO_2 and CH_4 are 1.36, 1.39, 3.64 and 2.253 L² atm mol⁻², respectively. The gas which can be most easily liquefied is

#Learnaf #Eduction #Success #Motivation #Fun #Stories & Many More, #All Available at Learnaf.com

2

CHE	MISTRY	DPP	LEARNAF INC.
24.	For the non-zero volume of molecules having no forces of attraction, the variation of		At very high pressures the vander Waals equation reduces to:
	compressibility factor $z = \frac{PV}{RT}$ with pressure is given by the graph :	32.	(A) $pV = RT + pb$ (B*) $p = \frac{RT}{V - b}$ (C) $pV = \frac{aRT}{V^2}$ (D) $pV = RT - \frac{a}{V}$ Attractive forces and size effects in a gaseous system can be neglected at:
	(A) I (B) II $z = \frac{PV}{RT}$ (C) III (D) IV Pressure		 (A) Low temerature and high pressure (B) Low temperature (C) The critical point (D) Low pressure and high temperature
25.	Which of the following statements is/are correct?(A) All real gases are less compressible than ideal gas at high pressures(B) Hydrogen and helium are more compressible than ideal gas for all values of		A real gas obeying the vander waal's equation will closely resemble an ideal gas if: (A) The parameters of a and b are very small (B) a is large and b is small (C) a is small but b is large (D) Both a and b are large
	pressure. (C) Except H ₂ and He, the compressibility factor $z = \left(\frac{PV}{nRT}\right) < 1$ for all gases at low pressures. (D) The compressibility factor of real gases is independent of temperature.		The van der waals equation at low pressure may be written as: $(V)(P + a/V^2) = RT$ The compressibility factor would be (A) (1-a/RTV) (B) (1-RTV/a) (C) (1+a/RTV) (D) (1+RTV/a)
26.	The behaviour of real gas is generally depicted by plotting which of the following parameter vs pressure (A) critical volume (B) density (C) T_{ideal}/T_{real} (D) V_{real}/V_{ideal}		 Van der Waals equation (A) describes the behaviour of ideal gas (B) describes the behaviour of real gases (C) takes into account the effects of intermolecular forces (D) considers the attractions and repulsions
27.	Which of the following gas has highest value of a' ? (A) Ne (B) O ₂ (C) Cl ₂ (D) N ₂	36.	between molecules as negligible The vander waals constant for gases X, Y and
28.	In Vander Waals equation of state for a nor ideal gas, the term that accounts for intermolecular forces is : (A) (v - b) (B) RT (C) P , $\frac{a}{v^2}$ (D) (R T) ⁻¹	:	Z are as follows: Gas a b X 4.0 0.027 Y 12.0 0.030 Z 6.0 0.032
29.	The temperature at and above which real gases obey the ideal gas laws over wide range of pressure is: (A) Inversion temperature (B) Boyle temperature (C) Critical temperature (D) Reduced temperature	3	 (A) The highest critical temperature gas Y (B) The largest molecular volume gas Z (C) Most ideal behaviour at STP gas X (D) None of the above Consider the following statements: (a) Molecules of different gases have the same kinetic energy at a given temperature
30.	 Which of the following is/are the characteristic/s of a real gas? (a) The molecules attract each other (b) It shows deviations from the ideal gas law (c) It obeys the gas law at low temperature and high pressure (d) The mass of the molecules is negligible The correct answer is: (A) a, b (B) b, c (C) c, d (D) a, c 		 (b) The total kinetic energy for two moles of an ideal gas is equal to 3RT (c) The ratio of specific heat at constant pressure and the specific heat at constant volume for noble gases is 1.33 (d) The gas with a larger value of the ratio of critical temperature to critical pressure (T_c/P_c) will have larger value of excluded volume "b" of these statements:

CHE	MISTRY	OPP	LEARNAF INC.
20	 (A) a, b and c are correct (B) b, c and d are correct (C) a, c, and d are correct (D) a, b, and d are correct 	06.	The compression factor (compressibility factor) for one mole of a van der Waals gas at 0°C and 100 atmosphere pressure is found to be 0.5. Assuming that the volume of a gas molecule is negligible, calculate the van der waals
38.	The term that accounts for intermolecular force in van der Waals' equation for non ideal gas is : (A) RT (B) V – b	Ans. 07.	constant a. a = 1.254 atm litre ² mol ⁻² Calculate the molecular diameter of helium from its Vander Waals const. $b = 24$ mL mol ⁻¹ .
	(C) $\left(P + \frac{a}{V^2}\right)$ (D) [RT] ⁻¹	Ans.	267 pm
39.	Pressure of real gas is less than the pressure of ideal gas because :(A) No. of collisions increases(B) Difinite shape of molecule(C) K.E. of molecule increases	08.	Using vander Waals equation, calculate the con- stant 'a' when two moles of a gas confined in a four litre flask exerts a pressure of 11.0 atm at a temperature of 300 K. The value of 'b' for the gas is 0.05 L mol ⁻¹ .
	(D) Inter molecular forces	Ans.	6.46 L ² atm mol ⁻²
40.	At relatively high pressure, van der waals' equation reduces to	09. 10.	Is it possible to cool the gas below absolute zero? Why aerated water bottles ar kept under water during summer?
	(A) $PV = RT$ (B) $PV = RT + \frac{a}{V}$	11.	Why a liquid boils at lower temperature at the top of a mountain that at sea level?
	(C) $PV = RT + Pb$ (D) $PV = RT - \frac{a}{V^2}$	12.	Why are vegetables cooked with difficulty at the top of a mountain?
	Subjective Problems	13.	The tyre of an automobile is inflated to a slightly
01.	Vander Waals constant b of Ar is 3.22×10^{-5} m ³ mol ⁻¹ . Calculate molecular diameter of Ar.		lower pressure in summer than in winter. Explain?
02.	Using van der Waal's equation, calculate the constant, 'a' when two mole of a gas confined in a four litre flask exerts a pressure of 11.0 atmospheres at a temperature of 300 K. The value of 'b' is 0.05 lit.mol ⁻¹ .	14. 15.	"Liquefaction of H ₂ and He is very difficult." Explain the statement. Why real gases show ideal behaviour at low pressure?
03.	One way of writing the equation of state for real		Que. 01 02 03 04 05
			Ans. B C D A A
	gases is $PV = RT \left[1 + \frac{B}{V} + \dots \right]$ where B is a		Que. 06 07 08 09 10
	constant. Derive an approximate expression for		Ans. C B C B D
	B in terms of van der Waal's constants a and b.		Que. 11 12 13 14 15 Ans. B B D D D
04.	The compression factor (compressibility factor)		Ans. D D D D Que. 16 17 18 19 20
	for 1 mole of a van der Waal's gas at 0°C and 100 atmosphere pressure is found to be 0.5.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Assuming that the volume of gas molecule is		Que. 21 22 23 24 25
	negligible, calculate the van der Waal's constant		Ans. D B B B AC
05	a.		Que. 26 27 28 29 30
05.	Calculate the pressure exerted by one mole of CO, gas at 273 k, if the Vander Waals constant		Ans. D C C B A
	a = 3.592 dm ⁶ atm mol ⁻² . Assume that the		Que. 31 32 33 34 35
	volume occupied by CO_2 molecules is negligible.		Ans. A D A A BC
Ans.	$\mathbf{P} = \left(\frac{22.413}{v} - \frac{3.592}{v^2}\right) \mathbf{atm}$		Que. 36 37 38 39 40
	- (v v ²)		Ans. B D C D C

Regards from Learnaf team

Click on very top right corner for download and other more options.