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PREFACE

Ix this book the several conics are treated early and in
some detail, partly because of the value of a knowledge of
their more important properties, partly because of the advan-
tage, when presenting the analytic method to the student, of
applying it in the first instance in the systematic study of
a few interesting curves. In deference to usage, a chapter
on the circle is introduced immediately after that on the
straight line; but, if experience is to be trusted, it is better
in a first course to proceed from the straight line directly
to the parabola, so that, as early as possible, the student
may get the impression which comes from seeing a method
employed in the investigation of new material. The conics
and the curves considered in Chapter XI afford illustrations
of the study of locus problems by the method of coordinate
geometry ; and these illustrations are followed by a collection
of exercises on loci in Chapter XII. '

The part of the book devoted to solid geometry is more
extended than is customary in elementary text-books; but it
is desirable that the material here given should be easily
accessible to students.

A pamphlet containing portions of the book has been in use
at Princeton for three years. According to the experience thus
gained, it should be possible for the better students to cover
the text of the plane geometry, with the exception of Chapters
III, VII, VIII, in a first-year course of three hours a week
through half a year, and the remainder of the book in a second-
year course of the same length.

PrixceTon, N.J.,
July 2, 1909.
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COORDINATE GEOMETRY IN A PLANE

CHAPTER I

COORDINATES

1. Directed line segments. A line segment AB may be
generated by the motion of a point from A4 to B or from
B to A. In the first case the segment is called

AB,
in the second, BA.

AB and BA have the same length, but are said to have opposite
directions. To distinguish between them, it is customary to
give them opposite algebraic signs and to write

AB =— BA.

Two segments are said to be equal when they have the same
length and the same direction. The equal segments may be
on the same line or on parallel lines.

2. Addition of line segments. ILet 4B and CD denote seg-
ments of the same line or of parallel lines. Shift the position

c D c D c’ D’

[ — ¥ —_——

A B

of CD, without changing its direction, so as to make C coin-
cide with B, that is, into the position C'D', as indicated in the
B 1



2 COORDINATE GEOMETRY IN A PLANE

figure. The resulting segment AD' is called the sum of AB
and CD.
In particular, AB 4+ BA = 0.

* Again, if 4, B, C denote any three points of the same line,

AB + BC = AC,

whether B lies between 4 and C or not.

According as ABand CD have the same, or opposite directions,
the length of their sum, AD', will be the sum or the difference
of the lengths of AB and CD. '

3. Subtraction of line segments. If 4B and CD denote
segments of the same line or of parallel lines, AB— CD is
defined as AB + (— CD). Hence [§1]

AB— CD=A4B+ DC,
and AB— (— CD)y=A4B— DC= AB+ CD.
The associative and commutative laws [Alg.* §§ 33, 69, 177]
hold good for addition and subtraction as just defined. Hence,
so far as addition and subtraction are concerned, the general

rules of reckoning are the same for line segments as for numbers
represented by letters.

4. Numbers represented by line segments. The values of
a single real variable, say z, may be represented- as follows:

x' [¢] A Ay A X

a X, X3

Choose some fixed line #'v, and on this line a fixed point O,
as origin. Then, any value a of x being given, lay off the
segment 04 of length [a|t from O to the right when a is
positive, from O to the left when @ is negative. The value a
of & may be represented by this segment 04, or by any seg-
ment equal to O4; for, the sign of « is indicated by the

* References in this form are to Fine’s College Algebra, Ginn & Co., N.Y.
1 la] is a symbol for the numerical value of a [Alg. § 63].
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direction of 04, and its numerical value by the length of 0A4.
It is customary to express this relation between a and 04 by
writing a = OA.

If the segments which represent two numbers, ¥, and @, are 04,
and 0A,, respectively, the segment which represents their difference
Ty — @y, 18 A, 4,.

" For @y — 2y =04, — 04, = 4,0 + 04, = A, 4,.

This is true whatever the signs of x; and x, may be, and there-
fore whatever the relative positions of the points 4, and A4,.

5. Axes of coordinates. ILet 2 and w denote two variables.
As in the following figure, take two fixed lines a'z and y'y
intersecting at O, and take O as origin on both lines.

(1) Any given value @ of the single variable  will be repre-
sented by the segment O4 of 2'Ow, constructed as in the
previous section.

(2) Similarly, any given value b of the single variable y will
be represented by that segment OB of y'Oy whose length is [b],
and which lies above or below O according as b is positive or
negative. _

(3) Any given pair of values of the two variables, as = q,
y =0, will be represented by the point P which is determined

B P,

as follows: On &'Oz and y'Oy construct the points .4 and B as
in (1) and (2), and then through A and B take parallels to
y'Oy and «'Owm, respectively. The point P, in which these
parallels meet, is the point required. It is called the graph of
the value pair (x =a, y =b).
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The point P may also be found by first laying off the
segment OA, and then the segment AP parallel and equal
to OB.

If any point P be given, the value pair (x=a, y=2»>), of
which it is the graph, may be found by reversing the con-
struetion just described.

It is convenient to represent both the value pair (z = a, y = b)
and its graph P by the symbol (a, b), the value of x always
being written first.

It is customary to call the number @, or one of the equal
line segments OA4 or BP, the abscissa of -P; and b, or one of
the equal line segments OB or AP, the ordinate of P. The
abscissa and ordinate together are called the coordinates of P.*
Also, 2'Ox is called the x-axis or the axis of abscissas, and y'Oy,
the y-axis or the awxis of ordinates.

The axes, and the coordinates referred to them, are called
rectangular or oblique, according as the angle #Oy is a right
angle or an oblique angle. When the axes are rectangular, the
coordinates of a point may also be defined as its perpendicular
distances from the axes.

6. Observe that this method of representing pairs of
values of the two variables x, y by the points of a plane is
such that: When the axes of reference, 'Ox, y'Oy, and the
unit for measuring lengths have once been chosen, to each
pair of values of (x, y) there corresponds a single point P,
and to each point P there corresponds a single pair of values

of (=, y)-

7. Exercises. Definition of coordinates.

1. In a figure, indicate the position of the following points: (2, 5/4),
0, -2), (5, —2), (—4,2), (=5, - 1).
Construct the point (2, 5/4) by taking the length 2 on the positive

* These are called cartesian coordinates after Descartes (1569-1650), who
was the first to make a systematic use of them.
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x-axis and then the length 5/4 parallel to the positive y-axis; and similarly
for the other points. The following figure is thus obtained :

- v

-4,2)

c4aDp 25

o
/
x’ ~ A ,/ o X.
/
-1 /
d
5,-2)

If rectangular axes are chosen, the points may be plotted also by
measuring off lengths on squared paper as in the following figure :

I\ v [
(-4.2) leg

~

e 02
= (5,20
I | Il

2. In a figure, indicate the position of the following points: (2, —1),
0,0), (-8, —1), (—2,0), (3,2), (V5, —v2). Choose at random
any two numbers, positive or negative, for the coordinates, and plot
the point.

3. Plot on one figure (—2, 4), (-2, 3), (-2, 1), (=2, 0), (=2, —2),
(-2, — 3). If the abscissa of a point is —2 but its ordinate is not given,
what is known about the position of the point ?

4. What are the coordinates of the origin ?

5. What are the coordinates of the point halfway between the origin
and (3, —8) ?

6. Prove that if 4, B, C, D, E be any five points of the same straight
line, then AB+ BC 4+ CD +DE + EA = 0.

7. If the axes are rectangular, prove that the points (¢, b) and (a, —b)
are symmetric with respect to the x-axis; that (e, b) and (—a, b) are
symmetric with respect to the y-axis ; and that (¢, —b) and (—a, b) are
symmetric with respect to the origin.

8. A line joining two given points is bisected at the origin. If one of
the points is (2, —3), what is the other ?



CHAPTER II

THE STRAIGHT LINE

8. Graphs of equations.. An equation in the two variables
2 and y will ordinarily be satisfied by infinitely many pairs of,
real values of w and y. Every such pair is called a real solution
of the equation. Suppose axes of coordinates to be taken as
in §5. Then each real solution of the equation will have
its graph. The collection of all these graphs (which will
usually form a curve) is called the graph or locus of the given
equation.

9. Tle graph of every equation of the first degree in x, y is a
straight line.

For consider the four particular forms of this equation:
2=a,y =0, y=ma,y =mx+ b.

o s) /

©,b) Q

”

A/(a,0)
v’ '

First, The graph of @ = a is the line AP through the point
(a; 0) and parallel to the y-axis. For this line contains every
point whose abscissa is @, and such points only.

Second. The graph of y = b is the line B through the
point (0, b) and parallel to the a-axis. For this line contains

every point whose ordinate is b, and such points only.
6
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Third. The graph of y =mx is the line OR through the

' origin and the'point (1, m). TFor this line contains every point,

such as @, whose ordinate

EQ@ is m times its abscissa
OE, and such points only.

Fourth. The graph of
.y =ma + b is BT, that par-
allel to the graph of y = ma
which passes through the
point (0, b). TFor BT con-
tains every point, such as P, got by adding b to the ordinate
EQ (=mOE) of a point, ¢, of OR; and it contains such
points only.

Multiplying or dividing an equation by a constant (not 0)
does not affect its solutions [Alg. § 338] and therefore does
not affect its graph. And every equation of the first degree,
ax 4 by + ¢ =0, may be reduced to one of the four forms just
considered by dividing by the coefficient of 2 or y and trans-
posing certain terms. Hence the graph of every equation of
the first degree in.w, y is a straight line.

10. Since a straight line is determined by any two of its
points, the graph of an equation of the first degree may be
obtained by finding any two of its solutions and plotting them.

Example 1. Find the graph of 224+ 5y — 10 = 0.

When y = 0, then x = 5; again, when « = 0, then y = 2. Hence two
of the solutions are (5, 0) and
(0, 2). Plot the corresponding

(0,2

points 4 (5, 0) and B (0, 2). The B8 2y
line AB is the graph required. ‘7"‘7% 0
The two solutions 4 and B are . o ' A x

numerically the simplest to find, (5,0)
but any two solutions of the equa- ’
tion give two points of the line,
and thus determine it; for example, (5/2, 1) and (— 5, 4).

)
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Example 2. TFind the graph of 22 + 5y =0.

Two solutions of this equation
must be found. One solution is seen v
to be (0, 0), and a second solution is {

7 . ) 0,0) (5,0)
found by inspection to be (5, — 2). ?0 v x
Hence the line is that determined ' V4
by the origin O (0, 0) and the point D//
D (5, —2). Plot these points ; the (62>~

graph is the line OD.

11. Exercises. Find and draw the graph of each of the
following equations:

1. z=0. 7. y=—2 13. 3z +y=0.

2. y=0 8 2x—38=0. 14. 22 — 8y =0.

3. =2 9. 2x43=0. 15, z4+y+1=0.
4. y=38. 10. y =z. 16. 22—y —2=0.
5, x=—1. 11. 2y —32=0. 17. x+y—-1=0.,
6. x=—4. 12. 2y +3x=0. 18. 3x—2y+6=0.

12. Two equations of the first degree
ax+0y+ce=0 (1) and axz40y+c' =0 (2)
have the same graph zéhen, and only when, their corresponding
- coefficients are proportional, that is, when
a/a' =0/ =c/c

For the graph of (1) is the same as that of (2) when, and
only when, the infinitely many solutions of (1) are the same
as those of (2). DBut the solutions of (1) are the same as those
of (2) when, and only when, (1) may be derived from (2) by
multiplication by some constant, &, so that

ax+ by +c=k(a'v+4+b'y+c'),

or, a=kda', b=~kb, c=kc,
that is, aja' =b/b' =c/c.

Thus, the equations 4z +2y +10=0, 6x+ 83y 4 156 =0 have the
same graph, since 4/6 =2/3 =10/15.
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13. A pair of independent and consistent simultaneous
equations,
ax+by+c¢=0, (1) a'z+by+c =0, (2)
have one and but one solution in common. The graph of this
solution is the point of intersection of the lines which are the
graphs of the equations (1) and (2) themselves. For this point,
and this point only, is the graph of a solution of both equations.

Example. The solution of the pair of equations x +2y —6 =0 (1)
and x —2y +2=0 (2) is (2, 2). The graphs of (1) and (2), found by
the method of § 10, are the lines AB and 4'B’ in the figure. And, as is
indicated in the figure, these lines intersect at the point (2, 2).

It may be added that the equations (1) and (2) are both
independent and consistent unless a/a' =0/0'. If a/a' =b/b'
=c¢/¢, they are not independent [Alg. §377, 1], and, as is
proved in §12, their graphs coincide throughout. If a/«
=0b/b' = ¢/c', they are not consistent [Alg. § 377, 2]; they
have no finite solution in common, and their graphs are parallel
lines.

14. The graph of the single equation
(ax+ by + c)(a'v+d'y+c)=0
consists of the graphs of ax+ by +c¢=0 and a'z+ by +¢' =0
jointly. For, since a product of integral factors vanishes when
one of these factors vanishes and then only, the solutions of
any integral equation of the form C'. D =0 are the solutions of
the equations C =0 and D =0 jointly. [See Alg. §§ 341, 346.]

Thus, the graph of (x+2y—6)(x—2y +2) =0 is the pair of lines
AB, A'B’ in the last figure.
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15. Exercises. Graphs of one or more equations of the first
degree.

1. Find and draw the graphs of the following equations :

(1) 2¢—38y+4=0. 3)3y—2xz—4=0.

(2) 42— 6y +8=0. “4) v/3—y/24+2/3=0.

2. Find the graph of the solution of each of the following pairs of
equations:

1) 22—8y+ 4=0 and x+y+2=0.

(2) 22+56y—10=0 and 2x—5y =0.

3) 22+5y—10=0 and 3x4+5y=0.

3. Draw on one figure the graphs of the equations 2x 4+ 5y —10 =0
and 2x 4+ 5y = 0. Is there a finite solution of these equations ?

4. Find and draw the graphs of the following equations :

1 Ce—38y+4HE+y+2) =0

2) 2x+b5y—10)2xz—56y) =0.

B) Qe+56y—10)Bx+5y) =0.

‘What is the difference between this exercise and Ex. 2, where the graph
of a solution of a pair of equations is sought ?

5. Find and draw the graphs of the following equations :
1 x24+2—-12=0. (2) 222 —5xy —12y2=0.

6. Prove that the graph of ax? + 2 hay + by? = 0 is a pair of straight
lines (real or imaginary) through the origin.

7. What must be the values of a and b, if ax+8y+4=0 and
2x + ay + b = 0 are to represent the same straight line ?

16. Equations of straight lines. Given an equation of the
first degree ax + by + ¢ =0, find two of its solutions and plot
the points which are their graphs. As has already been seen,
the straight line determined by these two points will be the
graph of ax + by +¢=0.

Conversely, given any straight line, I, select two of its points
and find their coordinates. Let these be (¢, y') and (2", ").
There is one, and but one, equation ax 4 by + ¢ =0 (1) of which
', y' and 2", y' are solutions. For if (2, y") and (2", y") are
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to be solutions of (1), the equations axz'+by'+c¢=0 (2) and
ax' 4+ by" + ¢ =0 (3) are true. Subtract (2) from (1), and (3)
from (2); the results can be written a(x — 2"y =—b(@y —y") 4)
and a(@' —&")=—0(y'—y") (5). Divide (4) by (5); the re-
sult is (v —a')/(a' — ")y = (y —¥')/(y' —y") (6). This is the
equation of which / is the graph.

Example. Find the equation of which the line through the points (1, 4)
and (— 1, — 2) is the graph.

The equation can be found by substituting in (6) ; but it can also be
obtained as follows : Let ax+ by +¢=0 (1) represent the required equation.
Since (1, 4) and (— 1, —2) are to be solutions of (1), the equations
a+4b+¢=0 (2) and —a—2b+c¢=0 (3) must be true. Solving
the equations (2), (3) for @ and b in terms of ¢ gives a =8¢, b= —c.
Substituting these values of @ and b in (1) gives 3cx —cy+ ¢ =0, or
dividing by ¢, 3¢ — y + 1 =0, which is the equation required.

Hence, to every given straight line there corresponds an equation
of the first degree in x and y of which the line is the graph: that
is, an equation which is satisfied by the coordinates of each and
every point on the line and by the coordinates of mo other points:
or more briefly, an equation which is true for every point on the
line and false for every point off the line. It is called the equa-
tion of the line, but this phrase is a mere abbreviation for the
phrase: the equation corresponding to the line.

17. It follows from what has just been said that:

If a given equation of the first degree is true for two points
of a certain line, it is the equation of that line.

18. If the equation of a line ! is ax 4 by + ¢ = 0, it is some-
times convenient to use ! as a symbol for ax + by + ¢ and to
write the equation of the line as I = 0.

19. The equation of a line may be obtained in various forms
corresponding to the various pairs of conditions that may be
given to determine the line. The more important of these
forms will now be considered.
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20. Line through two given points. Required the equation
of the line determined by any two given points.

Let P'(2, y') and P" (2", y'") be the two given points which
determine the line ‘
P'P". The equa- v
tion of P'P" has
been derived by an
algebraic method
in the second
paragraph of § 16.
But it may also be
derived geometri-
cally, as follows:

Let P denote a representative point of P'P", that is, a point
which may lie anywhere on P'P"; and let =, y denote the
coordinates of P. Let the line through P' parallel to the
z-axis meet the line through P’ parallel to the y-axis at F, and
let the line through P’ parallel to the z-axis meet the line
through P parallel to the y-axis at G; let D, C, E be the feet
of the ordinates of P', P', P, respectively.

From the similarity of the triangles P'G'P and P"FP',

PG . P'F P'G QP
Gp_ wp ™ PR FP

But P'"G=0E—0OC=a—2a', GP=EP —CP' =y—1y,
P'F=0C— 0D=2a —a, FP'=CP'— DP" =y —y".

(x,9)

d therefore

z—a _ y—y
= "’ (1)

Hence 1 "o o
r—w Y-y

which is the equation required. For besides z, y it involves
only the known quantities 2/, 3/, 2, y'"'; it is true, as has just
been proved, for every point P on P'P"; and it may be proved
as follows to be false for every point not on P'P": Take any
such point R, and through R take ERP parallel to the y-axis,
and meeting the line P'P" at P. The left member of (1) will
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have the same value for R as for P, but the right member will
have a different value for B than for P. Therefore, since (1)
is true for P, it is false for R.

The derivation of the equation (1) of the line P'P" fails
when the line is parallel to either axis. But, if P'P" be
parallel to the z-axis, then y'=y", and the equation of P'P"
is y=y'. Similarly, if P'P" be parallel to the y-axis, its
equation is z = «'.

By applying the theorem of § 17, it may also be proved by
inspection-that (1) is the equation of the line P'P". For since
(1) is an equation of the first degree in =, y, its graph is a
straight line; and since (1) is satisfied by =2/, y =¥/, and by
z=2a'", y=y", this straight line passes through the points
P, y"), P" (", y'), and is therefore the line P'P".

By the same method it can be proved that the equation of
P'P'" may also be written in the determinant form:

z y 1
oy 1|=0. an
ml! y” 1

For (1') is an equation of the first degree in (x, y), as may
be seen by expanding the determinant, and it is satisfied by
z=2a',y=y',and by x = 2", y = 9", since a determinant vanishes
when two of its rows are equal [Alg. § 903].

It is sometimes more convenient to write the equation (1) in
the form -
y— 3/' = Z' : Z!r

(@ —a'). @
The equation of the line through the origin (0, 0) and the point (2/, y') is

Y= %: x. @y
The equations (1), (1'), and (1") are merely different forms
of one and the same equation.
The equations (1), (1), (1), and (1'") hold good whether the
axes are rectangular or oblique,.
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21. Exercises. Lines through two points. In all exercises
. reduce each equation to its simplest form.

1. Obtain the equation of the line determined by (1, 3) and (2, 1).
2. By (—1, 8) and (4, —2). 5. By (0, 0) and (—6, 1).

3. By (1, — 1) and (— 5, —2). 6. By (3, 2) and (3, 1).

4. By (4, 0) and (0, 1). 7. By (1, = 1) and (— 1, — 1),
8.

By any two points chosen at random.

9. Show by the theorem of §17 that (x—x")(y—y'") =(x—2)(y—y")
is the equation of the line determined by the points (2/, ') and (2'/, y'’).

22. Intercept form of the equation. Let a straight line cut
the - and y-axes at 4 and B respectively. The segment OA
is called the ¢ntercept on the
x-axis, or the a-intercept,
and may be represented in
length and direction by the
number a. Similarly, the
segment OB is called the
intercept on the y-axis, or
the y-intercept, and may be represented by 6. Evidently a line
is determined when its intercepts @ and b are given. Its equa-
tion may be found in terms of a and b as follows:

The coordinates of .4 and B are (a, 0) and (0, b) respectively.
Hence by § 20, (1) the equation of the line through 4 and B is

v—a_y—0 % 4 Y ¥ i¥_q 2
a—0 0—0 "4 A S @)
This form of the equation also is true for both rectangular
and oblique axes.
The general equation Ax 4+ By + C = O when reduced to the
intercept form becomes

r [
—ojat —c= " ®

Example 1. If the intercepts of a line are — 3 and 2 respectively, the
equation of the line is x/(—3) +y/2=1,0r 2 —3y + 6 =0.
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Example 2. The equation of a certain line is 6 x 42 y + 3 = 0, which
may be written in the form
x v 1.
—38/6 tz 3/2

Its intercepts, therefore, are — 1/2 and — 3/2, respectively.

23. Equation in terms of slope and y-intercept.

The following forms of the equation of a straight line hold
good for rectangular axes only.

Let ¢ denote the angle xAB which the line 4B makes
with the positive direction Ox on the z-axis, the angle being
measured in the positive sense from Ox to 4B, as indicated
in the figure. The tangent of ’
this angle ¢ is called the slope Cra)ot
of the line 4B, and is repre-
sented by m; so that m = tan ¢.
Evidently a line is determined

when its slope m and its y-inter- /y B P
cept b are given. Its equation - 5 ° c

in terms of m and b is found A Ol x
as follows: v’

Let P(x, y) be a representative point of AB. Take PC, the
perpendicular to Ox, and BD, the perpendicular to PC. Then
DP=BD tan DBP. But DP=CP—(CD=CP— OB=y—b,
BD=0C=w, and tan DBP=tan a4dP=tan ¢ =m. Hence
y — b=ma, or

Yy =mx + b, 3)

which is the equation required. [Compare § 9.]
When the line passes through the origin, b is 0 and (8) be-
comes
y = ma. 3"

The equation Az + By+ C =0 when reduced to the form
y=ma+b becomes y = (— A4/B)x+ (— C/B). Hence the
slope of the line represented by Ax+4 By+ C=01is —.4/B.
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Example 1. The y-intercept of a line is — 3/2, and it makes an angle
of 60° with Ox; find its equation.
Since tan 60° = V3, the equation is

y=V3x+(—3/2),0r2v3x—2y—3=0.

Example 2. The equation of a lineis6x — 2y —3 = 0; find its slope
and its y-intercept.

The equation may be reduced to the form y=3x + (—3/2); hence
its y-intercept is — 3/2, and its slope is 3.

/24. Parallel lines. Evidently lines which have the same
slope are parallel. Hence, the following theorems :

95. The lines ax -+ by+c=0 (1) and a'z+d'y+c'=0 (2)
are parallel, if a/a'=b/b'.

For the slopes of (1) and (2) are —a/b and — a'/b', and if
a/a' =b/b', then —a/b= —a'/b'. [Compare § 13.]

26. Ewvery line parallel to the line ax+ by +c=0 (1) has an
equation of the form ax+ by 4+ D=0 (2).

For if (2', y') be a point on a given line [ parallel to (1), and
D be given such a value that aa'+by'+ D=0, that is, if
D =— (ax' 4 by"), then (2) will represent a line through (2!, y')
and parallel to (1), that is, the line I

27. The equation of the line which passes through the boint
&', y") and which is parallel to the line cza,+bj+c—0 (1) is

a(e—a) +0(y—y)=0 (2).

For the line (2) has the same slope as the line (1), the co-
efficients of @ and y being the same in (2) as in (1), and this
line passes through the point (a', y') since (2) is satisfied by

w=a, y=y.

Example. Find the equation of the line through the point (3, 4) and
parallel to the line 22— 3y +5=0.

The required equation has the form 2x — 3y + D = 0; and since it is
satisfied by the coordinates of the given point (3, 4),2.3—-3.4+4+ D =0,
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or D =6. Hence the required equation is2x—3y +6 =0. This is the
method of § 26.

Or, using the method of § 27, it follows that the required equation is
2(x — 3) —3(y —4) =0, which reduces to2x -3y +6=0.

28. Equation of line in terms of slope and coordinates of a
point. The equation of a line through the point (2!, y') and
having the slope m is

y—y =mz—a) )
For, as in § 27, the equation (4) represents a line through

the point (x', ¥') and parallel to the line y = ma which has the
slope m.

Example. A line makes an angle of 30° with the positive z-axis and
passes through the point (V/3, 2) ; find its equation.

The slope m is tan 30° = 1/V/3, and therefore the required equation is
y—2=1/V3)(x—-V3),orx—V3y+Vv3=0. -

29. Perpendicular lines. If two lines y=mx +b and
y = m'z + b’ are perpendicular, the slope of the one is the negative
reciprocal of the slope of the other, that is, m = — 1/m'; and
conversely.

For m = tan ¢ and m'= tan ¢', where ¢ and ¢' denote the
angles made by the lines with the positive a-axis. Hence, if
the lines are perpendicular,
and if ¢' denotes the larger
of the two angles ¢ and ¢/,
¢'=¢ + /2, and therefore
¢ = ¢ —m/2=—(n/2 — ¢
Then it follows that tan ¢ =
—tan (r/2 — ¢')=—cot ¢' =
—1/tan' ¢ ;. or, m=—1/m'.

Conversely, if m = —1/m/, the lines are perpendicular. For
tan ¢=—1/tan ¢'= — cot ¢'= —tan (v/2—¢")= tan (¢p'— 7/2);
therefore, ¢ = ¢' — 7/2, or ¢' = ¢ + =/2; that is, the lines are
perpendicular.

(o}




18 COORDINATE GEOMETRY IN A PLANE

30. The two lines ax+ by +¢=0 (1) and a'z 4+ b'y 4 ¢' = 0 (2)
are perpendicular, if aa' + bb' =0

For, if aa’' 4 0b' =0, then —a/b=0b'/a', or — a/b, the slope
of (1), is the negative reciprocal of — a'/0', the slope of (2).

31. Every line perpendicular to the line ax 4+ by +c=0 (1)
has an equation of the form bx— ay+ D=0 (2).

For if (#', y') be a point on a given line ! perpendicular to (1),
and D be given such a value that ba' —ay' + D=0, or that
D =— (ba' —ay'), then (2) will represent a line through (', ")
and perpendicular to (1), that is, the line L

32. The equation of a line through the point (',y') and
perpendicular to the line ax+by+c=0 (1) may be written
b(w—a') — ay—y') =0 (2).

For (2) represents a line through the point (', ') and whose
slope, namely, b/a, is the negative reciprocal of the slope of
1), namely, — a/b.

Example 1. The lines 3x+2y=0 (1) and 2x—3y =0 (2) are

perpendicular, since the slope of (1) is — 8/2 and that of (2) is 2/3, and
=1
—8/2 2/)

Example 2. Find the equation of the line through the point N(2, 3)
and perpendicular to the line3x —2y =0.

The required equation has the form 2x 4+ 3y + D = 0; and since it is
to represent a line through N(2,3),2.24+3-34 D = 0 or D= —13.
Hence, the equation is 2 + 3y — 13 = 0. This is the method of § 31.

Or, by § 32, the required equation is 2(x —2) + 8(y — 8) = 0 which
reduces to 2z + 3y — 13 =0.

33. Exercises. Parallels and perpendiculars to a given line.

1. Find the equation of the line through (—3, 1) and parallel to
2x+y—1=0. .

2. Through (0, 0) and parallel tox — 2y + 83 =0.

3. Through (—1, 1) and parallel tox — 2y + 3 = 0.

4. Through (1, —1) and parallel tox —2y + 3 = 0.
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5. Find the equations of the lines perpendicular to x 42y 4+ 1 =0,
and through the points (1, — 1), (— 1, — 1), (1, 2), respectively.

6. Let 4 (1, 8), B(—2, —4), C(1, —2), be a triangle; find the
equations of the perpendiculars from the vertices to the opposite sides.

4

34. Perpendicular form of the equation of the line. Let [ be

a given line, let N be the point in which the perpendicular
to ! through the origin O meets [, let « be the positive angle
2ON which ON makes with the positive a-axis, let p be the
length of ON. Evidently the line ! is determined when p and
« are given. Its equation in terms of p and « is found as
follows:

Take the perpendicular from
N to the wx-axis, meeting it in D;
then OD (=pcos ) is the = of
the point N, and DN (= p sin «)
is the y of INV; that is, IV is the
point (p cos @, p sin a).

The equation of the line ON is y =tan « - [§ 23, (3")]; or,
since tan ¢ =sin «/cos «, its equation is « sin ¢ —y cos a =0.

Therefore, since I passes through N (p cos e, p sin «) and is
perpendicular to the line xsin @ —y cos « =0, its equation is

(8 32]

(x —p cos @) cos e+ (y — p sin ) sin e =0,
or @ cos ¢+ y sin « — p(cos® @ 4 sin’ &) = 0,
or zecose+ysine—p=0. ’)

‘When [ passes through the origin, the length of the perpendicular p is
0, the coordinates of N are (0, 0), and the equation of the line is

2 cos & + y sin & = 0. (6]

When 7 does not pass through the origin, p is positive and « may have
any value from 0 to 2 .

When I passes through the origin (so that p is 0); « is taken as the angle
less than = which the perpendicular to ¢ at O makes with the x-axis.
Hence in the equation (5'), the coefficient of y, namely sin «, is always
positive,

.
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Any given equation, Ax + By + C'=0, may be reduced to
the perpendicular form by the following method :

Since two equations of the first degree represent the same
straight line when, and only when, they differ by a constant
factor at most, [§ 12], the problem is to find three constants,
A, p, &, of which p is positive, such that

xcos e+ ysina—p=r(dx+ By + C).
But this will be a true identity, if the corresponding coefficients
in its two members be equal, that is, if
cos e =24, (1) sin ¢ =AB, (2) —p=xC. (3)
Since p is to be positive, (3) requires that A shall have the
opposite sign to that in C. Squaring (1) and (2), and adding,
- gives
N(A+ B) =cos’ e +sina=1, ..A=1/% VA*+ B
Substituting this value of A in 1), (2), (3), gives
B C

cosg=——> _ snoete=———, —

=) - rP=————,
+ VA + B + VAP B tV4+ B
where the sign before the radical is opposite to that in C.

The method applies when € is 0. But in this case, to have the result
in the form x cos & + y sin ¢ = 0, where sin « is positive, the radical
VA% 4+ B2 must be given the same sign as that in B.

Hence the following rule:

To reduce any equation Ax + By+C =0 to the perpendicular
form, divide by + V A*+ B, where the sign + is opposite to that
in C when C =0, but the same as that in B when C=0.

Example. Reduce 32— 4y —2 =0 to the perpendicular form.
In this case VA2 + B2 is 5, and since the absolute term of the original
equation is negative, the divisor is positive. Hence the equation is
3x—4y—2 2
_—5?/ =0, orgx—$y—3%=0.

Here, p =2/5, cos & = 3/5, and sin & =— 4/5.
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35. Recapitulation. It has been proved that the graph of
every equation of the first degree Az + By 4+ C'=0is a straight
~ line; and conversely, it has been proved that to every straight
line there corresponds a definite equation of the first degree,
Az + By + C =0, which is true for every point on the line and
false for every point off it, and which is therefore called the
equation of the line. Various pairs of conditions may be given
for determining the line; from such a pair of conditions the
equation of the line may be obtained either geometrically (as
in § 20) or algebraically (as in §16), the latter method depend-
ing on the fact that two geometrical conditions which can’ be
expressed by means of two homogeneous equations of the first
degree in 4, B, C give two of these letters in terms of the
third, and therefore determine the equation Az + By 4 C'=0.
The forms in which the equation of a line has been derived
are the following:

1 g;—m'__y—y'
* [ ] "

the two-point form.

' —a" Yy —y |
AT )
L=t =1 rcept form.
2 -t3 the intercept: form
3. y=max+Db the slope and y-intercept form.
4. y—y'=m(@@—a') the slope and one-point form.

5. weosa+ysine—p=0 the perpendicular form.

Obviously each of these five forms can be reduced to the form
Ax 4 By + C=0. Conversely, dx + By + C = 0 can be reduced
to each of these five forms.

36. Exercises. The equation of the straight line.

1. Draw the graphs of the folluwing equations:

1) 3z +2=0, 8) 8x+38y=>5, (5) x/2 + y/b =1,
(2) 22 +8y =0, @ y=2x+3, ©6) y—8=V3x + 1),
() (B/5)x— (4/5)y +2=0, - (10) (@2 —1) =0,

@) (+y—56)(x—2y) =0, (11) zy =0,

9 x2—4y2=0, (12) a?%y —zy =0.
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2. Given the following values of the constants, find in each case the
equation of the line and draw the graph:

MDm=2,b=—56; 2)a=-38,b=2; () p=5, «=30°
3. Which of the following points are on the line 32 4+2y—6=0:
1, 1), (4, —3), (3,0), (2, 0), (0, 2), (0, 3), (—2,6), (1, 1})?
4. What is the equation of the z-axis ?

5. Find the equations of the lines determined by the following pairs of
points, and determine the intercepts on the axes: (2, —3), (—38, —2);
(2,4), A, = 1); (a,0), (0,b); (2, = 1), (=1, —1).

6. Do the following lines meet in the point (1, — 1): 4 2+5y+1=0,
4x—18y=17, 1220+ Ty —5=0?

7. A straight line makes twice as great an intercept on the x-axis as
on the y-axis and passes through the point (— 2, 3) ; find its equation.

8. Find the equation of a straight line which passes through the in-
tersection of the lines = ¢ and y + b = 0, and through the origin.

9. Find the equation of the straight line which makes equal inter-
cepts on the axes and passes through the point (&, ¥1).

10. Given the line 5 + 12 y — 2 = 0; find the slope, the intercepts on
the axes, and the length of the perpendicular from the origin.

11. What are the equations of the diagonals of a rectangle whose
vertices are (0, 0), (@, 0), (0,d), and (e, b)? Find also the point of
intersection of the diagonals.

12. Find the equation of the line which passes through the point
(2, —3) and makes an angle of 60° with the z-axis. :

13. For each of the following lines find the slope, intercepts, perpen-
dicular from the origin, and the angle which the perpendicular makes
with the x-axis: 32 —4y—256=0, 24x—Ty+15=0.

14. Prove that the following four points lie on the same straight line:
3,2),0, —2),4,4), (—2, —8).

37. Lines through the point of intersection of two given
lines. ZLet ax+by+c=0 (1) and a'c +b'y+ c'=0 (2) be the
equations of two given lines, and A an arbitrary constant. Then

(ax+ by +c)+A(a'zs +d'y+c)=0 3)

will represent the system of lines through the point of intersection

of (1) and (2).
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For whatever the value of A may be, (3) represents a straight
line, since it is of the first degree in @, y; and this line will
pass through the point of intersection of (1) and (2), since for
this point both ax + by +c¢ and a'z 4 b'y 4 ¢’ are 0, and there-
fore (3) is satisfied.

And conversely, every given line, /, through the point of in-
tersection of (1) and (2) is included among the lines repre-
sented by (3). For if (¢, y') denote any second point of 7, the
constant, A, can be given such a value that (3) will be satisfied
by =2/, y=9'; and when an equation of the first degree is
true for two points of a line it is the equation of that line

[§ 17].

Example 1. TFind the equation of the line through the point of inter-
section of 22 —3y =0 and x + 5y —4 =0, and the point (1, 2).

Since the required line passes through the point of intersection of
2¢—3y=0 and x4+ 5y — 4 =0, it has an equation of the form

Qx—3y)+Nx+5b5y—4)=0.
And since it passes through (1, 2), this equation must be satisfied by
r=1, y=2.
Hence (2—3-2)+N1+45.2—-4)=0, or A=4/7.
Therefore the required equation is

(22—38y) + (/) (z+56y—4) =0, ’
or 18x—y—16=0.

Example 2. TFind the equation of the line through the point of

intersection of 22 —3y =0 and x+5y —4 =0, and perpendicular to
4x—y+3=0, '
The required equation has the form

Qx—3y)+Nx+by—4)=0.

But its slope, namely (2 + \)/(8 — 5\), must be the negative reciprocal
of the slope of 4 x — y + 3 = 0, and this slope is 4.

Hence (2 +A)/(8—56\) =—1/4, or A=11.

Therefore the required equation is -

QCx—3y)+11(x+5y—4) =0, or 132452y —44=0.
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Example 3. Prove that all lines which make intercepts on the z- and
y-axes the sum of whose reciprocals is a constant %, pass through a fixed
point.

The equation of every line of the system may be written

1
Zpio1=0 where(—l—{-%:k. )

From (2) we have 1/b =k — 1/a. Substituting this in (1), gives
xw/a+y(k—1/a) =1=0, or (ky—1) + (1/a)(x—y) =0. (3)

But whatever the value of 1/¢ may be, (3) represénts a line through the
point of intersection of Ay —1=0 and x — y=0; that is, through the
point (1/k, 1/k).

38. Exercises. Draw the graph in each case.

1. Find the equation of the line through the point of intersection of
2+4+y+1=0 and 2x—3y —2 =0, and the point (3, 2).

2. Through the point of intersection of 2x—3y —2=0 and
3x+2y—T7=0, and the point (3, 2).

3. Find the equation of the straight line which passes through the point
(1, —3) and is

(@) parallel to the line5x —2y 43 =0,

(b) perpendicular to the line 8% + y = 0.

4. Find the equation of the line through the intersection of the lines
20 —2y+b=0and 4z +y— 7=0, and through the point (2, — 5).

5. Find the equation of the line perpendicular to 8y +6x —3 =0,
which cuts the y-axis at a distance 8 from the origin.

6. Find the equation of the line through the intersection of the lines
5x +2y =8 and 3y — 42 = 35, which passes through the origin.

7. Find the equation of the line through the intersection of the lines
z—6y+4=0and2x+2y — 3 =0, and parallel to the y-axis.

8. . Find the equations of the three lines through the point of intersec-
tionof x —y +2=0and 4z + y — 2 =0, and perpendicular, respectively,
to the three lines: 2 +y =0, x —4y+1=0,22x4+5y —3=0.

9. Find the equations of the two lines through the point of intersection
of x+Ty—2=0and 2z — y +4 =0, and perpendicular, respectively, to
these two lines.
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39. Condition that three lines shall meet in a common
point. The point of intersection of the lines represented by
the equations ax+by+c¢=0 (1) and a'z+b'y4¢' =0 (2) is
the one point whose coordinates (a', y") satisfy both (1) and
(2). It may therefore be found by regarding (1) and (2) as
simultaneous, and solving for « and y [§ 13].

The lines represented by the equations ax + by +¢=0 (1),
az+by4+c¢=0(2), and a'z+b"y+¢"' =0 (3) will pass
through one common point when, and only when, the solution-
of two of the equations will satisfy the third, and, as is shown
in algebra [Alg. § 9227, this is true when, and only when, the
coefficients of (1), (2), and (3) are connected by the relation:

a b ¢
a b ¢ |=0, )
a" b” C”

Example. Prove that the lines 22 —y+5=0,2+4y—1=0, and
52+ 2y+ 9 =0meet in a common point.

In this case the determinant (4) is

2 -1 5
1 4 —1|=72454+10—-100+4+9+4=0.
5 2 9

It may also be inferred that the lines (1), (2), (3) meet in
one common point, if three constants %, 7, m, not all 0, can be
found such that

k(ax 4+ by +¢) + l(a'z + b'y + c')_ +ma"z4+ 0"y +¢")=0. (5)
This follows from § 37. It may also be proved thus:

Since, by hypothesis, (5) is an identity, its coefficients with
respect to  and y must be 0, that is:

ka+1la' +ma' =0, kb+10'+mb" =0, ke+ lc' +me' =0. (6)
But since, by hypothesis, k&, I, m are not all 0, and yet satisfy
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the three equations (6), the determinant of their coefficients in
these equations must vanish [Alg. § 9217, that is,

n

a a a
b b =0. )
c c' C”

But (7) is equivalent to (4) [Alg. § 8997, and, as has already
been proved, when (4) is satisfied, the lines (1), (2), (3) meet
in a common point.

Example. Show that the perpendiculars from the vertices of a triangle
to the opposite sides meet in a common point.

Let the vertices be (xy, ¥1), (%2, ¥2), (%3, ¥3). The equation of the
line joining (w2, y2) and (a3, ys) is

r—1xTy Y—1Y2 Y2 — Y3
Xy — &3 Y2 — Y3’ y_xz:iix-'-b‘

The equation of the perpendicular from (xy, ;) to this line is [§ 32]
X2 — X3
Y2—Ys
x(2x2 — x3) + y(Y2 — ¥Ys) — x1(%2 — x3) — Y1 (Y2 — y3) = 0. ¢h)

Hence, by symmetry, the equations of the other two perpendiculars are

y—yi=-— (@ — 1), or

w(@s — x1) +y(Ys — Y1) — T2(@— ) — (s —y) =0; (D)

(@1 — %2) + Yy (U1 — ¥2) — Ta(@1 — @) — Ys(y1—y2) = 0. ©)]
Adding the left members of the equations (1), (2), (3), which is taking
k=1=m=1in §39 (5), gives0-2 + 0.y + 0. Hence the lines repre-
sented by (1), (2), and (8) meet in one commnon point.

40. Exercises. Lines through a point.
1. Prove that the following lines meet in one common point :
2—2y+4=0,22+3y—3=0, bx+4y—-2=0.
2. Do the following lines meet in one common point :
3x+2y+8=0, «+8y+7=0, T2—32y—-3=0°?
3. Do the following lines meet in one common point :
5¢+8y+7=0, 4x+3y+56=0, 2x—Ty+1=0°?
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4. What is the condition that the lines, 2y +65x =@, 32 — Ty =8,
102 + 13 y = 21 shall meet in a point ?

5. For what values of @ do the following lines meet in a point :
2+2y+3=0, ax—y+4=0, 22+3y+a=0°?

6. ABC is a triangle, right-angled at C. On AC and CB, and exterior
to the triangle, are constructed the squares ACDE and CBFG. Prove
that AF, BE, and the perpendicular to 4B through €' meet in a common
point. [Take C4.and CB as axes, ]

41. Problem. To express the distance between two points
P, P' in terms of their coordinates (x, y), (&', y"), the awes being
rectangular.

Let the line through P' parallel to the xz-axis meet the line
through P perpendicular to the a-axis in the point G; and
let C and E be the feet of the ordinates of P' and P, respec-
tively.

In the right-angled triangle PGP, P'P*= P'Q* + GP-

But

PG@=0E—0C=2—a, ¥ Po o)
and , %416
&y

GP=EP— CP' =y—y'
Hence .
PP =(@—o)+@—y), 3
and therefore

|

PP=~(x— o)+ (y—y")>

42. The distance of a point P'(2/, y') from the origin O is
V4 y" .

43. The equation 2?4 y?=a? is true for every point P(z, )
on the circle whose center is at the origin and whose radius is
a, and false for every point not on this circle; it is therefore
called the eguation of this circle. [Compare § 16, last para-
graph.]



28 COORDINATE GEOMETRY IN A PLANE

44. Problem. 7o find the coordinates of the point which divides
in a given ratio k,:k, the line segment joining two given points
P,y and P"(", y'"), the axes being rectangular or oblique.

Let Py(w,, o) be the point which divides P'P'" in the ratio
ky: ks, so that, P'Py: PP =k, : k.

Let the line through P’ paral-
lel to the w-axis meet the line
through P, parallel to the
y-axis in @, and let the line
through P, parallel to
the z-axis meet the line
through P" paral-

- 1el to the y-axisin

H; let C, E,Dbe ©
the feet of the
‘ordinates of P', P, P'", respectively. Then

ky:ky,=PP,: P,P'=PQ: PH=CE:ED.
Hence &, - ED =k, - CEj; that is, k; (2" — ay) = &, (2 — 2').

(3(’: g”)') ot

: T 4 k!

Therefore, solving for #,, , = Jﬁ;“f 1
: Ty + k!

In like manner, Yo = _‘7]/:3:7‘2—”_ @)

* If P, be the mid-point of P'P", then k;=%k, and the formulas
(1) and (2) reduce to .

Xy =

! " ] n
{D—;w’ y0=——y_;'7/- (3)

Notice that, if the point P is interior to P'P", so that P'Pyand
P,P" have the same direction, k, and k, have the same sign;
but if the point P, be exterior to P'P", so that P'P, and I, P"
have opposite directions, &, and k, have opposite signs [§1].

In particular, if P, trisects P'P", k=2 k, or 2 k;=k,; if P,
is the point beyond P"” at which the line P'P" is doubled,
ky=—2k,; and so on.
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Example 1. "Tind the point where the segment from P'(7, 4) to
P!'(5, — 6) is divided in the ratio 2 : 3.
The coordinates of the required point are

2.5+3.7_31 2.(—6)+3.4
= —-——— — :0
=T s 5 Yo 2+3

Example 2. The segment from P/ (5, 2) to P'/(6, 4) is produced through
P to a point P, such that PyP' =2 P'P'; find the coordinates of Po.

Here k;i: ke =—2:3. Hence the coordinates of P, are
_g—2)-6+3-5_3 _(—2)-443.2
To = =3, = =—2.
0 —2+3 Yo — 2713

Example 8. Find the ratio in which the segment from (2, 5) to
(5, —1) is divided at the point (%o, ¥o), where it meets the line
22—3y—5=0.

The coordinates of the point of division can be expressed :
_5_7(71-*—2](‘,2 _-—-7(?]—‘-5172

T Tk ke T kit ke
But the point (%o, %,) is on the line 22 — 3y — 5 =0. Hence
9 5k1+2k2_3 —ki+5ks

s itk 0O
or 10k1+4k2+3k1—15k2—5k1—5k220,
or k1 =2 ko, that iS, ki1:ko=2:1.

The point (®o, yo) is (4, 1).

45. Projections. The foot A4, of the perpendicular on the
line 7 from the point 4 is called the projection on I of A, and
the following notation is used to indicate this relation :

prd =4, 1)
which is read “the projection on 7 of 4 is 4,.”

46. 1f A, be the projection on [ of A4, and B, that of B, then
AyB, is called the projection on I of AB, and the relation is
indicated by

c B
prAB = A,B, ) \ V/T/q ,
i

In this definition both AB and : !

. . | |
A,B, are directed line segments. [1___ Ac co B

.
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47. Let AB and OD be two directed lines; by the angle a
or (AB, CD) between these lines is meant the angle between
the positive directions of these lines or parallel lines.

48. Let Cx denote a line on which the positive direction is _from
C to @, and let AB be a segment of a line whose positive direction
makes with Cx the angle . Then the projection of AB on Cux
s equal to AB cos a.

Suppose that the positive direction on the line of which 4B
is a segment is from A to B;
then AB is a positive segment.

From A,, the projection on Cx |
of 4, take AFE equal and parallel ] B8
to AB. Then B, the projection ¢ !

on Cz of B, is also the projection < :rBo x
on Cz of E, and «, or (4B, Cx), is !
the angle EA4gx. E

Hence cos & = A¢By/A\E = 4B,/ AB,
and therefore * AyBy= ABcos a.

The theorem is therefore true for the positive segment AB.
And it is true for the negative segment B4. For AB =— BA

and A,By=— By4,, and therefore from the formula just
obtained it follows that B,4,= B4 cos «.

49. The sum of the projections of the segments of any broken
line MQ, QL, LP, on ON is equal to the projection on ON of

20
: / /P
Mo Lo 1Qu JI)ER_N

T
|

oo

M

MP, the line segment from the initial point to the terminal
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point of the broken line. For if M, Qy L, Py be the pro-
jections on ON of M, Q, L, P, respectively, it is at once obvious
[§ 2] that
MyPy= M@y + QoLo + Lo Py,
or from the definition [§ 46, (2)],
ProyMP =proyMQ + proyQL + proyLP. - (©)

50. Perpendicular distance from a line to a point. From
the origin O take ON perpendicular to the given line /, and
meeting it at N; and let the
positive direction on ON be
fixed as that from O to N
(from O upward, when I
passes through O). Let
ON=p and ZLaON=u«
(where « is less than = when
I passes through O).

Again, take P'L, the perpendicular to Oz, and P'M, the
perpendicular to I. Then OL=2', LP'=y', and MP is the
perpendicular from [ to P'.

Join OM. Then, by § 49,

ProxMP' = proyMO + proyOL + proyLP. @
But, by definition and by § 48,
proyMP = MP,
proyMO = NO=— ON=—p,
proyOL = OL cos (ON, Ox) = &' cos «,

proyLP' = LP' cos (ON, Oy)=y' cos C—; — a) =9'sin e

When these values are substituted in (1), it becomes
MP' =2a'cos ¢« + ' sin a« — p. @)
The « and.p in (2) are the same as the « and p in the

perpendicular form of the equation of the line [, namely,
zeosa+ysinae—p=0 [§34]. Hence the perpendicular



32 COORDINATE GEOMETRY IN A PLANE

distance MP', or &' cos e 4 y' sin & — p, is the left member of
that equation of the line with (2, y') substituted for (z, y).

If the equation of ! is ax 4+ by + ¢ =0, this equation
can be reduced to the perpendicular form by dividing by

- £Va*+ b [§ 34, last paragraph]. Hence

The perpendicular distance of the point P'(x', y') from the line

ax+by+c=01s ' + by + o

—— |
+Val+ b
where the sign before the radical is opposite that in ¢ when ¢ =+ 0,
but the same as that in b when ¢=0.

G

Observe that MP', and therefore o' cos e + y' sin & — p, is posi-
tive or negative according as MP' has the same direction as
ON or the opposite direction, that is, according as P' lies on
the side of 7 remote from or toward the origin (or when ! passes
through O, according as P' lies above [ or below it).

When P'is onl, MP', and therefore &' cos a4y’ sin e — p, is 0.
It has thus been demonstrated, independently of § 34, that the
equation xeosa+ysinae—p=0
is true for all points on the line ! determined by p and «, and
false for all points not on this line, in other words, that it is

the equation of I y

Example 1. Find the per-
pendicular distances of the (9
points (3, 1) and (2, 5) from
the line 22 +3y —12=0. To
which side of the line does
each of the points lie ? )

The equation of the line
when reduced to the perpen-
dicular form is I 6,0)

@2z+38y—12)/VI8=0
and the perpendiculars from this line to (0, 0), (3, 1), and (2, ) are

2.0483.0—12 2.3+3.1—12 2.243.5—12
p— b — bl j— y
V13 Vi3 V13
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or —12/V13, — 3/V13, and 7/V13, respectively. The perpendiculars
from the line to (0, 0) and (3, 1) are of the same sign, that is, the two
points are on the same side of the line. But (3, 1) and (2, 5) are on
opposite sides of the line.

Example 2. Find the equations of the bisectors of the angles included
between the lines ax 4+ by + ¢ =0 and o'z 4 b'y + ¢’ =0.

Any point P (x, y) on either bisector is equidistant from the given lines.
Hence the required equations are
ax+by+c__ax+bly+c and ar+by+c_ _ax+by+c
- —e T —— . ?
+ Vaz+ b2  +Va?+ b2 4+ Va4 b2 +Val? + b2

where the signs before the radicals are determined by the rule given
above, The first of these equations represents the bisector of the
angle which contains the origin, and the second equation, the other
bisector.

51. The sign of the perpendicular distance from a line 7 to
a point P', as expressed in § 50, corresponds to the conven-
tions there made that the positive direction on lines perpen-
dicular to ! is that from the origin to . But in the case
of a line x4+ a=0 parallel to the y-axis and at its left, this
convention would be in conflict with the convention that the
positive direction on all lines perpendicular to the y-axis, that
is, parallel to the z-axis, is from left to right. The conven-
tion of § 50 is therefore not extended to such lines.. For a
similar reason it is not extended to lines y + 0 =0 parallel to
and below the z-axis.

Hence equations of the form 4+ a=0 and y 4+ b =0, where
a and b are positive, are to be left unchanged (and not reduced
to the perpendicular forms — o —a =0, —y — b =0) when
considering the perpendicular distances of points from the
lines which they represent. The perpendicular distance of
P'(a', y") from the line z+a=0 is 2'4a, and according as
@' + a is positive or negative, P'(2', y') lies to the right or left
of the line &+ a=0. Similarly for equations of*the form
y+b=0.

D
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52. Problem. To express the area of a triangle in terms of
the coordinates of its vertices, the axes being rectangular.

The area of the triangle P,P,P; is one half the product of a
base P,P; by its corresponding altitude DP,.

The length of the base P,P; is

PPy = \/(-'Lz — 23)* + (Y2 — ¥a) @
and DP, is the perpendic-
ular from the line P,P; to
the point P(x, y,) and
may be found as follows:

By § 20, the equation
of PP, is
T—  Y—Ys o[ X
@y — X Yo— Y5’

which when cleared of fractions and simplified becomes

@(Ys — Ys) — Y(@ — @) + (ToYs — T5Yz) = O,

and by § 50, (3) the perpendicular distance of the point Py(xy, v,)
from the line represented by this equation is

DP,= 2(Ya — Y5) — (2, — @3) + (T3 — TgYy) @)
) V(@ — 9)* + (2 — @)*
Therefore the area of the triangle is one half the numerical

value of the product of the expressions (1) and (2); that is,
except perhaps for sign,

AP\P,P;= %(xlyz + ZoYs + XYy — XoY) — XYa — wl?/s)

@ oy 1
=3l® y 1. €)
@ oy, 1

53. The area of the triangle OP,P,, one of whose vertices is
at the origin, is the numerical value of L(x,y, — x,).
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54. Problem. 7o find the angle made by a line AB with a line
A'B', from the equations of AB and A'B', the axes being rectangular.

Let AB and A'B' be non-directed lines. Then the angle
made by AB with 4'B'
is defined as the positive
angle 6 through which
A'B'" must be turned to
bring it into coincidence
or parallelism with A4B.

If the equations of AB
and A'B' are y =mx + b
and y = m'z 4 b', this angle 0 can be found as follows:

In the case indicated in the figure here given,§=¢—¢'; and
in every case, either § = ¢ — ¢' or =7+ (¢ — ¢'); and there-
fore tan § =tan (p—¢'). Furthermore, tan ¢ =m, tan ¢' =m'.

' tan ¢ — tan &' !
Hence tan 6= tan (¢ —¢) = 1+ tjﬂ ] tan¢<i>' - 1m+ mj);z’ )

Therefore the angle 6 is given by the formula

m—m'

14+ mm' ) @

If the equations of AB and A'B' are given in the form
ar+by+c=0,a'x+b'y+ ¢ =0, then m = —a/b, m'=—a'/b/,
and therefore

tan 6 =

—a/b+d'/b' _a'b—ab', @)
1+ aa'/bV' aa' 4 bb'

As was seen in §§ 25, 30, the lines are parallel when
a'b —ab' =0, and they are perpendicular when aa' 4 bd' = 0.

tan 6 =

Example 1. TFind the angle made by 2y —x =0 with 3y +x 4+ 1 =0.
Here m = 1/2, and m/ = — 1/3. Substituting these values in (1),-. "

tan 6 = ]—————/2 +1/3
1-1/6

The same result can be obtained by substituting in (2),
a=—1,b=2,a =1, 0 =3.

=1, and therefore 6 = w/4.



36 COORDINATE GEOMETRY IN A PLANE

Example 2. Find the equation of the line through (2, 3) which makes
an angle of 136° (3 m/4) with42 —3y 4+ 5=0.

If m denote the slope of the required line, since tan (87 4) =—1,
. —4/3 s
formula (1) gives — 1 ="=2/2. 1 f =1/7.
Mg Trim/s or solving for m, m = 1/7

Hence the required equation is y —3 =(x — 2)/7, or 2 — Ty + 19 = 0.

55. Exercises. The straight line. Draw the graph in each
exercise.

1. What is the distance between the points (2, — 3) and (8, 3) ?
2. How far is the point (¢ — b, ¢ + b) from the origin ?
3. Find the areas of the triangles whose vertices are :
((l) (2’ 3)7 (4v - 1), (— 5, 2)';
®) 39, (0,0), (4, —3); .
() (3, 2), 4,4), (—2,—-38).
4. Find the area of the quadrilateral whose vertices are: (2, 3),
§4’ - 1), (=38, —2), (0, 2).
5. Find the lengths of the sides of a triangle whose vertices are
1, 3), (—2, —4), (1, — 2). Find also the lengths of the medians.
6. Prove that (4, 3) is the center of the circle circumscribing the
triangle with the angular points (9, 3), (4, —2), (8, 6)
7. Find the coordinates of the points of trisection of the line joining
3, —2) and (—2, —1).
8. The line joining (2, 1) and (— 3, —1) is produced through the
latter point so as to be 4 times its original length ; what are the coordi-
nates of the extremity ?

~ 9. A vertex of a given square of side b is joined to the mid-point of
one of the opposite sides ; if this line is produced through the second point
until the whole line is double its original length, how far is its extremity
from each of the vertices? How far is it from the center of the square ?

10. The line joining the points (1, }) and (2, —}) is divided in a
certain ratio by the point (}, 1); find the ratio.

11. The line joining the points (2, 1) and (— 3, — 1) meets the line
3y —9x=11. In what ratio does the point of intersection divide the
line joining the original points?

12. Find the distances of the point (2, —38) from the lines
2¢4+8y—56=0and 122 -5y +26 =0.
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13. Prove that (2, 3) is the center of a circle which touches the three
\ines42+8y—7=0,52+12y—20=0, 32 +4y—8=0.

14. Find the point of tangency of one of the lines in Ex. 13 with the
circle.

15. Are (2, —3) and (—4, —2) on the same side of the line
bx—8y+2=0°?

16. Find the distance between the lines

5x+4y—3=0and S5x+4y+2=0.

17. Find the equation of the line parallel to 4+ 3y + 12 =0, and
nearer the origin by a unit’s distance.

18. How far from the origin is the line which passes through the point
(2, — 8) and is parallel to the line3y 4+ 2 =07? )
19. Find the angles between the following pairs of lines :
. () 22—Ty+3=0and hz+ y+ 1=0,
%) 2¢—-3y+2=0and 52— y+ 2=0,
(¢) 83x+ y+9=0and 32+ y—10=0,
@ 7T7x—2y+1=0and 22+7y—13=0.

20. Find the equation of the line through the point (2, — 1) which
makes an angle of 60° with the line y =2 .

21. Prove that (2, 1), (0, 2), (8/7, — 2/7), (6/7, 23/7), are the ver-
tices of a parallelogram. IProve also that the diagonals bisect each other.

22. Prove that (2/5, 1/5), (0, 0), (— 1/5, 2/5), and (1/5, 3/5) are
the vertices of a rectangle.

23. Find the equation of the line through the point (@, 0) which
makes an angle of 45° with the line 6 x — 5 y = 30.

24. The sides, AB, BC, CA, of a triangle have the equations
24+8y—2=0, 22—3y+5=0, 22+5y =1, respectively; verify [by
using § 54] that the exterior angle at A is equal to the sum of interior
angles at B and C.

25. What is the equation of the line joining the origin to the mid-
point of the segment between the points (2, —3) and (4, —1)°?

26. Find the point of intersection of the lines joining the points
(2, 1) and (—3, —1), and (— 1, 2) and (2, — 2), respectively.
27. What angle do these lines (Ex. 26) make with each other ?

28. Find the points which are equidistant from the points (5, — 2)
and (6, 2), and at a distance of two units from the line 24 x + 7 y = 50,
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29. Find the center of the circle circumscribing the triangle whose
vertices are (1, 1), (8, — 1), and (— 1, — 5).
30. Find the center of the circle circumscribing the triangle whose
vertices are the points (0, 0), (4@, 0), (2a, —20b).
31. Find the area of the triangle contained by the three straight lines
Bx4+4y=12, 42+3y=12, xz4+y=3.
32. Find the points on the y-axis, whose perpendicular distances from
the line 3 x + 4 y = 6 are 3 units each.
33. Find the equation of the line which makes an angle of 225°. with the
positive direction of the x-axis, and which is at a distance 5 from the origin.
34. What relation must hold good among the coefficients of the equa-
tion ax + by + ¢ = 0 in order that
(1) it shall cut off an intercept — 2 on the y-axis ?
(2) it shall cut off an intercept 8 on the z-axis ?
(8) it shall cut off etjual intercepts on the axes ?
(4) it shall be perpendicular to 2x +3y =56°?
(5) it shall pass through the origin ?
(6) the perpendicular from the origin upon it may be 3 ?
(7) it shall pass through the point (2, — 3) ?
(8) the perpendicular distance of (2, — 1) from it may be 3 ?

35. Find the equation of the line through the point of intersection of
2248y—12=0and 83x —4y—1=0, and
(@) through the origin,
(b) perpendicular to the line4z —6y =0,
(¢) parallel to the x-axis,
(d@) at the distance 8 from the point (4, 5).

36. Prove that all lines represented by the equation 32 +Ay+5+2 =0,
where \ is an arbitrary constant, pass through a common point, and find
this point.

37. Does every equation of the first degree in 2 and y, which involves
an arbitrary constant X, denote a system of lines through a fixed point ?

38. Prove that all lines which make intercepts @ and b on the x- and
y-axes such that 1/a = 1/b + k, where k is a constant, pass through a fixed
point.

39. Find the equations of the bisectors of the angles made by the
following pairs of lines, drawing a figure in each case:

(@) 3x—y=0 and x—2y =0,
M) 2x+y=0 and y—3 =0,
(c) 6x+8y—41=0 and 122 -5y —30 =0,
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40. A line is taken through the origin perpendicularto83 x4y 42 =0;
find the equations of the lines bisecting the angles between the given line
and this perpendicular line.

41. Find the center of the inscribed circle of the triangle whose sides
are the lines: )

(@) y—22=0, 2y —x=0, x—4=0,
) 8x+4y+7=0,42+3y—21=0, 122 —5y +28=0.

42. ABC is a triangle in which C is a right angle and C4 = ¢ and
OB =0). S8quares are described on its three sides and exterior to the
triangle. Find the coordinates of the angular points of these squares
referred to CA and CB as ¢- and y-axes. Find also the equations of the
diagonals of the square on AB and the coordinates of the point of inter-
section of these diagonals.

43. Prove [by using § 44 (3)] that the line joining the mid-points of
two sides of a triangle is parallel to the third side and equal to one half
of it.

44. ABCD isa parallelogram and E and F are the mid-points of AD
and BC, respectively ; prove that B and DF trisect the diagonal AC.
Q‘ake AB and AD as axes.)

45. D is the mid-point of the side BC of the triangle ABC, and P is
anypoint on AD. Through P the straight lines BPE and CPF are taken,
meeting AC and AB at E and F, respectively. Prove that EF is parallel
to BC. (Take BC and AD as axes.)

46. Through any point Z on the diagonal AC of the parallelogram
ABCD the line FEG is taken parallel to AB and wmeeting AD at F and
BC at @; and the line HEK is taken parallel to AD and meeting
ABat Hand DC at K. Prove that the lines AC, HG, and FK meet in
a common point.

47. Prove that the perpendiculars from the vertices of a triangle to

the opposite sides meet in a common point, taking one of the sides and the

perpendicular to it as axes of reference.

48. Prove that in any triangle the perpendicular bisectors of the sides
meet in a point.

49. Prove that in any triangle the medians meet in a point. =

50. The points 0(0, 0), A(a, 0), B0, b), and C(h, k) are given
(referred to rectangular or oblique axes). Let O4 and BC produced
meet at D, and let OB and AC produced meet at E. Prove that the
mid-points of the line segments OC, AB, and DE lie in one and the same
straight line.
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51. The following lines and points are given: (@) 22—y +7=0,
) 24+3y—1=0, (¢) 22—3y+2=0, D ({1,-1), E (0,2),
F (-3, —2):

(1) Write the equation of the line FD. Of DE. Of EF.

(2) Find the distance EF. Find FD. Find DE.

(3) Write the equation of the line perpendicular to (¢) and through
D. Perpendicular to (b) and through F.

(4) Write the equation of the line parallel to (¢) and through D. Par-
allel to (b) and through E.

(5) Write the equation of the line through. the intersection of (@) and
(b), and through E. Through the intersection of (a) and () and
through F. :

(6) How far are D, E, and F from (b)? Are they on the same side
as the origin or on the opposite side ?

(7) Find the tangent of the angle between (@) and (b). Between (@)
and FD.

(8) -Trisect the line segment EF. Bisect FD.

52. By aid of § 44 (3), prove that, if the angular points of a triangle
are (%1, Y1), (%2, y2), and .(xs, y3), the point of intersection of the medians
is {(%1 + @2 + 23)/3, (y1+y2 +ys)/3}

53. Given the four points Pi(2x1, y1), Pa(22, ¥2), Ps(x3, ¥3), Ps(®s, Ys),
prove that the lines joining the midpoints of each of the pairs of lines
PP, P;Py; Py Ps, P,Py; P Ps, P;P3; meet in the one common point
{(er+ a2+ a3 +24)/4, W1+ Y2+ ys +ya)/4}

54. Prove that the equation (ax + by + ¢)2 — (a% 4 b2)d? = 0 repre-
sents two lines parallel to the line ax + by + ¢ =0 and at the distance d
to either side of it.

556. Find the center and radius of each of the four circles which touch
the three lines 4y — 32 =0, 5y—122 =0, and y — 6 =0.

56. Let m; and my denote the slopes of the two lines through the
origin represented by the equation ax? + 2 hay + by2=0. Prove that
my + mg = — 2 h/b, myme = a/b, and that, if § denote the angle between
the lines, tan 8 = 2VA2 — ab/(a + b).

57. Prove that the equation x2 — Axy - y2 = 0 represents, for every
given value of A, a pair of perpendicular lines through the origin.



CHAPTER III

THE CIRCLE *

56. Equation of the circle. The equation of the circle whose
center is C(a,, ¥,), and whose radius is 7, is .

(@ = m) + (y — yo)* =1~ @)

For since the left member of (1) represents the square of the

distance of the point P(w, ) from the point C (2, ¥,), this equa-

tion is true for every point on the circle and false for every
point not on the circle [§ 41].

When the center is at the origin, then x,=0 and y,=0,

and (1) becomes RS @)

When the circle touches the y-axis at the origin and is at
the right of this axis, then the coordinates of the center are
(r, 0), and (1) becomes (» — ) + y* = +% which reduces to

4+ 9y —2r=0. ®3)

Similarly, the equation of a circle which touches the x-axis
at the origin and lies above this axis is

4y’ —2ry=0. 4)

Thus, consider a circle whose radius is 3. If its center be the point

(— 1, 2), its equation is
(+1)2+(y—2)2=9, or a2+ 924+ 2x—4y—4=0.

If it touches the y-axis at the origin, its equation is
) 22+ 9y2—6x =0, or 224 9y24+6x =0,
according as it lies to the right or left of the y-axis.

*The chapter on the circle may be omitted until after the chapter on the
ellipse. By proceeding first to the chapters on the parabola and ellipse, the
student sooner realizes the power of the method of the coordinate geometry

through seeing it employed in investigating new material.
41
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57. Every equation of the second degree in z, y which lacks
the xy term, and in which the coefficients of 2% and »? are the
same, can be reduced to the form

P+ + 2984+ 2fy+c=0. an
Complete the square of the terms 2 4+ 2 ga by adding ¢? to
both members of (1'); similarly, complete the square of the

terms ¥ 4+ 2 fy by adding f? to both members; also transpose c.
The result may be written

@+’ +@+N)=¢+/"—c an

If (¢ + f? — ¢) is positive, the equation (1') is of the form (1)
of § 56, and therefore represents a circle whose center is the
point (— g, — f) and whose radius is V¢* + f* — c.

If (9 +f*—c¢) is 0, the locus of (1') is the single point
(—g, —f); it is sometimes called a point-circle.

If (¢* + f* — c) is negative, the locus is imaginary ; it is some-
times called an fmaginary circle.

Therefore, every equation which can be reduced to the form
(1", where ¢*+ f?— ¢ is positive, represents a circle. The
center of this circle is the point (— ¢, — f), and its radius is .
Vg +fi—ec

Example 1. Show that 322 +4+3y*+5x—6y +1=0 represents a
circle, and find its center and radius.

Dividing by the common coetficient of x2 and y2, and rearranging the
terms, @ (58 + I+E—2y+ }I=-—1/3

Completing the squares

@+3e+3)+ @ —2y+D=—%+5+1,
or C @+ -1D2=143,

which represents a circle whose center is (— 5/6, 1) and whose radius is 7/6.

Example 2. TFind the locus of 422 +4y2—42x+8y+7=0.
The equation is equivalent to
(22— +1/4) + (2 +2y+1)=1/441-17/4,
or (x=1/2)2+ (y+1)2=—-1/2,
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There is no real pair of values of «, y which will satisfy this equation ; the
locus has no real point ; the locus is imaginary.

Example 3. Find the locus of 4 2> +4y>— 4+ 8y + 65 =0.

This equation is equivalent to (x> — 2+ 1/4)+ (¥2+2y+1) =0.
The only real solution is ®=1/2, y=—1. The locus is the point
/2, —1).

58. Circles determined by three given conditions. Any three
given points not in the same straight line determine a circle.
Its equation may be found by substituting the coordinates of
each of the given points in the equation \

P4+ +292+2 fy+¢=0, @an

solving the three equations thus obtained for g, f, and ¢, and
substituting the resulting values in (1').

Example. Find the equation of the circle which passes through the
three points (0, 0), (1, 0), and (0, 1).
Substituting the coordinates (0, 0), (1, 0), (0, 1) in (1') gives the three
equations 6=0, 1+2g+c=0, 1+2f+c=0.
Hence c=0, 2g9g=—1, 2f=-1,
and the required equation is,
224+ yr—2x—y=0.

59. And, in general, since the equation (1") involves three
arbitrary constants, ¢, f, and ¢, if three conditions be given for
determining a circle, and if these conditions can be expressed by
three equations involving only g, f, ¢, and known quantities,
and if these equations can be solved for g, f, ¢, then the results
can be substituted in (1'), and the equation of the circle is
known. If more than one set of real values be thus found
for g, f; ¢, there is more than one circle. satisfying the given
conditions.

Example. TFind the equation of the circle which passes through the
two points (—1, 0), (2, 1), and whose center lies on the line y—22+3=0.
Substituting the coordinates (— 1, 0), (2, 1) in the general equation

(1') gives 1—2g+¢=0, 54+4g+2Ff+c=0.
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But since the center is to lieon y — 22 4+ 3 =0, and the coordinates of
the center are (— g, — 1),
' —f+2¢9+4+3=0.

Solving these three equations in f, ¢, and ¢ gives
g=—1,f=1, and c =—3.
Hence the required equation is
24+ y2-2x+2y—3=0.

60. Equation of the tangent to a circle. If the point .
P'(a', y'") is on the circle a* 4 y* — +* =0, the slope of the line -
joining P' to the center C'(0, 0) is y'/a’; therefore, since the
tangent to the circle at P’ is perpendicular to this line, its
equation is ‘

y—y' =—Z@—").
yl

By clearing of fractions and replacing /24y by #% this
equation can be reduced to the form

za' +yy' —1r2=0. €H)

And, in general, if the point P'(2, y') is on the circle
2+’ +2gx+2fy+c¢=0, the slope of the line joining P
to the center C(—g, —f) is (¥'+1)/(@' +g).

Hence the equation of the tangent at P' is

' g '
—y'=— J(z— 2
Y yr f( )
or clearing of fractions, expanding, and rearranging the terms,
z' +yy' + g + fy ="+ y* 4 go' 4 fy'.
If ga' + fy' 4 ¢ be added to both members, the right member
“becomes 2 4y 4+ 2 ga' + 2 fiy' + ¢, which is 0, since P'is on the
circle, and the equation itself therefore becomes
@'+ gy + g(w+ ) + (y+9) +c=0. @
Hence the equation of the tangent can be obtained from the
equation of the circle by replacing 2* and 3* by a2’ and yy', and
2z and 2y by v+ 2" and y + ¥
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Thus, for example, the point (— 8, 2) is on the circle 22 + y2 = 13, since
(— 3)2 4 22 =13, and, by (1), the equation of the tangent at this point is
—3x+2y—13=0,or3x —2y+13=0.

Again, the point (2, — 1) is on 24 32— 8x + 6y+ 17 =0, and, by
(2), the tangent at (2, — 1) is2x —y —4(x+2) +3(y—1) +17 =0, or
simplifying, x —y —3=0.

61. Length of the tangent from a point to a circle. Let
P'(', y') be any point outside the circle, '

(@—2)"+ (y — o)’ —1°=0. @
From P’ draw P'T, to touch the circle at 7, and join the
center C to T and to P y

Then since CTP' is a
right angle,
Pr*=PC*— CT>
But [§ 41]
P'O% = (' — o) + (4" — %)’
and . CT?*=1% _TO < x
Hence PT?= (' —a)?+ (Y —yp)* — 1% )
Therefore the square of the length of the tangent P'7T from

the point P'(z', y') to a circle whose equation is given in the
form (1), or in the equivalent form

@4y +292+2 fy+c=0, @
is the result obtained by substituting the coordinates of P' in
the left member of (1) or (1').

Example 1. TFind the square of the length of the tangent from the
point (2, 1) to the circle

822+ 8yt — 52 +2y—3=0.

c .~
(X0, ) X

Reducing the equation to the form (1'),
Py —3e+3y—1=0.
Hence the square of the length of the tangent from (2, 1) is
224+12—-3.24+%2-1—1, or4/3,
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Example 2. Prove that if P'(af, y') is within the circle whose
equation is (1) or (1/), and QP'R is any chord of the circle through P,
the result of substituting (x/, y') for (x, y) in the left member of (1)
or (1’) is negative and equal numerically to the area of the rectangle
P Q- PR.

62. Systems of circles through two points. Radical axis.
Radical center.

Let S=a+9"+292+2 fy+c¢=0, €5
and S=a+ PP +2g9w42fy 4+ =0, @)
represent two given circles, and A an arbitrary constant. Then

S+2A8"=0 . )

will represent the system of circles through the points of intersection
of the given circles S =0 and S'=0.

For, when like terms in = and y are collected, S +A1S8"'=0
becomes

A+N+A+0N)P+ 2@ +rg)
+2(f+ANy+(c+r)=0 (3"

which represents a circle for every value of X (except — 1),
since the ay term is lacking and the coefficients of 2* and y* are
the same [§ 57].

Every such circle (3) or (3') passes through the points of
intersection of the cireles (1) and (2), since for these points
both § and §' are 0 and therefore the equation S 418 =0 is
satisfied, whatever the value of A may be.

Moreover, every given circle through the points of inter-
section of 8S=0 and 8'=0 is included among the circles
represented by S+AS8'=0. For, if (2", y"') denote any
third point on such a circle, that is, any point distinet from
the points of intersection of §=0 and 8'=0, a value A’ can
be found for A such that S+ A'S'=0 is satisfied by (2", y""),
and S +\'S'=0 will then represent the given circle, since it
is satisfied by the coordinates of three points of this circle.
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Example. TFind the equation of the circle through the points of inter-
section of a2 + y2 = 5, x2 4+ y2 — x = 0, and the point (2, 3).

Substituting (2, 8) in 22+ y2 — b6+ N (2% + 32 —2) =0,
gives 84 N.-11=0, or A\ =—8/11,

Hence the required equation is

11 (224 y2—5) —8(x2+y?—x) =0, or 322 +3y248x—56=0.

63. When A= —1 the equation (3") of § 62 becomes

20—-9)e+2(/=y+(—ch=0 (4

which represents a straight line, since it is of the first degree.
This straight line passes through the points of intersection of
S =0and 8’ =0, since (4) is the expanded form of § — S'=0.
It is called the radical axis of the circles S =0 and S'=0.

The equation S — 8’ =0 may be written S =.S'. Hence, by
§ 61, the radical axis of two circles S=0, §'=0 may also be
defined as the locus of points, the tangents from which to the
circles § =0 and S' =0 are equal. This definition holds good
even when S =0 and S’ =0 do not intersect in real points.

64. Theradical axes of the three circles § =0,S5'=0, 8" =0,
taken in pairs, are S —§'=0,8'—8§"=0,8"—S=0. These
three lines meet in a common point called the radical center
of the three circles. This follows from § 39, since

(S—S')+(S’—S“)+<S”—S>EO-

Example. Find the radical axes of the following three circles taken
in pairs, also the radical center of these circles: 22? + 2y —3=0, (1)
224+ y?2—2x+4y=0, (2) and 224+ y2+3x+565y—1=0. (3)

The radical axis of (1) and (2) is

(249> —38/2) — (2 +9y2—2x+4y) =0,

or 2x—4y—3/2=0. (©))
Similarly the radical axes of (1), (3). and of (2), (3), are

Bz +b5y+1/2=0, ()

and : 5x +y—1=0, respectively. )

The radical center, since it is the point of intersection of any two of the
radical axes, say, (4) and (5), is (1/4, — 1/4), and the coordinates of this
point satisfy (6) as they should.
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65. Orthogonal Circles. Two circles are said to be orthogo-
nal, if they meet at right angles, that is, if their tangents at a
-point of intersection include a right angle.

To find the condition that two circles may be orthogonal.
Let the equations of the circles be

P+ +2g9242fiy+6=0, 1)
PP +2g0 +2 fy+c,=0, 2

and let C; and C, denote their centers, and P one of their points
of intersection.

Join CiC,, C\P, and C,P.
By hypothesis, the tangent to
(1) at P is perpendicular to
the tangent to (2) at P; but
the radius C,P is also perpen-
dicular to the tangent to (2)
at P; hence the tangent to
(1) at P coincides with C,P.
Similarly, the tangent to (2)

at P coincides with C}P. Hence the angle C\PC; is a right
angle, and therefore

C,02 = C, P2 4 C, P~ ®)

But since the coordinates of C,are (— g, — f;), and those of
C, are (— ¢y — f2), it follows from § 41 that

C.0¢ = (— g + ) +(— i+ 1)
and since C,P and C,P are the radiiof (1) and (2),
C\P’=g°+ i — ¢, and CoP?*= g, + fi — c,
Substituting these values in (3), gives
(i + )+ (—A+ L =90+ —atgl + 7 —o
or simplifying, 2 o+ 2 fifo = €1+ G 4

which is the condition required,
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Example. Find the equation of the circle which is orthogonal to all
three of the circles: 2+ y>—4=0, x?2+y2—2+2y—3=0, and
24y +4x—2y+1=0.

Let the required equation be 22 + 924+ 2gx + 2fy +c¢=0. The circle
represented by this equation ,will be orthogonal to the three given circles, if

—44+¢=0, —g+2f=c—3, 49g—2f=c+1
Solving these equations, ¢ =2, f=3.2, c=4, .
Hence the required equation is'z? + y* +42x+3y +4 =0,

66. Exercises. The circle.

1. Find the equation of the circle:

(1) whose center is (2, — 3) and whose radius is 5.

(2) whose center is (0, 1) and whose radius is V2.

(8) which touches the y-axis at the origin and is at its left and has the
radius 3.

(4) which touches the x-axis at the point (2, 0) and is above it and
has the radius 4.

2. Find the center and radius of the circle represented by each of the
following equations, drawing the graph in each case :

1) 2 4+y2—bx+4y=0. 3) 22 +y*+4x—-8y+11=0.

@) 22+y2—5y=0. 4) 222+2y2—52x+6y=0.

3. The points of intersection of two circles or of a straight line and
circle may be found by regarding their equations as simultaneous and
solving for , y. (Compare §13.) By this method find the points where
the line x —y+ 1 =0 cuts the circle 22 4+ y> —x — 3y =0, drawing a
figure.

4. Find the points at which the circle 22+ y2 —42 — 6y + 3 =0 cuts
each of the axes.

5. Prove that the circle 22 + y2 + 2 gx + 2 fy + ¢ = 0 meets the z-axis
in two coincident points, or touches it, if ¢ = ¢2, and that it touches the
y-axis, if ¢ = f2

6. Find the equation of the circle :

(1) through the three points (0, 0), (2, 1), (0, 3).

(2) through the three points (1, 1), (2, — 1), (3, 2).

7. Find the equation of the circle whose center is on the line
#—2y+1=0 and which passes through the two points (0, 0) and
(3, 4).

5
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8. Find the equation of the circle whose diameter is the line joining
the two points (— 2, 1) and (1, — 3).

9. Find the equation of the circle which touches the x-axis and passes

through the two points (1, 1) and (3, 1). »

10. Find the equation of the circle whosﬁi fenter is (3, 4) and which
touches the x-axis.

-

11. Find the length of the tangent from the point (1, 2) to the circle
3a2 +3y2—2x+ 5y + 2 =0; from the origin to the circle.

12. Of the circles through the points of intersection of the two given
circles 22+ y2—42+2y+3=0 and 22+ y2+6x—4y =0, find:

(1) that which passes through the point (1, 2).
(2) that whose center lies on the z-axis.
(3) that which is orthogonal to 22 + y2 — 2 + y = 0.

13. Find the radical axes of the following circles taken by pairs; also
their radical center: «?2+ y?—6x—1=0, 22+ y2—22x+ 6y =0, and
2224+ 2y2—-5=0.

14. Prove that the radical axis of any two circles is perpendicular to
the line joining their centers.

15. Find the equation of the circle through the points (0, 0), (1, 1)
and orthogonal to 22+ y2—42x+2y—3=0.

16. Find the equation of the circle which passes through the point _
(2, 0) and is orthogonal to the two circles: 22 + 32 —4x 4+ 2y — 3 =0,
and 22+ y2+22—~6y+ 6 =0.

17. Find the equation of the circle orthogonal to the three circles :
22+ y2=2,02+4+y2—42x+2y—-3=0, and a2+ y2+2x — 6y + 6 =0.

18. Prove that the center of any circle of the system S + \.S'=0 [§ 62]
is on the line joining the centers of the circles § =0 and 8 =0 and
divides it in the ratio A :1.

19. Find the equation of the circle circumscribing the triangle whose
sidesare £ =0, y =22, y +2x =8,

20. Find the équation of the circle inscribed to the triangle whose sides
are 3x+4y+8=0, 42 —3y+12=0, 42+3y—36=0.

21. Find the equation of the tangent to z2+4+y2=1 at (3,5, 4/5) ;
to 224+ y2+3x+5y+2=0at (1, —3); to2x24+2y2—4ax+5y=0
at (0, 0).



CHAPTER IV

THE PARABOLA

67. Loci. If but one condition is given as to the situation
of a point in the plane, so that it is free to occupy infinitely
many different positions, the collection of all these positions is
called the locus of the point.

To find such a locus by the methods of coordinate geometry,
fix the attention upon the point P in some representative posi-
tion, use (@, ) to denote its coordinates referred to conveniently
chosen axes, and then express the given condition in terms of x
and . The resulting equation in =, y is called the equation of
the locus. The graph of this equation will be the locus itself.

68. Thus, the equation of the locus of a point (z, y) at the
constant distance  from the fixed point (a, ) is

(@ —2) 4+ (y — y)* =%
which is therefore the equation of a circle whose center is the
point (wy, y,) and whose radius is » [§ 41].

69. Conies. Let a fixed point F and a fixed line ! be given,
and suppose a point P to move in the plane of F' and [ in such
a manner that its distance from F is in a constant ratio to its
distance from I. This moving point will trace out a curve
called a conic. The fixed point F is called the focus of this

conic, the fixed line ! is called the directriz, and the constant-

ratio is called the eccentricity.

It is customary to represent the eccentricity by e. This
constant e is positive, and may be equal to 1, less than 1, or
greater than 1.

If e =1, the conic is called a parabola.

If e < 1, the conic is called an ellipse.

If e > 1, the conic is called an kyperbola.

51
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70. The equation of the parabola. By definition, the parab-
ola is the locus of a point equidistant from the focus and the
directrix.

Let the point F be the focus, and the line SR the directrix.
Through F, take F'D perpendicular to SR at D. The point
V where FD is bisected, being equidistant from F and SR, is a
point of the parabola. It is called the vertex of the parabola.

Take the line VF as the z-axis and the parallel to SR
through 7V as the y-axis, thus making ¥V the origin. The equa-
tion of the parabola referred to these axes is to be found.

Represernt the length (and direction) of DV (=VF) by a.
Then the coordinates of F are (a, 0) and the equation of SR is
x4+ a=0.

Let P(z, y) denote any representative pomt of the palabola,
join PF, and take PM perpendicular to S

By hypothesis,

FP* = MP" 6H) Rl
Since FP is the distance of the /
point (w, y) from the point (a, 0), "
FP*=(z—a)’+3* [§41].

And since M P is the perpendic-
ular distance of the point (z, y) \
from the line SR, whose equation
is x + a =0, it follows from § 51, ¥ « |
that MP? = (x + a)’ s/

Substituting these expressions. - -9
for FP? and MP? in terms of

.0
S.
S

N

=]

N
N
O
N

jo}

o
<
/
RN
x

7
SRS
0
o
&

b

=0
-
-

x+a
,/
e

-

(w;a)2+y2= (x + a)? \

or, transposing (¢ — a)® and sim-

_ plifying,

¥ =4 ax, ' @)

which is the equation required. TFor it has been proved to be
true for every point P on the parabola; and it is false for
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every point off the parabola, since, if P is off the parabola, FP?
is mot equal to MP? therefore (x—a)*+4* is not equal to
(x+ @)% and therefore finally y* is not equal to 4 ax.

In the equation (2), a represents the distance and direction
from the vertex to the focus. When, as in the figure, the focus
lies to the right of the directrix; a is positive; but when the
focus lies to the left of the directrix, a is negative.

71. The shape of the parabola. The shape of the parabola
and its position relative to the axes may readily be inferred
from its equation.

From y* =4 aw, it follows that y = + 2V «a.

Hence, if a be positive, y is imaginary when « is negative,
has the value 0 (to be counted twice) when « is 0, and has two
real values equal
numerically but of (16a,8a)
opposite sign when
xis positive. There-
fore, the curve lies
wholly to the right
of the y-axis, which
it touches at the v
origin, and it is (0'0_)()—{71.0)
symmetric with re-
spect to the a-axis,
that is, to any point
A on the positive
x-axis there corre-
spond two points P (76a,-8a)
and P' on the parab-
ola, vertically above and below 4 and at equal distances from
it.. Furthermore since 2V aw increases indefinitely with , the
curve extends indefinitely to the right of the y-axis and indefi-
nitely above and below the a-axis. It may be said to consist
of a single ¢“infinite branch.” '

i

!

i A (76a,0) s
E(4a,0) (9a,0) {(x,0) x
I
i
1
1

e
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If a be negative, the curve extends in a similar manner from
the y-axis indefinitely to the left. '

A figure representing the parabola may be obtained as above
by plotting a number of the solutions of > =4 ax and drawing
a “smooth ” curve through the points thus found.

72. The line through the focus perpendicular to the direc-
trix, which has been taken as the z-axis, is called the awis of
the parabola. As has just been proved, it bisects all chords of
the parabola which are parallel to the directrix.

73. The chord LR through the focus and parallel to the
directrix is called the latus rectum. -Its length is 4 a, the co-
efficient of « in the equation y*=4 ax; for the abscissa of the
focus is @, and when x=a, then y = + 2 a.

74. Exercises. The equation of the parabola.

1. Find the coordinates of the focus and the equation of the directrix
for each of the parabolas:

1) =4z, @) y? =8z, @) y*=-8z, 4) =5z

2. Which of the following points are on the parabola y2 =82« : (0, 1),
(07 _2)1 (01 0)7 (27 4)7 (_21 4)1 (1/27 - 2)7_ (37 '_‘5) ?

3. The parabola y2 = — 8« is given. Find the ordinates of the points
on the curve whose abscissa is — 2; find the abscissa of the point on the
curve whose ordinate is — 2; find the points where the curve is met by
the linesz +2=0and y +2=0.

4. Find the points of intersection of 2 =5xandy =2z Of y2=0«
and3x—4y +6=0.

75. A more general form of the equation of the parabola.
In the equation y*=4 aw, = denotes the distance p, of any
point P of the parabola from the tangent at the vertex, and y
the distance p, of P from the axis of the parabola, and the
equation is equivalent to the statement that in any parabola
these distances p, and p, are connected with a, the distance from
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the vertex to the focus, by the relation p,*> = 4 ap,. This prop-
erty of the parabola is independent of the position of the curve
in the plane. Hence
the locus of a point
P, whose distances p,
and p, from any two
perpendicular lines
L,=0 and l,=0 are
connected by the re-
lation p =4 ap, is a
parabola equal to the
parabola y* = 4 ax and placed with respect to the lines [, =0,
l,=0 as the parabola y*=4 ax is placed with respect to the
lines =0, y =0.

Thus the distances of a point P(x, y) from the perpendicular
lines ¢ —a, =0,y —y,=0are v — @, y — 9, [§ 51]. Hence

@ —y) =4 a(@—a) @

represents a parabola having y — y, = 0 for axis, x — 2, = 0 for
tangent at the vertex, (wy, ) for vertex, and a for distance
from the vertex to the focus, and which lies to the right or left
of © — 2, = 0, according as a is positive or negative. See fig-
ures (1) and (2).

Yo
O] xo
E X
(4)
Similarl
Y (@ — 20 = 4 aly — ) @

represents a parabola having @ — 2, =0 for axis and y — g, =0
for tangent at vertex, and which lies above or below y — y, =0
according as a is positive or negative. See figures (3), (4).
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Every equation of the form ¥+ 2gx+ 2 fy 4+ ¢=0, where
g + 0, represents a parabola whose axis is parallel to the x-axis;
and the equation 2* 4 2 gx + 2 fy + ¢ = 0, where f == 0, represents
a parabola whose axis is parallel to the y-axis.

For, as will be seen from the following examples, the equations
PY+2g9x+2fy+¢=0, 2 +2gx+ 2 fy + ¢ =0 can be reduced
to the forms (y —y)’=4a@— ), (@— 2)’=4a(y—y,),
respectively.

Example 1. Find the axis, vertex, focus, and directrix of the parabola
¥2+4x+4y=0.

The equation may be written Y24+4y=—4ux

Completing the square Y+4y+4=—4x+4,
or (y+2)2=—4(x—1).

Hence y +2 = 0 is the axis, x — 1 = 0 is the tangent at the vertex, and
the point (1, —2) is the vertex. Since 4a¢ = —4, we have a=—1.

Hence the abscissa of the focus is 1 4 (— 1) or 0, its ordinate being — 2,
and the equation of the directrix is x—1+4+ (—1)=0 or x —2=0.
Since « is negative the parabola lies to the left of 2 — 1 =0.

Example 2. Write 822 —42 — 6y + 8 = 0 in the form (2).
The equation may be written 3(x?—42x ) =06y —8.
Completing the square, 3(x2 —4x+ %) =06y —8+3.4%,
or 3z — =6y — ),
or : (=32 =4 - ).
Hence @ = §, and the parabola extends upward. The axisisx — 3 =0,

the tangent at the vertex is y — '2'=0, the vertex is (%, 32) ; the focus is
(%, #3), and the directrix is y — 1} =0.

Example 3. TFind the equation of the parabola whose axis is parallel
to the y-axis and which passes through the points (0, 1), (1, 0), and
(2, 0). The required equation is of the form

2?+2g9c+2fy+¢c=0. @Y
Since it has the solution (0, 1),2f+c¢=0 (2). Similarly, since it has
the solutions (1, 0) and (2, 0),
1+2g+¢=0(3) and 44+4g+c=0 (4).
Solving (2), (3), (4) for ¢, f, ¢, gives2¢g=—3, 2f = —2, c=2. Substi-
tuting these values in (1) gives x2—8 x—2 y+2=0, the equation required.
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Example 4. The two perpendicular lines 72 — 6y + 84 =0 (1) and
6z 4+ 7Ty —42 =0 (2) being given, find the equation of the parabola of
latus rectum 4 which has (1) for axis and (2) for tangent at vertex, and
which lies to the origin side of (2).

Let P(x, y) denote any point on the parabola, and p;, p. the distances
of P from the tangent (2) and the axis (1), respectively ; then [§ 50],

p1:6m+7y—42 pq:7x—6y+84.
V85 i — V85

Therefore since p; is negative on the origin side of (2), the required
equation p;2 =4 ap; is
(Tx— 6y + 84)2 _ _4690471/—42.
85 85

Example 5. Find the. equation of the parabola whose focus is the
origin, and directrix the line 22 + y — 10 = 0.

The distances of any point P(z, y) of this parabola from the focus and
directrix are Va2 +y? and (2x+y—10)/V5; these distances, and
therefore their squares, are equal; hence the required equation is ’

I “.+g—1° 2 ora?—duy+ 472+ 402 + 20 y—100 = 0.

The student may verify the following facts regarding this parabola :
The axis is the line ¢ — 2y = 0; the point where the axis cuts the direc-
trix is (4, 2) ; the vertex is the point (2, 1) ; the distance from focus to
directrix is 10/v5; the latus rectum is 20/V5; the points where the
curve cuts the z-axis, found by setting y = 0 in its equation and solving
for z, are (—20 4+ V500, 0); the points where it cuts the y-axis are
{0, (— 5 + V125)/2} ‘

From these data the graph of the parabola is readily found.

76. Exercises. More general equation of the parabola.

Find the coordinates of the focus and vertex, and the equation of the
directrix of each of the following parabolas, drawing the graph in each case:

1. 22 —2x—4y+5=0. 3. ¥2—83x—-2y—5=0.

2. 224+ 2x+4y—3=0. 4 3y2—4x+12y=0.

5. Find the equation of the parabola whose latus rectum is 8 and

which has the line z + 2 =0 for axis and the line y — 3 = 0 for tangent at
the vertex, and which lies below the tangent.

6. Find the equation of the parabola whose axis is parallel to the
z-axis and which passes through the points (2, 0), (0, 1), and (3, 2).
Also find the vertex of this parabola.



58 COORDINATE GEOMETRY IN A PLANE

7. The perpendicular lines y —x =0 (1) and y + =0 (2) are the
axis and the tangent at the vertex of a parabola whose latus rectum is
- 4v/2, and which lies above the tangent (2); find the equation of the
parabola.

8. The latus rectum of a parabola is 10; its axisis 3z —4y +12=0;
the tangent at its vertex is 424+ 3y — 10 =0, and it lies to the origin
side of this line ; find its equation.

9. Find the equation of the parabola whose focus is the point (—1, 2)
and whose directrix is the line22 — 3y — 6 =0.

77. Definition of tangent. A line P'P" which meets a conic
in two distinet points P' and P" is called a secant. If the
point P be made to move along the curve into coincidence
with P/, the line P'P" will turn about P' toward a definite
limiting position P'T in which it is called the tangent to the
curve at P. Hence the tangent at
P' is said to meet the curve in two
coincident points at P'.

78. Equation of tangent in terms
* of slope. The coordinates of the T
points P'(2, y"), P"(2", y'") where

the line y = ma 4 ¢ (1) meets the P (x ")
parabola =4 ax (2) may be v
found by solving (1) and (2) for «, y.
[Compare § 13.] The abscissas of
these points are therefore the roots
', 2" of the equation

A (x} 0) A(x,'0)

(ma + ¢)? = 4 aw,
or

mia? +2(me— 2a)x+4 ¢ =0. (3)

Hence the line (1) will meet the parabola (2) in coincident
points (or touch it), if the roots ', 2" of (3) be equal. But
the roots of (3) will be equal, if the left member of (3) is a
perfect square, that is [Alg. §635], if (mc— 2 a)® =m’’ or
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—4amc+4a*=0, or mc=a, or c=a/m. Hence, whatever
the value of m may be, the line

a
= mx 4+ — 4
] + " 4)

will touch the parabola y* = 4 az.

When ¢ = a/m, the equation (3) gives z = a/m*, and this
set in the equation (4) gives y = 2 a/m. Hence the point of
contact of the tangent (4) with the parabola is (a/m? 2 a/m).

Example 1. Find the equation of the tangent to the parabola 2 =—6x
which is parallel to the line 3x — y = 0; also the point of contact.

Here m =3 and @ = — 6/4 = — 3/2. Hence the required equation is
y=8x—1/2,or6x—2y—1=0. The point of contact is (—1/6, —1).

Example 2. TFind the equations of the tangents'from the point (2, 3)
to the parabola y2=4 .

The equation of every tangent to this parabola is of the form

y=mx +1/m, orm?x —my + 1=0. (1)

But since the required tangents pass through the point (2, 3), m must
have such a value that this equation is satisfied when x =2, y = 3; that
is, m must satisfy the equation 2 m®>— 8 m + 1 = 0, which gives m = 1 or .
Therefore the required tangents are

y=xz+1 and y=2/2+2.

Example 3. Find the tangent to the parabola 2 + 4 2 — 3 y =0 which
is parallel to the line y = 2 .

As the equation of the parabola is not given in the form y2 =4 ax,
the tangent cannot be found by substitution in (4). It may be found as
follows: Xvery line parallel to the line y =22 has an equation of the
form y =2« + A\. The abscissas of the points where the line y =22z 4 A
meets the parabola 22 + 4 x — 3 y = 0 are the roots of the equation

22+ 4x—82ax+N) =0, or 22—2x —3rA=0.
These roots are equal when 14+ 3X =0, or A= — 1/3. Hence, the re-
quired tangent isy = 22 — 1/3.

Example 4. Prove that the slope equation of the tangent to the parab-
ola (y —yo)2=4a(x —x) is y—yo=m(x — ) + a/m.

This follows by replacing « and y by (x— ;) and (y —y,) in the
algebraic reckoning of §78.

Example 5. Find the tangent to the parabola y2 4 6 y — 7z = 0 which
is perpendicular to the line x — 2y = 0.
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79 A* Equation of tangent in terms of coordinates of point
of contact. First method of derivation. The equation of the
line through any two points (2, y') and (2", y") is

] . "
T W

But if the points (2, ") and (2", ") be on the parabola
¥’ =4 aw, then y?=4a2' (2) and y"?=4a". (3)

Subtracting (3) from (2) gives y* — y'"* =4 a2’ —2'"). (4)

Multiplying (1) by (4), (s — 1) + y") = 4a@@—a). (5)

Hence, when the points (2', y') and («", y'") are on the parab-
ola, the equation (1) of the line joining them can be reduced to
the form (5); in other words, (5) is the equation of the secant
through the two points (2, ') and (2", y"") on the parabola.

If the point (2", y'") be made to move along the curve into
coincidence with the point (2, y'), the secant through (2, y')
and (¢, y") becomes, at the limit, the tangent at (a', y"),
and the equation (5) becomes 2y'(y —y') =4 alx — 2'), or
yy' —y'?=2 ax —2 az', or, since y"? = 4 ax/,

W =2a(@+ ). ©)
Hence (6) is the equation of the tangentat (2, y").

79 B. Equation of tangent in terms of coordinates of point
of contact. Second method of derivation. Let (2', y") and
("', y'") denote two points on the parabola y* — 4 ax = 0 (1), so
that y?—4ax'=0 (2), and y'"*—4ax" =0 (3), and consider
the equation

G-y —y")=y—4ax @)
This is an equation of the first degree, for on being simplified
ibbecomes y(yr 4yt —daw — yy" =0. ®)

Moreover, it is satisfied by z=2', y=9' and z=2a", y=y".
For if (@, 9') be substituted for (z, y) in (4), the left member
becomes (y' —y")(y' — y"), which is 0 identically, and the right
member becomes y'? — 4 ax', which is 0 because (2, y') is on the

* Only one of the Sections 79 A, 79 B, 79 C need be taken.
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parabola. And in the same way it can be shown that (4) is
satisfied by @ =2", y=y". Hence (4), or its equivalent (5),
is the equation of the secant through (2', ") and (2", y") [§17].
If the point (2", y'") be made to move along the curve into
coincidence with (', y'), the secant will become the tangent at
(«', y") and the equation (5) will become 2 yy' —4 ax —y”=0,
or, since y"” = 4 aw',
yy' =2 a(e+a"). 6)
Hence (6) is the equation of the tangent at (2, y").

79 C. Equation of tangent in terms of coordinates of point
of contact. Third method of derivation. Referring to the
definition of the tangent [§ 77], represent the point P' by
(@', y") and the point P'(2", y')
by (&'+h, y' + k), that is, set
2'=2'+nh and y"' =9y +E.

When P'" moves along the
curve into coincidence with P,
and the secant P'P'" becomes the of A A K
tangent at P, both & and %k ap-
proach O as limit.

The slope of the secant P'P'" is
k/h. Hence the slope of the tangent at P'is the limiting value
of k/h; and this may be found as follows :

Since the points P' and P are on the parabola, y* =4 ax (1),
y?=4ax' (2) and (y'+EYP=4al@ +1) (3).

Expanding (3) and subtracting (2) from the result,

2y'k + k=4 ah. Y]

Hence ~=_—-"—, and therefore lim k =20,

h 2y 4k Loy

The tangent is the line through P'(2, %), which has the
slope 2 a/y'; hence its equation is y —y' = (2 a/y")(x — 2'), (5)
which reduces to yy' —y"*= 2 az — 2 az'. or since y? =4 ax', to

W' =2 a(e+ ). ©)

Hence (6) is the equation of the tangent at (2, Y.

k 4a

[\
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80. It may be added that, if P'(z!, y") and P"(a' + h, y' + k)
denote two points on any given curve, the equation of the
tangent to the curve at P’ is

y—y = im k/k) (v — a").
It is customary to represent (lim k/L) by the symbol <,
the equation of the tangent being then written

d
y—y’:oril(w—w').

81. The equa,tion yy' =2 a(x +a") may be obtained from the
equation y*=4 ax by replacing y* by yy' and 22 by =+ 2.
This is a special case of the rule which will be proved in
§171 for finding the equation of the tangent at the point
(@, y") to the curve represented by any equation of the second
degree in x, y: namely, replace 2* and y° by za' and yy'; 2 xy
by @'y +y'z; 2x and 2y by x4 2' and y+ ¢

Example 1. Show that the point (2, — 3) is on the parabola
—4x+5y+14=0,

and find the equation of the tangent at this point.

The substitution & = 2, y = — 3 in the equation gives 9 —8 — 15 + 14,
or 0; hence the point (2, — 8) is on the parabola.

The equation of the tangent to this parabola at (2/, y') is

' — 2@+ ) + §( + ) +14=0,

and setting («/, ¥') = (2, — 3) in this equation, and simplifying, gives
4x + y — b =0, which is therefore the equation of the required tangent.

Setting («/, )= (2, —3) ih4x+y—5=0 gives§ —3—5, or 0; that
is, the line 4 z 4+ y — 5 = 0 passes through the point (2, — 3), as it should.
This is a partial check on the accuracy of the reckoning.

Example 2. Find the equation of the tangent to the graph of the
equation
a2 —2uxy+y2—6x+565y—4=0
at the point (— 2, — 4).
Since one of the coefficients 24, 2 g, 2 f is odd, to avoid fractions,
multiply the equation throughout by 2 before applying the rule for
finding the equation of the tangent. The equation thus becomes

6a2—4day+2y2—122x4 10y —8=0.
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Hence, by the rule, the equation of the tangent at the point (2/, y') is
6ax' —2(@'y+y'x) +2yy' —6(x+2") +5(y+y)—8=0.

Setting ' = — 2 and y’ = — 4 in this equation,
6 (—2)—2{(—2)y+(— D&} +2y(—4)— 6 (x—2)+ 5 (y — 4)—8=0,
or simplifying, 10x—y+16=0,

which is the equation required.

82. Exercises. Tangent to the parabola.

Write the equation of the tangent to:

1. y2=22x at (2, —2). y?2="Tx at (0, 0).
2. y¥2=wx at (1, 1). x?2 =38y at (2, 4/3).
3. y2=8x at (2, 4). 3at =25y at (5, 3).
4
9

e -

. YP2=—8x at (—2, —4). 8. 24+ 6x—8y=0 at (0, 0).
. Write the equation of the tangent to y2 = 8 x which has the slope 2.

10. Find the tangent to y2 = 5 x which is perpendicular to 3 42 y=0.
Also find the coordinates of the point of contact.

11. Find the tangent to y2 4+ 6  + 8 y = 0 which has the slope 3.

12. Find the tangent to 322 —3xy — y2+ 16x + 10y — 18 = 0 at the
point (— 1, 3).

13. Find the tangent to 822 —42y —4y2+ 52+ 6y +8 =0 at the
point (2, — 3).

83. The normal to a curve at any point (', ") on the curve
is the line through (2', y') perpendicular to the tangent at (2, y').

Example. The tangent to the parabola y? = 8« at the point (2, 4) is
y.4=4(x+2), or t—y+2=0. The normal, by definition, is the
perpendicular to this line through the point of contact, namely [§ 32],
the lihe (y —4)+(x —2)=0,orz+y—6 =0.

From § 79, (6), the slope of the tangent at (2, ") is 2 a/y"
Hence that of the normal is —y'/2 a. Therefore the equation
of the normal is y—y' =(—y'/2 a)(x — a'), or

2a(y—y)+y'(@—a')=0.
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84. Geometric properties of the parabola. Let P,(2;,,) be any
point on the parabola 3 = 4 ax, and 4 the foot of its ordinate.

mt o=

Nxpg) C
7/
(=x,,0)

Let the tangent at P, meet the x-axis at T, and let the normal
at P, meet the x-axis at N. The segment 7'4 of the wz-axis is
called the subtangent, and the segment AN, the subnormal,
corresponding to P

The lengths of the subtangent and subnormal may be found
as follows:

~  To find the abscissa of the point 7', set y =0 in the equation
yy =2 a(x + =), which gives a+2,=0 or =—x. But
x=VT and x,=VA; hence Td=2wa, or the sublangent is
bisected at the wvertex.

Similarly, to find the abscissa of N, set y =0 in the
equation 2 a(y — ) + 9 (® — ;) =0, which gives x =, +2 a.
But a=VN and a,=V.4; hence AN =2 a, that is, the sub-
normal is constant and equal to half the latus rectum.

85. The tangent at any point Py of a parabola bisects the
angle contained by the line joining P, to the focus and the line
through P, perpendicular to the directriv.

For, referring to the preceding figure, join P, (x;, ;) to the

focus F(a, 0) and take P, M perpendicular to the directrix at
M and meeting the y-axis at B.
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It has just been proved that TV =2, Hence TF =, + a.
But FP, is also equal to @, 4+ a; for from the definition of the
parabola, FIP,= MP,=MB+ BP,=a+ 2. Hence TF =FP,
and therefore X F'TP = X FP,T.

But since MP, is parallel to TF, X FTP, = X T'P,M. There-
fore X FP, T = 2 TP, M, that is, the angle FI/P, M is bisected by
the tangent P, 7, as was to be demonstrated.

It also follows that if C' be a point on M P, produced through
P,, the normal PN bisects the angle FP,C.

It readily follows from § 84 that the line joining F and M meets P, T
at right angles at the point where P, 7T meets VB. Hence, the foot of
the perpendicular from the focus to a tangent lies on the tangent at the
vertex. :

Again, if @ be the point where P;T meets the directrix DM, it is
easily seen that the triangles Q FP, and QM P, are equal, and therefore
that 2/{ QFP, is a right angle. Hence, the portion of a tangent between
the point of tangency and the directriz subtends a right angle at the focus.

86. Diameters. The locus of the mid-points of a system of
parallel chords of a conic is called a diameter of the conic.

Every diameter of a parabola is a straight line parallel to the
axis.

For if & =ny (1) denotes any given line through the origin,
the equation of every line parallel to (1) will be of the form
x=ny+ X (2), [§ 26]. .

The ordinates, 7, and ¥, of the points P, and P, where the
line (2) cuts the parabola y* =4 a=, are the roots of the equation

y¥’=4a(my+2Ar), or y¥—4any—4ar=0. 3)

Hence 7, + 7y, is the coefficient of y in (3) with its sign
changed, that is, ¥, +y.=4 an [Alg. §636].

But if » denote the ordinate of the mid-point of the chord
PPy, then 9= (1n +v2)/2 [§ 44].

Hence y =2 an, or y =2 an is the equation of the required
locus; that is, the locus of the midpoint of PP, is a line

parallel to the axis and at the distance 2 an from it.
F
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Example 1. TFind the diameter of the parabola y2 = 12 « which bisects
all chords parallel to the line 3z —2y +1=0.
Here ¢ = 8 and n =2/3. Hence the diameter is y = 4.

Example 2. Find the diameter of the parabola x2—4y+x=0
which bisects all chords parallel to the line 22 +3y = 0.

Every line parallel to 2 + 3y =0, or y = — 2 x/3, has an equation of
the form y =—22/3 + A\, The abscissas of the points where the line
y=—22/3+ \ cuts the parabola 2 — 4y + x = 0 are the roots of the
equation 22 —4(—22/3 4+ \) +x=0,0or 22+ 112/3—4Xx=0. One-half
the sum of the roots of this equation'is — 11/6. Hence the required
diameter is x = — 11/6.

87. Exercises. The parabola.

1. Which of the following points are on the parabola y2 =6 x:
0, 0), (—6,6), (2/3,2), (—2/3,2), 3, —4)?

2. Prove of a point («/, '), not on the parabola »2 — 4 qx = 0, that it
is inside or outside the parabola according as y'? — 4 ax! is negative or
positive. To which side of the parabola y2 = 5z does each of the points
(3’ 4)’ (1» 1)1 (_ 2, 3) lie ?

3. Find the focus and directrix of each of the following :

1) y2=12z, (2) x2=8y, 3) 2 =— 10z, 4) 22=—y.

4. Find the ordinates of the points of 2 = 12 2 whose abscissa is 2.

5. The axis of a parabola coincides with the z-axis, its vertex is at
the origin, and its focus is the point (3, 0). Find its equation.

6. Find the parabola y2 = 4 ax which passes through the point (— 3, 4).

7. Prove that if the parabola y? = 4 ax passes through the point (&, k),
the equation is y2 = k2x/h.

8. Given the lines y — 5 =0 (1), « + 3 = 0 (2), find the parabola of
latus rectum 8 which has these lines for axis and tangent at vertex,

(a) when (1) is axis and the parabola is at the right of (2),
(b) when (2) is axis and the parabola is below (1).

9. Given the lines x —2y +3 =0 (1) and 22 +y — 8 =0 (2), find
the parabola of latus rectum 6 which has (1) for axis, and (2) for tangent
at vertex, and which lies to the side of (2) remote from the origin.

10. The line 12 — 5y + 6 = 0 touches a parabola of latus rectum 4
at its vertex (— 8, — 6), and the parabola lies to the origin side of this
line ; find the equation of the parabola.
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11. Prove that each of the following equations represents a parabola
whose focus is at the origin ;

M) r=4a(x+a), 3 yr=—4a(x— a),
@) x2=4a(y + a), 4) v*=—4a(y — a).

12. Find the coordinates of the focus and vertex, and the equation of
the directrix of each of the following parabolas, drawing the graph in
each case :

1) x2+4xc+6y—2=0. C(B) B+x+2y+T7=0.

2 4y2+4y—321—63:O.% ) 8a2+6x—3y+4=0.
3) 2y2+4y+10x—-3=0. | (7) 292 +2y+8x+17=0.
4) 4y2—4y—3862x—11—0. 1 (8) 422+42+8y+9=0.

13. Find the equation of the parabola whose axis is parallel to the
z-axis and which passes through the points (0, 0), (2, — 1), (2, 2).

14. Find the equation of the parabola whose axis is parallel to the

y-axis and which passes through the points (1, 1), (2, — 1), (=1, 3).

15. Find the equation of the parabola whose axis is parallel to the
y-axis, whose vertex is at the point (2, — 1), and which passes through
the point (— 2, 0).

16. Find the equation of the parabola whose axisis theline3x +4y =0,
and which passes through the points (0, — 1) and (2, 0).

17. Find the equation of a parabola whose focus is the point (1, — 2)
and whose directrix is the line 42 — 3y 4+ 10 = 0.

18. Find the equation of the tangent to

M P=zat (1, —1); @) =5z at (Fy —1);

@) YP=—4x at (—2,2V2); () 3ut=4y at (—2,3);

3) 12=8z at (2,4); (6) 222—8y—6=0 at (—3, 4).
19. Find the equations of the tangent and normal to y2 =— 8 at the

point whose ordinate is — 4.

20. Tangents are drawn to the parabola y2 =20 x at the two points
whose abscissa is 5. Find the angle included by these tangents.

21. Find the points of intersection of (1) y =« +2 and y2=9x;
(2) 2y +38x4+2=0and y2=62; (3) 3y+8x+5=0 and y2=18x.

22. Prove that the line 8 y — 9x = 2 touches the parabola y2 =8ux;
also that the line 2y + x — 10 = 0 touches the parabola y2 =— 102.
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23. Find the equation of the tangent to y2 =— 6 « which is parallel
to 3y +4x=0; also the equation of the tangent perpendicular to
3x—y+2=0.

24. Find the equation of the tangent to y2 =82 which is perpen-
dicular to the line joining the vertex to the upper end of the latus
rectum.

25. What value must be given A\, if the line 2y 4+-3x +X=0 is to
touch the parabola 2 =— 6 x ?

26. Find the equation of the tangent to 32 =4 ax which makes an
angle of 45° with the z-axis; find also the coordinates of the point of
tangency.

27. Find the equation of the tangent
(1) to3y2—2y +2 =0, perpendicularto 3z +y=0;
(2) to3y2+6y—3x+4=0, parallel to 2y 4+ 3z =5.

28. Find the equations of the tangent and normal to the parabola
y?+6x—8y —2=0 at the point (3, 4).

29. Find the equations of the tangents
(1) to y2 =8z from the point (— 6, 4);
(2) to y? =12 from the point (1, — 4).

30. Prove that the tangent to the parabola (z — 2)2=4a(y — y,)
s (=) =n(y —yo) +a/n. [n=tanyB4, § 23.]

31. What is the equation of the diameter of y> = 8 x which bisects all
chords parallel to 3y +2x=07?

32. What is the equation of the diameter of the parabola y2+3y+2x=0
which bisects all chords parallel to the line2y — a2 =0?

33. Prove that the area of a triangle inscribed in the parabola y2 =4 ax
is (y1— ¥2) (V2 — ¥3) (¥s — ¥1)/8 a, where y1, y2, ys denote the ordinates
of the vertices.

34. Prove that y = mx — am (2 + m?) is the slqpe equation of the
normal to the parabola y2 =4 ax. [Use figure of § 84.]

35. Two equal parabolas have the same focus and axis but extend in
opposite directions ; prove that they cut one another at right angles.

36. Prove that the tangents at the extremities of the latus rectum of a
parabola meet at right angles in the point of intersection of the axis and
directrix.



THE PARABOLA : 69

37. Two equal parabolas have the same vertex and their axes are
perpendicular; prove that they have a common tangent and that it
touches each parabola at an extremity of its latus rectum.

38. Prove that any tangent to a parabola meets the directrix and the
latus rectum produced in points which are equidistant from the focus.

39. From any point on the latus rectum of a parabola perpendiculars
are drawn to the tangents at its extremities; prove that the line joining
the feet of these perpendiculars touches the parabola.

40. If P, @, I2 are three points on a parabola, whose ordinates are in
geometrical progression, prove that the tangents at P and B meet on the
ordinate of @ produced.

41. If » denote the distance of a point P on the parabola »2 =4 ax
from the focus, and p the perpendicular distance of the tangent at P from
the focus, prove that p? = ar.

42. The vertex V of a parabola is joined to any point P on the curve,
and P is taken at right angles to VP and meeting the axis at ¢ ; prove
that the projection of P@ on the axis is equal to the latus rectum.

43. Two perpendicular lines VP and V@ pass through the vertex of a
parabola and meet the curve again at P and @ ; prove that P@ cuts the
axis in a fixed point.

44, Prove that the tangents y =mx + a/m; and y = mex + a/me
meet in the point {a/mims, a (my 4+ ms)/mymsa}.

45. Prove that the slope of the line joining the vertex of a parabola to

the point of intersection of any two tangents is the sum of the slopes of
the tangents.

46. Prove that the portion of any tangent to a parabola which is inter-

cepted between two fixed tangents subtends at the focus an angle which -

is equal to the angle between the two fixed tangents.

47. Prove that the tangents at the extremities of any focal chord of a
parabola meet at right angles on the directrix.

48. Two parabolas, y2 = 4 ax and x2 = ay, intersect at the origin ; find
the cube of the ordinate, MP, of the other point of intersection. (Since
the cube of MP is twice the cube of half the latus rectum of y2 =4 az,
this exercise gives a solution of the problem of the duplication of the cube,
one of the famous problems of antiquity.)



CHAPTER V

THE ELLIPSE

88. The equation of the ellipse. By definition [§ 697, the
ellipse is the locus of a point whose distance from a fixed point,
the focus, divided by its distance from a fixed line, the directrix,
is a eonstant e, less than 1.

Let F'be the focus )

and SR the direc- ! i
trix.

Through F take — A __a c F_A D x
FD perpendicular
to SR at D.

There is a point 4 between F s

and D such that FA/AD =e.

Again, since e< 1, there is a point A' on FD produced

through F, such that A'F/A'D=e. The points 4 and A' are
“on the ellipse. They are called its vertices.

Let C be the mid-point of A'A4. Take the line CD as a-axis,
and the line through C parallel to SR as y-axis; it is required
to find the equation of the ellipse when referred to these axes.

Represent the length of 4'C (= C4) by a, so that A'A=2a.

To obtain the coordinates of F and the equation of SR, it is
only necessary to express the lengths of CF and CD in terms
of @ and e. This may be done as follows:

Since FA/ AD =e, A'F/A'D =e, and A'C= CA4=aq, it fol-
lows that

_FA_a—CF . 0p ¢—qe=a— CF. @

AD  CD—d
A'F a4+ CF
= = ..OD- = 'F. 2
AD"arop oD etee=a+O @

70
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Adding (1) and (2) gives 2 CD-e=2a,.".CD = a/e.

Subtracting (1) from (2) gives 2ae =2 CF,.". CF = ae.

Therefore, the co-
ordinates of I will
be (ae, 0), and the
equation of SR will
be v =a/e.

The equation of
the ellipse may now
be derived as fol-
lows :

Let P (z, y) de-
note any representa-
tive point of the ellipse. Join PF, and take PM perpendicular
to SR.

Since P is on the ellipse, F.P/ MP = ¢, and therefore,

FP?=¢* MP~. ®3)

But since FP is the distance of the point (z, ) from the
point (ae, 0), FIP?= (& — ae)*+y* [§ 41].

And since MP is the perpendicular distance of the point
(=, y) from the line # —a/e =0, and this equation is in the
perpendicular form, MP*= (& — a/e)® [§ 51]. ‘

The substitution of these expressions for FP? and MP?in

ive
e (5= a0+ = (o =2,

or (1 — e +y*=a*(1 —e?),

2? v’

42— =1. 4
or a,2+a2(1—e2) @)

Hence (4) is the equation of the ellipse when referred to the
axes above indicated. For it has been proved that (4) is true
for every point P on the ellipse; and it is false for every point
off the ellipse, since if the point P is off the ellipse, F/P? is
not equal to e MP? therefore (x —ae)®+ 3* is not equal to
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é(w— a/e)?, and therefore finally a?/a®+ 3*/a®(1 —e?) is not
equal to 1.

Since e < 1, the quantity a?(1 — €?) is positive and less than
a’. Itisrepresented by &% The substitution of b for a? (1 — e?)
in (4) gives

m2 y2 9 2 2
Ez+~b_2=1, (5) where b0*=a’(1—e?). (6)

This is the form in which the equation of the ellipse is usually
written.

89. The shape of the ellipse. The shape of the ellipse and
its position with respect to the axes may be readily inferred
from the equation (5).

Solving () fory, y==+ gx/cﬁ — %
Hence y has two real values, equal numemcally but of oppo—

site signs, when 2? < a?
the value 0 counted twice y=b  Cer) ”t(o.b)

o . . .
when 2?=a? and imagi- . g BNQ%)
. C
\,

nary values when «?>a’ ) “a s

Therefore the curve lies X ) x

wholly between the lines Al : A x
’ y ('avo) (a,a)

x=—a and z=a, which
it touches at the points
(—a, 0) and (a, 0), and
it is symmetric with re- y=-b
spect to the a-axis.

As x increases from —a to a, the positive value of y first
increases from O to b and then decreases from b to 0; and the
negative value of y first decreases from 0 to —b and then
increases from — b to 0.

Solving (5) for», x=+ %‘\/b2 —

Hence « has two real values, equal numerically but of oppo-
site signs, when y < b% the value O counted twice when y*= b7
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and imaginary values when y*> %% Therefore the curve lies
wholly between the lines y = — b and y = b, which it touches at
the points (0, — b) and (0, b), and it is symmetric with respect
to the y-axis.

Thus the ellipse is a closed curve inclosed by the lines z = q,
r=—a,y=0b, y=—> and cut into four equal parts by the
2- and y-axes.

90. If the point (2', y') be on the ellipse, so also is the point
(—a', —y") on the ellipse; for if «”/a*+ y"?/l* =1, so also is
(—a')/a* + (—y')?/0*=1. But the two points («/, y") and
(—2a',—y") are on the same straight line through the origin ¢
and are equidistant from C; hence C is the mid-point of every
chord of the ellipse which passes through it. It is therefore
called the center of the ellipse.

91. The chord A4'A through the center and focus is called
the major axis of the ellipse; its length is 2a. A'C=CAd=a
is called the semimajor awis.

92. The chord B'B through the center of the ellipse, and
perpendicular to the major axis is called the minor axis of the
ellipse; its length is 2b. B'C'=CB =1 is called the semiminor
axis.

93. The chord L'L through the focus and perpendicular to
the major axis is called the latus rectum. Its length is 25%/a;
for when « = ae, the first equation of § 89 and the equation (6)
of § 88, give
b2

Yy==£- \/ ot —a’e" =+ —

a

The relation connecting a, b, and e is represented geometrically

in the right triangle CFB; for since OF = ae and OB = b, the

hypotenuse FB = Vb? + a’e? = Va® — a’* + a?e* = a. Hence,

the distance from the focus to the extremity of the minor axis
is equal to the semimajor axis. And a%®=a®— %
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94. The second focus and directrix. On the az-axis and to
the left of C, lay off CF' equal to CF, and CD' equal to CD,
and through D' take S'R' parallel to SR. Then F' will be a
second focus of the ellipse and 8'R' will be the corresponding
directrix ; as may be proved in the following manner:

Let P denote &
any point of the
ellipse and through v
P take PM paral-
lel to the 2-axis and

P Plx.y)
X
1

\

\

\

\

1

\

\

meeting SR in M. —p2L—~ (_:; o’)' = A DLx
This line will meet ' o

the ellipse at a so i
second point P' L

and theline S'R'at &’ s

a point M'. Join

PF and P'F'. Then, from the symmetry of the ellipse with
respect to the y-axis, it immediately follows that PF = P'F' and
PM=M'P'

Hence from FP/MP=e, it follows that F'P'/M'P' =e,
that is, the ellipse is also the locus of a point P’ whose dis-
tance from the point F', divided by its distance from the line
S'R', is the constant e. Hence F"' is a focus of the ellipse and
S'R' is the corresponding directrix. The coordinates of F' are
(— ae, 0), and the equation of §'R' is © 4 a/e=0.

Example. The equation 922 4 16 y2 = 144 can be written in the form
x2/16 + y2/9 =1, or 22/42 4+ y2/32 = 1. Hence the semimajor axis is 4,
the semiminor axis is 8, e2=1— b%/a2=1—9/16 =7/16, e =V7/4 ; and
hence ae =V7, and a/e=16/V7. The foci are (V7, 0), (—V7, 0)
and the directrices are x = 16/ V7, x =— 16/V7. The vertices are (4, 0),
(—4,0).

95. Exercises. The equation of the ellipse.

1. Find the coordinates of the fociand vertices, and the equations of
the directrices of the following ellipses :

1) 22 +3892=6, (2) 9a2+25y%=225, (3) Oa2+2532=1,



THE ELLIPSE 75

2. Which of the following points are on the ellipse 222 4 3y2 =6
1, 1), (0, V2), (0, —V2), (£ V38, 0), (0. 3/2), (V3/V2, 1), (1, 2/V3)?

3. The ellipse 222+ 3y2 =06 is given. Find the ordinates of the
points on the curve whose abscissas are 4+ 1. Find the abscissas of the
points on the curve whose ordinates are 4 1. Find the coordinates of
the points where the ellipse is met by the lines  + 1 = 0 and y+1=0.

96. The distances of any point P(x, y) of the ellipse from the
Joct F(ae, 0) and F'(— e, 0), are a — ex and o + ex, respectively,
and the sum of these focal distances is the constant 2 a.

For, referring to the preceding figure [§ 947, join F'P, and let
P'Pcut the y-axisat £. Then from the definition of the ellipse,

PF:ePM:e(EM—EP):e(g—w>:a—ew,
e

PF'=eM'P=e(M'E + EP)= e<9+x> —a+ ex,
e

!

/

and adding gives PF4+ PF'=2aq. /

97. Hence, an ellipse may also be defined as the locus of a point
the sum of whose distances from two fixed points is constant.

If the ends of a piece of string of length 2 @ be fastened at two points
in a sheet of paper, and the string be then drawn taut by a pencil, the
point of the pencil can be made to trace the ellipse whose foci are the
two points and whose major axis is 2 a.

98. A more general form of the equation of the ellipse.
From § 88 it follows that the graph of every equation of the
form a?/«® + /0> = 1, referred to rectangular axes, is an ellipse
whose axes coincide with the axes of reference.

When > b, the major axis coincides with the z-axis, the
eccentricity is given by the relation e?=1 — 0*/a?% the foci are
the points (— ae, 0), (ae, 0), and the directrices are the lines
z+ale=0, x—a/e=0

When b > a, the major axis coincides with the y-axis, the
eccentricity is given by the relation e?=1 — a?/0? the foci are
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the points (0, — be), (0, be), and the directrices are the lines
y+0/e=0,y—b/e=0.
When a=»5, the equation becomes z*/a*+ y’/a’=1, or
2?4+ y? = o?, which, as has already been seen [§ 43], represents
~a circle whose center is at the origin and whose radius is a.
Since ¢? =1 — a?/a? = 0, a circle may be regarded as the limiting
case of an ellipse whose eccentricity has become 0, whose foci
have moved into coincidence with the center, and whose direc-
trices have moved out to an infinite distance in the plane.
Observe that in every case the eccentricity of an ellipse is
given by the relation
e — (semiminor axis)?
(semimajor axis)®’

@)

and the foci and directrices are found from
CF = e (semimajor axis), (2) OD = (semimajor axis)/e. (3)

Thus, 22/16 + y2/25 = 1, in which ¢ = 4, b = 5, represents an ellipse
whose major axis (= 2 b) coincides with the y-axis and whose eccentricity
is e =Vv1— 16/25 = 8/5. Hence be =3 and b/e = 25/3, and therefore
the foci are (0, —3), (0, 3), and the directrices y + 25/3 =0,
y — 25/3 = 0.

99. In the equation 2*°/a® + 3*/0*=1, @ and y denote the dis-
tances p, and p, of any point P on the ellipse from the axes
of the ellipse, and the
equation is equivalent
to the statement that
in any ellipse these
distances, p, and p,,
are connected with a
and b, the lengths of
the semiaxes, by the
relation p,*/a® 4+ pt/0* =1. This property of the ellipse is
independent of the position of the curve in the plane. Hence
the locus of a point P, whose distances p, and p, from any two
perpendicular lines 4, = 0 and /; = 0 are connected by the rela-
tion p,2/a® 4+ p,°>/b® =1, will be an ellipse which is equal to the
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ellipse «*/a® + »*/b* = 1, and is placed with respect to the lines
l, =0, I, = 0 as the latter ellipse is placed with respect to the
lines ¢ = 0, y = 0 (i.e. the y- and a-axis, respectively).

Thus, in particular, (x — x,)?/a® + (y — yo)?/b* = 1 represents an
ellipse whose axes coincide with the lines # — 2y=0and y—y,=0

—_—
v Y] v D R
R’ R / B
_—[B . F
D’ Iy F’ C F A nl (A
(xgpyy)

( o)

] I . —] 0’ R’
and whose center is therefore the point (x), ;). The lengths of
the semiaxes are a, b. If a>b, the major axis coincides with
y—y=0; if b>aq, it coincides with x —x,=0. See the figures.

Ewery equation of the form aa®+by:+2 ge+2 fy+c=0, and
in which a, b, and (§°/a+ f2/b—c) are of the same sign, represents
an ellipse whose axes are parallel to the axes of coordinates.

For this equation can be reduced to the form just considered.

Example 1. Find the graph of the equation
2224+ 392+ 122+ 6y + 16 = 0. ®
The equation may be written 2 (22 + 62 )+ 3 (y2+2y ) =-—15,
or, completing the squares, '
2@ +6y+9)+3@2+2y+1)=—154+18 + 3,
that is, 2(+38)24+3@+1)2=6, .
or, (a: +3Y3+ (y+1¥Y2 =1, (2)
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Here ¢ = V3, b =V/2, and since @ > b, the major and minor axes coin-
cide with the lines y + 1 =0 and x + 3 = 0, respectively, the center being
the point (— 8, — 1). From §98 (1), e =V 1 — 2/3 =V'1/3, and there-
fore ae =1, a/e =8. Hence the foci are the points (— 3 + 1, — 1),
(—=3-1, —1); and the directrices are the lines £4+3—3=0, 24343=0.

Applying this method to ax? + by2 + 2 gx + 2 fy + ¢ =0, where ¢ and b
are of the same sign,

a(x+9/a)? + by + f/0)2 = g*/a + f*/b —c.
Hence, if (92/a + f2/b — ¢) be of the same sign as ¢ and b, the graph
is an ellipse whose axes coincide with the lines z + ¢g/a = 0, y + f/b = 0.
But if (9%/a¢ + f2/b— ¢) be of the opposite sign, the equation has no real
solution and therefore no graph; and if (¢*/a + f2/b —c) be 0, the
graph is the single point (— g/a, — f, b).

Example 2. Find the equation of the ellipse whose axes are parallel to

" the axes of coordinates and which passes through the points (— 1, 0),

(0, - 1)7 (37 0)1 (27 2)'

The required equation has the form ax? + by +2 g2 +2fy+¢=0 (1).
Since it has the solution (— 1, 0), ¢ —2¢g + ¢ =0 (2). Similarly, since
it has the solutions (0, — 1), (3,0), and (2,2), b—-2f+¢c=0 (3),
Qa+6g+c=0 (4), and 4a+4b+4g+4f+c=0 (5). Solving
(2), (8), (4), (b) fora, b, 2f, 2¢ in terms of ¢, substituting the results
in (1), and simplifying, we obtain 2224+ 3y>—4x—83y —6=0, the
equation required.

Example 3. Find the equation of the ellipse whose major and minor
axes coincide with the linesz —2y+4=0 (1) and 224+y —2=0 (2),
respectively, the semiaxes being 4 and 3.

Herepy = (2x+y—2)/ Vb, po=(x—2y+4)/(—V5),a=4,b=38.
Hence the required equation is

@z+y—2)? (@—2y+4?_
5-.16 5.9

Example 4. Prove that the equation of the ellipse whose eccentricity
is 2/3 and which has (2,0)and x +y =0 for focus and corresponding
directrix is 2

R Gk
: 9\ v2

Example 5. Find the equation of the ellipse whose center is (a, 0)
and whose semiaxes are ¢ and b.

Example 6. Find the graph of 322 +49y2 - 122 -8y — 8 =0.
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Example 7. TFind the equation of the ellipse whose axes are parallel to
the axes of coordinates and which passes through the points (0, 0), (2, 0),

(0, 8), (1, 4).

Example 8 Find the equation of the ellipse whose eccentricity is e,
and for which the origin and the line x — d = 0 are a focus and the corre-
sponding directrix.

100. The Circle. When a = b, by dividing by a the equa-
tion considered in the preceding section can be reduced to the
form

P+ +2g9c+2fly+¢ =0,
and therefore to the form
(.’U +g')2 +(y +f¥)2 — gl2 +f'2 . C',
which, if (9" + f"* — ¢') > 0, represents a circle whose center
is the point (—g', — f") and whose radius is Vg? + f* —¢
[§68]. If (9% 4+ f"”—¢") <O, there is no graph.

Example 1. Prove that 322 4+3y24+5x—6y — 9 =0 represents a
circle, and find its center and radius.

Dividing by the commmon coefficient of x? and y2, and rearranging the
terms

{22+ (6/3)x + 3+ {2 —2y+ }=3.
compléting the squares
{2 4 (6/8)x + 25/36} + {y2 — 2y + 1} =3 + 25/36 + 1,

or : {x + 65/68 + {y — 132 = 169/36,

which represents a circle whose center is (— 5/6, 1) and whose radius
is 13/6.

Example 2. Find the equation of the circle which passes through the
points (0, 0), (— 1, 0), and (0, 1).

The required equation is of the form a? + y2 + 2gx 4 2fy + ¢ =0. (1).
Since it has the solution (0, 0), ¢ =0 (2). Similarly since it has the solu-
tions (—1,0) and (0,1), 1 -29+¢=0 3), and 1+2f+c=0 (4).
Hence ¢ =0, 2¢g =1, and 2f=—1, and the required equation is
24yt —y=0.
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101. Equation of tangent in terms of slope. The abscissas
of the points where the line y=ma+c¢ (1) cuts the ellipse
#*/a*+y*/b? =1 (2) are the roots of the equation

f_,_gma:—i—cz =1,

or (a*m? + b%) & + 2 a’me @ + a*(c* — b%) = 0. 3)
Hence the line (1) will meet the ellipse (2) in coincident points,
or touch it, if the roots of (3) are equal. But the roots of (3)

\

(oVa?m*+b?)

PrR(x"y")

(0, Va’m™+b%)

will be equal, if the left member of (3) is a perfect square, that
is, if [compare § 78] (a*mc)? = (a*m? + V%) - a*(c* — b%)

or, a'm?®c® = a*m?? + &’b’c® — a'm?b® — a’b?,

or 0 = a®?*(c* — a*m? — V%),

or, since neither a nor b is zero, ¢* = a*m? 4 b?%

or, finally, c= + Vaim® + b

Hence for any given value of m there are two tangents on the
opposite sides of the ellipse and equidistant from its center,
namely, . y=mzx+ Vam?+ %, and y=mzx—Va'm®+ b

Example 1. Find the equations of both of the tangents to the ellipse
8 a2 44 y2 — 12 = 0 which are perpendicular to the line y + 22 = 0. -

The equation of the ellipse may be written x2/4 + y2/3 =1. Hence
the tangents are y = /2 + V4(1/4) + 3, or y = /2 + 2.
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Example 2. Find the equations of both of the tangents to the ellipse
8 a2+ y2 — 2 x = 0 which are parallel to the line y = «.

Every line parallel to y =« has an equation of the form y =x + \.
The abscissas of the points of intersection of the line y =« + N\ with the
given ellipse are the roots of the equation 322 + (x +N\)2—22 =0, or
422 + 2(M— 1)x + N2 = 0. These roots are equal, if (A —1)2 =42?, that
is, if 3\2 42X — 1 =0, or solving, if A =— 1 or 1/3. Hence the required
equations arey =2 —land y =2 + 1/3.

102 A.* Equation of tangent in terms of coordinates of point
of contact. First method of derivation. 'The equation of the
line through any two points («', ') and (2", y'") is

v—a _y—y

o — 9:"_3/' — yu'
But if the two points be on the ellipse a?/a® 4 y*/0* =1,
then a%/a’®+y*/0*=1 (2) and 2'%/a®*4 y"*/B*=1. (3)-

Subtracting (3) from (2), transposing, and factoring,

€Y

(wv _ wu)(mr + mu)/az =—(y'— y")(y’ + y!!)/bQ' (4)
Multiplying (1) by (4), and transposing,
(x . ml)(w' + w”)/ai’ + (?/ _ y’)(!/' + ?/H)/bﬂ;_ O, . (5)

that is, when the points (', ') and (2'', ') are on the ellipse,
the equation (1) of the line joining them can be reduced to the
form (5); in other words, (5) is the equation of the secant
through the two points (2, ") and (z", y'") on the ellipse.

If («", y'") be made to move along the ellipse into coincidence
with (', "), the secant becomes, at the limit, the tangent at
(2!, y"), and the equation (5) becomes, after dividirig by 2,

N ! Noyy! 2

(@ —azw LA _b;J>?/ = 0; that is, —+W 21/; =1.
Henc 'Ly

ence, :m; +’I/Z;'l§:1, . (6)

is the equation of the tangent at (z', y").

*#Only one of §102 A, §102B, §102C need be taken.
G
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102 B. Equation of tangent in terms of coordinates of point
of contact. Second method of derivation. Let (2',y") and (2", y'")
be two points on -the ellipse a*/a’*+ y*/b*—1=0 (1), so that
both a'*/a* 4 y"/0* —1=0 (2), and «'"*/a*+ y'"*/0* —1 =0 (3),
and consider the equation

(w—w')(w—W”) G=yy—y"H_2o
o e S

This is an equation of the first degree; for, on being simplified,
it reduces to

W W 1,11
“1’2“’ ot +7/ J__QJ_+-3/_?/~+1, )

Moreover, it is satisfied by r=2a,y=y and by x=2", y=1".
For if (z', y') be substituted for (z, ) in (4), the left member
becomes (a' — ") (a' — a'")/a® 4+ (y' — y")(¥' — ¥'')/V?, which is
identically 0, and the right member becomes z'?/a* 4 y'2/0* —
which is 0 because (z', ¥') is on the ellipse. And it can be
shown in the same manner that (4) is satisfied by a=a",
y=y'"

Therefore (4), or its equivalent (5), is the equation of the
secant to the ellipse through the points (', y') and (2", y").
For if an equation of the first degree be true for two points of
a given line, it is the equation of that line [§ 17]

When the point (2", y'") moves along the ellipse into coin-
cidence with the point (2!, y'), the secant becomes the tangent
at (', ¥"), and (5) becomes

But since 2" (12—{-3/"~’/l)2 =1, this equation may be reduced to
the form

' ] .

which is therefore the equation of the tangent to the ellipse
@*/a? 4 y2/b* = 1 at the point (@', y').
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102 C. Equation of tangent in terms of coordinates of point
of contact. Third method of derivation. Let P' and P' be
two points on the ellipse
a*/a? 4+ y¥/0* =1, and
represent the coordi-
nates of P' by (2, y"),
and those of P'" by
@ +h, y' + k).

If P" be made to
move along the curve
mto coincidence with

the secant P'P' will become the tangent at P’, and both
h and k will approach 0 as limit.

The slope of the secant P'P'" is k/h. Hence the slope of
the tangent at P' is the limiting value of %/k, which is repre-
sented by lim A/%; and this may be found as follows:

Since P' and P' are on the ellipse,
2%/a® + ¥/ =1, (1) @' + R)/a’+ (¥ + k)Y =1. (2)
Expanding (2) and subtracting (1) from the result,

2ah 4+ 0 29’k 4+ K .23+ D Zy +k
= + e =0, or & pr + & n = 0. ¥
., 2 0 "
Hence X— _ b— .,m'——i-h, and therefore lim©— 2%,
h & 2y +k h @y

Therefore, since the slope of the tangent at P'(x/,y') is
— b%'/a%y', the equation of the tangent is

ot b o~
Y=Y= ey —L(@—2a), @)
which reduces to R
Yyt (w2 ®)
b b at )
or, transposing and using a:’2/a2 +y?/b*=1, to
+ ?;)JZ =1. (6)

Hence (6) is the equa.tlon of the tangent at (', y').
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103. When %= a? the ellipse is the circle 2® 4 3*=0a? (1)
and the equations for the tangent in § 101 and § 102 become

y=me + a V14 m ) ax' 4+ yy' =a’ 3)

104. Exercises. Tangent to the ellipse.

Write the equation of the tangent to :

92 + 16 y2 = 144 at (3, V63/4) and at (2, V27/2).

2224+ 3y2 =6 at (1, 2/V3), at (V3/2, 1), and at (V3/2, — 1).
9 22 4 16 y2 = 144 at the point whose ordinate is 2.

922 4 16 y2 = 144 with the slope — 1.

322+ 4y?2—2x + 6y — 25 =0 at the point (3, — 2).

. 4224 3y2— 4y =0 with the slope 2.

7. Prove that y — y, = m(x — 2,) £ Va*>m? + b2 is the slope equation
of the tangents to the ellipse (x — xg)2/a% + (y — y,)2/b2 = 1.

I S

105. The Normal. Since the normal to the ellipse at the
- point (', y") is perpendicular to the tangent, and § 102 (6) is
the equation of the tangent, the equation of the normal is

! !
®
@—) %~ —y)5=0
Example. The tangent to the ellipse 922 + 16 y2 = 145 at the point
(3, 2) is 923 +16y 2 =145, or 272 + 32y = 145. The normal, by

definition, is the perpendicular to this line through the point (3, 2),
namely, 27(y —2) =32(x — 3), or 322 — 2Ty —42 =0.

106. Geometrical properties of the ellipse. The tangent at
any point of an ellipse makes equal angles with the lines joining
the point to the foci of the ellipse.

Let P'(2', y") be any point on the ellipse and let T"P'T be
the tangent at P'. Join P'F and P'F'. The angles F/P'T and
F'P'T' are to be proved equal.

Draw FE and F'E' perpendicular to 7'T at E and E',
respectively.

The equation of 7"'7T may be written.

biw'c 4 a®y'y — a?* = 0.
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Therefore EF and .E'F', the perpendicular distances of
F(ae, 0) and F'(— ae, 0) from T'7, are

BEF — b’ - ae — a’b? o b - ae — a2b?
Hence
EF:E'F' — Va(@'e —a) | —ba(x'e +£)=a_ew, ca + e
’ VO + iy ) VO + aty"® _ ’ :
But a — ex' = FP'
" and g +ex' =F'P I
Hence [§ 967
FE:F'E'=FP':.F'P,
or FE:FP'=F'E': F'P;
and therefore the right- Fe
angled triangles FP'E
and F'P'E' are similar,
and X FPE=XF'PE,
which was to be proved.

107. The perpendiculars Jfrom the foci to any tangent of an ellipse
meet the tangent in points E and E' which lie on the circle x* + y2 = a?.

The equation of the tangent E'Eis y — mx = Va?m?+b2 €))]
The equation of FE is my + x = ae. )

Regarding (1) and (2) as simultaneous (which is to make (z, y)
the coordinates of E), square both equations, and add ; the result is-

(m2 + 1) (2? + y2) = a®m? + b2 + a%e® = a®m? + a2, [Since a?%e? = a? — b%]
hence 22+ y2 = a2

The product of the perpendicular distances of the foci from any tangent
s equal to the square of the semiminor axis, that is, EF - B'F = D%

For the equation of the tangent is y — mx — Va2m? + b2 = 0.

Hence EF ——Mae— Va@m2+b® ¢ gupy _mae—Vaim? + b2
V1 + m? V1 + m?

and EF.E R = @M+ bi—midE _
14 m?
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108. Diameters. The locus of the mid-points of a system of
parallel chords of an ellipse is called a diameter of the ellipse.-
[Compare § 86.] It is to be proved that every such diameter is
a straight line through the center of the ellipse.

Example. Find the locus of the mid-points of the system of parallel
chords of the ellipse a2 4+ 2 y2 — 2 =0 (1), whose slope is 4/3.

Every chord of the system has an equation of the form y=4x/3+\ (2),
where \ is an arbitrary constant. The abscissas of the points of intersec-
tion of (1) and (2), that is, the abscissas of the end-points of the chord
(2), are given by )

22424 x/3+N)2—-2=0,0r4l22+4+48Nx+18N2-18 =0. (3)

Hence, if P(&, 7) denote the mid-point of the chord, its abscissa £ is one-
half the sum of the roots of (3). But the sum of the roots of (3) is
— 482/41. Hence § =— 24 \/41. (4)
Again, P (&, ) is on the line (2); hence n =4 £/3 + X = 9 A/41. ()
Eliminate X by dividing (5) by (4); the result is n/§ =— 3/8. Hence,
whatever the value of A may be, the mid-point of the chord (2) lies on
the line y =— 3 x/8, which passes through the center of the ellipse.

Consider the system of chords parallel to the line QE whose

equation is y=ma. (1) ’

Let PP, represent any ‘ 0
such chord, and let y

Po(xy0,)
P1<wb y1)7 Pz(m-_u ?/2) /
c

denote the points where it
cuts the ellipse, and P the
mid-point of P,P;,. Repre-
sent the coordinates of P E
by (¢ %), in order to dis-
tinguish them from the coordinates of the points of the curve.
The equation of the locus of P may be found as follows:

Since P,P, is parallel to QE (y=mx), but is otherwise un-
determined, its equation is

y=mx+ A, @
where A is an arbitrary constant [§ 26].

) SR

Py (xp,u,)
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Eliminating y between this equation and that of the ellipse,
a*/a? + /b0 =1, gives

@ | (mx4A)° gy ZMEN (A2 —=b0Ha’_ 0 3
a? + b? =1, or + m2a® 4 b? mia? 0 ®)

The roots of this equation are x; and a,, the abscissas of P,
and P,; hence x4, is the coefficient of 2 with its sign
changed. And, since P(¢, ) is the mid-point of PP,
&= (2, +®,)/2; therefore
___ma?

mia?+ b

@

Furthermore, P(¢, 4) is on the line y =ma + A; hence [§ 16]
y=mé+ A, and therefore from (4),

ma? : - 2
p=— m/\ + A, or, simplifying, » = m ‘A (5)
The elimination of the arbitrary constant A, by dividing (5)
by (4), gives b2 » 1
= —— > = —_—— — : 6
K a,gmf’ or a m v ©)

as the equation of the locus of P. The locus is therefore a
straight line through the center, as was to be demonstrated.

Example 1. Find the diameter of the ellipse 5 22 + 6 y2 — 10 = 0 which
bisects all chords parallel to the line 8x +2y — 5 =0.

Here a2=2, 0>=5/3, m =— 3/2. Hence the required equation is
y=—(5/3)-(1/2)-(— 2/3)-x, or y =(5/9) .
Example 2. Find the diameter of the ellipse 342 +2y2 +62x —5=10
which bisects all chords which have the slope 2.
The equation of any chord having the slope 2 is y =22+ \. The
abscissas of the points of intersection of the line y =22z + X with the
ellipse are the roots of the equation.

32 +222+N)24+6x—5=0, or 11224+ (X +6)x+2N2—5=0.

Hence the abscissa of the mid-point P(¢, n) of the chord is §=— (4 A\+3)/11.
Its ordinate n isgiven by » = 2 £ + Nand isyp = (3 X — 6)/11. The elimina-~
tion of X\ between these equations for £ and 7 gives 33£4 447+ 33 =0.
Hence the equation of the diameter is 3x +4y+3 =0.
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109. Conjugate diameters. It has just been proved that all
chords parallel to the line y = ma are bisected by the line

y = m'xz, where m' = — b*/a’m [§ 108, (6)], or
2
mm' = — 3—2- @

But (1) is symmetric with respect to m and m/!, and therefore
also proves that all chords parallel to the line y ='m'az are
bisected by the line y = ma. Or, to put the proof in another
way, the argument in § 108 proves that the locus of the mid-
points of chords parallel to y=m'z is y = — b%/a’m/, that is,
y = ma, since —b%/a’m'=m.

Therefore, every line through the center of an ellipse is a
diameter; and if the slopes m and m' of two diameters, y = ma
and y = m'z, are connected by the relation (1), each bisects all
chords parallel to the other. Two such diameters are said to
be conjugate.

110. Let P (o', y") denote any point of an ellipse, CP the
diameter through P, and
CQ the diameter conjugate
to CP. The equation of
cQ is

! !
@t

For the slope of CP is
y'/x'; hence the slope
k)f 0Q is —a'vY/y'a’
[§ 109]; and therefore
the equation of CQ is

2'b? x| yy'
=—y'—a2w, or ?—F——O. @
From this result it follows that CQ is parallel to the tangent

at P. See equation (6), § 102.
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111. To find the coordinates of the points @ and Q', where the
diameter conjugate to CP cuts the ellipse, in terms of the coordi-
nates of P (&, y').

The ‘elimination of y/b between «*/a®+4 3°/b*=1 and
aa'/a? + yy'/b* = 0 [equation of QQ'] gives

y"? o7\ _ a2t oyt _ata? |y
?2<1—¢?" T o d? or B a2 +b2’
or, since (', ") is on the ellipse, and therefore
wlﬂ a‘_’+y!:!/ QE
x‘l 1 12 @€ ) !
= OF finally o= i%;

and this value of /a set in the equation of QQ' gives

y_ 32
b +
Therefore the coordinates of @ and @' are given by
(£ y'a/b, Ta'b/a); where, with the lettering of the figure of
§110, Q is (— y'a/b, x'b/a) and Q' is (y'a/b, — 2'b/a).

Example. Find the diameter of the ellipse 4 %2 + 52 — 21 =0 con-
jugate to that through the point (2, 1).

Since the equation of the tangent at the point (2, 1) is8x + 65y —21 =0,
the equation of the required diameter is 82 + 5y =0. Tts points of inter-
section with the ellipse are (V/5/2, — 4/V5b) and (—Vv5/2, 4/V5).

112, The area of the parallelogram bounded by CP, CQ', and
the tangents at P and Q' is constant and equal to ab.

Let the tangents at P and @' meet at 7. The parallelogram
COPT'Q is twice the triangle CPQ'. Therefore the substitution
of the coordinates of P (2, ") and Q' (y'a/b, — #'b/a) in the
formula of § 53 gives

OPTQ =%y"+ 2 b2 — (’”"+ b;>ab = ab.
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113. The sum of the squares of CP and CQ is constant and
equal to a® + b
For CP?=a2" 4+ y”? and CQ*= %:y’z + g;w'?.
? o

2 2
Hence, OCP 4 CQF =a"+ %90” +y*+ %./'2-
a
a'? |y ) , .
:(Z{er_z) (@ + b)) = a* + V.

114. Orthogonal projection. The foot of the perpendicular
from any point P in space upon a plane y is called the
orthogonal projection or, more briefly, the projection of P on y.

The projections of the points of a given curve C in space
form a curve C' in y called the projection of the given curve C.

Similarly, the projections of the points of a given surface 4
form a portion A' of y called the projection of the given sur-
face 4, or pr, 4= 4"

Evidently, if two given lines or curves intersect (or touch)
at a point P, their projections intersect (or touch) at the pro-
jection of P.

It is also readily proved that a straight line projects into a
straight line, and parallel lines into parallel lines.

115. If AB denote a given line seqment, A'B' its projection on y,
and 6 the angle made by the line AB with vy, then A'B' = AB cos 6.
For, by definition, the angle made by the line AB with y is
the angle made by the line AB with its projection, the line
A'B', that is, the angle A'E A in the figure. Hence 6 = 2,( A'EA.
Draw A'F' parallel to AB, meeting B Bat F. ThenA'F = AB,
and X B'A'F=X A'EA=6.

Therefore, since the tri- °
angle A'B'F is right- c
angled,
A'B'=A'Fcos §=_ABcos 6, & o
or pryAB= ABcos 6§, as y

was to be demonstrated.
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116. The ratio of two parallel line segments AB and CD is
the same as that of their projections A'B' and C'D'.

For since 4B and CD are parallel, they make the same
angle 6 with the plane y, and therefore 4'B'= AB cos 6 and
O'D'=0CD cos§. Hence, AB: CD=A'B': C'D'.

117. The projection of any plane area A is equal to the prod-
uet of A by the cosine of the angle 6 made by the plane of A
with y.

The theorem is obviously true of a rectangle, as BCDE
in the figure, one of
whose sides CD is per-
pendicular to F'G, the in-
tersection of the two
planes. For, in this case,
6 is the angle C'GC
made by CD with its
projection C'D', so that
C'D' = CD cos 6, and, since B'C' = BC, it follows that

B'C'-C'D' = BC-CD-cos 9,

which was to be proved.

To extend the theorem to any plane area 4, divide 4 into
strips of equal breadth by lines drawn perpendicular to the
intersection of the plane of 4 with vy, and then inscribe rectan-
gles in these strips in the manner
indicated in the figure. If S denote
the sum of the rectangles, the sum
of their projections is S cos §. But
if the width of the strips be in-
definitely decreased, S will ap-
proach 4 as limit, and S cos @ will
approach the projection of 4 as limit. Hence the area of the
projection of A is Acos@, or pr,d= Acos 6, as was to be
demonstrated.
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118. The ellipse the orthogonal projection of the ecircle.
Let ABCD be a circle of radius a, AC and BD a pair of per-
pendicular diameters, and B' a point
on OB at the distance b from O, b
being less than . Suppose the circle
to be turned out of the plane of
the paper, about .4C as axis, un-
til B comes to lie vertically
over B', and that the circle is
then projected from its new
position on to the plane of the
paper. Let the curve AB'CD’
represent the projection. It is an
ellipse whose semiaxes are a and b, as
may be proved in the following manner.

Let P'" denote any point of the cirele in its second position,
and P"E its ordinate; and let P' denote the projection of P",
and P'E that of P'E. And let B" denote the second position
of B, so that B' is the projection of B'.

Let (2", y'") denote the coordinates of P'' referred to the lines
0A and OB" as axes, and (2, ¥") the coordinates of P’ referred
to the lines OA and OB

Since P (z"", ') is on the circle
Y s

2 "ne 9 'l ,yue
PrHyT=G eyt e =t )
S 0
But OF ="' = &/, and therefore, = =% ; @
a a )
and since EP'" and OB" are parallel,
EP" EP' . " '
o5 — OF [§ 116], that is, %z %; 3)

and the substitution of these values, (2) and (3), for 2! and
y_” : : 2 12 @
- in 1) gives %E_l_?é—z =1, @
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that is, the curve AB'CD' is an ellipse whose semiaxes are a
and b, as was to be proved.
Hence the following theorems, §§ 119, 120, 121.

119. The area of an ellipse whose semiaxes are a and b is abmw.
For, if § denote the angle through which the circle just con-
sidered is turned in bringing B yertically over B, then by
§ 115, cos §=b/a. But the area of the ellipse is the area of
the circle times cos 6 [§ 1177, that is, a*r - cos 6, or a’r - b/a, or
abm, as was to be proved.

120. When a circle is projected into an ellipse, every pair of
perpendicular diameters of the circle is projected into a pair of
conjugate diameters of the ellipse.

For let the ellipse at the right in the figure represent the
projection, by the method of § 118, of the circle at the left;

Po(x,y)

X

Q

where, after projecting the circle, the figures are separated on the
axis of rotation. And let 4B, CD be any perpendicular diam-
eters of the circle. Their projections A'B', " D' are conjugate
diameters of the ellipse. For any chord PEQ of the circle
which is parallel to CD is bisected by AB. Hence its pro-
jection P'E'Q), a chord of the ellipse which is parallel to
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C'D, is bisected by A'B' [§116]. Similarly, every chord of
the ellipse which is parallel to A'B' is bisected by C'D'.
And conjugate diameters are such that each bisects all chords
parallel to the other [§ 109].

Q

Since the tangents at the extremities of CD are parallel to AB,
the tangents at the ewtremities of C'D' are parallel to A'B'.

Again, since the area of the square AOCT is constant for all
perpendicular diameters of the circle, the area of the parallelogram
A'O'C'"T" is constant for all conjugate diameters of the ellipse.

121. The equation of an ellipse referred to a pair of conjugate
diameters, as oblique axes, ts

T+blz 1,

where a', b' denote the lengths of the semiconjugate diameters.

For, referring to the preceding figure, let (x, y) denote the
coordinates of the point P of the circle referred to the lines OB
and OC as axes, and (2, y') the coordinates of the point P’ of
the ellipse referred to the lines O'B' and O'C' as oblique axes,
And let the lengths of OB, O'B', 0'C' be a, ', V', respectively.
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Then OE =2, EP=y, O'E'=2a', E'P' =1y

. OE _O'FE' x_a
But, by § 116, 0B 0B or =
EP_EP y_Y
oc 0¢C’  a vV

)

and s

2 2 ”2 2
therefore, since 2 4+ 2 =1, it follows that AR
4 ' oa? a'? 2

122. The eccentric angle. On the major axis of the ellipse
2*/a? 4+ y*/b*=1 as diameter, describe a circle, which may be
called the auailiary circle. Let P(x, y) be any point of the
ellipse, and produce ifs ordinate DP to meet the circle at P'.
Join P' to the center C. The
angle ACP', or ¢, is called the
eccentric angle of P.

Since CP'=q,
x=CD = CP'cos ¢ = a cos ¢.
Since P (, y) is on the ellipse,

b
y=DP=a\/a2_mz

A

e
=&\/a,2—a2’cosgq5=bsin .

Therefore the coordinates of
any point P on the ellipse may be expressed in terms of the
eccentric angle of the point by the formulas

r=acos¢, y=">osin ¢.

123. The equation of the tangent to an ellipse at a point
P'(', y"), whose eccentric angle is ¢', is

? cos ¢' +¥sin ¢'=1.
a b
This equation is obtained by substituting 2'=acos ¢/,

y'=bsin ¢' in the equation x2'/a? + yy'/b* =1, and simplifying
the result.
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124. Exercises. The ellipse.
1. Prove that, according as x'2/a? + y'2/b% — 1 is negative, 0, or posi-
tive, (x/, y') is within, on, or without the ellipse x2/a? 4 »2/b2 — 1 = 0.

2. Determine for each of the points (1, 8/2), (1; 8), (—V5, — 1),
whether it lies within, on, or without the ellipse 4 z2 + 5 y2 = 25.

3. Find the vertices, foci, and directrices of each of the following

ellipses, and in each case draw the graph : .
1) 322+ 492 =12, 3) 92 +27y2 =2,
(2) 522+ 9y2 =45, (4) 63 a2 4 144 y2 = 28.

4. The distances from the center of an ellipse to a focus and a direc-
trix are 3 and 12, respectively; find the eccentricity and the semiaxes
of the ellipse. )

5. Given two fixed points 6 units apart, find the locus of the point the
sum of whose distances from these points is 12.

6. Find the equations of the lines joining a focus of the ellipse
522 + 9y? =45 to the extremities of the latus rectum through the other
focus. Find the angle between these lines.

7. Find the axes, center, vertices, foci, and directrices of each of the
following ellipses, drawing the graph in each case :

(1) 8x2+4y2+12x— 16y + 16 =0,
(2) 4224+ 9y2— 8x+ 18y +12 =0,
3) 422+ Y2+ 4x— 6y+ 9=0.

8. Find the equation of the circle which passes through the three
points (1, 1), (3, 1), (— 1, 2). Find the center and radius of this circle.

9. Find the equation of the circle which passes through the points
(1, 1) and (1, 3) and whose center lies on the line 2y — 2 =0.

10. An ellipse whose axes are parallel to the axes of coordinates passes
through the points (0, 0), (1, 2), (1, — 1), (2,1). Find its equation.

11. An ellipse whose axes are parallel to the axes of coordinates passes
through the points (— 1, 0), (3, 0), (4, 1), (1, 8). Find its equation.

12. Find the equation of the ellipse whose center is (— 2, 4) and
whose major and minor axes are parallel to the x- and y-axis, respectively,
the lengths of the semiaxes being 4 and 3.

13. Find the equation of the ellipse whose major and minor axes
coincide with the lines « +y = 0 and z — y = 0, respectively, the lengths
of the semiaxes being V6 and 2,
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14. Find the equation of the ellipse one of whose foci is the origin and
the corresponding directrix the line x 4+ y = 2, the eccentricity being1/2.

15. Find the points where 3 x% + 4 y2 = 19 is cut by each of the lines
MD38x+2y+1=0; (2) bx+y="1.

16. For what value of A will 3y + 22 = X touch 222 + 2 =57?

17. For what value of A will2y =32 + N touch 22 44 y2 =1°?

18. Find the equations of the tangents to 5 a2 4 9 y2 =45 which are
parallel to 3z 4+ 4y —5 =0. Find also the equations of the tangents
which are perpendicular to this line.

19. Find the equations of the tangent and normal to the circle
22 + y2 =5 at the point (1, — 2) ; at the point (— 1, 2).

20. Find the equations of the tangent and normal to 52 + 7 y2 =173 at
the point (3, — 2).

21. Find the equations of the tangents and normals to 3 22 + 492 =12
at the extremities of one of the latera recta.

22. Find the angle between the lines which touch 322 4 442 =16 at
the points (2, 1) and (0, 2).

23. At what angle does 2y =z cut 322 +4 y2=16?

24. Find the equations of the tangents common to the parabola
y? = 6% and the circle 9 22 4+ 9 y2 = 16.

25. Find the equations of the tangents to 224 y2 =10 which pass
through the point (— 4, 2). '

26. Find the equations of the tangents to

(1) 422+ 9y2 =36 from the point (8, — 3)
(2) 322+ 2292 =066 from the point (3, 2).

27. Find the equations of the tangents to 422 +4y2—42x—3=0
which make an angle of 45° with the x-axis.

28. Two circles pass through the points (4, 1) and (1, 5) and touch
the y-axis; find their equations and also the angle at which they cut each
other.

29. Prove that any tangent to an ellipse meets the tangents at the
vertices in points the product of whose ordinates is equal to the square of
the semiminor axis.

30. What is the equation of the line which bisects all chords of the
ellipse 4 22 4+ 9 y2 = 36 which are parallel to the linex +y =17°?

31. What is the equation of the diameter of the ellipse b 22 4+ 3 y2 = 30
which is conjugate to 3x — 2y =0°?

hts
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32. Find the equation of the chord of the ellipse 4 22 4+ 8 y2 = 1 which
passes through the point (1/8, — 1/4) and is parallel to the diameter
conjugate to 2z + y = 0.

33. Show that if FP and F' P be the focal distances of a point P of an
ellipse whose center is C, and CQ be the semidiameter conjugate to C'P,
then FP .F' P will equal CQ2

34. The tangent at a point P of an ellipse meets the tangent at 4, one
of the vertices, in the point ¢ ; show that the line joining @ to the center
is parallel to the line joining P to the other vertex.

35. Find the extremities of the diameter of 22+ 2y2=4 which is
conjugate to that through the point (2, 1).

36. Prove that every ellipse has one pair of equal conjugate diameters
and that they coincide with the diagonals of the rectangle whose sides
touch the ellipse at the extremities of its axes.

37. Prove that the lines joining any point P of an ellipse to the ex-
tremities £ and G of any diameter are parallel to a pair of conjugate
diameters. (PE and PG are called supplemental chords.)

38. Find the equations of the tangents to the ellipse 22/a2 + y2/b%2 =1
at the extremities of its latus rectum.

39. If the ordinate DP of any point P on an ellipse be produced to
meet at @ the tangent at the extremity of the latus rectum through the
focus F, prove that D@ = FP.

40. Prove that the points of tangency of parallel tangents to an ellipse
are the extremities of a diameter.

41. Prove that the sides of any parallelogram inscribed in an ellipse
are parallel to a pair of conjugate diameters; and that the diagonals of
any parallelogram circumscribed to-an ellipse are a pair of conjugate
diameters.

42. Prove that the subtangent and subnormal to an ellipse are
(a2 — &'%) /2’ and /(1 — e2), where 2’ is the abscissa of the point of tan-
gency. [Compare § 84.]

43. Prove that any tangent to an ellipse and the corresponding normal
meet either axis in points 7"and N such that C7'- CN = CF2.

44. Prove that the straight lines drawn from a focus of an ellipse to
the end points of any diameter make equal angles with the tangents at
these points.

45. Prove that the sum of the squares of the distances of the points
(0, ee) and (0, — ae) from any tangent is equal to 2 a2
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46. Prove that the perpendicular from the focus F upon the tangent
at P will meet the line joining P to the center on the directrix corre-
sponding to F. ’

47. Perpendiculars are taken through any point P on an ellipse to the
lines joining P to the vertices; prove that tliey intercept a segment of
the axis which is equal to the latus rectum.

48. Prove that the sum of the squares of the reciprocals of two
diameters of an ellipse which are at right angles is constant.

49. Prove that the eccentric angles of two points which are extremities
of a pair of conjugate diameters differ by = /2.

50. Prove that the equation of the normal to 22/a2 4 »2/02=1 ata
point whose eccentric angle is ¢ is ax/cos ¢ — by /sin ¢ = a’— b2

51. Prove that the area of the triangle bounded by the z- and y-axes
and the tangent to 22/a? + »2/b2 =1 at the point whose eccentric angle
is ¢ is ab/sin 2 ¢.

52. Prove that the tangents at the points whose eccentric angles are
¢ and ¢ + w/2 (which are extremities of conjugate diameters) meet at
the point whose coordinates are x = a (cos ¢ — sin ¢), y = b (cos ¢ + sin ¢).

53. Prove tbat the tangents to the ellipse x2/a? 4 y2/0% =1 at the
extremities of a pair of conjugate diameters meet on the ellipse
22/a? + Y2/ = 2.

54. Assuming that the greatest triangle which can be inscribed in a
given ‘circle is equilateral, prove that the area of the greatest triangle
which can be inscribed in an ellipse is 3 ab \/5/4, where @, b are the semi-
axes. Show also that the median lines of this triangle intersect at the
center of the ellipse.

55. Through a given point A outside an ellipse whose center is C a
line is drawn which meets the ellipse in the two points P, . Show that
the area of the triangle CPQ is greatest when P and @ are the ex-
tremities of a pair of conjugate diameters.



CHAPTER VI
THE HYPERBOLA

125. The equation of the hyperbola. By definition [§ 697, the
hyperbola is the locus of a point whose distance from a fixed
point, the focus, divided by its distance

7 R
from a fixed line, the directrix, is a con-
stant, e, greater than 1.
Let F be the focus K < 2.3 F X
and SR the directrix. Cao) Gy} (@o) (aerc)
Take FD perpendicular to SR, and ue
meeting it at D. xIs

There is a point 4 between F and D such that FA/AD =e.

Again, since e>1, there is a point A4' on FD, produced
through D, such that FA'/DA'=e. The points 4 and A4' are
on the hyperbola; they are called its vertices.

Let C be the mid-point of 4'4, and let a represent the length
of A'C(=Cd4). Take the line CF as wx-axis, and the-line
through C parallel to SR as y-axis. The equation of the
hyperbola is to be obtained, referred to these axes. The process
is identical with that followed in the case of the ellipse [§ 88].

To obtain the coordinates of F' and the equation of SR, it is
only necessary to express the lengths of CF and CD in terms
of @ and e. This may be done as follows:

Since FA/AD =e, FA'/DA'=e, and A'C = C4 = a, it fol-
lows that

e AF _ CF—a

.ae—CD-e=CF —a. ®

T DA a—CD
e=%=%. c.ae+CD.e=CF + a. 2

Adding (1) and (2), gives 2ae=2 CF. ... CF = ae..
Subtracting (1) from (2), gives 2CD -e=2a. .. CD=a/e.
. 100
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Therefore the coordinates of F are (ae, 0), and the equation
of SR is ® —a/e =0. The equation of the hyperbola may now
be derived as follows:

Let P(x, y) denote any representative point of the hyperbola.
Join FP and take MP perpendicular to SE.

Since P is on the hyperbola, F'/P/MP = e, and therefore

FP:=eMP )
But [§ 41] FP?= (v — aé)* + 32 and [§ 51] MP? = (z — a/e)".
The substitution of these expressions for FP? and MP? in (3)

gives (x—ae)’ +y* =€*(x — a/e)?,
or Q-2+ y=a'(1—¢,
x? y?
. LA I A—— 4
or a? _az(] _ ez> ( )

Hence (4) is the equation of the hyperbola, when referred to
the axes above indicated; for it is true when (3) is true, that
is, when P is on the hyperbola, and false when (3) is false,
that is, when P is off the hyperbola.

Since e > 1, the quantity a?(1 — €*) is negative; represent it
by — b%; then (4) becomes

T _ Y1, (5) where b*=a2(e2—1). (6)

@ B
This is the form in which the equation of the hyperbola is
usually written.
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126. The shape of the hyperbola. The shape of the hyperbola
" and its position relative to the axes may readily be inferred
from its equation [(5), § 125]

¢ _¥_4q

@ b
Solving this equation for y, y = + Q\/xﬁ S
a

Hence, y has imaginary values when 2? < o, the value 0, counted
twice, when 2® = o’ and two real values, equal numerically but

of opposite signs, when 2 > a% these values increasing indef-
initely (numerically) with @. Therefore (as indicated in the
figure) the curve consists of two infinite branches, one extending
indefinitely to the right from the line 2 = a, which it touches
at the point (a, 0), the other extending indefinitely to the left
from the line @ = — @, which it touches at the point (— a, 0).
And it is symmetric with respect to the z-axis.

Solving the equation of the hyperbola for x,

v=% VT,

Hence, for every value of y, « has two real values equal
numerically but of opposite sign, these values increasing
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numerically with y. Therefore the curve is symmetric with
respect to the y-axis.

127. If (2', ¥') be a point on the hyperbola, the same is
true of (—a', —y'); for if a"/a®—y?/0*=1, so also is
(—a")/a*— (—y')/b*=1. But the points (', y') and
(—2', —y'") are on the same straight line through the origin
C and are equidistant from C; hence the origin C is the mid-
point of every chord of the hyperbola which passes through
it; it is therefore called the center of the hyperbola.

128. The chord A4'A through the center and focus is called
the transverse axis of the hyperbola; its length is 2¢. One
half of A'A= A'C=C4=a is called the semitransverse
awxis.

129. The line through C perpendicular to 4'A does not
meet the hyperbola in real points; but that portion of it which
lies between the points B(0, b) and B'(0, — ) is called the con-
Jugate axis; its length is 2b. B'C= CB =10 is called the semi-
conjugate awis.

130. The chord L'L through F perpendicular to A'A is
called the latus rectum. Its length is 20%/a; for when @ = ae,

the equation of the hyperbola gives y = + 9\/(7(;_—“ =47
a a

131. The second focus and directrix. Referring to the pre-
ceding figure, on the z-axis and to the left of C lay off CF'
equal to CF, and OD' equal to CD, and through D' take S'R'
parallel to SE. It will then follow from the symmetry of
the curve with respect to the y-axis that F' is a second focus
of the hyperbola, and S'R' the corresponding directrix. (Com-
pare § 94.)

The coordinates of F' are (—ae, 0) and the equation of
S'R'isx+a/e=0.
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132. The distances of any point P(w, y) of the hyperbola from the
Joci F(ae, 0) and F'(—ae, 0) are ex — a and ex 4 a, respectively,
and the numerical difference of these distances is the constant 2 a.

For, referring to the figure, join FP, and let MP produced

1%

meet 8'R' in M, and the y-axis in N; then from the definition
of the hyperbola

FP=eMP= e(NP—— NM)= e(a: — 9);ex —a,
e

F'P=eM'P=e(NP+ M'N)= e( @+ 9) =ex+a,
e

and éllbtractlng gives | PP—FP| =2a.

133. Hence, an hyperbola may also be defined as the locus of a
point the difference of whose distances from two fixzed points is
constant. :

134. Conjugate hyperbolas. The reasoning of § 98 applies
in this connection also. Therefore, since the equation of the
hyperbola having the segment A'A(=2a) of the w-axis for
transverse axis, and the segment B'B(=2b) of the y-axis for
conjugate axis, is 2%/a? —9*/b*=1, the equation of the hyper-
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bola having B'B for transverse axis and A'A4 for conjugate
axis, is y*/0* —#*/a*=1. The two hyperbolas

22 2 2

Z-L=1(1) and %_3;1 (2
are called conjugate hyperbolas. The transverse axis of each is
the conjugate axis of the other. '

The eccentricity of (1) is given by the relation ¢?=1+ */a?,
the foci are the points (— ae, 0), (ae;, 0) and the directrices are
the lines 2+ a/e; =0, x — a/e;=0.

The eccentricity of (2) is given by the relation e’ =1 4 a?/0?
the foci are the points (0, — bey), (0, be,), and the directrices are
the lines y +b/e; =0, y — b/e; = 0.

In every case the eccentricity of an hyperbola is given by

the relation 14 (semiconjugate axis)? ®)

(semitransverse axis)®

=

And the foci and directrices are found from
CF = e (semitransverse axis), (4)
CD= (semitransverse axis)/e. . ®)
Since €12 =1+ b2/a% = (@ + b2)/a®; or a%e? = a? + b2,
and €2 =1+ a?/b% = (a? + b2)/b%; or b, = a2 + b?,
it follows that ae; = bes, and therefore, since the foci of (1) are (aey, 0),
(— ae1, 0), and the foci of (2) are (0, bes), (0, — bez), that the four

foct lie on a circle (22 + y2? = a? + b%), whose center is the center of the
two hyperbolas.

The circle x% + y2 = a? + b2 through the four foci cuts each hyperbola
in points which lie on a directrix of the other hyperbola.

For the elimination of 22 between the two equations 22 4 y2 = a2 4 b?
and 22/a% — y?/b2 =1 gives y2=10%/(a%+ b2), and therefore (since
b2/ (a4 b2) =1/e?), y=xb/es; and y="5b/es, y=—"b/e; are the
directrices of the hyperbola y2/b% — x2/a? = 1.

The line joining the focus of an hyperbola to a focus of its conjugate
passes through the point of intersection of the directrices of the two hyper-
bolas.

For it can be proved that the points (aei, 0), (a/ey, b/e2), (0, bes) are
on a straight line.
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135. A more general form of the equation of the hyperbola.
It also follows, as in § 99, that (x— ay)’/a* — (y —yo)*/0* =1
represents an hyperbola whose transverse and conjugate axes
coincide with the lines y —y,=0 and @ — 2, =0, their lengths
being 2 and 2b; and that (y — %)*/0* — (v — a,)*/a’ =1 repre-
sents the conjugate hyperbola. See the following figure.

v v oF
\\/
R U, R v
D R
® o’ () D E (xp40)
v Cc R C X,
v D’ R’
/—\
xo |E / xo |E
(¢] x o l)F’ X

Every equation of the form aa®+by*+2gx+2fy+¢=0, in
which a and b have opposite signs and (g°/a+ f*/b — ¢) 0, repre-
sents an hyperbola whose axes are parallel to the axes of coordinates.

For this equation can be reduced to one of the forms just
considered.

Example 1. Find the graph of the equation,
22 —3y2—2x 4+ 18y — 35 =0.

The equation may be written (22 —2x)—3(y2—06y) =35 1)
or, completing squares, (x*—2wx + 1) —3@2—06y+9) =385 +1—27,
that is, (x—12 =3y —3)2=9,

or finally %)—2 — i&_—‘zﬂ =1, (&)

which represents an hyperbola whose transverse and conjugate axes
coincide with the lines y — 3 = 0 and x — 1 = 0, respectively (the hyper-
bola at the left in the figure), its center being (1, 3).

Since @ =38, b =V3, and therefore e = V1 + 1/3 =2/V3, ae=2V3,
a/e =3V3/2. Hence the foci F'/ and F are the points (1 —2V/3, 3),
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(1+2V3, 3), and the two directrices D'R' and DR are the lines
x—1+3V38/2=0, 2 —1-3V3/2=0.

Applying this method to ax* + by2+2g9x + 2 fy +¢ =0,

a(x +g/a)? +b(y +1/0)2 = g*/a+ f2/b—c.

Hence, if a and b have opposite signs, and (¢g2/a + f2/b — ¢) 50, the
graph is an hyperbola whose axes coincide with the lines y + f/b =0,
x4+ g;a=0. Butif (¢92/a +f%b— c) =0, the graph is a pair of straight
lines. (Compare § 99.)

Example 2. Find the graph of 322 — 18y2 4 12 % + 24y 4 10 = 0.

Example 8. Find the equation of the hyperbola whose center is
(2, —8), and which passes through the points (3, —1) and (—1, 0).

Example 4. Find the equation of the hyperbola whose axes are par-
allel to the axes of coordinates, and which passes through the points (0, 1),
(0, - 1)7 (11 0)’ (37 1)'

Example 5. TFind the equation of the hyperbola having the lines
y —8 =0, and x + 2 = 0 for transverse and conjugate axes, respectively,
the semiaxes being V3 and V.

Example 6. Find the equations of the two hyperbolas which have the
lines 32z +2y =0 and 22 — 3y = 0 for axes, 4 and 3 being the semiaxes.

Example 7. Find the equation of the hyperbola whose eccentricity is

2, and of which (1, —1) and 32 +2y — 2 =0 are a focus and the corre-
sponding directrix.

136. The tangent and normal. The equations [§ 101, §102]
y=mx +Vam®+b® and az'/a® 4+ yy' /b*=1 of the tangent to
the ellipse were derived from the equation «’/a®+ y?/0*=1
by purely algebraic considerations. The same considerations
applied to the equation 2*/a* — »*/0% =1 will lead to results dif-
fering only in the sign of * from those obtained in the case
of the ellipse. Hence, for the hyperbola 2*/a* — 3*/b*=1:

1. The equation of the tangent whose slope is m is

y=ma + Vaim? — b 1)
2. The equation of the tangent at the point (2', 3') is
el T
I 1. )

a®
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It should be observed that (1) represents a real line only
when |m| = b/a.

From (2) it follows that the equation of the normal at the
point (z, Yy is ay'(w—a') + b2/ (y — y') =0. (3)

Ezample 1. Find the equations of the tangents to the hyperbola
5 2% — 4 y2 — 10 = 0 which are perpendicular to the line x 4+ 3y = 0.

Example 2. Find the equations of the tangent and normal to the
hyperbola 322 —4y2—8 =0 at the point (2, —1); to the hyperbola
y2 — 422 4+ 3y + 26 = 0 at the point (3, 2).

137. The tangent at any point of an hyperbola bisects the
angle included by the lines joining the point to the foci.

This theorem may be proved by the method used in proving
the corresponding theorem for the ellipse, § 106.

138. The asymptotes. The hyperbola has two tangents
whose points of contact with the curve are at an infinite dis-
tance from its center. They are called its asymptotes. See
figure in § 140. Their equations may be obtained as follows:

The line y = ma 4 ¢ (1) cuts the hyperbola a?/a* — 3*/b* =1 (2)
in two points whose abscissas are the roots of the equation

a?  (maw+c) -1

or (aPm® — b%) 2 + 2 ma’ cx + a®(c* + b?) =0. ®3)
The line (1) will therefore meet the hyperbola (2) in two in-
finitely distant coincident points, in other words, will be an
asymptote of the hyperbola, if the two roots of (3) be infinite.
But [Alg. § 638] the two roots of (3) are infinite if the coeffi-
cients of «* and of @ are 0, that is, if
) a?m?—b*=0 and 2ma’=0,
or, 1f m=4+b/a and ¢=0.

b

Hence the lines b
=- d _

are the asymptotes of the hyperbola a°/a® —y°/0* =1.
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The lines (4) are also the asymptotes of the conjugate hyper-
bola 3°/b* — a?/a® =1.

When a = b, the asymptotes (4) are the perpendicular lines
y=wand y=—2a. Hence the hyperbola a*—3*=a* is often
called the rectangular hyperbola. It is also called the equilateral
hyperbola.

By the method employed in this section the asymptotes of
an hyperbola may be found from its equation referred to any
axes whatsoever.

Example 1. Find the asymptotes of the graph of 4 2—y2—3 x — y=0.
The abscissas of the points where the line y = mx + ¢ cuts the graph are
the roots of the equation

(m? — 4)x? + (2 me +m + 3)x +(c* 4+ ¢)=0.

Both roots are infinite, if m2 — 4 = 0 and 2 mc¢ + m + 8 = 0, that is, if
m=2,¢c=—25/4,orif m=—2,¢=1/4.

Hence the asymptotes are y =22 — 5/4and y =— 22 + 1/4.

Example 2. Find the asymptotes of the hyperbola 3 x2 — 442 + 6 =0.

Example 3. The graphof 222 — 2y — 6y2+ 22 — 11y = 0 is an hyper-
bola ; find the asymptotes.

139. Conjugatediameters. Sincetheequation 2?/a*—y?/b?=1
of the hyperbola differs from the equation 2*/a?+ y*/6*=1 of

(xp015)

Gy

the ellipse only in the sign of % it follows as in §108 that if
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the slopes of two lines y =ma and y = m'z through the center
C are connected by the relation

b2
mm' = et @

each of these lines will bisect all chords of the hyperbola
which are parallel to the other. Two such lines are called
conjugate diameters of the hyperbola.

The portions of two conjugate diameters which are on the
same side of the transverse axis are also on the same side of
the conjugate axis. For since 0%/’ is positive, it follows from
(1) that m and m' are of the same sign.

Of two conjugate diameters y = ma, y = m'z, only one meets
the hyperbola in real points. For it follows from (1) that if
|m| < b/a, then|m'| >b/a; butif |m'| > b/a, the line y =m'z
will not meet the hyperbola in real points.

140. Properties of conjugate diameters. 1) Let P(a2', y")
denote any point on the hyperbola

a9

Z L=, 1

a® b @)
Then the equation of CP, the diameter through P, and that
of CQ, the diameter conjugate to CP, are

_y . ' yy'
y_;a, (2) and ?——b—z__(), 3)

respectively. For both (2) and (3) represent lines through the
center C'; (2) is satisfied by #=2', y=y'; and the slopes of
(2) and (3) are connected by the relation mm'=0*/a’

Observe that (3) represents a line parallel to the tangent to
1) at (@', y'), namely ax'/a®— yy'/0®=1. Hence the tangent
at any point P of an hyperbola is parallel to the system of
chords bisected by the diameter through P.

2) Since the diameter (2) meets the hyperbola (1) in real
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points, its conjugate (3) does not. But (3) does meet the con-
jugate hyperbola s 9
¥ 24 4)
v o
in real points, namely the points whose abscissas «'’ and ordi-
nates y'" are given by the equations

./U” ?/I ?/H w!
—=4< and L =+=— 5
@ = b b = a’ ®)

as may be shown by solving (3) and (4) for @, y, and taking

account of the fact that (a', »') lies on (1) so that
«?/a?—y”?/b*=1. [Compare § 111.]

3) Let Q(2', y'") denote one of the points where (3) meets
(4), and let PT be the tangent to (1) at P(2', y'), and QT the
tangent to (4) at Q(a", y'"). The area of the parallelogram
CPTQ is constant and equal to ab.

For since the parallelogram CPTQ is twice the triangle
CPQ, it follows from § 53 and the equations (5) that

2 7
C’PTQ:w’y”—w”y’:w”l—)—y’zgz oi_y_o ab = ab.
a b \a* ¥V
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4) It can also be proved that CP?— CQ® is constant and
equal to a®— 4% For ’
OP2 — OQz =" 4 1/12 2 ynz

2 2

o

=Ly Ly e
A Ui
12 19
= (”; ~ %) (02— ) = a2 — b,

5) If CP=a' and CQ =1, the equation of the hyperbola
referred to the conjugate diameters CP and C'@), as oblique axes,
is x? o )

FE

For, consider the cylindrical surface perpendicular to the
plane of the hyperbola on the figure of page 111; and take that
plane containing C'7" which cuts the cylindrical surface so that
the lines, whose projections are CPand CQ, are at right angles.
Then, exactly as in § 121, since the equation of the curve in
this eutting plane is 2*/a,® — /0> =1, the equation referred to
the oblique axes OP and CQ is "/a” —y'*/b” =1, as was to be
proved.

Example 1. Find the diameter of the hyperbola 3 22 — 2 y2 = 4 which
bisects all chords parallel to the line 22 — y 4+ 3 = 0.

Example 2. Referring to the figure of page 111, prove that a line drawn
to join P and @ will be bisected by the asymptote y = (b/a)x, and that
this asymptote passes through the point T where the tangents at P and ¢
meet, as is indicated in the figure.

Example 8. TFind the equation of that diameter of the hyperbola
3 a2 — 4 y2 = 8 which passes through the point (2, — 1); also the equa-
tion of the conjugate diameter; also the points where this conjugate
diameter cuts the conjugate hyperbola 4 y2> — 3 a2 = 8.

Example 4. TFind the sine of the angle included by the pair of conju-
gate diameters obtained in the preceding example.

Example 5. Find the equation of that diameter of the hyperbola
%2 — 2y2+ 6 ¢ — 3y = 0 which bisects all chords whose slope is — 2.
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141. The equation of the hyperbola referred to its asymp-
totes. The equation of an hyperbola referred to its axes may
be written (ay + bz)(ay — bx) + a’b* = 0. @

The asymptotes are the lines

ay+bx=0 (2) and ay—bax=0. (3)

Call the lines (2) and (3) Ca' and Cy', respectively ; it is re-
quired to obtain the equation of the hyperbola when referred
to Cx', Cy' as the axes of coordinates.

Let P denote any point on the hyperbola. Take PD and
PE perpendicular to Cx' and Cy', respectively, and represent
their lengths by p, and p,.

Again, take PF and PG parallel to Ca' and Cy', rospectively ;
if o, y' denote the coordinates of P referred to Cz', Oy, then
FP=ga'and GP=y' )

Finally let 2 « denote the angle 2'Cy'.

Then by § 50, since
P lies above Cz' and below Cy', ’

ay + bz ' ay — b .
1 =p=y'sin2¢ L =—p,=—2a'sin2a (4
NEFE ' VEF B ’ @

Hence (ay + b2)(ay — bx) = — 2'y' (a* + %) sin2 a. ®)
But tan e=b/a; hence, cos’a=a*/(a’+b%),sin® a=0%/(a*+1%),
and therefore
sin® 2 ¢ = 4 sin® & cos® & = 4 «’0*/(a® + b*)%
X v
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Thereﬁore, substituting in (5),

(ay + bx)(ay — ba) =— 4 a’b%2'y'/(a® + VD). 6)

Substituting this expression for (ay + bx)(ay — bx) in (1) and
simplifying

42y =a®4 b7 )
the equation required.

Observe that it also follows from the equations (1) and
(4) that p,p, = a’®/(a®+ 7, that is, that the product of the
perpendicular distances of any point P of an hyperbola from
its asymptotes is constant. This property of the hyperbola
is independent of the position of the curve in the plane.
Hence, if 1, =0, I, = 0 denote any two intersecting lines, the locus
of a point P(x, ), the product of whose distances p,, p, from
L,=0,1,=0 is a constant, is an hyperbola having , =0, l,=0
Jor asymptotes.

Example 1. Find the equation of the hyperbola whose asymptotes
are x+y—3=0 and y—2x =0, and which passes through the
point (1, 3).

Since the distances of any point P(z, y) from the lines x +y —3 =0
and y — 2x =0 are proportional to = 4y — 3 and y — 2, respectively
[§ 60], the required equation has the form (x +y — 3)(y — 2%) =¢. But
since the hyperbola passes through the point (1, 3), this equation must be
satisfied by *=1, y=3. Hence ¢=1 and the required equation is
(x+y—-3)(y—2x)=1

Example 2. Find the equation of the hyperbola whose asymptotes are
the lines 2 + 2y —3 =0 and 32 — y + 6 =0, and which passes through
the point (3, — 2).

Example 3. Find the equation of the hyperbola whose asymptotes are
the z-axis and a line parallel to the y-axis, and which passes through the
points (0, 4) and (— 1, 2).

142. Exercises. The Hyperbola.

1. Find the vertices, foci, directrices, and asymptotes of each of the fol- '
lowing hyperbolas, drawing the graph in each case:
(1) 522 — 4y2=20, (3) 492 —b5a% =20,
(2) 9a%2—16y2 =12, 4) 9y2—Ta2=1.
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2. Find the axes, center, foci, and directrices of each of the following,

drawing the graph in each case :
1) 3x2—y2+4y—T7=0,
@) b2 —4y2+10x+4y—16=0,
3) 922 —16y%2 - 18— 64y +19=0,
4) 202—-3y2—bx—Ty+20=0.

3. Prove that 422 —4y%2+ 42+ 24y — 35 =0 represents a pair of
straight lines, and find the equations of these lines.

4. Find the equation of the hyperbola whose transverse and con-
jugate axes coincide with the lines x — 4 = 0 and y 4+ 5 = 0, respectively,
their lengths being 6 and 8. Find the equation of the conjugate hyper-
bola also.

5. Find the equation of the hyperbola one of whose foci is the point
(0, 1), and the corresponding directrix the line x + y = 6, the eccentricity
being 2.

6. Find the equation of the hyperbola whose transverse and con-
jugate axes coincide with the lines x — 2y =0 and 2x + y = 0, respec-
tively, their lengths being 2 and 6.

7. Find the equations of the tangents to 2 22— 3y2 =1 which are

(1) parallel to the line y =4z,
(2) perpendicular to the line 5y 4+ 2 = 0.

8. Find the equations of the tangents to 2 22 — 3 y2 =1 which make
an angle of 45° with the z-axis. Show that the slope of no real tangent
to this hyperbola can be less than v2/3.

9. Prove that the equation of the tangent to y2/b2— a2/a%2=1 is
¥y =mx + V— am? + b

10. For what value of X will the line 2y =3 x 4 X touch the hyper-
bolax? —3y2=12?

11. Find the equations of the tangent and normal to 922 — 832 =1 at
the point (1, — 1) ; also at the point (5/3, V38).

12. Find thé equations of the tangents to x2/16 — y2/9, =1 at the
extremities of the latera recta.

13. Find the equations of the lines which touch both the ellipse
4 22 + 9 y2 = 36 and the hyperbola 22 — y2 = 16.

14. An hyperbola whose axes are parallel to the axes of coordinates
passes through the points (1, 0), (0, 2), (-1, 2), (38, —1). Find its
equation.
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15. An hyperbola whose axes are parallel to the axes of coordinates
passes through the points (0, 0), (1, 1), (—1, —2), (2, —2). Find its
equation.

16. Find the equations of the asymptotes of each of the following,
drawing the graph in each case:

D 2y =4,

@ @E-y @E+y-2)=1,

3) 6y2—422+20y+4x+4=0,

(4) 2224+ 2y—3y>+3x+Ty+1=0
B) 222 +3wy —2y*+32x+6y+8=0.

17. The asymptotes of an hyperbola are the lines 2g4 y =0 and
224y =0; if the curve passes through the point (3, ——K what is its
equation ? L3

18. An hyperbola hasthe lines 3242y —1=0 and 2o — 3y—56=0
for asymptotes and passes through the point (2, 1). Find its equation.

19. TFind the equation of the hyperbola whose axes coincide with the
coordinate axes and which passes through the two points (2, 8) and
(_ ls 4)'

20. An hyperbola whose asymptotes are parallel to the axes of coordi-
nates passes through the points (2, 5), (3, 2), (— 2, 8). Find its equation.

21. If ¢ and e’ denote the eccentricities of two conjugate hyperbolas,
prove that 1/e2 + 1/e/2=1.

22. Prove that the perpendicular distance from a focus to an asymptote
of 22/a2—y2/02=11s b.

23. Prove that for all values of ¢ the point (a sec ¢, b tan ¢) is on the
hyperbola «2/a? — y2/b* = 1.

24. Prove that an ellipse and an hyperbola which have the same foci
intersect at right angles.

25. What diameter of 4 22 — 5 2 — 20 is conjugateto 5z +2y =0°?

26. Find the points where the diameter of 22/2 — 32 =1 which is
conjugate to that through the pomt( 2, 1) meets the con)uﬂate hyper-
bola y2 —x2/2 =1.

27. If a straight line cut an hyperbola at the points P and P’ and its
asymptotes at the points R and R/, prove that the mid-point of PP will
also be the mid-point of RR'.

28. Prove that the distance of any point of a rectangular hyperbola
2% — y2 = ¢? from the center is a mean proportional to its distances from
the foci.
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29. Assuming that the equation of the tangent to the hyperbola
4 xy = a? + b2 at the point (%1, ¥1) is 2(xy: + x1y) = a? + b2, prove that
the portion of the tangent intercepted by the asymptotes is bisected at
the point of tangency, and that the area of the triangle bounded by the
asymptotes and the tangent is constant for all positions of the tangent.

30. Prove that the diameter of 4 xy = a2 + b2 conjugate to y — max =0
isy + mx =0.

31. The tangent to an hyperbola at P meets one of the asymptotes in
the point 7', and 7'Q) is taken parallel to the other asymptote and meeting
the curve in the point . Prove that if P meets the asymptotes in the
points R and §, the line RS will be trisected at P and .

32. Through any two points P and @ of an hyperbola, lines are drawn
parallel to both asymptotes, forming the parallelogram PR@S. Prove
that the diagonal RS passes through the center.

33. The tangent to an hyperbola at the point P meets the conjugate
hyperbola in the points B and §. Prove that P is the mid-point of RS.

34. Prove that if an hyperbola has a pair of equi-conjugate diameters,
it is a rectangular hyperbola.

35. Prove that the eccentricity of an hyperbola whose asymptotes in-
clude the angle 2 « is sec c.

36. Prove that the portion of an asymptote of an hyperbola which is
intercepted between the directrices is equal to the transverse axis.

37. Prove that the tangents at the vertices of an hyperbola meet the
asymptotes on the circle of which the line joining the foci is a diameter.

38. If the ordinate of any point P on an hyperbola be produced to
meet the nearer asymptote at ¢, and QR be then taken perpendicular to
the asymptote to meet the transverse axis at R, prove that the line PR
will be the normal at P.

39. Prove that the bisectors of the angles between the lines joining any ,
point on a rectangular hyperbola to the vertices are parallel to the
asymptotes.

40. The asymptotes of an hyperbola are the lines y=0 and 3y—4 =0
and it passes through the point (2, 2). Find its equation, the equations
aud lengths of its axes, its vertices, eccentricity, foci, and directrices.




CHAPTER VII
TRANSFORMATION OF COORDINATES

143. Transformation of coordinates. From the equation of
a curve referred to a given pair of lines as axes may be derived
its equation referred to any second pair of lines as axes. The
process is called the transformation of coordinates.

144. To change the origin without changing the direction of the
axes.

Let Ox, Oy be the original axes, and O, Oy, parallel to
Oz, Oy, respectively, the new axes. And let =z, y, denote
the coordinates of the new
origin O, referred to the
axes Oz, Oy.

Take any representative
point P, and take PGF
parallel to Oy and Oy, and
meeting Ox and O, at F
and @, respectively. Then, if 2, y denote the coordinates of P
referred to the axes Ox, Oy, and =, y, its coordinates referred
to the axes Oyx,, Oy, the following relations hold good:

2= OF = OF + 0,G =z, + x,,
y=FP=FEO, + GP=y+ .
Hence the equation of any curve referred to the axes Oz, Oy

may be transformed into its equa.tlon referred to the axes O,
Oy, by the substitution

r=w+ % Y=Y+ Y. )
The solution of these equations for x, and y, gives
L=2— T Y=Y Y- 2)

118
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Observe, as in the two following examples, that this trans-
formation will leave unchanged the coefficients of the terms of
highest degree in any equation to which it is applied.

Eaéample 1. What does y2—4y + 2 =0 become when the origin is
transferred to the point (4, 2), the directions of the axes remaining
unchanged ? ‘

The transformed equation, obtained by setting x =2, + 4, y = y1 + 2,
is (y1 +2)2 — 4(y1 + 2) + (1 + 4) = 0, or simplifying, y,2 + 2, = 0.

Example 2. By change of origin, transform 22 —2xy 42z —6y =0
into an equation which lacks the terms of the first degree.

Let the coordinates of the new origin be (k, k), and in the given equa-
tion substitute x =%y + &, y = y1 + k. It becomes

(@1 +h)?2=2@x + )1+ 8 +2@+h)—6(y1+ k) =0,
or, expanding and collecting terms,
22 —2x1+2(h—k+ Dx1—2h+3)y1 + (B2 —2hk+2h —6k)=0.

This equation will lack the z; and y; terms, if h— %k +1=0 and
h+3=0; thatis,if h=—3and t=—2. And when h=—38,k=—2,
the transformed equation becomes

P —21y1+3=0.

145. To change the directions of the awes without changing the
origin, both pairs of axes being rectangulasr.

Let Owz, Oy be the original axes, and O, Oy, the new axes,
and let ¢ denote the angle xOx,(= yOy,).

Take any representative
point P, whose coordinates"
referred to the axes Oz, Oy
are z, ¥, and let x,, »,, denote
its coordinates referred to
the new axes Oz, Oy,.
Then y, and «, are the perpen-
dicular distances of P from
Oz, and Oy, respectively.

Since tan ¢ =sin ¢ /cos ¢, the slope equations of the lines
Oz, and Oy, referred to the axes Oz, Oy, may be reduced to

ycos ¢ —axsing =0 and ysin ¢ + xcos ¢ =0.
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Therefore, since the sum of the squares of the coefficients of
2 and y in each of these equations is 1, the perpendicular dis-
tances of P(z, y) from Oy, and Ox;, namely @, and y,, are [§ 50],

xy=ysin¢+xcos¢p, Yy =ycose¢—xsinep. (€H)
Solving these equations for @, y in terms of z, y,,
r==u,c08 ¢ —y;sing, y==w,sin ¢+ y,cos ¢. 2

Hence the equation of a curve referred to the axes Oz, Oy
may be transformed into its equation referred to the axes Oz,
Oy, by the substitution (2).

Observe that this transformation will leave the constant
term in the equation unchanged.

Example 1. Transform 24 4xy + y2 =2 (referred to rectangular
axes) to axes bisecting the angles between the given axes.

Here, the angle ¢ made by the axis Ox; with Ox is 45° or /4 ; and
sin 45° = cos 456° = 1/V2. Hence & =(x; — ¥,)/ V2, y =(x1 + 1)/ V2,
and this substitution transforms the given equation into one which when
simplified is 8 ;2 — y,2 = 2.

Example 2. Prove that by the substitution z = x; cos ¢ — y; sin ¢,
y =21 sin ¢ + y; cos ¢, any equation of the second degree referred to
rectangular axes, namely :
ax? +2hxy +by2 +2gx+2fy +c=0

can be transformed into one which lacks the ay term.
The terms of the second degree, ax? + 2 hay + by?, which alone need
be considered, are thus transformed into
a(xy cos ¢ — yysin )2 + b(x; sin ¢ + y; cos ¢)?
+ 2 k(w1 cos ¢ — y; sin @) (1 sin ¢ 4 y; cos ¢).
The sum of the 2,9, terms in this expression when expanded is
2191 [ (b — @)2sin ¢ cos ¢ + 2 h{cos? ¢ —sin? ¢)];
that is, the coefficient of x,y, is
(b—a)sin2¢ +2hcos2¢,
and this will be zero, if ¢ be given such a value that
(b—a)sin2¢ =—2hcos2¢,
2h

or tan2 ¢ = ———.
¢ a—2>b
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Example 3. Transform the equation 522 —4xy +2y2=6 (1) into
one which lacks the product term.

2 h —4 4 2 tan ¢
H tan2¢ = =" = =—=; dtan2¢ = 2 2"% .
e g T g g M= s
’ 2tang _ 4
Hence 1—tanzg¢ 3
or 2tan2¢ —3tangp — 2 =0. : @)
Solving, tan ¢ =2 or — 1/2.

Selecting the positive value, 2, of tan ¢, so that Ox; may mal{e a
positive acute angle with Ox, we find cos ¢ =1/ V5 and sin ¢ = 2/V5.
Hence the required substitution is

x =1 —2y1)/ V5, y=2x:+y1)/V5. _ (8)
By this substitution the given equation (1) is transformed into
S(a1—291)° 4@ —2y)@a+y) | 2@+ y)?_g
5 5 b
which, when simplified, becomes
224+ 6y2=86, : @

an equation which lacks the product term, as it should.

146. The transformations (1), § 144, and (2), § 145, are the
only ones often required in practice. But it is not difficult
to show in general (by projection on the two perpendiculars
to Oy and Ow, respectively) that the formulas for the transfor-
mation from any axes Ow, Oy, rectangular or oblique, through
O, to any other axes Oz, Oy, through O are

@ sin (xy) = @, sin (@,y) + ¥, sin (y1y) 3
y sin (yz) = x, sin (2,2) + ¥, sin (y,2) |’ @)
where (xy) denotes the angle made by Oy with Oz, and so on.

147. As the substitutions (1) of § 144, (2) of § 145, and (3)
of § 146 are all of the first degree in both z, y and =, y,, and
any transformation of coordinates may be effected by these sub-
stitutions singly or combined, the degree of an equation is not
raised by the transformation of coordinates. And it cannot
be lowered; for if it could, the transformation back to the
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original axes would give an equation of lower degree than the
original equation. But, as the examples given above have
shown, it is often possible to simplify the form of an equation
by this process of transformation.

148. Exercises. Transformation of coordinates.
1. Transform 22 4+ y — 1 = 0 to axes parallel to the given axes through
the point (2, — 3).

2. What do the equationsy —x —1=0, y —2x — 1 =0 become when,
without changing the directions of the axes, the origin is transferred to
the point of intersection of the lines which the equations represent ?

3. Transform each of the following equatlons to axes parallel to the
given axes, through the origin indicated :

(@) 2+ y2—4x+2y =0, 0y (2, — 1).
() 822 —2y2+6x+ 12y — 16 =0, 0, (—1,3).
(c) 422+ 42x—y—4=0, 0, (—1/2, —5).

4. By change of origin transform each of the following equations into
one which lacks the terms of the first degree:
(@) 3a2+2y?—12x+8y+19=0.
) x2—3y2—102x+12y +12=0.
5. Prove that the method employed in Ex. 4 fails in the case of an
equation (x + Ay)2 + 2 gx + 2fy + ¢ = 0 whose terms of the second degree
form a perfect square.

6. What does the equation 22+ 2V3axy —y2 =4 become when the
rectangular axes are turned through an angle of 30°?

7. Prove that every equation of the form 2 4 2 hxy + y2 + ¢ =0 may be
rid of the xy terms by turning the rectangular axes through the angle =/4.

8. Transform each of the following into an equation which lacks the
product term :
(a) 8x2 —3ay — y2=>5. ) 3224 122y —2¢y2—142 =0,
9. Find the substitution for transforming to the rectangular axes whose
equations referred to the given axes are

Or;:4y—3x=0, Oy;:3y+4x=0



CHAPTER VIII

THE GENERAL EQUATION OF THE SECOND DEGREE.
SECTIONS OF A CONE. SYSTEMS OF CONICS

149. Graphs of equations of the second degree. The formulas
(3) of § 146 will change any equation of the second degree in
oblique coordinates to one in rectangular coordinates, and then
the turning of the axes through an angle ¢, given by the
equation tan2 ¢ =21/(a — b), will make the product term
disappear [example 2 of § 1457]; hence

Every equation of the second degree in oblique or rectangular
coordinates can be reduced to the form

ar+ byt +29x+2fy+c=0
‘referred to rectangular axes.

‘But it has already been proved that every equation of this
form represents a parabola [§ 75], an ellipse [§ 99], or an
hyperbola [§ 135], except when it is a product of factors of
the first degree or when it has no real solution. Hence, except
in these latter cases:

The graph of every equation of the second degree in z, vy, re-
ferred to oblique or rectangular axes, is a conic.

150. Condition that the equation represent a pair of straight
lines. The equation

ar’+2hey + by +29x+2fy+¢=0 @

will represent a pair of straight lines when, and only when, its
left member is the product of two factors of the first degree.

The condition for this may be found as follows:
123
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If b0, solve (1) for y in terms of x; the result may be
written by =— (hx+f)+ \/1_‘3, @)
where R=(1*—ab)a®+ 2 (hf — bg) > + (f*— be),
and this will represent two straight lines (one for each sign

before the radical) when, and only when, R is a perfect square.
But the condition that R be a perfect square is [Alg. § 635]

(hf— bg)* — (W2 — ab) (f*—bc) =0.
This condition when expanded (and the factor b, which is not 0,
is omitted) reduces to
abc — af? — by — ch® + 2 fyh =0, 6))
which may be written in the determinant form:
a h g
D=L b f|=0. 3"
g f ¢

If b=0, but a0, the same conclusion may be reached by
solving (1) for « in terms of y.

If both @ and b are 0, the equation (1) will have the form
2hxy+2gx+2fy+c=0 where hs=0. If the left member of
this equation be the product of two factors of the first degree, .
these must be of the form =+ A and y + u, and such that

2hay+ 292+ 2fy+c=2h(x+ 1) (y+p)
=2hay + 2 hpx + 2 hay + 2 hap.

But this identity will be satisfied when, and only when,
g=hp, f=hr c=2hp,

and values of A and p satisfying these three equations exist

when, and only when, 2gf = he,

a relation which is equivalent to (3), when a =0, b=0, and
h=0.

Hence, in every case (3), or (3"), is the condition that the
equation (1) shall represent a pair of straight lines. The
determinant D is called the discriminant of the equation (1).
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Example 1. Show that 3x2+4 2xy —y?+ 14x + 2y + 15 =0 repre«
sents a pair of straight lines, and find the equations of these lines.
Substituting in (3) gives
D=3.(—1)-16—-3.1241.72-15.1242.1.7.1=0,
Hence the equation represents a pair of lines. To find the equations
of these lines, solve the equation for y. It may be written

-2+ Dy—Bat+ 1424 15)=0.

Hence y=2+1+V(x-+1)2+ 322+ 142 +15,
or y=x+ 14+ V4ia®+16x+ 16,
that is, y=38x+56, or y=—1x —3.

Therefore, the linesare y —8x —5=0andy +2+3 =0.

Example 2. Show that 922 — Gy + y2+ 6x — 2y — 15 = 0 represents
a pair of straight lines, and find the equations of these lines.
Substituting in (3') gives

9 —3 3
3 -1 —15

" since the first row (or column) is the second multiplied by — 3.

Hence the equation represents a pair of straight lines. The equations
of these lines may be found as in Ex. 1, or by factoring the left member
of the given equation by inspection. They are

3x—y+b=0and 8x—y—3=0,
which represent parallel lines.

Observe that whenever, as in this case, D = 0, and the terms of the
second degree (here 9x2 — 6 xy + y2) form a perfect square, the equation
represents a pair of parallel lines.

151. Tt may be added that when D=0 and the equation
§ 150, (1) therefore represents a conie, (2) supplies a conven-
ient means of finding points on this conic and so constructing
it. For (2) gives two real values for y for each value of @ for
which R is positive. Corresponding to these values of y there
are two points on the conic which may be found by drawing the

line by — (IL.’I? +f),

and then increasing and diminishing its ordinate for the value
of # in question by the value of VB /b. From the following

.
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examples it will be seen that, according as the coefficient of a?
in R, namely 2* —abd, is <, >, or = 0, the graph is an ellipse,
an hyperbola, or a parabola. The axes may be rectangular or
oblique. [Compare also Alg. § 668.]

Example 1. Find the graph of 2 — 22y + 222 — 52 =0, N ¢))]
Solving for y, y=x+Vhx — % @)

The values of y given by (2) are real when 5% — 22, or z (5 — %), is
positive (or 0), that is, when z lies between 0 and 5. Hence, the graph
of (1) lies between the lines x = 0 and 2« = 5.

‘When z = 0 and when « = 5, the values
of y are equal, both being 0 when =0 and
both being 5 when x = 5. Hence the graph
touches the line = 0 at (0, 0) and the line
x=>5 at (5, 5). The line y = x joins these
points of tangency.

For each value of = between 0 and 5 the
equation (2) gives two real values of y, ob-
tained by increasing and diminishing the
value of 2 by that of V52 — 2 The cor-
responding points on the graph may be ob-
tained by drawing the line y =« and
then increasing and diminishing its ordinate for the value of z in
question by the value of V5x — 22

Thus, when =0, 1, 2, 3, 4, 5.
we have on line y =2, =0, 1, 2, 3, 4, 4.
and on graph of (1), y =0, 142 2+V6,3+V6, 442 5.

The graph is therefore the ellipse represented in the figure. As the

line y = x bisects all chords parallel to x =0, it is a diameter of the
ellipse [§ 108].

Example 2. The equation y2 — 2 2y + 5% = 0 when solved for y gives
y =x 4 Va2 — 5 ; prove that the graph is an hyperbola.

Example 3. The equation y2 —2uxy + 22— 5x = 0 when solved for
y gives y =« + V5 x; prove that the graph is a parabola.
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152. Central Conics. Determination of the center. It re-
mains to show how to t1ansf011n the equation of a conic given
in the general form,

ar’+2hey+ by +29x+2fy+c=0 @

into its equation referred to its axes, if it be an ellipse or hyper-
bola, or to its axis and the tangent at the vertex, if it be a
parabola.

By the substitution » =, + 2, ¥ = 1+ ¥, the equation (1)
will be transformed to axes parallel to the original axes and
passing through the point (xy, ;). The result may be written

az,® + 2 hayyy + by + 2 @y (awy + hyo + g) + 2 y1 (haey + by, +5)
+ axe? + 2 hagy, + by’ + 2 g0+ 2 fyo + ¢ = 0. 2)

The coefficients of both a, and ¥, in (2) will be zero, if a, ¥,
can be so chosen that

awy+hyy+9 =0 (3) and ha,+by,+=0; (4)
and finite values of a, y, satisfying (3) and (4) always exist
except when ab — 1*=.0; for solving (3), (4),

_hf—0g hg —af
ab — h-” Yo= ab — ®)

Hence, if ab — h*+0, the equation (1) can be transformed
into an equation of the form

az® 4 2 hay, + by* +¢' =0 (6)

Xy =

where
' = awg’ + 2 hagyy + byy’ 4 2 g+ 2 fio + ¢
= @ (a@ + hyo + 9) + Yo (hwy + byo +1) + (9% + fio + )
=gx,+ fyfo+ ¢ [by (3) and (4)] )
=g W20 p M= o oy 3)]

abc — af —bg*—ch*+2 fgh
ab — h?

that iS, c' =

D
ab—nt ®
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The new origin O, (wy, ¥y) is the center of the conic repre-
sented by (1) or (6). For if (6) be satisfied by », ==, y, =/,
it is also satisfied by #, = — @', yy =—y,'; that is, all chords of
the conic (6) which pass through O, are bisected at O,. The
conic is therefore either an ellipse, or an hyperbola, unless
¢' =0, when (6) or (1) will represent a pair of straight lines
intersecting at O, (@, ¥)-

Example. Transform 522 —4axy+2y2—16x+4y+8=0 to the

center of the conic represented by the equation as origin.
Here the equations [(3), (4)] for finding the center are

bxo—2y—8=0, —2x0+2y0+2 =0,
which, when solved, give xo = 2, yo = 1.
Substituting these values for x,, 7, in (7), gives
¢=(—8)-24+2-1+8=~—6.
Hence the required transformed equation is
52— 42y + 2y2—6=0.

153. If ab—2*= 0, the equations (3), (4) of § 152, have no
finite solution, and therefore the conic represented by (1) has no
center in the finite region of the plane. It is a parabola [see
§ 158], or, if D=0, a pair of parallel lines [§ 150, Example 27.

154. Centralconics. Determination of the axes. It will next
be shown how to transform the equation of a conie referred to
any'rectangular axes through its center [§ 152, (6)], into its
equation referred to the axes of the conic as axes of coordi-
nates. First consider the following example.

Example. Find the equation of the conic 522 —4xy +2y2=6 (1)
when referred to its axes as coordinate axes.

Call the axes of the conic Ox;, Oyi. Since they are perpendicular,
their equations have the form :

Oxy: y— e =0, (2) Oy1: \y+2=0. 3)
The coordinates (x1,y:) of any point P(zx, y) referred to Ox;, Oy, as
axes, are the perpendicular distances of P from Oy;, Ox;, respectively ;

A+

: , =L 4)
24+

hence X = n
2+ 1)
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It follows [§ 99, § 135] that the equation of the conic (1) when
referred to its axes Ox;, Oy; as axes of coordinates is of the form

Az + By? — 6 = 0. ®)
Hence it is required to find values of \, 4, B, such that

2 o 4Ny +2)? Yy — \x)?
5x—4xy+2y=:1()\{2+1? +B(J)\2+1) . (6)
‘When cleared of fractions and expanded, (6) becomes
BN + 1D —4 (N2 4 Day + 2(\2 + 1)y?
=+ BN)x? + 2(A — B) ay + (AN 4+ Byt (1)
- The identity (7) will be satisfied if the corresponding coefficients are
equal, that is, if

A+ BN =502+1), ®)
AN+ B =202 +1), C)
(A—B)A=—20\2+ 1). (10)

To solve these equations for \, 4, B, first subtract (9) from (8). The
result is

(A— B)(1 —\2) =302+ 1). (11)

Then divide (11) by (10). The result when simplified is
22 —372—2=0. 12)
Solving (12), A=2, or —1/2,
Substituting A =2 in (8) and (9) and solving for 4 and B,
A=1 B=6.
Since A = 2, 4 =1, B = 6, the equations (2), (3), of the axes are
Oxy: y—2x =0, Oyi: 2y +2x=0,

_and the equation (Sj of the conic is
2 2
224+ 6y,2=6, or —%-{-g—/i—zl.

155. In general, if the equation of the conic referred to
rectangular axes be given in the form

ax? + 2 hay + by 4" =0, @
its equation referred to its axes may be found as follows:
Call the-axes of the conic O, Oy,; since they are perpen-
dicular, their equations have the form:
Ox: y— =0, (2) Oy, : ANy 4+ 2=0. 3)

K
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The coordinates (z,, ,) of any point P(x, y), referred to Oz,
Oy, as axes, are the perpendicular distances of P from Oy, and |
Oz, respectively. IHence

A Az
%:_li%, g = ﬁ__E )
W +1)* W+1)
The equation (1), when referred to Ox,, Oy, as axes, is of the
form Aw? + By +¢' =0. )
Hence it is required to find values of A, 4, B, such that
ax? + 2 hay + by = A (M/ + 2)” + B (U M")z. (6)

N+1 AM+1
‘When cleared of fractions and expanded, (6) becomes
a(A? +1D)a? + 2 h(A* + D)y + b(A* + 1)y?
= (44 B\)2* + 2(A — B)axy + (AN + By, (7)
This identity will be true if its corresponding coefficients are
equal that is, if A, 4, B satisfy the following equations:

A+ BN =a(\+1), 8
AN + B=b(A2+1), 9)
(A— B)x =h(X*+1). (10

To solve these equations for A, 4, B, subtract (9) from (8).
The result is

A—-BA - =(a—b)A*+1). (¢h))
Then divide (11) by (10). The result, when simplified, is
A4 (@ —d)A —h =0. 12)

The discriminant of (12), namely (a — b)*+ 4 /% is positive ;
hence the roots of (12) are real [Alg. § 635]. Moreover, since
the coefficients of A?and the absolute term are equal numerie-
ally but have opposite signs, the product of the roots is —1;
that is, one of the roots is the negatlve reciprocal of the other
[Alg. § 636].

Take the positive root of (12) as the value of A, substitute
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this value of A in any two of the equations (8), (9), (10), and
then solve these two equations for 4 and B. TFinally, substi-

- tute the values A, 4, B thus obtained in (2), (3), and (5). The
results will be the equations of the axes Ox,, Oy,, and the equa-
tion of the conic referred to Ox,, Oy, as coordinate axes.*

156. Returning to the equations (8), (9), (10), of § 155 add
(8) and (9) and simplify; the result is

A+ B=a+b. (13)

Again multiply (8) by (9), and from the result subtract the
square of (10); the final result, when simplified, i.s

AB=ab — 1. 14)

If in the transformed equation (5), 4 and B have the same
sign, (5) represents an ellipse (real or imaginary, according as
the sign of ¢' is opposite to or the same as the sign of 4 and
B). On the other hand, if 4 and B have opposite signs, (5)
represents an hyperbola. Therefore, since AB is positive or
negative according as 4 and B have the same or opposite signs,
it follows from (14) that

If the graph of ax*+ 2hay+ by +2gz+ 2fy +¢c=0 is a
proper conic, that s, not a pair of straight lines or imaginary,
this conic is an ellipse when ab — h*>0, and an hyperbola when
ab — W< 0.

157. The values of 4 and B may be found without carrying
out the reckoning of § 155, namely, by forming and solving the
equations (13) and (14) of § 156. Two solutions will be thus
obtained, but since A is positive, it follows from § 155, (10)
that the one to be selected is that for which 4 — B has the
same sign as k. Hence the rule:

* It should be observed that the equations (4) are the same as the sub-
stitution of § 145, (1), expressed in terms of N =tan ¢ instead of sin ¢
and cos ¢, and that the value of N\ = tan ¢ obtained by solving (12) is the
same as that found in § 145, Ex. 2, to meet the requirement that the trans-
formed equation shall lack the z;y; term. [§ 154, Ex. and § 145, Ex. 3.]
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To transform aa®+ 2 hay + by?+c¢'=0 into the equation re-
Jerred to the axes of the conic, form the equations
M4 (a=D)A—Nh =0, 1) A+ B=a+b, )
AB=ab—1*; (3)
Jind the positive root of (1) and call this A; solve (2) and (3)

Jor A and B, selecting the solution for which A— B has the same
sign as h.  The equations of the axes and of the conic are then

Ox,: y—Ax=0, Oy: Ay+a=0, Ax’+ By’+c'=0.
) ‘Example. Analyze the equation

1922 442y + 1692 — 2122 + 104y — 356 = 0.

Here
19 2 —106
ab—h2=19.16—-22=300, D= 2 16 52| = — 360000.
—106 52 —356

Hence the equation represents an ellipse.

The center is found by solving . 0
the equations " %Xge”
19 2 + 2 o — 106 =0, +
2% + 16y + 52 = 0,

and is C(6, —4).
And ¢ = — 360000/300 = — 1200.
Hence the equation, referred to
axes through C' and parallel to the
given axes, is
1922 + 4 2y + 16 y2 — 1200 = 0.

D

The equation giving the direc-
tion of the axes of the conic is

2N+ 32—2=0

- the positive root of which is 1/2.
Hence the equations of the axes
(referred to C as origin) are

Cxlz x—2y:0,
Cpn: 204+y=0.
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The equations 4 + B=a + b, AB = ab — h? are here
A+ B=35 and AB=300,."

and 4 — B is positfve'since h is positive.
These equations therefore give 4 = 20 and B = 15.
Hence the equation of the conic referred to its axes Cxy, Cy;is

2022 + 15 y2 — 1200 = 0,
or . #2/60 + y2/80 = 1.

The lengths of its semiaxes are 2Vv15 and 4V/5.

Hence [§98] ¢2=1—60/80=1/4, e=1/2; and the distances from
center to focus and directrix are CF =4v5/2 =2V5; and CD = 8V5.

The equations of Cx; and Cy;, referred to axes through C' and parallel
to thé given axes, wére found to be £ —2y =0 and 2 x +y =0, respec-
tively. Hence, their equations referred to the given axes have the form
x—2y+k=0and2x+y-+1=0. Butthese lines pass through C, whose
coordinates referred to these same axesare (6, —4) ; hence,6 + 8+ % =0,
ork=—14,and 12 —4+171=0, or I = — 8. Therefore, referred to the
given axes, the equations of Cz; and Cy; are

Cry: x—2y—14 =0, Cyr: 20 4+y—8=0.
The directrix through D, in the figure, is parallel to Cx; and at the

distance CD (= 8V5) in the negative direction from it ; hence the equa-
tion of this directrix is [§ 50, § 94, last line].

(x—2y—14)/V5+8VE=0,0orz—2y +26=0.

The corresponding focus F is the point where the line parallel to Oz,
and at the distance CF (=2V5) in the negative direction from it, namely

(x—2y—14)/VE4+2V5=0, ovrx—2y —4=0,

cuts the line Cy;, or 22 +y — 8 =0, and is F (4, 0).

To verify the correctness of the reckoning, find the equation of the
ellipse which has the directrix x — 2y + 26 = 0, the focus 74, 0), and the
eccentricity e = 1/2. ’

As in § 88, the equation is PF?2 = ¢2PM?2, or

(= _4)2+y2=i(§—_2?_/_+_2§)2,

—V5
or 2022 — 160 x + 320 + 20 y2 = a2 — 4y + 4 y2 + 522 —104 y 4 676,
or 1922+ 4ay +16y2—212x + 104y — 356 =0,

the equation given to be analyzed.
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158. The parabola. When the terms of the second degree
in the equation

a? +2hxy + b2+ 29 +2fy+c=0

are connected by the relation ab — k*=0, that is, when they
form a perfect square, the preceding transformations fail, since
the curve represented by the equation has no center [§ 153].
It is a parabola (or a pair of parallel lines). The equation of
this parabola, referred to its axis and the tangent at its vertex,
may be found as in the following example.

Example. Prove that 9a24- 242y 4+ 16 y2 — 52 4 14 y — 6 = 0 repre-
sents a parabola, and find the equation of this parabola referred to the
axis and the tangent at the vertex as coordinate axes.

As the terms of the second degree form a perfect square, the equation
may be written

Bx+4y)2=562x— 14y +6. . (1

The lines represented by 3x +4y =0 and 62x— 14y 4+ 6 =0 are
not perpendicular, but 3x + 4y and 52x — 14 y + 6 may be replaced by
expressions which represent perpendicular lines when set equal to zero,
by the following procedure.

Add X\ to the expression 3« + 4 y in the left member of (1), and add to
the right member the terms thus added to the left. This gives

(3x+4y‘+)\)2:(6)\+52):c+(8)\—14)y+?\2+6. ©)

The lines represented by the expressions on the left and right, when
set equal to 0, will be perpendicular, if [§ 30]

3(6N+52)+4(BN—14)=0, or A=—2 3
and when this value of \ is substituted in (2), this equation becomes
Br+4y—2?2=1042—3y+1). (6]

If 9, and x; denote the perpendicular distances of any point P(z, y)
from the perpendicular lines 3z + 4y —2=0and 42— 3y + 1 =0, then
[§50]

—2
p=iztiy=2 ®
and X = 41}——_31/-'-1 . (6)

-5
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Substituting these expressions in (4) gives

v2=—2m )

which is the equation of a parabola whose axis is the line y; =0, or
Bx+4y—2=0, and the tangent at the vertex the line z; =0, or
42 —3y+ 1=0; the equation (7), expressed in terms of the original
coordinates, being

(erp=tiu (=) o

— O

Since the positive direction on perpendiculars to the line4x—8y+1=0
is from the origin to the line
[§ 50, lines 4 and 6], therefore
the positive direction for «; in
(6) and (7) is from ¥V to D in
the figure. And since in (7)
a negative sign appears in the
right member, the parabola is
on that side of the tangent at
the vertex which is opposite to
VD ; that is, the parabola lies
on the origin side of this tan-
gent. The position of the
parabola also can be fixed as
follows: Every real pair of
values of (x, y) which satisfy )
(4) will make its left member, and therefore its right member, positive ;
and 4 x — 3y + 1 is positive only for points which lie on the origin side of
the line4x — 8y +1=0.

The vertex V is the point of intersection of the lines 3x +4y—2=0
and 4x—3y+ 1 =0, or (0.08, 0.44).

Since, in (8), @ =— 1/2, the distance from the vertex to the focus and
to the directrix is 1/2. And the equations of the directrix and of the line
through the focus parallel to the directrix are

4x—-3y+1 1 4x—-3y+1,1 )
—_2J T - _— =0 d —=—=—=J T 4L -=0
-5 2 an —5 =5
or 8x—6y+7=0 and 8x—6y—3=0.

The focus is the point of intersection of 8x—6y—8=0 and
Sx+4y—2=0, or (0.48, 0.14).
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159. And, in general, if ab — h?=0, so that the terms of the
second degree in the equation

o’ +2hay + by’ +2g9x+2fy+¢c=0 @
form a perfect square, the equation may be written
(wr + By)* = — @ gv + 2y + o), @

where ¢« =Va and 8 =Vb.

If the lines ax + By = 0 and 2 g + 2 fy + ¢ = 0 are not per-
pendicular, replace «x 4 By in (2) by ax + By + A, where A -
denotes a constant, at the same time adding to the right
member of (2) the terms thus added to the left. The equa-
tion thus becomes

(e +By+21)’=2Ae—g)z+20B—S)y+X—c  (3)

The lines ax+By+Ar=0, )
and 2Qe—g)z+2MB—fy+ 12 —c=0, )
will be perpendicular, if [§ 30]

a(de —g)+B A8~ 1) =0,
that is, if ‘ A :fﬁ{. (6)

Assign this value to A in (3), (4), (5), and then take the per-
pendicular lines (4) and (5) as new axes of reference O, and
O, The coordinates (x, y,) of any point P(z, y) referred to
Oy, and Oy, as axes are the perpendicular distances of P from
Oy, and Oy, respectively ; hence

_w+By+A
h= )
@+ pt
o _2Qe—9z+20B Ny + N —c,
2§ — g)* + (8 — £t
By the substitution (7) the equation (3) becomes

@+ B)u' =2{(a—g)*+ W8 — /) {ia,

@ .
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or, replacing A by its value (6), and «, 8 by Va, Vb, and

simplifying, B _
: _2 —gVb)
(a+bd)%
which represents a parabola having y = 0 for its axis and
x; =0 for the tangent at the vertex.

160. Recapitulation. The preceding discussion has proved
that any given equation of the second degree
ar® + 2 hay +0y* + 292 +2fy +¢=0

can be analyzed as follows:
Calculate the values of

a h g
ab—h? and D=|h b f
g f ¢

The character of the graph of the given equation is indicated
by the values of ab — h* and D. There are the following four
cases:

1. If D = 0 and ab — k* = 0, two parallel lines.

2. If D=0 and ab — h* = 0, two intersecting lines.

3. If D=+ 0 and ab — I* =0, a parabola.

4. If D+=0and ab — h* =0, a central conic ; namely, an
ellipse (real or tmaginary) when ab — h? >0, an hyperbola when
ab — r*<0.

To find the graph in cases 1 and 2, proceed as in § 150,
Examples 2 and 1.

To find the graph in case 3, proceed as in § 158, Example.

To find the graph in case 4, proceed as in § 157, Example;
namely, the following steps are to be taken:

Find the center C' (x,, y,) by solving the equations

amy + hy, +9 =0,
h%+byo+f=0,
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where the coefficients are the same as in the first two rows
of D.
Also compute ¢' = D/(ab — h*).
Referred to axes through C (%, 3,) and parallel to the original
"axes, the equation of the conic is
ax® + 2 hay + by 4 ¢' = 0.
Referred to these same axes, the equations of the axes of the

comie are Cry: y—Ax=0, Cyy: Ny +2=0,

where X is the positive root of
N+ (o —D)A—h=0.
Referred to the axes Cx,, Oy, the equation of the conic is
Az? + By? + ¢' = 0, where 4 and B are obtained from
A+ B=a+band 4B = ab — 1,
and the condition that 4 — B has the same sign as h.

The equation of the conic referred to its axes may then be

WwI itten wg + yg _ 1
—cd/4 —¢/B
From this equation the eccentricity and the distances from the
center to the foci and directrices can be found [§ 98, § 134].

161. Exercises. Draw a figure for each exercise.
1. What does each of the following equations represent ?

1).822 —2xy+y2—6=0. (4) 322 —2ay +y2+6 =0.
(2) 922 — 202y + 11 y2— 50 = 0. (5) 922 — 302y +26y2 — 102 =0.
@) xy+ax—3y+7=0. ) 22—2y+5x—-2y+6=0.

2. Prove that 222 —ay — 692 + 183z + 9y + 156 = O represents a pair
of straight lines, and find the equation of each of these lines.
3. For what value of X does a2 + 2 xy 4+ 2 y2 + x + A = 0 represent a
pair of straight lines? Are these lines real or imaginary ?
4. Transform each of the following equations to axes through the
center of the conic which it represents:
M a2—ay+y2+32=0.
@) 22 +ay+y2—5x—10y + 18=0.
B) 32 —bay+y*+16x—9y+11=0.
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5. What are the equations of the following conics referred to their axes ?
1) 2+xy+y2—1=0. B) 222 —122y —3y2+ 14 =0.
@) 22+3xy —3y2—4=0. (4) 4322+ 30zy + 59 y2 — 68 = 0.

6. Transform each of the following equations first to the center, and
then to the axes, of the conic which it represents.

1) 22+ 6xy +y2—42—12y +10=0.

(2) 324+ 12y — 22— 142 =0.

B) 8w —3xy —y*+ 152+ 10y —24 =0.
4) Ta2+4ay+4y24+10x+4y —25=0.
B)2a2—4oy—y2— 202 +8y —40=0.

(6) 32+ 2xy+3y2—16x+ 16y + 62 = 0.
() 222 —4ay+5y2—38x+ 64y +167 =0.

7. Prove that each of the following equations represents a parabola,
and transform it to the axis of the parabola and the tangent at the vertex
as coordinate axes :

1) 22—22y + 92— 10— 6y + 25 = 0.
@) e?—4ay+4y2—42—2y+8=0.
3) y*—2xy +22+4+2x=0.
8. Prove that the centers of all conics represented by
ax? + 2 hay + b2 +2 gAe+ 2 Ay + ¢ =0,
where a, b, ¢, h, g, f, are given, but \ is arbitrary, lie on a straight line
which passes through the origin.
9. Prove that ax?+ 2hxy 4+ by2+2gx+2fy + ¢ =0 represents a
pair of parallel lines if ab— 42 =0 and ¢2/f2 = a/b.
10. Analyze the equation 3x°—4xy—49y2+102+6 y—4=0 (namely,
determine the center, focus, and directrix of the graph, and draw the
graph).
11. Analyze the equation
3a2—4ay—4y2+52+6y—2=0.

12. Analyze the equation
242 —8xy +8y2—T2x —56y —T =0.

13. Analyze the equation

8a2— 122y +3y2—9=0.

14. Analyze the equation
202 —4axy+5y2+42—16y +8=0.

15. Analyze the equation

P2—2axy+22—52x=0.
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162. Conics obtained as plane sections of a cone. It will be
proved that every conic is a plane section of a right circular
cone, a fact to which these curves owe their name. In the
proof the following theorem is used: '

The lengths of any two
lines from a point to a
plane are inversely pro-
portional to the sines of
the angles which the lines
make with the plane.

For, let the two lines
PE and PR from Pmeet
the plane in the points E and R, and let P' denote the projec-
tion of P on the plane. Then,

EP sin PEP= P'P= RP sin PRP,
EP _sin PRP

and therefore, 2P sn PEP
sin

163. Ewery plane section of a right circular cone is a conic.

Let C be the vertex of any right circular cone C-QUS;
let any tangent sphere touch the cone along the circle BEA;
and let any plane, tangent to the sphere at F, cut the plane of
the circle BEA in the line DR and the cone in the curve
LPVN. 1tis to be proved that LPVN is a conic whose focus
is the point F and whose directrix is the line DR. ,

Through P, any representative point on the section, take the
element of the cone UPEC, tangent to the sphere at . Then
PE equals PF, since two tangents to a sphere from the same
point are equal. And PE makes with the plane of BEA a
fixed angle (= DAV) no matter where P is taken on the
section LPVN, for this is a property of all elements of the
cone. .

Take PR perpendicular to DR. PR is parallel to F'D, the
perpendicular from F to DR, and therefore no matter where
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the point P is taken in the section LPVN, the perpendicular
PR makes a fixed angle (=.4DV) with the plane BEA.
Therefore [§ 162],

PF _PE_ sin VDA
PR PR sinVAD

= const.

c

that is, the section LPVN is a conic having F for its focus and
DR for its directrix [§ 69].

If the cutting plane is inclined to the plane of the base of
the cone at the same angle as an element of the cone, the
section is a parabola; if the inclination is less, the section is
an ellipse; if greater, it is an hyperbola.
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164. Systems of conics. If U and V denote two expressions
of the second degree in x, y, and A a constant, then U+ AV =0
will represent a conic which passes through the points of intersec-
tion of the conics represented by U= 0 and V = 0.

For, U4+ AV =0 represents a conie, since it is of the second
degree in @, y, and this conic will pass through the points of
intersection of the conics U=0 and V=0, since for these
points both U and V are 0, and therefore U+ AV =0 is satis-
fied. [Compare § 37, § 62.]

The conics may be pairs of straight lines, and if the terms
of the second degree in U and V are proportional, A may have
such a value that U+ AV =0 will represent one straight line.
[Compare § 63.]

Example. Prove that there are two parabolas which pass through
the points of intersection of the circle 22 4 y2 — x — 9 = 0 and the hyper-
bola 2y = 1, and find their equations.

The equation 22 4+ y2— x — 9 + A(zy — 1) = 0 represents a conic through
the points of intersection of the conics 22+ y2 —x — 9 =0 and 2y — 1 =0,
whatever the value of A may be. And this conic will be a parabola if the
terms of the second degree in the equation, namely x2 + Axy + 2, form a
perfect square [§ 158], that is, if A =2 or — 2. Hence there are two
parabolas through the points of intersection of the given conics, and their
equations are

2224+22y+y2—2—11=0 and 22— 2ay + y2—2x—7 =0.

The equation U + Al2=0 (1), in which U is an expression
of the second degree, ! one of the first degree, and A a con-
stant, represents a conic which touches the conic U =0 where
it is met by the line {=0. For if e denotes a variable quan-
tity (not involving @« or y) whose limit is 0, the original
equation U 4 Al*=0 is the limiting form of the equation
U+ Al(l+€=0 (2); the conic (2) passes through the four
points in which the conic U=0 is met by the two lines /=20
and !+ e=0; and these four points coincide in pairs when
¢ becomes 0 and the conic (2) becomes the conic (1).



SYSTEMS OF CONICS 143

Thus the conic y2—4 x = 0 is met by the line y—2 =0 in the points (0, 0)
and (4,4); and the conic y>*—4 2 +2(y—x)2=0, or 8 y2—4 xy+2 22— 4 2 =0,
touches the conic y2> — 42 =0 at these two points. In fact it may be
proved by the method of § 81 that the tangent to both conics at (0, 0) is
x =0, and that the tangent to both at (4, 4) isxz — 2y +4 =0.

165. Conic through five points. As the general equation of
the second degree

ax? +2hxy + b +29x+2fy+c=0

has six terms, and the solutions of the equation are not changed
by dividing throughout by one of the coefficients, it contains
five independent constants. From this it follows (compare
§ 16) that if any five points in the plane be given, no three of
which lie in the same straight line, there is one and but one
conic which passes through these five points. The simplest
method of finding its equation is that illustrated in the follow-
ing example:

Example. Find the equation of the conic which passes through the
five points A(1, 0), B(2, 1), C(1, 2), D(0, 1), E(0, 0).

Select any four of the points, as 4, B, C, D, and find the equations
of two of the three pairs of straight lines which pass through these four
points, as the pair AB, CD and the pair AC, BD.

The equation of the line ABisz—y—1=0.

The equation of the line CDisx —y +1 =0.

Hence, the equation of the pair AB, CD is

(—y—1D@—y+1)=0. (¢))

Similarly, the equation of the pair 4C, BD is found to be
(®x—1)(@y—1)=0. @)
Hence —y—-1D@E—y+1)+Nx-1D—-1)=0 (3)

is the equation of a conic through 4, B, C, D, whatever the value of A
may be. And the conic will pass through the fifth point E(0, 0) if (3)
be satisfied by « = 0, y = 0, that is, if A = 1.

Hence
@-y—-DE-—y+D+@E—-1)y—-—1=0,ora2—ay+y2—2x—y =0,
is the equation required.
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166. Confocal conies. In the conic a%/a?+y*/b?=1 (1),
where a>b, the foci are on the az-axis and at the distance
ae = aV1 — V*/a® =~/a® — b to the right and left of the origin.
Let A denote an arbitrary constant; then the equation

A @)
@A DA
will represent the system of conics which have the same foci
as the conic (1); for in any conic (2) the distance from the
center to a focus is §(a?+ X)— (0 + A) 1%, that is, Va?— %

167. TFor all positive values of A, and all negative values
between 0 and — 0% both a®+ X and % 4 X\ are positive, and (2)
therefore represents ellipses; for all values of A between — b?
and —a?% a®’+4 X is positive, and 5*+ A is negative, and (2)

therefore represents hyperbolas; for all values of A between
—a? and — o0, both ¢+ X and 0*+ A are negative, and the
locus of (2) is therefore imaginary.
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168. Through every point (', y') there pass two conics of the
system (2), the one being an ellipse, the other an hyperbola.
For substitute (2, ') for (z, ) in (2), and clear of fractions;
the result is (A + a?)(A + 8*) — 2"(A + D) —y"(A +a*)=0. (3)
This is a quadratic equation in A with real roots, one lying
between 400 and — 0% the other between —0* and — a?; for
when A = oo, the left member of (3) is positive; when A =— 07
the left member of (3) becomes — y"*(— b* 4 a*) which is nega-
tive; and when A=—a? the left member of (3) becomes
— a'*(— a® 4+ b?%), which is positive [Alg. § 833].
These roots may be found by solving (3), or
A2 +(ch 40— y'Z)/\ +(a2b2 b azyvz) =0, (31)

for A; and if A; denote the root between o and — 0% and A, that

between — b? and — a? the equations
P L ¥ 1w ad S+ ¥ 1
PSR @ din T ®)
will represent an ellipse and an hyperbola passing through
the point (2, ¥').

169. The two conics of the system (2) through any point (2, y")
cut each other at right angles.

For since the conics pass through the point (@', ") and are
represented by the equations (4) and (5),

22 Y 2" Yy
—_— : =1 and : =1
a2+A1+b2+)\1 a2+)\2+b2+{\2 ’

. and therefore (subtracting and simplifying),
. mf? + ,[/12 0 6
@+0)(@+r) O HNME+r) ©
But (6) is the condition that the tangents at (2!, y') to (4) and
(5) meet at right angles; for the equations of these tangents
w1 ! ¥ _q 8
+ . ) () a2+/\2+b2+)\2 ) ()
and the left member of (6) is the sum of the products of the
coefficients of @ and y in the left members of (7) and (8) [§ 30].

L
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170. Exercises. Systems of conics and confocals.

1. Find the equations of the conics which pass through the following
sets of points:

@ 0, 0), (1,0, (2 1), (1,3), (=1, —4).

(2) (17 1)? (37 2)1 (07 4)1 (—41 0)7 ("‘ 29 - 2)-

2. Find the equation of the conic which passes through the points of
intersection of the conics 422 —92+3 =0 and a2 —32y+y2—62x =0
and the point (3, — 2).

3. Find the equations of the conics which touch the z-axis, and which
pass through the points of intersection of 2 + 22y +3y2+182+5=0
and 2 +ay—y2—6x+y—1=0.

4. Find the equations of the two parabolas which pass through the
points where x2 — 3xy + 4 y2 — « — 2 = 0 cuts the z- and y-axes (that is
xy =0).

5. Find the equation of the conic which passes through the point (1, 3)
and touches the circle 22 4+ y2 — 4 = 0 in both points where it is cut by the
line y —22=0. (The equation is of the form 22+4y2—44\(y—2x)2=0.)

6. Find the equation of the conic which passes through the point
(1, —2) and touches the - and y-axes where they are et by the line
r+2y—4=0.

7. Find the equation of the conic which passes through the point
(5, 6) and touches the x- and y-axes at the points (4, 0) and (0, — 2).
8. Prove that the centers of all conics of the system
Aey + (I + my—1) (Ve +mly—1) =0
lie on a conic, and find its equation.

9. Prove that it follows from Ex. 8 that the centers of all conics
through four given points (no three of which are on the same straight
line) lie on a conic.

10. Find the two conics of the confocal system 22/ (3+\) +42/(2+7) =1
which pass through the point (2, 1).

11. Prove that the equation of the hyperbola confocal to the ellipse
x2/a? + y2/b% = 1 and meeting the ellipse at the point whose eccentric angle
is ¢ is 22/cos? ¢ — y2/sin% ¢ = a% — b2,



CHAPTER IX
TANGENTS AND POLARS OF THE CONIC

171. Equation of tangent to any conic. The equation of the
tangent to a conic whose equation is given in the general form

fl,y)=a*+2hay 4+ b+ 292 +2fy+¢c=0 @
may be found by the method used in § 79 B, § 102 B.
Let (2/, y') and (2", y") denote two points on the conic, so
that f(z', ¥')=0 and f(2", ¥')=0. To find the equation of
the secant through (2, ¥') and (2", y'"), proceed as follows:

The terms of the second degree in f(x, y) are the same as
the terms of the second degree in the expression

a@—a)@—a")+2h(z—a)y—y" )+ —y)y—v") @
which, like f(x, y), vanishes when #=a', y=y', and when
@r = ml!, y — yH.

Hence the equation formed by setting f(w, ¥) equal to the
expression (2), namely the equation,

a(@—a)(@—a")+2 k(@—2)(y—y")+b Y-y y—y")=S(z y),
will, when simplified, be of the first degree, and it will be
satisfied when x =2', y =9, and when x=2", y=y'. It will
therefore be the equation of the secant through (2, "), (2", y'").
‘When the point (2", ') is moved along the curve into coin-
cidence with (2!, '), the secant becomes the tangent at («', y")
and the equation just described becomes the equation of this
tangent. Hence the equation of the tangent at (2', y') is

al@—a')+2h(@—2y—y)+by—y) =r(%Y),

or, 2axe' +2h(xy'+yx")+2byy' + 29x+2fy+¢
= ax'? 42 ha'y' 4+ by".
147
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If 2g2' + 2 fy' + ¢ be added to both membérs of this equation,
the right member will vanish, since f(2/, ¥') = 0, and the equa-
tion, after dividing by 2, will become

axa' 4+ h(zy'+ya')+oyy' +g(@+ o) +5 (@ +y)+c=0. (3)
Hence, to obtain the equation of the tangent at the point (2, ")
from the equation of the curve, it is only necessary to replace
a? and »? by x2' and yy', 22y by a2y’ + o'y, and 2= and 2y by .
z+a'and y +y'. (This is true for oblique axes also.)

Thus, the equation of the tangent at (x’, ') to the curve

2a2 —baxy+y?+4x—3y+7=0
is 2ux! — §(xy’ + Y+ yy' +2@ +2N)— @y +y)+T7=0.

172. Poles and polars. The equation (3) of § 171 represents
a tangent to the conic (1) only when the point (2, y') is on
the conic. But, whether the point lies on the conic or not,
the equation represents a definite straight line. This line is
called the polar of the point (2, y') with respect to the conic
(1), and (2, ') is called the pole of the line.

From the symmetry of the equation (3) with respect to x, y
on the one hand, and 2', ¥' on the other hand, and the fact that
(8) represents the tangent at (a', y") when (2!, ¥') is on the
curve, it is not difficult to infer the geometric relation between
any point (2, ') not on the curve and its polar (3). Only the
case in which the curve is the circle 2%+ y?=1% will be con-
sidered here, but the reasoning will be general and will apply
to any conic. (The axes may be rectangular or oblique.)

173. If the polar of the point Py(x,, ¥,) passes through the
point Py(2, y5), then will the polar of P, pass through P,.

For, the equations of the polars of P, and P, are

ax +yn=2 (1) and az+yy=1>% )
But since P, (,, y,) lies on (1), o2y + Yoty = 1%
which may also be written BTy + Yy =75

and therefore states that P, (w, y,) lies on (2).
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174. If the polars of two points P, and P, meet at P, then P is
the pole of the line PP,

For, since P lies on the polars of both P, and P, its polar
must pass through both P, and P, and must therefore be the
line P, P,

175. To find the
pole of a line which
cuts the circle in
two real points.

Let thé given
line meet the
circle in  the
points  Py(xy, )
and Py(x;, ys)-

By the preced-
ing theorem [§ 1747, the pole of PP, is the point of intersec-
tion of the polars of P, and P,

But since P,and P, are on the circle, their polars are the
tangents at P, and P, Hence the point P', where these tan-
gents meet, is the pole of the given line PP,

176. To find the pole
of a line which lieswholly
without the circle.

Take any two points
P, and P, on the given
line and from these
points draw P4, and
P\B,, P,A, and P,B,, to
touch the circle at A,
and B, 4, and B,. © .

Join A4;B, and A4,B,. Then [§ 175] A4,B, is the polar of P,
and 4,B, is the polar of P,, Hence [§ 174] the point P' where
these lines meet is the pole of the given line P, P,
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177. Therefore, the following theorems have been proved:

If the point P'(x', y") lies without the circle a®4 y®=1?% its
polar xx' +yy' =1 is the line joining the points of contact of
the tangents from P' to the circle.

If the point P'(x', y') lies within the circle o + y* =12 its polar
ax' +yy' = 1% is the locus of the point of intersection of the tan-
gents at the extremities of every chord of the circle which passes

“through P'.

And, since the reasoning is general, these theorems hold
good for any conie. [§172.] ‘

Example 1. Find the polar of the point (2, 3) with respect to the
conic 2224+ y2 —4x +3=0.

"Substituting 2/ = 2, ¥/ = 8 in the equation of the polar to this conic,
namely 2 xx' + yy' — 2(x + 2')+ 3 =0, gives4x + 3y — 2(x +2)+3=0,
or 2z 4+ 8y — 1 =0, the polar required.

Example 2. Find the pole of the line 3z —y + 4 =0 with respect
to the conic 2ay + 8y2— 82 =0. )

The equation of the polar of the point (x/, y’') with respect to this
conic is

2y’ +yx! +8yy' —4(x +a')=0,0r (y —dx+(x'+3y")y—4z' =0.
If this equation is to represent the same line as 3x —y 4 4 =0, the
corresponding coefficients in the two equations must be proportional [§ 12],
that is,
y—4 o/ 4+38y —4af
s -1 4

whence 2! = 4/3 and y' = 0, the pole required.

Example 3. Suppose a conic given, and let O denote any point not on
this conic. Through O take any two lines meeting the conic at 4;, A;
and B;, Bs, respectively. Let A;B; and AsB; meet at P, and let 4,B;
and A, B; meet at Q. Prove that the line P¢) is the polar of the point O.

Take O as origin, 0A4;4; as x-axis, OB;B; as y-axis, and let
ax? 4+ 2 hay + by? 4+ 292 + 2 fy + ¢ =0 (1) be the equation of the conic
referred to these axes. Then OA;, OA, are the intercepts which the
conic makes on the x-axis; represent them by a, as ; they are the roots
of the equation ax? + 2 gx + ¢ =0 (2) got by setting y =0 in (1) ; hence
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a1 + as =— 2 g/a, a1a: = ¢/a, and therefore 1/a; + 1/as =— 2 g/c (3).
Similarly, it can be proved that if OB;=10; and OB, = bz, then
1/by + 1/bg =— 2 f/c (4).

The equation of the polar of 0(0, 0) with respect to (1) is gx+sy+c=0,
or, by (3), (4), x(1/a1 + 1/as) + y(1/b1 + 1/b2) =2 (6). But the equa-
tions of 4;B;, AsB» are x/a;+ y/bi =1 (7), x/az + y/b2 =1 (8), and
(6) is the sum of (7) and (8) ; hence [§ 39] the point P where 4;B;, A> B>
meet is on (6). Similarly, it can be proved that the point ¢ where 4, B;,
AgB; meet is on (6). Hence P@ is the line (6), that is, the polar of O.

This construction affords a solution of the problem of drawing the tan-
gent to a conic from a point O without it.

178. Exercises. Tangents and polars to a conie.

1. Find the following polars:
(1) of (2, 8) with respect to 322+ 2xy —y +5=0.
(2) of (0, 0) with respect to a2 +3y2—2x+4y —6=0,
(8) of («, y") with respect to (x — )2 +(y —B)2=1%
2. Find the following poles:
(1) of 22 — 3y~ 3 = 0 with respect to 4 22 — y2+ 22y — 3 =0.
(2) of x —2y =17 with respect to zy = 10.
(8) ofx+ 2y +3 =0 with respect to 22 + y2 — 2y = 0.

3. Prove that the polar of a focus of a conic is the corresponding
directrix.

4. Find the point of intersection of the tangents to the conic
22—3y2+42—2=0 at the points where it is cut by the line
r—2y+6=0.

5. If the polar of (a/, y') with respect to the circle 22 + y2 = a2 touches
the circle 22 + y2 — 2 ax = 0, prove that y/2 + 2 ax’ = a2.

6. The polar of any point on the circle 22 + y2 —2 qx = 3 a? with
respect to the circle 2492 +2ax=3qa% will touch the parabola
y2 + 4 ax = 0.

7. Prove that if the polars of P with respect to the circle z2 + y% = a2
and the hyperbola 2 xy = b2 meet at right angles, P lies on one of the
axes of reference.

8. The mid-points of a certain system of chords of a parabola lie on a
fixed line perpendicular to the axis. Prove that the poles of all these
chords lie on another parabola.



CHAPTER X
POLAR COORDINATES

179. Polar coordinates. The position of a point in a plane
can be defined in other ways than by reference to a pair of

lines as axes. The following .
method is often useful. :

Let O be a given point, called o 3
the pole or origin, and Oz a given - x
directed line from O, called the .- -
polar axis. The polar coordi- 5
nates of any point P, referred to O and Ow, are 7, the length
of OP, and 6, the measure of the angle xOP; and r is called
the radius vector of P, and 6 its vectorial angle.

To construct a point whose polar coordinates r, § are given,
~ draw from O a half line making the angle § with Oz, and then
on this half line itself or produced through O, according as r is
positive or negative, lay off OP or OP' of length |r|.

Observe that the polar coordinates of the point P(r, §) may
also be written (r, —2746), (—7, v +6), (—7», — 7 +6).

180. If the polar axis Ox be taken as the z-axis of a rec-
tangular system, and Oy as the corresponding y-axis, the re-
lations comnecting the coordinates of any point P, referred to
the two systems, are

x =1 cos 0,

y=rsin0.} @

’I‘2=£I22+y2,
tan =y /. } @)
sinf=y/Val+y> 3)
cosf =a/Vai+yl - @)
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181. Graphs in polar coordinates. The graphs of points
given in polar coordinates are obtained by taking the length
7 on the terminal
line of the angle 6,
thesélengths being
measured on the
terminal line itself
or on this line pro-
duced through the
origin according as

7 1is positive or — _‘b
negative. It is "'(‘l‘

often convenient "".
to use paper pre-
pared for the pur-
pose, as in the
figure, where the .
graphs are indi-
cated of (6.828, 45°), (4, 60°), (2, 90°), (4/3, 120°), (1, 180°),
(4/3, 240°), (2, 270°), (4, 300°), (6.828, 315°). Observe that
the point (2, 90°) is the same as (— 2, 270°); and so on.

182. The graph of an equation in r and 6 is the collection of
the graphs of all the solutions of the equation.

For example, the coordinates of the nine points in the
previous section are solutions of the equation » =2 /(1 — cos 6);
and by giving other values to § and obtaining the corresponding
values of 7, as many other points on the graph of the equation
may be found as are desired. TFor this purpose it is more
convenient to take the equation in the form » =1 /sin®(6/2).
[cos 6=1—25sin*(6/2).] Thus, if §=75° r=2.698; if §=285°,
r=2.698; if §=105° or 255° r=1.589; if 6 =135° or 225°,
r=1.174; and so on.

The equation of this graph may be obtained in rectangu-
lar coordinates by the substitution [§180]: r=Va?+ 4’
cos = x/Va? + g which changes »=2/(1 — cosf) into
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VE+ P —a/VaP+ ) =2, or VaP+y'—x=2; or, trans-
posing and squaring, *+ y*=a’+4 x+4, or y* =4(x+1); which
represents a parabola with the focus at the origin. [§ 87,11.]

183. Exercises. Graphs in polar coordinates.

1. Indicate the graphs of the following points: (8, —15°), (4 V2, 0°),
(8/V3, 15°), (4, 45°), (8 /V3, 75°), (4 V2, 90°), (8, 105°).

2. Obtain several points of the graph of » = 4 /cos (6 — 45°).

3. By the substitution x = rcosé, y = rsin 6, change the equation
of the straight line x cos & 4+ y sin ¢ — p = 0 to the form r =p / cos(§ — ).

184. Graphs of r=acosf, r=acos260, r=acos36. These
graphs can be plotted by finding conveniently chosen solutions
of the equations.

185. Graph of r =a cos 6.

If =0, r=a, and therefore (a, 0)
is on the locus. Call this point 4.
Then the equation is equivalent to
OP/0A=cos 0; whence, if P and 4
be joined, the angle OPA is a right
angle, and P is on a circle with
the diameter « coinciding with the initial line.

186. Graph of »r =acos26.

If =0, cos26=0, whence 26=90°, 270° 450°, 630° ...,
that is, 0 =45°, 135°, 225°, 315°, ....

If r=a,cos26=1, whence 26=0, 360°, 720° ..., that is,
6 =0, 180°, 360°, ---.

If r=—a, cos26=—1, whence 2 0 =180°, 540°, ..., that is,
0=90° 270°, ....

Arranging these solutions in order of increasing values of 6,
the following points are on the locus: (a, 0), (0, 45°), (— a, 90°),
(0, 135°), (a, 180°), (0, 225°), (—a, 270°), (0, 315°), (a, 360°), ---.

From a table of natural cosines [Table I, by taking 6§ =0,
5°10°, 15° -.., and computing r to two places of decimals, the
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following also are found to be points of the locus: (a, 0),

(0.98 a, 5°), (0.94 , 10°), (0.87 a, 15°), (0.77 a, 20°), (0.64 a, 25°),

05a, 30°), (0.34a, 35°), (0, 17a, 40°), (0, 45°), and the »
900

diminishes continuously through this set of solutions; which
gives the upper part of the right portion of the figure.
Moreover, since cos 2(— §) = cos 2 6, the curve is symmetric
as to the initial line. Again, since cos 2 6 = — cos 2(270° £ 6)
=c0s2(180° & 6)=— cos 2(90° & 6), any arc of the curve is
repeated when rotated about the pole through one, two, or
three right angles. Hence, the curve is composed of four
lobes, as indicated in the figure. When 6 increases from 0° to
45° the upper part of the right lobe is generated to the left;
when 6 increases from 45° to 90°, the left half of the lower
lobe is generated downward, » being negative and therefore to be
produced through the origin; when 6 increases from 90° to 135°,
the right half of the lower lobe is generated upward, and so on,
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187. Graph of r =a cos 3 4.
If 6 =0°,120°, 240°, ..., r = a; if § = 30°, 90°,150°% ++., 7 =0
if 6= 60°, 180°, 300°, ..., r = — a.

Arranging these solutions in order of increasing values of 6,
the following points are on the locus: (a, 0), (0, 30°), (— a, 60°)
or (a, 240°), (0, 90°), (a, 120°), (0, 150°), (—a, 180°) or
(a, 360°), ... ‘

From a table of natural cosines [Table E], by taking 6 =0,
5°,10°, 15°, ..., the following also (to two places of decimals)
are found to be points of the locus: (a, 0), (0.97a, 5°),
(0.87 @, 10°), (0.71a, 15°), (0.5a, 20°), (0.26 a, 25°), (0, 30°),
(—0.26 a, 35°), (—0.5a, 40°), (—0.71a, 45°), (— 0.87 a, 50°),
(—0.97 a, 55°), (— a, 60°), (—0.97 a, 65°), ..~ .

Since cos 3(— 6) = cos 3 §, the curve is symmetric as to the
initial line. Also, cos 3 8 =cos3(0 +120°) = cos 3 (6 + 240°),
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hence any arc of the curve is repeated when rotated as to the
pole through the angle 120° or 240°. Therefore, the curve is
composed of three lobes, as indicated in the figure.

188. The spirals. The graphs of the equations r= a6,
r=e%, r=a/0, r*=0a’/0 belong to a class of curves called
spirals. They can be plotted by obtaining conveniently chosen
solutions of each equation.

189. The graph of r=af is called the spiral of Archimedes.

The angle 6 must be .expressed in circular measure.
From a table of arc lengths [Table E], to two places of
decimals,

RAp1aNs
0°=0

30° =0.52

60° =1.05

90° =1.57
120° =2.09
150° = 2.62
180° = 3.14
210° = 3.67 180~ >
240°=4.19
270°=4.71
300° = 5.24
330°=5.76
360° = 6.28
390° =6.81
420°=17.33
450°=7.85

These values give points on the graph of the right-hand
spiral, as indicated in the figure. The corresponding negative
values give the points on the left-hand spiral; for when 6 is
negative, r also is negative, and must therefore be produced
through the origin [§ 179].
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190. The graph of » = e or log, r = af is called the logarith-
mic or equiangular spiral.

Let 6 be given in circular measure. Set a = bc, and let b be
so taken that ¢=10; then the equation is »=10 or log;,r=c6,
which is adapted to easy calculation with an ordinary table of

- 630°

logarithms and arc lengths. For convenience take ¢=0.1,
then, from the tables D and E, since » = antilogarithm of c6,
co ” co r cb ”r
360°=.628, 4.2 510°= .890, 7.8 660°=1.152, 14.2
390°=.681, 4.8 540°= .942, 88 690°=1.204, 16.0
420°=.733, 54 570°= .995, 9.9 720°=1.257, 181
450°=.785, 6.1  600°=1.047, 111  735°=1.283, 19.2
480°=.838, 6.9 630°=1.100, 12.6 . o
These values give points on the are of the spiral from a

radius vector, 8 =360° around to the same radius vector,
0="720°
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‘When 6 varies from 360° to 0, » decreases from 4.2 to 1 and
the point describes an arc which starts at the initial point
(4.2, 360°) of the arc in the figure and ends at the point (1, 0).

‘When 6 runs through the negative values from 0 to — o0,
it follows from the equation = e that r decreases from 1
to 0, the radius vector in the meantime turning clockwise an
infinite number of times about the origin, which the point is
said to approach asymptotically.

191. The graph of the equation r=a/6 is called the hyper-
bolic spiral.

192. The graph of the equation »?=a?/0 is called the Zituus.

193. Exercises. Graphs in polar coordinates.

1.
2.
3.
4.

‘What is the graph of » = const ?
What is the graph of ¢ = const ?
‘What is the graph of 6 =0 ?

By the substitution « = . cos 8, y = r - sin 6, change the formula of

§ 41 for the distance between two points, P;Ps? = (22 — 21)% + (Y2 — ¥1)?,
to the fog‘mula. Py P2 =192 4+ 12 — 2 ryracos (0 — 6y).

5.

By the substitution x = r . cos 6, y = r - sin 6, change the equation

of the central conic to the form 72 = @2b2/(b? cos? 6 4 a2 sin? §).

6.
7.
8.
9.
10.
11.
12.
13.
14.
15,

Find the graph of » = @ sin 6.

Find the graph of » = asin2 6.

Find the graph of » = asin36.

Find the graph of »/a =sin3 (6/3).

Find the graph of »/a = sec 2 6.

Find the graph of »/a = cos 6 — sin 6.
Find the graph of 7/a =sec 26 +tan24.
Find the graph of 76 = a.

Find the graph of 26 = a2

Find the graph of 2 = a2 sin g,
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194. In the preceding pages of this chapter the graphs of
certain equations in polar coordinates have been plotted. The
reciprocal problem of obtaining the equation in polar coordinates
of the locus of a point satisfying a given condition will now be
illustrated. [Compare § 67.]

195. Polar equation of a conic. The polar equation of a
conic referred to the focus as pole, and the perpendicular
from the directrix through the pole as polar axis is

p=—P
1—ecosf’
where p is half the latus rectum, and e is the eccentricity.

Let F be the focus and SR the directrix, and P a representa-
tive point of the locus. Let M be the foot of the perpendicu-
lar from P to the directrix, NV the foot of the perpendicular
from P to the polar axis, and D the point of intersection of
the directrix and the polar axis. Then, by definition [§69],
FP=¢.MP. Or

S .
r=e+MP T R
=e- DN
=e-DF+e. FN
=e.DF+4e-rcosé. D 4
Let e - DF be represented by p, then
‘ r=p-er cos b, R
or r(1 —e cos ) =p,
= P .
or finally, Ul Py

When 6=90° r=gp; hence, p is half the latus rectum
[§§73, 93, 130]. [Compare the equation of § 182, where p=2,
and e=1.]



CHAPTER XI
EQUATIONS AND GRAPHS OF CERTAIN CURVES

196. ‘The parabola. The equation of the parabola referred
to the tangents at the extremities of its latus rectum as axes of
coordinates is PO SRt
ey =+ a
where a denotes the distance from the origin to each point of
tangency.

For the tangents at the extremities of the latus rectum (4B) '

meet at right angles at the
point of intersection of the
axis and directrix of the pa-
rabola. Hence, if these tan-
gents be taken as axes of
reference, and a = 04 = OB,
the equation of the directrix is
2 +y =0, and the coordinates
of the focus are (a/2, a/2).
But, by the definition of the parabola, the equation of the
parabola whose directrix is # 4+y =0, and whose focus is

(a/2, a/2), is <L+Q_?JX"= <x ~ §>2+ (y_ Q>2,

2 2
and this equation can be reduced to the form
(+y)—2a(z+y)+a* =4 ay,
or . m+y—a=¢2m5y‘}, or wi2w£‘y%+y=a,

or finally, at oyt = 1 df,
M 161
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where the four combinations of the + signs are related to the
graph as follows:

at + y%z at is true for the arc between 4 and B,
at — y%z at is true for the arc beyond 4,
at— y%= — at is true for the are beyond B,

at y% = — a? has no real points.

197. The cissoid. A circle of radius o passes through the
origin O and has its diameter OC4 on the polar axis. Through
O, any chord OR is taken and produced to meet, at ¢, the tan-
gent to the circle at 4. On the line OR the point P is then
taken such that PQ = OR. The locus of P is a curve called
the cissoid.

Its equation may be found as follows:

Let AOP be 6 and OP be 7.

Then N
04/0Q =cos 6, or OQ =2 a/cos 6,

-

%,
and % ;\‘
OR/0A=cos 8, or OR=2acosé. ;
Therefore, i
r=O0P i
=0Q— PQ 5 g
=0Q— OR

=2a/cos —2acosf
=2 a(l —cos?6)/cos 6,

2
or 'r=2qsc1;l—s—g, @

which is the equation required.
By the substitution,

reosf=uw, sin?6=y’/(2®+y?),
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the equation becomes in rectangular coordinates :
z=2ay’/(@*+9%), or P+aP=2ay, or Y (2a—a)=a"

T )

or, finally, ¥=3 .
a—x

From the definition, or from equation (1) or (2), it follows
that the curve has the form indicated in the figure. It is
symmetric with respect to the aaxis (since (2) involves no
odd powers of y); it lies between the linesx=0 and x=2a
(since y* would be negative for <0 or >2a); and the line
¢ =2a is an asymptote (y* being oo when =2a). At the
origin it has a peculiar sharp point called a cusp. It was
called the cissoid from the fancied resemblance to an ivy leaf
of the figure bounded by the semicircle BAD and the portion
of the cissoid DOPB. (The Greek word xiocoos =ivy.)

198. Nore. The cissoid was used to solve the problem of
the duplication of the cube, that is, of finding the edge of a
cube whose volume is twice that of a given cube, one of the
famous problems of antiquity.

Let M be taken on CB so that OM =2 CB, let the line AM
cut the cissoid in F, and let OF and EF be the coordinates
of F.

Then, from the similarity of the triangles EFA and CMA,
EF/EA = CM/CA4; therefore, since CM=2CB=20Ad, it
follows that EF =2FEA.

From the equation of the curve y*(2a— #)=2a% it follows
that EF?. E4A = OFE® or since EA= 1 EF, it follows that
3+ EF?= OE®; or, finally, that EF*=2 OE®. Hence, if OF be
the edge of the given cube, EF is that of a cube of twice the
volume. :

In the same way, if CM be taken as the nth multiple of OB,
the construction gives the solution of the problem of finding
the nth multiple of a given cube.
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199. The witch of Agnesi. A circle of radius a touches the
z-axis at the origin and cuts the y-axis at O and B. Through
O, any chord OR is taken and produced to meet, at N, the tan-
gent to the circle at B. Through R a line is taken parallel to
the a-axis, and through N a line is taken parallel to the y-axis.
The locus of the point P, where these lines meet, is called the
witch. Its equation may be found as follows:

Let the coordinates of P be (z, ), and let those of R be (2, y").
The point R (', y") is on the given circle and therefore [§ 56],

2”4 y"— 2ay =0. @)

Let NP meet Ox at E, and take RD perpendicular to Oz.
Then DR = EP, and therefore,

y'=y. @)

Again, OD/DR= RP/PN, or a'/y' =(z—2')/(2a —y"),

' !
therefore, a'= % = ;—':; 3)

Substitute (2) and (3) in (1) and simplify; discarding the
solution y = 0, the result is
8 3
y@?+4a®)=8a? or y= ;2-}-%0&"” “)
which is the equation required. :

The curve has the form indicated in the figure. It is sym-
metric with respect to the y-axis (since (4) involves no odd
powers of x); it lies between the lines y=0 and y=2a; and
the line y = 0 is an asymptote.
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200. Cassini’s oval. The locus of a point P, the product of
whose distances from two fixed points is a constant, is called
Cussini’s oval.

To obtain its equation, let Ci(c, 0) and C,(—e¢, 0) be
the two fixed points, and let PC?. PC?=m* The formula
of § 41 gives, after reduction, for the locus of P the equa-
tion:

@+ 9+ ) — 4 P = mh @
And this equation by the transformation,

x=rcosf, y=rsind,
becomes in polar coordinates:

2=c%cos20+Vm* —c'sin?2 6. . @)

201. The lemniscate. When m = ¢, Cassini’s oval is called
the lemniscate. Its equation is

@+ 4+ 2y —a%) =0, @
or 4 r?=2c%cos 2 4. . @)



166 COORDINATE GEOMETRY IN A PLANE

202. The conchoid. Let SR be a fixed line perpendicular
to the polar axis and meeting it in D; let a radius vector,
OM, meet SR in M; let a fixed length MP= — MP' =1 be
added to and subtracted from OM; the locus of P and P’
is called the conchoid.

Let OP be r, xOP be 6, and y s
OD be a; then OM =a/cos 0,
and 7r=0P = OM + MP,
or r = a/cos 6 +1.

In the same way, the locus
of P'is r=OP'=0M +MP/,

orr=a/cos §—1. p P
Therefore the equation of M
the conchoid is
) a D x
r=a/cos 6 + I. @ »

By the substitution =
VI, cosb=a/VET
the equation in rectangular co-
ordinates is obtained, namely,
V& =aVal+y’/x + I; or,
simplifying,

@+ )@—ar=Pt (2)
The curve is symmetric with respect to the polar axis; and

SR is an asymptote to both branches. When 7> a, the curve
has the form indicated in the figure.

203. The limagon. Let ODM be a circle, with the diameter
OD coinciding with the polar axis; let a radius vector, OM,
meet the circle in M, and let a fixed length MP = — MP' =1be
added to and subtracted from OM; the locus of P and P'is
called the limagon.

Let OP be r, xOP be 6,and OD be 2 a; then OM =2 a cos 6,
and r=0P = OM+ MP=2¢ cos 6§ +1.
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In the same way, for P’
r=0P'=0M+MP' =2acosf—1.
Therefore the equation of the limagon is
r=2acosf + I 1)

By the substitution r = va?+3? cosf = x/Va’+73° the
equation in rectangular coordinates is obtained, namely,

Vai+y' =2 ax/Va'+y? £ 1; or, simplifying,

@+ 9P — 2 ap =P + ). @
The locus is a
closed curve sym-
metric with re-
spect to the po-
lar axis. When
1< 2 a, the curve
has an internal
loop, and has the
form indicated
by the solid line
through 4 in the
figure. ~ When
1> 2 a the curve
has the form in-
dicated by the
outside solid
line through C
in the figure.

204. The cardioid. The limagon, for which I = 2 a, is called
the cardioid. Its equations are
r=2a(cosf £ 1), @
and @4y’ — 2 ax)* =4 a* (@2 + 37). @)
The cardioid has the form indicated by the dotted line in the
figure.
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205. Parametric equations of a curve. Sometimes the most
convenient method of representing a curve analytically is by
a pair of equations of the form

e=4(), (1) y=y(@®, @
where ¢ denotes a variable called a parameter.

By assigning a series of values to ¢, reckoning out the cor-
responding values of (w, y), and plotting their graphs, it is
possible to obtain any number of points on the curve, and
therefore a figure which will represent the curve with any
degree of accuracy that may be required.

By eliminating ¢ between (1) and (2), an equation of the
form f(w, y) = 0 is obtained. This will be the equation of the
curve in rectangular (or oblique) coordinates.

Thus, = ¢%, y = 2¢ are parametric equations of the parabola y2 =4« ;
for y2 = 4 « follows from x = ¢2, y = 2¢ by eliminating ¢.
Assigning values to ¢ and computing the corresponding values of (x, y)
as given by © =12,y =2¢:
t:"'-‘31 —27 "‘11 "'%1 07 %7 17 21 37"'
x = 97 41 11 '}h 0, iv 17 47 91 b
y:""_67 "‘47 _'21 —17 01 11 27 41 6,""

Plot the points -.- (1, —2), (1/4, —1), (0,0), (1/4 1), (1, 2), «-
thus determined, and as many more as may be desired, and through them

draw a smooth curve. This curve will represent the parabola y2 =4x

(see the figure, § 71). Observe that as ¢ varies from —o to o the cor-
responding point P will trace out the entire curve, coming in from « on
the lower half, and going out to o on the upper half.

The parametric equations
v=x+ af, y=1y+ bt

represent the straight line which passes through the poing
(20, %) and has the slope b/a; for the equation obtained by
eliminating ¢ is

(& — )b = (y — o).
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Similarly, by eliminating the parameter ¢ (or ¢) in each case,
it may be proved that

(1) The parametric equations
. r=aty y=2at
represent the parabola y? = 4 a.
(2) The parametric equations
r=acos¢, y=>bsin¢
represent the ellipse a?/a’*+3?/0*=1. [Compare § 122.]
(8) The parametric equations
' r=asec¢, y=>btan ¢
represent the hyperbola #*/a* — 3?/b* = 1.

Example 1. Find the points where the line through the point (3, 2),
and having the slope 2, cuts the circle 22 4+ y2 — 5 = 0.

The parametric equations of the lineare x =3 +¢, y =2+ 2¢. Hence,
for the required points, (3 +¢)24+(2+2¢)2—6=0,0r 5¢24+14¢+8 =0,
whence t =—2, or —4/5. Therefore the points are (1, —2) and
(11/5, 2 5).

Example 2. Prove that the equations of the tangent and normal to
the parabola y? =4 ax at the point (a2, 2 at) are x — ty + at>* =0 and
te+y—2at— at®=0.

The equation of the tangent at (a/, ') is yy'=2 a(x+2'). Substituting
x' = at?, y' =2 at in this equation, and simplifying, gives x — ty 4 at2 =0.

The equation of the normal at («/, y') is y/ (x — ') +2a (y — y') = 0.
Substituting ' = at?, y'=2 at in this equation, and, simplifying, gives
te +y—2at—at®=0.

Example 3. Prove that the tangents to the parabola y2 = 4 ax at the
points (at:?, 2 at;) and (ate?, 2 ats) meet at the point {atits, a(ts + t2)3.

Example 4. Prove that the area of the triangle whose'angular points
are (atli, 2 at,), (atgz, 2 atz), and(atg'z, 2 atg) is az(tl——tg) (tz-—t;;) (t3—t1).
Also that this area is double that of the triangle whose sides are the tan-
gents to the parabola at the three given points.
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206. The cycloid. This is the curve traced by a point on the
circumference of a circle, when the circle is made to roll (with-
out sliding) on a straight line. Parametric equations of the
cycloid may be found as follows :

Take the line on which the circle rolls as a-axis, and one of
the positions in which the tracing point P is on this line as the
origin O. Let C be the center of the circle, and a its radius.

Then, taking the circle in any representative position, as in
the figure, join C to P and to the point of tangency 7. Also

take PD and PE perpendicular to Ox and CT, respectively,
and represent the circular measure of the angle T'CP by ¢.
The position of the circle is such that, were it rolled back to
the left, the tracing point P would come into coincidence with
O; hence OT'=arc TP = a¢.
Therefore, if (x, y) denote the coordinates of P,

2=0D=O0T— PE=a¢ —asin ¢,
y=DP=TC—EC=a— acos ¢.
Hence the parametric equations of the cycloid, referred to
the axes above indicated, are
z=a(¢p—sin¢), y=a(l—cose).

As ¢ varies from 0O to 2, P traces out the arch indicated
in the figure. The entire curve consists of this arch and repeti-
tions of it to the right and left corresponding to the values of
¢ already considered increased or diminished by the multiples
of 2.
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207. Path of a projectile. It is required to find the curve
traced by a projectile whose initial velocity is given, on the
assumption that the resistance of the air is to be disregarded.

Take the initial position of the projectile as the origin O,
and the horizontal and vertical lines through O as the a- and
y-axes. Let v denote the
magnitude of the initial
velocity, and « the angle
which its direction makes
with the w-axis.

Take the projectile in
any representative position
P, and let ¢ denote the time
which has elapsed since it _0;[ ! y
left the initial position O.

Through O draw a line making the angle « with Oz, and let
this line be met by the perpendicular to Oz through P at Q.

If the projectile were not acted upon by gravity, it would
move along the line OQ and in the time ¢ would describe the
distance vt; hence OQ = t.

But since the projectile is acted upon by gravity, its distance
from Oz at the end of the time ¢ is not D@, but D@ diminished
by a distance (represented by P@ in the figure) which in
Mechanics is shown to be gt*/2, where g is a constant.

Hence, if the coordinates of P are (z, y),

/
/

2= 0D = 0@ cos « =vtcos a,
y=DP=D@Q— PQ=vtsine— Lg%

Therefore the parametric equations of the path of P are
x=vtcose, y=ovtsine—gt’

These equations represent a parabola; for eliminating ¢,

q 2
y=atanae — —71—
2 v?cos? «

K
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which may be reduced to the form
<:n __2*sin acos a)” __2 v%os%z(y _ 'v“’sinza.)
g g 29
This equation represents a parabola whose axis is parallel
to Oy, whose vertex V (the highest point which P reaches)
is (W*sin2a/2g, v*sin*e/2g); and whose latus rectum is
2 v? cos? a/g.

From the equation of the path, in the figure, £V = v2sin2 «/2 ¢, and
the distance from V to the directrix is v2 cos? «/2 ¢, therefore the distance
from E to the directrix is v2/2 g, which does not contain &¢. Therefore all
the paths with a common velocity v going out from O with different angles
« have a common directrix.

The distance from O to L in the figure is called the range. And
OL =sin 2a v2/g. The greatest value which sin 2« can have is 1,
and then 2 « = 90° and o = 45°. Therefore the maximum range is v2/g,
which is obtained when o = 45°. In this case E is the focus. )

Example. Prove that in putting the shot, if one of two men of similar
figure and of equal strength and knack is three inches taller than the
other, the taller man should win by about two inches.

208. The graphs of the trigonometric functions, y =sinx,
y=cosx, y=tanwx, y =-cota.

From a table of arc lengths and natural trigonometrie
functions, the following values can be found [see Table E]:

angle 0°  15° 30° 45°  60°  75° 90°
arc 0.0 0262 052 079 105 131 157
sim . 00 0259 050 071 0.87 097  1.00
cos 1.0 0966 087 071 050 026  0.00
tan 00 0268 058 100 173 3873 o

209. Hence the following points are on the graph of y=sinz;
0(0,0), C(0.262, 0.259), D(0.52, 0.5), F(0.79, 0.71),
E(1.05,0.87), ¢(1.31, 0.97), H(1.57, 1) ; and, for intermediate
points, ¥ increases with .
The curve from & =0 to o == /2 =1.57 is the part from O to
H in the figure. Since sina =sin(r —2), the curve from
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z=m/2 to x== will be symmetric with respect to 4H to the pre-
ceding part, that is, it will be of the form HM in the figure.
Since sin 2= —sin (¢ — ), as @ increases from = to 2, ¥
will run through the negative values equal numerically to the
positive values through which it ran as # increased from 0 to

w; hence the curve from == to £ =2 will be of the form
MSV in the figure.

Since sin #=sin (¥ + 2 m=), the complete graph consists of the
part already described and repetitions of it to the right and left.

210. Since cosz=sin(x+=/2), the graph of y=cosz is
obtained by shifting the graph of y=sina a distance /2 to
the left. The graph will be the dotted curve BFAQRT with
repetitions to the right and left.

But the graph of y=cosxz can be found independently. From the
table of arc lengths and natural cosines the following points are on the
curve: B(0, 1), J(0.26, 0.97), K(0.52, 0.87), F(0.79, 0.71), L(1.05, 0.5),
N(1.31, 0.26), A(1.57, 0); and for intermediate points y decreases as x
increases. Since cos ¥ =— cos(w — &), the y will be negative for all
points on the curve from x = /2 to x = m, and the y will numerically in-
crease through the same values it ran through between 4 and B; this
part of the graph is represented by the dotted line from A to @ in the
figure. Since cosx = cos(27 — x), the curve from & = to x = 2 = will
be symmetric to the part BAQ; namely, it will be of the form of the
dotted line QRT in the figure. The graph of y = cosx will be repre-
sented by the dotted line BFAQRT and repetitions to the right and left.
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From the table of arc lengths
and natural tangents [Table E] the following points are found

211. The graph of y = tan .

0(0, 0), C(0.262, 0.268), D(0.52, 0.58),

)

E(0.79, 1), F(1.05, 1.73), G(1.31, 3.73), (r/2=1.57, 0 ); and

to be on the curve:
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since tan ® = — tan(w — ), the following points also are on
the curve: H(1.83, — 3.73), J(2.09, —1.73), K (2.36, — 1),
L(2.62, —0.58), M (2.88, —0.268), B(3.14, 0). The graph
is of the form OCDEFG@, and so out to infinity on the line
2 =m/2, and then from infinity on this line through H, J, K,
L, M, to B.

Since tanx =tan(x —=) and tanx=tan(x+ =), the curve
will consist of repetitions to the left and right.

212. The graph of y =cot x. Since cot & = tan (v/2 — 2), the
graph of y=cota is symmetric to the graph of y = tan « with
respect to the line @ ==/4. It has the form indicated by the
dotted line in the figure.

213. Representation of a function. If the variable y depends
on the variable 2 in such a manner that to each value of x there
corresponds a definite value or set of values of y, y is called a
Sunction of . Thus, if y =2% or y =sin x,  is a “ one-valued ”
function of @, that is, to each value of @ there corresponds a
single value of y; if y* ==, y is a “two-valued” function of z;
and similarly, whenever « and y are connected by an equation,
y is a function (one or many valued) of .

There is no better method of exhibiting the ¢ functional rela-
tion”” between y and «x defined by a given equation than by the
graph of this equation. If the equation can be reduced to the
form y = f'(x), where f(x) denotes a definite expression in ,
the graph of the equation can be obtained by computing the
values of y corresponding to a set of assigned values of , plot-
ting the graphs of the solutions of the equation thus found,
and then drawing a smooth curve through the points so con-
structed. Most of the graphs in this book were obtained by
this method. The graph of the equation not only exhibits the
manner in which y wvaries with «, but enables one by mere
measurement to obtain approximately correct values of y for
values of & intermediate to those used in constructing the graph.
The method presents fewest difficulties when, in the equation
_y=f(x), f(x) is a rational integral function of =,
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It frequently happens in the application of mathematics to physical
problems that while it is known of two variables, ¥ and «, that the first is
a function of the second, and while it is possible by experiment and
measurement to find the values of y corresponding to certain assigned
values of x, the equation connecting z and y is not known. It is then
sometimes found useful to obtain the simplest equation of the form
y = f (x), where f (x) is rational and integral, which has for solutions the
known pairs of values of (x, y). This equation will represent in a simple
manner what is known as to the relation between the two variables; and
it may be used to compute approximately the values of y corresponding to
values of x intermediate to the given values, or such values of y may be
obtained by measurement from its graph.

Thus, if it is known that when 2 =1, 2, 3, 4, theny =1, 1, — 5, — 23,
set | Yy = bo + b1x + bax*+ b33,

Since this equation is to have the four solutions (1, 1), (2, 1), (3, — 5),
(4, — 28), the coefficients bo, b1, be, b3 must satisfy the four equations :
1 =100+ by + bz + bs,
1 :])()+2b1+4bg+8()3,
—b5="00+3by + 9 b2+ 27 b3,
— 283 =bo +4 by + 16 by + 64 bs.
Solving these equations gives by =1, by =— 2, be =3, b3 =— 1. Hence
the required equation is
y=1—2x 4 322 — 3.

By this method, if the number of known pairs of values of (x, y) is »,
an equation can be found of the form y = b, + bz + -+« + bp—12*~! which
has these known pairs for solutions.

Observe that the method gives a solution of the problem of finding a
curve which will pass through » given points.



CHAPTER XII
PROBLEMS ON LOCI

214. Tllustrative problems. The method employed in coordi-
nate geometry for finding the locus of a point satisfying a
- given condition [§ 67] has been illustrated in deriving and
interpreting the equations of the several conies [§§ 70, 88,1257,
and their diameters [§§ 86, 1087, and also in deriving the
equations of certain other curves [Chapter XI]. The follow-
ing pages contain some further illustrations of this important
method.

215. Example 1. Find the locus of a point P the square of whose
distance from the base of a given right-angled isosceles triangle is equal
to the product of its distances from the other two sides, ‘

Let ABC be the triangle, right-angled
at A, and having the equal sides AB and
AC of length a.

Take the lines AB and AC as xz- and
y-axis, respectively, and let (x, y) denote
the coordinates of P referred to these
axes.

If PD, PE, PF denote the perpen-
diculars from P to BC, AC, AB, respec-
tively, by hypothesis

DP?=EP.FP.

But EP=x; FP=y; and, since the equation of BCis x+y—a =0,
DP=(x+y—a)/V2.

—a)?
Therefore, (ac-{-yfa) =ay,ora+y?—2ax—2ay+a2=0

is the equation of the locus of P. Hence the locus is a circle whose
center is the point (@, @) and whose radius is a.
N 177
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216. Example 2. TFind the locus of a point P the square of whose
distance from the origin equals the product of its distances from the axes.
If the coordinates of P are (x, y), the equation of the locus is

Pyt =ay;
which, solved fory, is  y=2z(1 £V—3)/2.
Therefore the equation has no real solution except (0, 0). Hence the
locus of P consists of a single point, the origin.

217. Example 3. The extremities 4 and B of a line segment AB of
given length move along the xz- and y-axis, respectively, the axes being
rectangular. Find the locus of the point P where AB is divided into two
parts PA and PB whose lengths are b
and a.

Take AB in any representative position,
as in the figure, and let x, y denote the
coordinates of P; that is, let DP =2 ploccec 2 P (x,0)
and CP=y. The problem is to obtain
the equation connecting z«, y, a, and b.

By considering the figure it is obvious -
that DP: BP=CA:PA. Also DP=u, BP=aqa, CA=Vb:—y2, PA=0.
The substitution of these values in the proportion gives x/a = V'b% — y2/b,

or, squaring, x2/a? = (b — y2) /02 =1 — 2/ 12,
or, finally, 2 a?+y2/02=1.

Hence the locus of P is an ellipse with the semi-axes ¢ and b, and with
its axes on the coordinate axes.

1
I
!
1
C A

218, Example 4. The base of a triangle is given in length and posi-
tion, and one of the angles at the base is double the other; tind the locus
of the vertex.

Let PC'C be the triangle with the vertex P in any representative posi-
tion in which the angle at C' is double that at C'.

Take the mid-point of the base
C'C as the origin O, the line C'C
as z-axis, and the line through O
perpendicularto C/ C'as y-axis. Then,
if 2¢ denote the length of the base,
the coordinates of €' and C are
(= ¢, 0) and (¢, 0). Let (x, y) de- "¢y [9)]
note the coordinates of P.

Since the angle at C is double that at C’, if the angle at C' be repre-
sented by ¢, that at C will be represented by 2¢. These angles cannot

i
i
i
1
i
i
D

(¢)0)
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themselves be immediately expressed in terms of (x, y) but their tangents
can be so expressed. For, take PD perpendicular to Ox ; then

tau¢:££— y

CD c+ux

, and tan2¢=2L U

DC c—=z

Between the functions tan 2¢ and tan ¢ there exists the relation
tan 2 ¢ = 2 tan ¢/(1 —tan2¢). In this equation substitute the expressions
just obtained for tan ¢ and tan 2¢. The result is

v _2y/(c+x)
c—x l—y/(c+x)?

which is equivalent to y = 0 and 3% — y2 + 2 cx = ¢2, the equation re-
quired. It represents an hyperbola, whose center is the point (— ¢/3, 0)
“and whose transverse axis coincides with the xz-axis; the vertices are the
points (— ¢, 0) and (¢/3, 0). Since the interior base angles only are con-
sidered, only the branch of this hyperbola through (¢/3, 0) is to be taken.

219. Note. Any given angle a(< ) may be trisected by aid of this
hyperbola. For on C'C describe a segment of a circle containing the
angle m — «. Then, if P denote one of the points of intersection of this
circle with the hyperbola, X C'PC =7 — . .. X PC'C+ X PCC' = a.
X PC'C= /3.

The trisection of an angle was one of the famous problems of antiquity.

220. Example 5. From a point P perpendiculars PM and PN are
taken to the rectangular axes Ox and Oy ; the line MN passes through
the fixed point (@, b); find the locus of P.

Represent the coordinates of P by (x, y) ; then OM =z and ON = y.

Therefore, if (& =) denote the coordi-
nates of any point on the line MY, its equa- y

tion (in the intercept form) is )
X4

§+ﬂ:1.
x Yy

But, by hypothesis, (@, b) is a solution of ¥

this equation. Hence M\
a b F
=4Z=1,orzy—br—ay=0
o + ¥ Y Y (a,b)

is the equation required. It represents an hyperbola passing through the
origin and having asymptotes parallel to Ox and Oy.
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221, Example 6. The points Pi(xy, y1) and Pp(xs, y2) are fixed.
Through P; a line passes which meets the y-axis at B, and through P; a
line passes which meets the x-axis at 4. If these lines are perpendicular,
find the locus of P, the mid-point of AB.

The first line passes through the point Py(x;, y;) and has a variable
slope. Call this slope A. The equation of the line is then

y—y1=N2x —x1). @
Since the second line passes through the point P;(xs, y2) and is per-
pendicular to the line (1), its equation is

y—yz=—%(m—wz)- @)

The coordinates of the point B where the
line (1) meets the y-axis are (0, y; —Azy).

The coordinates of the point A where the
line (2) meets the z-axis are (zz + Nys, 0). QL

Hence the coordinates of P(x, y), the
mid-point of 4B, are

p=2et N2
2

The elimination of the ¢ parameter’ X between these two equations
gives

3 Y=

Y1 — Ay 3
=, @

2221 + 2 yy2 — (X1%2 + Y1y2) = 0. “@)
The locus of P is the straight line represented by this equation.

222. Example 7. The point P is the intersection of two lines PPy
and PP, which pass through the fixed points I’ and P and intercept
the constant length 7 on a given line; find the locus of this point P.

Take the given line as a-
axis, any point O on this line y /(x )
as origin, and the line through \P(\y
O perpendicular to the given
line as’y-axis. Represent the
coordinates of P, P;, P; re-
ferred to these axes by (z, ¥),
(%1, y1), and (2g, ¥2)- 7S

If ¢ and D denote the |
points where PP; and PP,
meéet Ox, then CD =1." But CD = OD — OC. Hence the equation of
the locus of P (x, y) will be obtained if expressions for OC and OD in
terms of x, y can be found.

PP (x.4,)




PROBLEMS ON LOCI 181

Represent the variable lengths OC and OD by ¢ and d, respectively ;
then the coordinates of C are (¢, 0) and those of D are (d, 0) and the
equations of the two lines CP; and DP: are

rT—T y yl r—2x2 Y — Y2
o= M == - @
Regard these equatlons as simultaneous; then, in both equations, (x, ¥)
will denote the coordinates of P.
Solving (1) for ¢ in terms of 2, ¥, 21, ¥1, and (2) for d.in terms of =, y,
&2y Yo, glves
¢ =" and d= Loy — Yo,
Y=y Yy—Y2
Therefore, since d — ¢ =1,
Xoy — Y2 XY — Y1
Y—Y2 Yy—h
or (¥ —y)(@y — ) — (¥ — y2) (@Y — 91%) =LY — Y1) (Y — ¥2),
which is the equation required. It is of the second degree in (x, ) and
therefore represents a conic.

:l,

223. Example 8. To find the locus of a point P the tangents from
which to the parabola y* = 4 ax include an angle of 45°
Let (x, y) denote the coordinates of P, and my, mq the slopes of the
tangents from P (z, y) to the parabola.
To solve the problem three equations connecting x, y, m;, ms must
be found, and m; and m. eliminated.
One of these equations may be obtained directly ; for since the tangents
include an angle of 45°, and tan 45° = 1, by § 54,
my — My
1+ mmsg L. @
To find the other two equations, proceed as follows: The equation of -
the tangent to y% = 4 ax in terms of its slope is y = mx + a/m, which, when
written as an equation for determining m in terms of the coordinates
(z, y) of any point on the tangent, becomes

xm?—ym + a=0. @)
Hence, if in (2), x, y denote the coordinates of the point P whose

locus is sought, the roots of (2) will be m; and mg, the slopes of the
tangents through P. Therefore

my + mg = g, 3) and myme = g. (€))

The equation of the locus may therefore be found by eliminating m;



182 COORDINATE GEOMETRY IN A PLANE

and mg from the equations (1), (3), and (4). From (8) and (4) it follows
that m; — me = Vy2—4 ax/x. Substituting this result and (4) in (1) and
simplifying, gives

PHLyIng, & 2t —y2+6azx 4 a® =0, (®)

which is the equation required. It represents a rectangular hyperbola.

224. Example 9. TFind the locus of a point P the tangents from
which to the ellipse 22/a2 + y2/0? = 1 include a right angle.
As in the preceding example, let (x, y) denote the coordinates of P,
and mq, mg the slopes of the tangents from P to the ellipse.
The equation of the tangent to the ellipse in terms of its slope is
y = mx 4+ Va2m? + b2, which when written as an equation for determining
m becomes
(%2 — a?)m*— 2 xym + (y%2 —b2%) =0. 1)
Hence, if in (1) «, y denote the coordinates of P, the roots of (1) will
be m; and mg, the slopes of the tangents from P ; therefore

mims = (Y2 — b2)/(x? — a?).
But since the tangents are perpendicular, m;ms =— 1. Therefore

yr—b?

xz_az_—l, or a4 y?= g2+ b2

is the equation of the locus of P. It represents a circle whose center is
at the center of the ellipse and the square of whose radius is the sum
of the squares of the semimajor and semiminor axes of the ellipse. It is
called the director circle of the ellipse.

225. Loci problems are so varied in character that it is pos-
sible to give general directions only for dealing with them.
Take the point P whose locus is sought in some representative
position, and construct a figure containing the several points
and lines mentioned in the statement of the problem. Then
choose axes of reference related as simply as possible to these
points and lines, and represent the coordinates of P with re-
spect to these axes by (z, ).

If the given condition involves, directly or indirectly, the
distance of P from certain fized points and lines only, the
equation of the locus can be found at once by expressing these
distances in terms of the coordinates of P(x, y) and known
quantities, and substituting the expressions thus found in the
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statement of the given condition. Thus, the equation of the
locus of a point which is twice as far from the origin as it is
from the line y —1=01is Va’ + " =2(y —1).

On the other hand, the given condition may connect P in
some way with certain movable points or lines [§ 221]. The
coordinates of these points or certain of the quantities which
appear in the coefficients of the equations of these lines are
then themselves variables; they are called parameters. In
this case the statement of the problem leads to a system of
equations involving these parameters and the coordinates of
P(z, y), there being one more equation than there are parameters,
if the problem be a locus problem in the proper sense of the
word. The elimination of the parameters from this system of
equations gives the equation in x, y, and known quantities,
which represents the required locus. Care must be taken that
all the given conditions are expressed in the equations, or in
the method of combining them [§§ 221, 222, 2237.

It is sometimes easier to obtain the equation of a locus in
polar coordinates [§§ 197, 202, 203].

226. What in this book has been called Coordinate Geometry
is so called because a point is determined by its coordinates
and wice versa. The subject is sometimes called by other
names; namely, Analytic Geometry, Algebraic Geometry, Car-
tesian Geometry, or Conic Sections. It is called algebraic or
analytic geometry, because it represents geometric relations by
equations; Cartesian geometry, because the method was’ used
by Descartes (Latin, Cartesius) in his G'éométrie published in
1636 ; conic sections, because these curves are studied by this
method.

227. Exercises. The locus of a point.
1. Find the locus of a point which is twice as far from the z-axis as
from the y-axis.

2. Find the locus of a point the square of whose distance from the
origin is equal to the sum of its distances from the axes.
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3. Find the locus of a point the sum of the squares of whose dis-
tances from the sides of a given square is constant.

4. In the rectangle AM PN, the perimeter, the position of A4, and the
directions of the sides are given ; find the locus of P.

5. A point moves in such a manner that its distance from (a, 0) is
equal to its distance from a straight line through (— a, 0) and parallel to
the y-axis ; find its locus.

* 6. Find the locus of a point whose distance from the point (1, — 1) is
one half its distance from the line x + 2 y = 0.

7. Find the locus of a point the sum of whose distances from the
points {— 2, 0) and (2, 0) is 6.
8. Given the base AB of the triangle ABC, find the locus of its
vertex C
(1) when CA2— CB?is given.
(2) when CA4? 4 CB?is given.
(3) when CA/CB is given.
(4) when the vertical angle C is given.
(6) when the difference of the base angles 4 and B is given.

9. Given the base 4B and the vertical angle C of the triangle ABC,
find the locus of the point of intersection of the perpendiculars from
A and B to the opposite sides.

10. The hypotenuse of a right-angled triangle is given in position and
length. Find the locus of the center of the inscribed circle of the triangle.

11. Find the locus of a point P which is twice as far from the line
2243y +1=0asitis from the linex—2y — 6 =0.

12. The sum of the squares of the distances of a point P from two
given intersecting lines is constant ; prove that its locus is an ellipse.

13. Find the locus of a point the sum of the squares of whose distances
from the angular points of a given square is constant.

14. The sum of the distances of the point P from the sides of the tri-
angley=0,83y —42x=0, 122+ 5y—60 =0 is constant; find the equa-
tion of its locus.

15. Two given parallel lines I; and I, are perpendicular to a third given
line 73. If the perpendicular distances of the point P from these lines are
1, De, and pg, respectively, and pyps =cps?, where ¢ is constant, prove that
the locus of P is an ellipse when ¢ is negative, and an hyperbola when c is
positive.,
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16. Find the locus of the center of a circle which passes through a
given point and touches a given line,

17. Prove that the locus of the center of a circle which touches two
given circles, of which one is not within the other, is a pair of hyperbolas
of which the centers of the given circles are the foci. What is the locus
when one of the given circles lies within the other ?

18. Find the locus of the center of a circle which touches a given line
and a given circle.

19. Prove that the locus of the foot of the perpendicular to a tangent
of the ellipse x2/a? + y2/6% = 1 from either focus is the circle 2 + y2 = a2,
or the circle 22 + y2 = b2, according as « is greater or less than b.

20. The base of a triangle is fixed in length and position and its vertex
moves along a given line ; find the locus of the point of intersection of the
perpendiculars from the angular points of the triangle to the opposite sides.

21. From a point P perpendiculars PM and PN are drawn to the
rectangular axes Ox and Oy. Find the locus of P

(1) when the length of M.V is constant.

(2) when MN is parallel to the given line y = ma.

22. Two fixed points A(a, 0) and B(0, b) are taken on the z- and
y-axes. Two variable points A'(a’, 0) and B'(0, b') are also taken
on these axes. Find the locus of the point of intersection of 4B’ and
A'B

(1) when o/ + b’ =a + b.

(2) when 1/a' —1/b' =1/a — 1/b.

23. A line OP is drawn joining the origin O to any point P on the
line 2 — 3y = 6 ; find the locus of the mid-point of OP; also that of the
point @ where OP is divided in the ratio k: 1.

24. Through a given point (', y') two lines are drawn which meet
the axes of reference in the points A, B, and A/, B’, respectively; find
the locus of the point of intersection of the lines AB/ and A'B.

25. A variable line makes with two fixed lines a triangle of constant
area ; find the locus of the mid-point of that portion of the variable line
which lies between the two fixed lines.

26. Through the point (2, 0) a line is drawn which meets the lines
y =« and y = 3z in the points B and §; find the locus of the mid-point
of RS.

27. Find the locus of the point of intersection of the diagonals of
a rectangle inscribed in a given triangle.
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28. From a point P tangents are drawn to the parabola y2 =4 qx,
which make the angles 6; and 6, with the axis. Find the locus of P,

(1) when tan 6; tan s is constant.

(2) when cot 6; + cot 6; is constant.

(3) when 6; + 6, is constant.

(4) when cos 6; cos 6 is constant.

29. Two tangents to the parabola y2 =4 ax meet at an angle of 60°;
find the locus of their point of intersection.

30. Find the locus of the point of intersection of two tangents to the
hyperbola x2/a2? — y2/b* = 1 which are mutually perpendicular.

31. The chord of a parabola passes through a fixed point ; prove that
the locus of its mid-point is a parabola.

82. Prove that the locus of a point whose polars with respect to
the parabola y2 =4 ax and the circle 2?4 y2 = a2 meet at right angles
is the parabola y2 = 2 ax.

83. Prove that the locus of poles of tangents to the parabola y2 =4 ax
with respect to the parabola y2 = 4 bz is the parabola y2 = (4 b*/a)x.

34. From a point P a perpendicular is drawn to the polar of P with
respect to the parabola y2 =4 ax. This perpendicular meets the polar of
P at M and the axis of the parabola at N. Prove that if PM . PN is con-
stant, the locus of P is a parabola.

35. Prove that the locus of the extremities of the minor axes of all
ellipses which have a given point and line for focus and directrix is a
parabola.

36. From the focus F of an ellipse a line is drawn perpendicular
to any diameter, and from the focus F’ a line is drawn perpendicular
to the conjugate diameter. If these two lines meet at P, prove that the
locus of P is another ellipse.

87. The points 4, B, C, and D are given on a straight line; find the
locus of the point P at which 4B and CD subtend equal angles.

38. A fixed point A is joined to any point P on a given straight line
and on AP the point @ is taken such that AP. A is constant; prove
that the locus of @ is a circle.

89. If P be any point on an ellipse whose center is ¢ and on CP the
point @ be taken such that CQ =k CP, where % is constant, the locus of
@ is an ellipse. (These two ellipses are called similar ellipses.)

40. Find the equation of the locus of the centers of the systems of conics
which pass through the points of intersection of the lines x +y —1=0
and x +y — 3 = 0 with the linesx =0 and y =0.
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41. Prove that the locus-of the centers of the system of conics repre-
sented by the equation axz? + 2 hxy + M\y2 + 2 fy = 0, where X\ is an arbi-
trary constant, is a straight line.

42. Prove that the locus of the centers of the system of conics
22+ 2N\ey —y2 + 2 fy =0 is a circle.

43. Find the locus of the point of intersection of two tangents to an
ellipse, (1) when the sum of their slopes is constant, (2) when the product
of their slopes is constant.

44. Find the locus of the center of the inscribed circle of the triangle
whose angular points are any point on an ellipse and the foci.

45. The normal to an ellipse at any point P meets the major axis at
N; prove that the locus of the mid-point of PN is an ellipse.

46. Prove that the locus of the mid-point of a chord joining the ex-
tremities of a pair of conjugate diameters®of the ellipse 22/a2 + y2/b2 =1
is the ellipse 22/a? + y2/b2 = 1/2.

47. Prove that the locus of the mid-point of the chord of contact of
tangents to the circle 22 + y2 = @2 from a point on the line z = ¢ is the
circle c¢(a? 4 y2) = a*x.

48. Given the rectangle ABCD. On 4D and DC the points P and @
are taken such that AP:DQ = A4D:DC; prove that the locus of the
point of intersection of BP and A is an ellipse whose axes are equal to
AD and DC.

49. The perpendicular from the center of an ellipse to the tangent at
P meets the line through P and the focus F in the point @ ; prove that
the locus of @ is a circle,

50. Find the locus of the point of intersection of normals to an ellipse
at the extremities of a pair of conjugate diameters.

51. Prove that the locus of the poles of chords of the hyperbola
22/a2 — y2/b2 = 1 which touch the circle xz2 4 y2 = a2? is the ellipse
x‘l/a4 + y2/b4 = 1/((1/2 + bZ).

52. Prove that the locus of the poles of a given line with respect to a
system of confocal conics is a line perpendicular to the given line,






COORDINATE GEOMETRY IN SPACE

CHAPTER XIII
COORDINATES AND DIRECTION COSINES

228. Axes of coordinates. The methods of coordinate geom-
etry may be extended to space as follows:

Through any point O in space, chosen as origin, take three
mutually perpendicular lines as axes of coordinates, one hori-
zontal, one vertical, and the third perpendicular to the plane
of these two lines, and call the horizontal line the x-axis, the
vertical line the z-axis, and the third line the y-axis.

zZX

The z- and z-axes determine an upright or vertical plane,
called the zw-plane, which may be supposed parallel to the
plane of the paper in front of the observer. The - and y-axes
determine a horizontal plane, called the ay-plane, and the
y-and z-axes a vertical plane, called the yz-plane, both of which
are perpendicular to the za-plane. This is indicated in the
accompanying figure, which ¢orresponds to the case in which

189

1
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the eye of the observer is in front of the zx-plane, abuve the
xy-plane, and to the right of the yz-plane.

The xy-, yz-, and zx-planes are called the coordinate planes.

As the positive direction along the w-axis, take that from
left to right; along the z-axis, that from below upwards;
along the y-axis, that towards the observer, the eye being
placed as just indicated.

The system of axes just described is a rectangular or or-
thogonal system.

229. Any three lines through O which are not in the same
plane may be taken as axes, these axes being called oblique
when they are not rectangular. Oblique systems will be em-
ployed very rarely in this book, and when they are used, ordi-
narily it is explicitly so stated.

230. The drawing of a plane figure which will correctly rep-
resent a solid figure as it appears to the eye is in most cases a
difficult process. It is therefore convenient, as in the figures
herewith, to use what is called cabinet-makers’ or parallel pro-
jection. In applying this method, figures in the vertical za-
plane, and in planes parallel to it, are represented as they are,
not as they would be seen by the eye. Some convenient direc-
tion in the plane of the paper is then chosen to represent the
direction of the y-axis and of lines parallel to it, the one often
taken, when the axes are orthogonal, being that which makes
an angle of 135° with each of the lines representing the other
two axes. Line segments along the - and z-axes, or parallel
to them, are then to be drawn correctly to scale. DBut, as the
y-axis is perpendicular (or oblique) to the zx-plane, line seg-
ments along this axis or parallel to it will be foreshortened ; it
is convenient sometimes to represent them on a scale one half
that used for segments along the - and z-axes. When cross-
section paper is used, the lines representing the - and z-axis
may be taken on the ruling, and that representing the y-axis
in the direction of a diagonal of the squares, and it is



COORDINATES AND DIRECTION COSINES 191

then convenient to take 1/+/2 as the unit of the scale for the
y-axis, so that the diagonal of a square will be two units. Of
course this is merely a conventional method of representation,
but it is easily applied, and it gives figures which are accurate

enough for most purposes.
z

231. Orthogonal projections

of a point. If through a point N =

P in space a plane be taken /
vz 7 P

|,/

0

perpendicular to a given line,

the point in which this plane —

meets the line is called the

projection of P upon the line. )
Let P,, P,, P,,denote the pro- “

jections of the point P upon the a-, y-, and z-axes, respectively.

1
]
'
I

Py

232. Again, defining the projection of a point upon a plane
as the foot of the perpendicular from the point to the plane
[§ 114], let P,, P,., P,, denote the projections of the point P
upon the ay-, yz-, zr-planes, respectively.

These points are exhibited in the accompanying figure, con-
structed by taking through P planes parallel to the coordinate
planes. These planes, together with the coordinate planes,
bound a parallelepiped whose corners are O, P, and the points
P,P,P,P,,P,P,

29

233. Coordinates of a point. The distances of a point P
from the yz-, za-, and ay-planes are denoted by z, y, and z, re-
spectively, and are called the coordinates of P. These distances
are represented as follows by the line segments which form the
edges of the parallelepiped just constructed :

The z of Pis OP,=P,P,, =P, P=P,P,.

The y of Pis OP,=P,P.=P,P=P.P,,

The z of Pis OP,=PP, =P, P=P,P,.

In reasoning about a point P it is usually convenient to take
for its coordinates (z, ¥, ) either the set OP,, OP,, OP,, or the

set P, P, P, P, P, P, but in drawing figures it is often more
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convenient to use the set OP, P,P,, P, P. (See the figures
in the following exercises.)

The a-coordinate of P is positive or negative according as
P is to the right of the yz-plane or to its left; the y-coordinate
is positive or negative according as P is in front of the za-plane
or behind it; the z-coordinate is positive or negative according
as P is above the my-plane or below it [§ 228].

If the coordinates of a point be given, the point itself can
be obtained by reversing the construction just explained.

Thus the method of coordinutes enables one to establish such
a relation between sets of real values of the variables (, y, z)
and the points of space, that to each set of values of (x, y, z) there
will correspond one point in space, and lo each point in space,
one set of values of w, y, z [compare § 6].

234. It may be added that the coordinates of a point with
respect to a system of oblique axes [§ 229] are its distances
from each coordinate plane measured in the direction of the
coordinate axis not in that plane.

235. Exercises. Definition of coordinates.

(The following graphs may be obtained by using squared or cross-
section paper or not, as in the first exercise.)

1. Plot to scale the following points: 0(0, 0, 0), M (6, 6, 8),
N(5, — 6, —6), L(2,4, —2)," 4(2,0,0), (- 3,0, 6), H(— 3,06, 6).

Zz Ly

. Ly
(-3,0,6) ' (13,0.6) [
) T’K M?(elela) K MclL.(ﬁ-G &)
-3,6,6
¢ HY ) i ! (7.9.0) el
} } : //1'E g e
I p o] A lgi D[ [ol TA T 187
7 T 1 x ’ / ~1C X
[} L// l 4 z -
3 L& F ;N J L - F/ ( o )
- . 5,=6,=F.
(242) (6,-6,-6) o] | i
U l T

u
2. Using cross-section paper, plot to scale the following points, put-
ting as many as may be convenient on one figure: (1, 1, 1), (2, 0, 3),
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(_ 4, -1, ’—4)1 (— 37 —47 1)7 (47 4’ - ])7 (— 7, 2, 3)7 (— 11 ’57 _5)7
(—4,2,8), (@3, —4,—-1),(2,1, - 3), (- 1,0,0), (4, — 2, 2), (0,0, 2),
. (0, =1, 0), (—3,0,0), (0,0, 0).

3. Plot to scale on one figure the following nine points: (8, 2, 3),
(37 21 O)v (37 01 0)7 (3v 0» 3)7 (3’ -27 3)7 (37 - 27 0)7 (3$ "‘21 - 2)7
3,0, —2), 3,2, —2).

4. What are the relative positions of the following eight points:
(a, b, ¢), (a, b, —¢), (&, — b, ¢), (—a, b, ¢), (& —b, —¢), (—a, b, —¢),
(—a, —b,¢), (—a, -0, —¢)? .

Which of these points are symmetric with regard to the origin? Which
are symmetric with regard to the coordinate planes ?

236. Problem. To express the distance between two points
P, P", in terms of their coordinates (&', y', 2'), (2", y", 2").

Through P'and P'" take planes parallel to the coordinate
planes. These six planes bound a parallelepiped of which
P'P'" is a diagonal. Let the
lines through P' parallel to the N_ F
axes meet the planes through P" ~~_ Py
parallel to the coordinate planes = |\
in L, M, N, respectively ; let the /L
lines through P" parallel to the H G
axes meet the planes through P / / x
parallel to the coordinate planes ° S
in E, F, @, respectively; and let
the planes of the parallelepiped through P’ and P" parallel to
the yz-plane meet the x-axis in H and X, and the ay-plane in
the lines DH and JK, as in the figure. Then, OH is ', and
OK is 2"; and PL=HK=0K—OH=2"—2'. And simi-
larly LG =y"—vy', and GP"=2"—7'

Since P'LP'"is a right angle, P'P"* = P'I’ 4 LP'"% Again,
since LGP" is a right angle, LP'*= LG*+ GP'"%. Hence
P'P"=P L+ LG+ GP'”. 1In this equation substitute the
expressions just obtained for P'L, LG, GP'" in terms of the
coordinates ; the result is (compare § 41):

P P"” =(er _ ml)z _|_(yu _ yl)2 +<zu _ 27)2_ (1)

(]

m

-~

=
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237. In particular, the distance of a point P(z, y, 2) from
the origin is given by the formula

OP*=a* 4 y* + 2~ @)

238. Angle between two lines in space. Two lines in space
will ordinarily not intersect. If parallels to a pair of non-
intersecting and non-parallel lines be taken through any point,
-the angle made by these intersecting lines is called the angle
made by the non-intersecting lines.

In particular, this angle may be constructed by taking a
parallel to one of the non-intersecting lines through any point
on the other.

239. Direction cosines of a line. The cosines of the angles
which either direction along a line makes with the positive
directions of the coordinate axes are called its direction cosines.
It is customary to represent the angles by «, 8, y, and their
cosines by X, u, v.

Observe that if the direction cosines of the line P'P'" in the
direction from P’ to P'" be A, u, v, its direction cosines in the
direction from P' to P' are — A, — u, — v; for the angles made
by the directions P'P" and P"P' with each axis are supplemen-
tary. Hence, if it is unnecessary to distinguish between the
two directions along the line, either A, u, v or —A, —p, —v
may be taken for the direction cosines, as may be the more
convenient.

Let the line P'P" be any line in
space, and take a parallelepiped
P'P"EFGLMN, of which P', P"
are opposite vertices, as in § 236.
Let the length of P'P'" be repre-
sented by r; then, by definition
[§ 238], the angles which P'P" *
makes with the axes are « = LP'P", 8= MP'P'", y= NP'P";
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and since the angles P'LP", P'MP", P'NP" are right angles,
the direction cosines of the line are: :

PL o' —2a

A =CO0s (‘CZW,—T, (1)
PM_y' =y
= COoS ‘B = IJ’IJ” = ” , (2)

PN 2'—2
Sy

)

‘When one of the points is the origin, from equations (1), (2),
(3) it follows that the direction cosines of the line from the
origin O to the point P'(z, y', 2') are

A=a'fr, p=y'/r, v=2'/r C))

Example. TFind the direction cosines of the line from the point (3, 2, 1)
to the point (1, — 2, 2).
Here,

2 —a'=1-83==2, y/' —y'=—2—-2=—4, 2'—2'=2-1=1.
Hence 12 =(—2)24(—4)2+12=21, or r=Vv21. [§236.]
Therefore AN=—2/V21, p=—4/V2l, »=1/V21;
the direction cosines of the line are

(—2/V21, — 4/V21, 1/V21), or (2/ V21, 4/V21, —1/V21).

240. The sum of the squares of the direction cosines of any line
is unity.

As in the preceding section, let P'P'' be any line in space,
of length »; its direction cosines are

A=(@"—2)/r, u=("—y)/r, v=("—2)/r.
Squaring and adding these three equations gives

N it = (@ — )+ () — g = 2
or, since the numerator is equal to the denominator [§ 236],

}‘2_*_#2_*_”2:1_
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241. If there be given three numbers a, b, ¢, which are
known to be proportional to the direction cosines A, u, v of a
certain line, A, u, v themselves can be found as follows:

The hypothesis that a, b, ¢ are proportional to A, u, v, can be
expressed :

ka=X kb=p, kc=v;
where k& denotes a constant, as yet unknown.

Squaring and adding these equations,

kz(ag -I—bg-i—cg): N4+ ui+si=1.
Hence k=1/Va+ b+ and therefore
a b ' . C

3 T T VT
VaZ+ 0 +¢ V&t + 02+ ¢ VE+V+E

Only the plus sign is taken before the radical for the reason
explained in § 239.

Thus, if \:u:v=2:1:—3, then A\ =2/V14, p=1/V14, v=—3/V14.

A=

242. Exercises. Direction cosines, and distance between two
points.

1. Find the distances apart of the following pairs of points, and the
direction cosines of the lines which they determine:

(5, 2, 2). and (8,5,4); (1,1,1) and (2,0, 3);
(—4, -1, —4)and (-8, —4,1); (—1,5, —b6) and (— 1, 2, —b);
(0, 0, 0) and (2,2, —2); 0,0,0) and (0,0,1).

2. Find the equation of the locus of points equidistant from the two
points (8, 5, 4) and (5, 2, 2).

3. Show that the equation &2 + 32 + 22 = 9 represents a sphere whose
center is the origin and whose radius is 3.

4. Show that the point (32, 1, §) is the center of a sphere which passes
through the four points (2, 3, 4), (4, 3,0), (0, 2, 3) and (2,0, — 1).

5. If the direction cosines of a line are in the ratio 8: 2: — 5, what
are their values ?

6. Find the direction cosines of aline which is equally inclined to the
three coordinate axes.

7. Find the length and direction cosines of the line joining the origin
to the point (—2, 8, —5).
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243. Projections of line segments. Let 4B denote a line
segment and [ any other line in space. If the projections of
A and B upon ! are 4, and B, respectively [§ 2317, the segment
A, B, is called the projection of AB upon l. This is expressed:
AyBy = pr,AB, which is read: 4,B; is the projection of 4B on
the line I [compare § 46].

244. Thus, if O be the origin and P a point whose coordi-
nates are =, y, z, the projections of OP upon the a-, y-, and
z-axes are OP,, OP,, and OP, that is, 2, y, and 2, respectively.
See the figure in § 231.

245. Again, if P' and P" are two points whose coordinates
are o', y', 2/, and ', y'', 2", respectively, the projection of P'P"
upon the x-axis is HX = QK — Od =a" —2a'. See the figure
in § 236. Similarly, the projections of P'P" on the y- and
z-axes are y'"' — y' and 2'' — 2/, respectively.

246. The projection of a broken line, made up of line seg-
ments, upon any line 7 is defined as the algebraic sum {§ 2] of
the projections upon ! of the segments of which the broken
line consists. This
sum is readily seen
to be the same as

the projection upon ?o(,__
! of the segment b

_from the initial ex-

tremity of the broken line to its final extremity. For example,
if the projections of the points A, B, C, D upon [ are 4, B,, C,
D,, then the projection upon ! of the broken line ABCD is
AyB) + ByCy+ C,D,. But this sum is A4,D,, the projection of
AD upon I. Hence

A,Dy = A,By, + B,C, + C,D,;
that is, pr AD = pr,AB + pr,BC + pr,CD.

It is to be understood, of course, that the points 4, B, C, D are
not restricted to one and the same plane.
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247. The projection upon ! of any closed line made up of
line segments is zero.

248. The projection of a line segment wpon another line is
equal to the line segment multiplied by the cosine of the angle
which it makes with the other line.

For, let I be any line, and 4B QA
any line segment in space. Leta \
and B be the planes perpendicular \ \
to ! through 4 and B, respec-
tively, and 4, and B, the points
where these planes meet I. Then,
by definition, 4, is the projection
of A and B, of B, and 4,B, is the 8 B
~ projection of 45 upon . /B0

Through 4, take a line parallel
to 4B, and let B, denote the point
where it meets B8, and 6 the angle
which it makes with I. Join ByB,. Then 4,B, = AB [paral-
lels between parallel planes], and since 4,B,B, is a right angle,

AyBy= 4,B, cos § = AB cos 6,

which may be written pr,dB= AB cos 6, as was to be demon-
strated.

1

249. The projections of segments of the same line, or of
parallel lines, upon a given line are proportional to the seg-
ments themselves.

250. The projections of a line segment upon the three co-
ordinate axes are proportional to the three direction cosines
of the line segment. For, in the figure of § 236, P'L is equal
to the projection of P'P'" upon the x-axis, and

and so on. 4 L=P'P" cos LP'P"=)\.-P'P";

Example.- Find the projections on the axes, and the direction cosines
of the line segment joining the point A(3, 2, 1) to the point B(1, — 2, 2).
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The projections of the line segment AB on the z-, y-, and z-axes are
(§245], 1 _3-_9 _9_2=—4, and 2—1=1
Hence Nipiv=—2:—4:1.
Therefore [§ 2417, A= — 2/V21, u=— 4/V2L, »=1/V21;
or, \=2/V21, u=4/V?21, v=—1/V21 [§239].
Observe that this is the example of §239 expressed in the language of
projections.

251. Problem. 7o find the angle between two lines in terms
of their direction cosines.

Let I, and [, be two lines in space whose direction cosines
are Ay, py, vy, and Ay, w,, vy, respectively, z

and let § denote the angle between L 1,
the lines. It isrequired to express 6 P
in terms of Ay, wy, 15 Agy puy Ve %LL
On I, take any two points P!, P", G
and let P'LGP' be the broken line x

from P'to P', made up of segments ¥
P'L, LG, GP" parallel to Oz, Oy, Oz, respectively [compare
the figure in § 236].
By § 246, the projections of P'P" and P'LGP" upon I, are
equal, that is,
ry P'P'= pry PL+ oy LG+ oy, GP'",
Therefore, since I, and I, make the same angles with P'L, LG,
GP'" as with Oz, Oy, Oz, respectively, and the cosines of these
angles are Ay, py, v, for I, and Ay, p,, v, for I, by § 248,
P'P'"cos@=P'L-N\+ LG p+ GP" - v
or, since P’L=P'P" X, LG = P'P"p, GP"= P'P'"v, [§250],
P'P"cos@=PP'"N\ge \y+P'P"pyepy+ P'P"vyevy
or, dividing both members by P'P",
€08 0 = Ay + pypg + nyve.
Thus, the angle between the two lines whose direction cosines are
@/Vv1i4, 1/V1L, —3/V14) and (1/V6, 2/VG, — 1/V6) is given by
cos § ={(2)(1) + (1)(2) + (= 3)(— DY V1L V6 =} V7/3.
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252. Any two lines whose direction cosines are Ay, py, 1, and

Mgy Mgy v are perpendicular, if
Ay + g po + vive =0,

Thus, the two lines are perpendicular whose direction cosines are pro-

portional to (2, — 1, 3) and (— 1, 1, 1), since
cosf={(2)(— 1)+ (—1DD) + G )}/ V42 =0.

Since the numerator here is zero, it is unnecessary to calculate the de-
nominator.

253. The sine of the angle between two lines may be ex-
pressed as follows in terms of the direction cosines of the lines:
sin?@ =1 — cos?d, or using § 240 and § 251,
sin®f = ()\12 + ,U-12 + VIZ) ()\22 + ,U«22 + V22) - ()\1)\2 + mapa+ Vll;z)z
= M 4 AP’ 4 A 4 A s 4 e
+ 207+ vt sl — AP — gt — nn?
— 2 ppavivy — 2 viva Ay — 2 XA papag
= (w2 — 2 mypavive + vi'm®) + (A — 2 vwahids + M)
+ (Ms’ — 2 Mdopape + m®AS)
= (#11’2 - V1#2)2 + (vids — )\1"2)2 + ()\1#2 - F-l)\u)Z
2oy N A "’

22 WY 2
po V2 ve Ao Ag pa

9

254. Problem. 7o find the coordinates of the point where
the line segment joining two given points is divided in a given
ratio.

Let P'(2/, y', 2') and
P''(z", y", 2'") be the given
points, and let P(x, y, 2)
denote the -point where 9r—|F———— r
P'P" is divided in the
given ratio k;: &,

The projections of the
segments P'P and PP" upon the a-axis are proportional to the

z,
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seginents P'P and PP" themselves [§ 249], and these projec-
tions are # — o' and " — @, respectively [§ 245]. Hence
k:ky=PP:PP"=¢—2':a2" —2x.
Therefore
k(2" —x) =k (x—a)
or solving for =,
i
Fey +ky

&Xr =
Similarly
ky' +hy" k2 +R2"
btk T+ Fe

y:

255. In particular, if P be the mid-point of P'P",
> ! ! !
o' +a yzy/’—l—g/’ z_z’+4 .

€XrT = =
) b
2 2 2

&

256. Observe that k&, is measured from P'to P, and that %,
is measured from P to P'" so that when &, and k, have the same
sign, P lies between P’ and P', but when %; and %k, have oppo-
site signs, P lies on P'P" produced through P’ or P'.

Example 1. The coordinates of the point where the line segment join-
ing the points (5, 2, 2) and (8, 5, 4) is divided in the ratio (1:2) are
found as follows (the line is d1v1decl internally, and is trisected):

@G +M)(E) _ g, (2)(2) +MG) _3 @O@+M® _
142 1+2 142
The other point of trisection is that at which the segment is divided in the
ratio 2 : 1 and is

OE+DE) g, LL@) + (2)(5) =4, D (2) + (2) 4 _ 3
241

8
=z

Example 2. The point where the same line segment is divided in the
ratio (4: — 1) is

EDE+HHO@ g (D@ +HOG _g (D@ + MM _14,
41 ’ 4—1 ’ 41 3

The line is divided externally beyond the point (8, 5, 4); one third of the
segment is added to the line at the extremity (8, 5, 4).
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257. Exercises. (When convenient draw a figure.)

1. What are the direction cosines of the positive half of the z-axis ? of
the negative half ? of the bisector of the angle between the positive half
of the x-axis and the negative half of the y-axis? of the bisector of the
angle between this line and the positive half of the z-axis ?

2. Find the length and direction cosines of the line segment from the
origin to the point (3, 4, 12); also the projections of this line segment
upon each of the coordinate axes and upon each of the coordinate planes.

3. Obtain the corresponding results for the line segment from the
point (6, — 2, 7) to the point (2, 2, — 5).

4. Find the cosine of the angle between two lines whose direction
cosines have the ratios 1:2:3 and 2: 3 : 4, respectively.

5. Show that the lines whose direction cosines have the ratios
7:—2:4and 2:1: — 3 are perpendicular.

6. Find the direction cosines of the line which is perpendicular to the
two lines whose direction cosines have the ratios 2: — 1:1and 1:2:3.

7. A line is drawn from the origin to each of the points (1, 2, 3) and
(1, 3, 2). Find the direction cosines of the bisector of the angle between
these two lines.

8. Find the projection of the line segment from the point (1, 4, 1) to
the point (2, 2, — 1) upon the line whose direction cosines have the ratios
2:3:6.

9. Find the projection of the line segment from the point (3, 4, 5) to
the point (2, — 1, 3) upon the line determined by the two points (1, 5, 4)
and (3, 7, 2).

10. Find the coordinates of the points where the line segment from the
point (1, — 1, 1) to the point (2, — 3, 2) is divided in each of the follow-
ing ratios :

(1) 1:2, 2) 2:1, 3) 4: -1, 4) —1:4.
11. In what ratio is the line segment joining the points (2, 3, 1) and

(1, 5, — 2) cut by the xy-plane ? What are the coordinates of the point
of intersection ?

12. Find the coordinates of the mid-point of the line segment joining
the points (5, — 2, 7) and (2, 2, — 5); also the coordinates of the points
where this line segment is trisected.
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13. If the line segment from (2, 3, — 4) to (1, 4, 6) be produced uutil
its length is doubled, what will the coordinates of its extremity be ? What
will the coordinates of the extremity be if the length be trebled ?

14. Prove that the set of coordinates of the mass-center of a triangle
whose angular points are (i, ¥1, 21), (%2, Y2, 22), (%3, Y3, 23) is

T+ 22 +23), ¥ W1+ Y2 + ¥3), 3 (21 + 22 + 23).

15.  Prove that the three lines joining the mid-points of opposite
edges of a tetrahedron meet in a common point, whose coordinates are
Y@t ae+as+a), 2+ +us+vs), §(Z+ 22+ 23+25), when
. the vertices are (X1, y1, 21), (%2, Y2, 22), (X3, U3, 23), (%4, Y4, 24). Prove
also that this point lies on the line joining any angular point to the mass-
center of the opposite face, and divides that line in the ratio 8:1; also
that it is the mass-center of the tetrahedron.

16. Prove that the angle 6 between two lines whose direction cosines
are (A, w1, 1) and (Ag, me, »2) is given by the equation :

46i02(6/2) = O — M) + (1 — )? + (1 — w)2.
(Hixt. Use cos 6 =1 — 2sin2(6/2) and cos 6 = Mg + ppe + v1ve.)
17. In the figure of § 239 prove that 2 P'P!''2 = P'E? 4+ P'F2? + P’G2.

18. A point P lies below the xy-plane, OP is 2, zOP is 45°, yOP is 60°;
find the angle 20 P, and obtain the coordinates of P.

19. Find the direction cosines of the bisector of the angle between the
lines joining the points A4 (4, 4, 7) and B (3, 4, 12) to the origin O.

(Hixt. The bisector passes through the point at which AB is divided
in the ratio 0A: OB.)



CHAPTER XIV
PLANES AND STRAIGHT LINES IN SPACE

258. Loci of equations in x, y, z. An equation in any or all
of the variables , y, z will ordinarily be satisfied by infinitely
many sets of real values of 2, y, 2. Every such set of values
is called a real solution of the equation. Axes of reference and
a unit of measurement having been chosen, to each real solu-
tion x = a, y = b, z = ¢, of the equation there will correspond a
point of which (a, b, ¢) are the coordinates. The collection of
all such points is called the locus of the equation, or the locus
represented by the equation. Conversely, the equation is called
the equation of this locus, or collection of points.

259. If an equation be multiplied throughout by a
constant, its solutions and therefore its locus will not be
affected.

260. The locus of the equation @ = a is the plane parallel to
the yz-plane and at the distance | a | from it, to the right or left
according as a is positive or negative.  For the equation z=a
is satisfied by the value ¢ of « taken with any values whatso-
ever of y and z, and the collection of all points whose a-coordi-
nate is @ and whose y- and z-coordinates are any numbers
whatsoever forms the plane just described.

Similarly, the locus of y=0 is a plane parallel to the za-
plane, and that of z=c is a plane parallel to the xy-plane.

261. Cylindrical surfaces. The locus of lz+my+4n=0

is a plane parallel to the zaxis and passing through
204
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the straight line which lx+my+n=0 represents in the
xy-plane. For, if through any
point C on this line a parallel to
the z-axis be taken, the - and
y-coordinates of every point P on
this parallel will be the same as
those of the point C and will 0
therefore satisfy the equation % c
e+ my+n=0. ]

z\p

A x

262. And, in general, the locus of any equation f(x, y) =0,
from which z is absent, is the surface which would be generated
by a parallel to the z-axis, if made to move along the curve
represented by f(z, ¥) = 0 in the ay-plane. Such a surface is
called a cylindrical surface, and the line its generating line.

Equations of the forms f(y,2) =0 and f(z, ) =0 repre-
sent surfaces similarly related to the - and y-axes, respec-
tively. That is:

Every equation in but two of the three coordinates x, ¥y, z repre-
sents a cylindrical surfuce parallel to one of the axes.

263. Equation of a surface. As an example of an equa-
tion containing all three variables, take z = a® 4 y%. This
equation is satisfied, if any pair of values a, b be assigned to
z, y and the value a® + 0* to z; hence, to every point C (a, b, 0)
in the xy-plane there corresponds a point P(a, b, a*+ b*) of
the locus of z = a® 4 77 this point P being vertically above C
and at the distance a? + b? from it. The collection of these
points forms a surface. This particular surface z = a? + y*
passes through the origin and lies above the xy-plane.

264. And, in general, the locus of an algebraic equation
f(®, y, 2) = 0, which contains all three variables, is a surface
which is met by parallels to each axis in a finite number of
po'mts,
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265. Simultaneous equations. The locus of a pair of simul-
taneous equations f(w, ¥, 2) = 0, ¢(2, ¥, z) = 0 consists of the
points which are common to the loci of the individual equations.
If the loci of fA(x, ¥, 2) = 0 and ¢(=, y, ) = 0 are intersecting
surfaces, the locus of the pair will be the curve or curves in
which the surfaces intersect.

Thus, the locus of the pair of equations @ = a, y = b is the
straight line in which the planes represented by #=a and
y = b intersect. It is the parallel to the z-axis through the
point (a, b, 0).

266. If from a pair of equations f(w, ¥, 2) =0, ¢(x, ¥, 2) =0
one of the variables, as z, be eliminated, an equation of the form
F(x, y) = 0is obtained. This equation represents a cylindrical
surface whose generating line is parallel to the z-axis and which
passes through the curve of intersection of the surfaces repre-
sented by f(z, ¥, 2) =0 and ¢(w, y, z) =0. This cylindrical
surface meets the zy-plane in the curve which the equation
F(z, y) = 0 represents in that plane, and which is therefore the
projection of the curve of intersection of the surfaces represented

by f(z, y, z) = 0 and ¢(x, y, 2) = 0 [ § 114].

Thus, if between 22 + 32 4+ 22 =4 (1) and z == (2), # be eliminated,
the equation 22 + y2 = 4 (3) is obtained.

Equation (1) represents a sphere whose center is at the origin and
whose radius is 2 [ §237]. Equation (2) represents a plane through the
y-axis. This sphere and plane intersect in a circle. Equation (3) repre-
sents in space the cylindrical surface which passes through this.circle and
whose generating line is parallel to the z-axis; apd, with z =0, it repre-
sents the ellipse in the xy-plane which is the projection of the circle upon
that plane. '

267. A set of three simultaneous algebraic equations
S, y,2) =0, ¢(z, y, 2) =0,y(x, y, z) =0 will ordinarily have
a finite number of solutions. Such of these solutions as are
real have corresponding to them real points of intersection of
the surfaces represented by the three equations.
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268. Equations of the first degree. The locus of every equa-
tion of the first degree in x, y, z is « plane.

The general equation of the ﬁrst degree in z, y, z is of the
form

Ax+ By+Cz+ D=0. : @)

Let (2, 9, 2") and (&', y'", 2'") denote any two solutions of this
equation, so that

Ax'+ By'+ C2'+ D=0, )
Az"+ By'" + 02" + D=0. ®3)

Take any two constants k,, k,; multiply (2) by %&,/(k, 4+ %,) and
(3) by k,/(k; + k;), and add. The result is

k" 4 k2! Ey'+ ky' k2" + k2! _
Al L BM okl # L D=0. (4
P T S @

It has thus been proved that, if (2, y', 2') and (2", y", ") be
any two solutions of (1), so also is (x), yq, 2,), where

— k' 4 k! — ky" +Fy' - k' 4 k! .
T kit ke T Itk T Rk

But since k), k,, denote any constants whatsoever, it follows
from this [§ 2547 that the locus of (1) has the property that,
if any two of its points be joined by a straight line, all points
of that line will be points of the locus. Therefore, since the
locus of (1) is known to be a surface [§ 264], and the plane is
the only surface having the property just mentioned, the locus
is a plane, as was to be demonstrated.

269. In particular, the locus of Ax + By +Cz=0is a plane
through the origin; that of Az + By + D=0 is a plane parallel
to the z-axis; that of Az 4 By =0 is a plane containing the
z-axis; that of 42 4+ D =0 is a plane parallel to the yzfplane,
and so on [compare § 260 and § 261].
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270. To find the plane corresponding to any given equation
of the first degree, proceed as follows:

If the equation lacks one or two of the variable terms, as is
the case with Az + By + D =0,and 4z 4 D = 0, the methods
explained in § 260 and § 261 are followed. If the equation is
complete, the points where it meets the three coordinate axes
are found. If it lacks only the constant term, the lines in
which it cuts two of the coordinate planes are found; or any
three of its points, not in a straight line, are found.

The straight line in which the plane corresponding to
Az + By + Oz 4+ D = 0 cuts the xy-plane is found by setting
z =0, which gives Ax+ By+ D =0,z =0. The required line
is that represented by A« 4+ By + D = Oin the y-plane. Simi-
larly for the other coordinate planes.

The point in which the plane corresponding to

Az 4+ By+ 02+ D=0

cuts the z-axis is found by setting y = 0, z =0, which gives
Ax 4+ D =0,y =0,2=0. Hence the point is (— D/A4,0,0).
Similarly for the other coordinate axes.

Example 1. TFind three points in the plane corresponding to the equa-
tion 8 x — y + 4 z — 12 = 0, and thus determine the plane.

When y =0 and z=0, then x=4; when 2=0 and z =0, then
y=—12; when 2 =0 and y = 0, then 2 = 3.

Hence the required plane is that determined by the three points
4, 0, 0), (0, — 12, 0), (0, 0, 3).

Example 2. Find two lines in the plane corresponding to the equation
3x —y+ 42 =0, and thus determine the plane.

Setting first 2 = 0 and then y = 0in this equation, we obtain —y + 42z =0
and8x + 4z = 0. The linerepresented by —y + 4z = 0 in the planex = 0,
and that represented by 3x + 42z =0 in the plane y = 0, determine the
required plane.

The equation 3x —y + 42z =0 is also satisfied for the points (0,0,0),
(-1, 1, 1), and (2, 2, — 1); hence these three points also determine the
required plane,
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271. The locus of the equation
(Az+ By + Cz+ D)y(A'v + By+ Cz+ D) =0
is the pair of planes corresponding to the two equations
Ax+By+Cz+D=0 and Ao+ By+ C'z+ D =0.

Thus, the locus of (x — @) (x — b) = 0 is the pair of planes correspond-
ing to x — @ =0 and x — b = 0, both of which are parallel to the yz-plane.

272. Equations of planes. It hasbeen proved that the locus
of every equation of the first degree in @, y, z is a plane
[§ 268]. Conversely, to every given plane there corresponds
an equation of the first degree of which the plane is the locus;
that is, an equation which is true for every point on the plane and
false for every point off the plane. 1t is called the equation of the
plane [compare § 16].

For, on the given plane take any three points which are not in the
same straight line, and find their coordinates. There is one equation of
the first degree, and but one, of which these three sets of coordinates are
solutions, and this equation will be satisfied by the coordinates of every
other point on the given plane. ]

Thus, suppose that the points (2, 0, 0), (0, 1, 1), (1, 1, — 1) are to lie
on the given plane, and let

Ax+By+ Cz+D=0 @

represent the required equation.

Since (2, 0, 0), (0, 1, 1), and (1, 1, —1) are to be solutions of (1),

2 A+D=0, (2)) B+C+D=0,(8) A+B—C+D=0. (4
Solving (2), (3), (4) for 4, B, and C in terms of D, gives 4 =— D2,

B=—3D/4, C =— D/4. Substituting these values of 4, B, and Cin(1),
and simplifying, gives 22 4+ 3 y + 2 — 4 =0, the equation required.

273. It follows from what has just been said that, if a given
equation of the first degree be true for three points of a certain
plane, and these three points are not in a straight line, the
given equation is the equation of that plane.

P
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274. Plane through three given points. A plane is deter-
mined by any three given points (2, ¥, 21), (@3, ¥y 22), (@, Ysy %),
which are not in the same straight line. Its equation may be
found as in the example above [§ 2727, or as follows:

By § 268, the required equation is of the form

Ax+ By+ Cz+ D =0. 1)
And since the plane is to pass through the given points, the
equation must be satisfied by their coordinates. Hence

Az, + By, + Cz, + D=0, &)
Awxy+ By, + Cz,+ D=0, 3)
Axs+ Bys+ Cz;+ D =0. #)

Eliminating 4, B, C, D from these four equations,
z y 2z 1
% oy oz 1
@ Yy 2z 1
Xy Y3 23 1
which is the required equation; as, indeed, is also obvious by
inspection. [Compare § 20, Eq. (1').]

275. Intercept fotm
of the equation. Leta
plane « meet the -, y-,
and z-axesin the points
A, B, and C, respec-
tively. Then 04, OB,
and OC are called the
a-, y-, and z-intercepts
of the plane ¢, and are
represented by a, b,
and ¢, respectively. Evidently the plane is determined when
its intercepts a, b, ¢ are given. Its equation in terms of the
intercepts may be obtained as follows:

The plane has an equation of the form [§ 272,

Az + By+ Cz+ D =0. (1)
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And since its intercepts are a, b, and ¢, it passes through the
points (a, 0, 0), (0, b, 0), and (0, 0, ¢). Hence (1) has the
solutions (a, 0, 0), (0, b, 0), and (0, 0, ¢), that is:

Aa+D=0, or A=—D/a, 1))
Bb+D=0, or B=—D/b, 3)
Cc+D=0, or C=—Df/e. 4)

Substltutmg these values for 4, B, C' in (1), dividing the
resulting equation throughout by — D, and transposing, gives

z Y %2 _q
a + b + ¢ ®)
the equation required.

276 A.* Perpendicular form of the equation of the plane.
First Proof. Let H be the foot of the perpendicular from the
origin to the plane e, and let p and A, u, v denote the length
and direction cosines, respectively, of this perpendicular.
Evidently the plane « is determined when A, u,v, and p are
given, and its equation in terms of A, p, v, and p may be ob-
tained as follows:

The equation in the intercept form [§ 27 5 (5)] may be written:

To¥LR _1=0 1
P +2 c ’ @)
and this equation multiplied throughout by p becomes :
p P P
am—{—gy-l-gz—p:(). (2)

Since AOH is a right triangle, cos AOH= OH/OA; or from
the definition of the symbols, A =p/a; and, similarly, u = p/b,
v=p/c. Setting these values in the equation (2), gives:

A+ g +vi—p =0, ®)
which is the equation required.’

This proof fails when the plane passes through the origin or is parallel
to one of the axes.

* Only one of § 276 A, § 276 B, § 276 C need be taken.
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276 B. Perpendicular form of the equation of the plane. Sec-
ond Proof. Let H be the foot of the perpendicular from the
origin to the plane «, and let p and A, u, v denote the length and
direction cosines of this perpendicular. Kvidently the plane
o is determined when A, g, v, and p are given; and its equation
in terms of A, u, v, and ‘
p may be obtained as
follows:

Take any represen-
tative point P (=, y, 2)
in the plane « and
connect O with P,
first by the line seg-
ment OP, and second
by the broken line /
OLGP made up of Y
the line segments OL, LG, and G P, which represent the a-, y-,
and z-coordinates of P, respectively.

Then [§ 246] the projection of OP upon OH is equal to the
sum of the projections of OL, LG, and G'P upon OH, or

ProgOP = progOL + proy LG 4 proy G P. (€))

But since OH is perpendicular to the plane «, the projection
of OP upon OH is OH itself, or p; and the projections of
OL, LG, and GP upon OH are Az, py, and vz, respectively
[§ 248]. Hence equation (1) gives:

p= Aoty +vs @
or Av4py+vz—p=0, 3)

which is the equation required.

When « passes through the origin, p is zero, and (3) becomes
A+ puy+rvz=0, (3’)

where \, u, » are the direction cosines of the perpendicular to e.
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276 C. Perpendicular form of the equation of the plane. Third
Proof. Take any line segment from the origin O to a point H.
Let p be the length, and A,
u, v the direction cosines
of OH. Then [§ 239 (4)],
the coordinates of H are
(Ap, pp, vp). Let P(x,
¥, #) be any point in space
such that when P is
joined to H, the angle
OHP is a right angle.
The direction cosines
(My m; v1) of HP are proportional to (x —Ap, y— up, 2 —vp)
[§ 2507; and the direction cosines of OH are (A, u, v). Since
HP and OH are perpendicular, AN, + ppm+vv,=0; and there-
fore

A@—Ap)+u(y—pp)+v(E—vp)=0, @
or Ar+py+rve— A+ p+0H)p=0, @
or A+ py+vz—p=0. 3)

Hence (3) is the equation of the locus of all points P, such
that the lines joining them to H are perpendicular to OH. - But
this is the plane «, determined by p, A, u, v.

The plane can be regarded as generated by the rotation of
the line HP (produced indefinitely) about the perpendicular
OH. The plane is sometimes defined as the surface generated
in this manner.

277. From the equation of a plane given in the general form
Az + By + Cz+ D=0, its equation in the perpendicular form is
derived by dividing by +~V A*+ B* + C%, where the sign before
the radical is opposite to that in D.

Two equations which represent the same plane can only
differ by a constant factor [§ 259]; hence, if the equation of the
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given plane in the perpendicular form be Az + py 4+ vz —p =0,
then,

k(Adx+ By+ Cz+ D)= e+ py +vz—p,
where k& denotes some constant,

This identity will be satisfied [Alg. § 285], if the following
four equations are true:

ked=X (1), k-B=p 2), k-C=v (3), k-D=—p (4).

The equation (4) requires that % shall have the algebraic sign
opposite to that in D. Squaring (1), (2), and (8), and_ adding
the results gives [§240],

BA+ DB+ C) =N+’ + =1,
1
TEIVEL B+
where the. 4 sign is opposite to the sign in D. The substitu-
tion of this value of % in (1), (2), (3), and (4), gives the

expressions for A, w, v, and p, in terms of the coefficients 4,
B, C, D.

whence,

Example. Reduce the equation 22 — 83y + 62 — 12 =0 to the per-
pendicular form.

Here, + VA2 + B2+ C2 = + V4494 86 =+ 7, and since D (~ —12)

is negative, the 4+ sign is to be taken as positive, and & = 1/7. Hence
the required equation is:

2z —3y+6z-12_, (2, 8, .6 _12_,

7 7 7 7 7
and the values of \, u, », and p are 2/7,—8/7, 6/7, and 12/7, respectively.

278. From § 277 (1), (2), (8) the important conclusion fol-
lows:

In the equation of any plane Az + By + Cz+ D=0, the coeffi-
cients A, B, C are proportional to the direction cosines A, m, v of .
a line perpendicular to the plane.
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279. Perpendicular distance from a plane to a point. Let
P'(a, 9, 2') be a given point, and ¢ a given plane; and let P be
the foot of the perpendicular through P to the plane. It is
required to find an expression for the length of the perpen-
dicular PP'. '

Join the point P

and the origin O. Let
@', y', 2/, the coordi-

nates of P', be OL/,
L'@, @'P', respec-
tively.

Let H be the foot
of the perpendicular
from the origin on the
plane, and let the length and direction cosines of OH be
P, A, pm, v, vespectively. Then [§ 246] the projection on OH
of the broken line PO, OL', L'G', G'P' is the same as the
projection on OH of the line PP'; that is:

PronPP' = progPO + proyOL' + proyL'G' + proyG'P. (1)
But since PP' and OH are parallel, pr,,PP' is PP' itself;
and, since OH is perpendicular to a, pry, PO is HO or —p;
also, proyOL' is cos L'OH - OL' [§248] or Aa'; similarly,
prog L'G' is py', and proyG'P'is vz'.  Setting these values in
(1) and transposing, gives

PP ' =)2' 4+ py' 4 v2' —p. @)

If P'be on the plane, then PP' =0, and P'(2, 9, 2") coin-

cides with P (@, y, 2), and the equation (2) reduces to

A4+ py+ve—p=0, 3)
the equation of the plane « [§ 276 (3)]. Therefore, compar-
ing the equations (2) and (3), it follows that the perpendicular
distance from the plane represented by Az +puy+vz—p=0
to the point P'(z', ', 2') is obtained by merely substituting
o, y', 2 for x, y, z in the left member of this equation.

PL(x,y',2')
\’—
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If the equation of the plane be Axz+ By+ Cz+ D =0,
it can be reduced to the perpendicular form by dividing by

+ VA + B+ C° [§ 277]; and therefore:
The perpendicular distance of the point P'(a', y', 2') from the
plane Ax+ By + Cz + D =0 is given by
PI)I:Aa’I+B?/’+Oz'+ D, (4)
+ \/A2+ Bu+ (33

where the sign before the radical is opposite to that in D.

280. It is obvious from § 279 (2) and the figure that the
number represented by (Aa'+ uy' + vz’ — p) is negative or posi-
tive according as P'(2, y', 2) lies on the same side of the plane
as the origin O (0, 0, 0) or on the opposite side; and conversely.
And in the same way, from § 279 (4), it follows that, when D
is negative (and therefore the sign before the radical is +), the
point P'(', ¥', 2') will lie on the origin side of the plane
Ax+ By+ Cz+ D=0 or on the opposite side, according as
(42’ + By' 4+ C#' 4+ D) is negative or positive.

Example. TFind the perpendicular distances of the points E(1, 3, 4),
J(1, 2, — 1), K(—3, 3, 2) from the plane22z—3y +62 43 =0.

Here, + VA24+ B>+ C* = £ V4 +9 4+ 36 =—7 (since D=+ 3). Hence,
the perpendicular distance to & is (2-1-3-3+46.4+3)/(— 7)=—20/7;
the perpendicular to J is{2.1—-3.2+4+6.(=1)+3}/(—7)=+1; and
finally that to K is {2.(—3)—3.3+6.243}/(—7) =0; that is, the
point K is on the plane. As the sign of the perpendicular to X is nega-
tive, the point E lies on the same side of the plane as the origin; as the
sign of the perpendicular to J is positive, J lies on the side of the plane
remote from the origin; and therefore £ and .J are on opposite sides of
the plane.

281. Parallel planes. Since two planes perpendicular to the
same line are parallel, it follows from § 278 that

The planes represented by the equations Ax+ By + Cz 4+ D =0,
A'z+ B'y 4+ C'2 + D' =0 are parallel, if A: B:C=4": B': ("
Hence, in particular, the following two theorems, § 282 and § 283.
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282. Every plane parallel to the plane Ax+ By+ Cz+D=0
may be represented by an equation of the form
Ax+By+Cz+ k=0,
where k is an arbitrary constant.
283. The equation of the plane through the point (2, ¢, 2')
and parallel to the plane Ax+ By + Cz4+ D=0 (1) is
A@—a)+Bly—y) + O —#)=0; @
for (2) is satisfied by x =2, y=y', z=2/, and the coefficients

of «, 9, z in the two equations are identical.

284. The angle between two planes. Let C be any point in
the line of intersection F'G of two planes « and B, and let the

plane through C perpendicular to FG cut F

the planes « and B in C4 and OB, respec- \3
tively ; the angle ACB or 6 is called the &

plane angle of the two planes. ) éé\ s

The perpendiculars to the two planes « Ad|
and B at 4 and B, respectively, will meet, \
say at D). Then in the plane quadrilateral
ACBD, since the angles at 4 and B are

right angles, the angle at C equals the /(\

m

exterior angle at D. Therefore the angle
between the two planes is the same as
the angle between any two perpendiculars to the planes.

Hence, when the equations of the planes are given in the
perpendicular form,

A+ puy+vz—p=0, AMNe4u'y +vz2—p'=0,

since A, u, v and M, u', v' are the direction cosines of the per-
pendiculars to the planes, the angle 6 between the two planes
is given by the formula [§ 2517,

cos =AN +pup' +vv';
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and it follows [§ 277] that for the planes
Az 4+ By+Cz+ D=0, Aw+By+ 24D =0,
the corresponding formula is

AA'"+ BB + OC"

cos 0= .
tVALB A+ £ VA + B 4 O

285. Perpendicular planes. The planes Aa+ By+ Cz+D=0
and A'z+ B'y + C'z + D' =0 are perpendicular (cos 6 = 0), if

AA'+ BB+ CC' =

286. Direction cosines of the line of intersection of two
planes. The direction cosines A, u, v of the line of intersection
of two given planes

Ax+By+Cz4+D=0 and Az+By+Cz2+D'=0
may be found as follows:

Since a line perpendicular to a plane is perpendicular to every
line in that plane, the perpendiculars to the two given planes
are perpendicular to their line of intersection. Therefore,
since the direction cosines of the perpendiculars to the given
planes are proportional to 4, B, C'and 4', B', (', respectively
[§ 278], it follows [§ 2527 that:

AN +Bp + Cv=0,
AN+ B'u+ Cv=0.
Solving these equations for A: w:v [Alg., § 921] gives:

A4 B

)\:,u,:l/— : A’B'

)

B’O" ' A

and the ratios of A, w, v being thus known, A, u, v themselves
can be found by dividing by the square root of the sum of the
squares [§ 2417.
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Example. Find the direction cosines of the line of intersection of the
planes
22—3y+2+2=0, x+4y—22+3=0.
Here

Nipsv= : =2:5:11;

-3 1 1 2 ‘ .2 =3
4 —2 -2 1 1 4
and the square root of the sum of the squares of these numbers, 2, 5, 11,
is V150 ; hence
A=2/V150, u=5/V150, v =11/V150.

287. Planes through the line of intersection of two given
planes. If E and E, denote two expressions of the first degree in
x, ¥, 7, and k is an arbitrary constant, then E + k Ey= 0 will rep-
resent the system of planes through the line of intersection of the
planes represented by E =0 and E,=0.

For, whatever the value of & may be, E 4 k E,= 0 represents
a plane, since it is of the first degree in z, ¥, z; and this plane
will pass through the line of intersection of the planes E =0
and E, =0, since for points of this line both E and E, are 0, and
therefore £ 4k E,= 0 is satisfied.

Conversely, every plane, «, through the line of intersection of
the planes E=0 and E;=0, is included among the planes
represented by E+kE,=0. For, if (', y', 2') denote any
point of « not on the line of intersection of E =0 and E,=0,
such a value can be given tok that E + k E, =0 will be true for
this point, and since E + k E,=0 will then be true for three
points of « which are not in the same straight line, it will be
the equation of « [§ 273].

Example 1. Find the equation of the plane through the line of inter-
section of x+2y+32—4=0 and 2x4+y—42+4+5=0, and through
the point (2, 1, 4).

The required plane has an equation of the form

x2+2y+32z—44+kQ@x+y—42+5)=0,
and this equation has the solution (2, 1, 4). Hence
24+2+4+3-4—44+%k(2-24+1—-4.445)=0, or k=2.
Therefore the required equation is )
r+2y+32—4+2Qux+y—42+5)=0,or52+4y—52+6=0,
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Example 2. Find the equation of the plane through the line of inter-
section of 2 +y + 32z =0 and 2 — 2 y =0, and perpendicular to the plane
d3ex+y—22=0.

The required plane has an equation of the form

224y+382+k(x—2y)=0, or @+k)x+(1—-2k)y+32=0,
and, since it is perpendicular to the plane 3z +y — 22 =0, by § 285,

8Q2+k)+(1—2%)—2-83=0, or k=—1,
Therefore the required equation is
224+y+32—(x—2y)=0, or x+3y+32=0.

288. Equations of a line. It has been seen already [§ 265]
that the locus of a pair of simultaneous equations of the first
degree in @, y, # is a straight line, namely the line of intersec-
tion of the planes represented by the individual equations.

Conversely, to represent any given straight line in space, a
pair of simultaneous equations is requirved, but these may be
the equations of any two planes through the given line. Any
such pair of equations are called the equations of the line, since
both of them are true for every point on the line and at least
one of them is false for every point off the line.

289. Equations of the line through two points. Let P'(z,'y',2")
and P'(a", y", 2'") be two given points, and P(z, y, z) any

v4

L L/ L

i)

representative point on the line determined by P’ and P'.
The ratio of the line segments P'P and P'P' is equal to that
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of their projections on each of the three coordinate axes[§ 249].
Hence the latter three ratios are equal to one another, that is
[§ 2457,

z—a  y—y _z—7
= M

2z — m!l Y — yu T

These are the equations of the line P'P". For besides z, 7, #
they involve only the known quantities, 2/, ¥/, 2/, &', 3", 2"
they are true for every point on P'P'; and, as may readily be
shown, they are false

for every point off
PIPH — p,/;
Observe that the in- -
dividual equations pr el ,
vy PL P
—_— ! z p— z' \\ ]
y—9 _2=2 (g \
! " [ " ’ P’y
y—y 22—z v Z
z2—z2  x—a' y, x
] T T (3))
2= a'—ua P
xy Tl _
! ! =
r—w Y=Y 4
! "t " (4)’ v
o —a' oy —y :

represent the planes through the given line and perpendicular
to the yz-, za-, and xy-planes, respectively, that is, the planes
pPP'P.)P,, PP'P P, PP'P,'P,, respectively; these
are cqlled the projecting planes of the line. The equation
(2) combined with & =0 represents the projection of the line
on the yz-plane; and similarly for the other two equations.

The equations (3) and (4) can be solved for y or z in terms
of x, and they then take the form:

z=max+b (3", y=nw+c (4",

where m, b, n, and ¢ depend only on the coordinates («', ¥', 2"),
(=", y'", 2'"") of the points determining the line. These equa-
tions (3") and (4') involve four, and only four, constants, and
therefore prove that four conditions are necessary and sufﬁment
to determine a straight line in space.
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290. The Descriptive Geometry, invented by Monge in 1794,
represents a figure by its orthogonal projections in two perpen-
dicular planes, drawn correctly to scale. Instead of attempt-
ing to depict a figure in space, it is the practice toindicate it by
its plan, namely,

planes. It is cus-
tomary to consider
the ay-plane turned
down about the a-
axis until it lies
with the za-plane
in the plane of the drawing, and the yz-plane turned back to the
left about the #z-axis until it also lies with the za-plane. The
situation of the line P'P" is thus indicated by the figure here
given, where the line P, 'P, ' is the line given by y =0 and the
equation (3) of § 289, and the line P,'P," is the line given by
z=10 and the equation (4) of § 289.

PII &Z
. A \_uz_..w
1ts projection on | Py
the horizontal (ay) |
. 1
p.lane, and its ele'vu- { o
tions, the projec- | 1 § i
tions on the up- | | !
. , |
right (zx or yz) féP’/ ) lps Pl
! X
i
|
i

291. Line through a given point and having a given direc-
tion. Symmetric equations. If a point P'(z', ', 2') on a line,
and the direction cosines A, p, v of
the line be given, its equations may
be found as follows:

Let P(x, y, z) denote any represen-
tative point on the line. The pro-
jections of the line segment P'Pon .
the -, y-, and z-axes are equal to / x
x—a', y—y', and z—2/, respectively ¥
[§ 245]. DBut since P'P makes with the axes angles whose
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cosines are A, p, v, respectively, it follows [§ 2487 that these
projections are equal to A - P'P, - P'P, v - P'P, respectively.
Hence, if P'P be represented by 7,

x—a'=rr, y—y' =pr, z—2'=vn @
Equating the values of » given by these three equations,
c—a' _y—y z—2
== M = =17 2
e C DY @

which are the equations required. They are often called the
symmetric equations of a line. Tt should be noted that the
denominators in the equations of § 289 are only proportional to
the direction cosines of the line.

292. Observe that it also follows from the equations (1)
of the preceding section that the coordinates of any point P on
the line may be expressed in terms of 7, the distance of P
from the fixed point P', by the formulas

cr=a'+Arr, y=y'4pr, z=2"+vr @

293. From any given equations of a line, its symmetric equa-
tions may be derived as in the following example.
Example. Find t.heb symmetric equations of the line of intersection of
the planes
2¢+4+3y—2z+4=0 and 2x—3y—-5z2—8=0.
Combining the given equations, first so as to eliminate y, and se'cond
so as to eliminate x, the following equivalent pair is obtained,
206 —-832—2=0 and 3y+22z46=0.
Equating the values of z given by these equations,

2z—2:3g/+6:z 2(x"—1):3(y+2)22’

or

3 -2 ’ 3 —2
and therefore
z—1_y+2_=z or z—1_y—(=2) 2—-0
3/2 ~ —2/3 1 9 —4 6

Hence the line passes through the point (1, —2,0). Its direction
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cosines are proportional to 9, — 4, 6, and are therefore [§ 2417 equal to
9/V138, — 4/V133, 6/V133.
Therefore the required equations in the symmetric form [§ 291, (2)]
are =1 _y—(=2) _ 2-0
9/V138 —4/VIS3 6/VI33

The reduction to the symmetric form may also be made by finding any
solution (x/, ¥/, 2’) of the given equations, and N\, w, » by the method
of § 286.

Thus, setting z = 0 in the given equations and then solving for z, y, the
solution (&' =1, y' =— 2, 2/ =0) isobtained. Again, by §286, A: p:v: =
9: —4:6 and therefore A =9/V133, u=—4/V133, v =6/v133. Sub-
stituting these values of «/, ¥/, 2/, \, g, » in the equations, §291 (2), the
same result is obtained as before.

294. Intersections of lines and planes. A system of three
simultaneous equations of the first degree

Ayx+ Biy+ Ciz+ D, =0
Ay + By + Coz+ D, =0
A,z + By + Cz+ Dy =0

will ordinarily have one, and but one, solution and this solu-
tion will be finite. The point corresponding to this one
solution is the one point of intersection of the planes repre-
sented by the three equations, or of the line represented by
any two of them with the plane represented by the third.

295. But the following two exceptional cases may present
themselves [Alg. § 394]:

1. The three equations may not be independent, that is, their
left members E,, E, E;may be connected by an identical rela-
tion of the form

E +kE,+kE,=0, 6]

where k,, k,, k; denote constants (one of which may be 0).
In this case every solution of two of the equations is a solu-
tion of the third, the geometrical meaning of which is that the
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planes represented by the three equations meet in a common
line.
The same thing may be seen by writing ‘the equation (1)
in the form E,+ (ky/k)E,= (— k;/k,) E; which states that
5+ (ko /K) E, =0 [§ 259] is the plane E;=0; or, what is the
same, that the plane E; =0 is a plane through the intersec-
tion of K, =0 and E,=0.

2. The three equations may not be consistent, that is, their
left members E), K, E; may be connected by an identical rela-
tion of the form

kKE 4+ kFE,+kE,+1=0, where [=0. 2

In this case the equations have no common finite solution,
since it would follow from E, = E,= E;=0 that {=0, which
is contrary to hypothesis. The geometrical meaning of this is,
that the lines in which the planes represented by the equations
intersect, two and two, are parallel, or that two of the planes
themselves are parallel.

The same thing may be seen by writing (2) in the form
E, + (ky/k)) Ey = (—ky/k))(E3 + 1 /k3), which states that the plane
E,+ (ky/k)E, =0 [§ 259] is the plane E; 4 I/k; =0 [§ 282].
That is, (if the planes E; =0 and E.=0 intersect) the plane
E\+(k,/k) E,=0 is parallel to E;=0, or the mtelsectlon of
E,=0and E,=0 is parallel to E;=0.

One may readily find whether the given equations are con-
sistent and independent or not by solving them. Thus, if they
be combined so as to eliminate @ and ¥, an equation in z of
the form az =0 is obtained. If a + 0, the given equations are
independent and consistent; if @ =0 and b ==0, they are not
consistent; if @ = 0 and b= 0, they are not independent.

Example 1. Find the intersection of the line
r—-2y+4z+4=0, (1) x+y+2z—-8=0, (2)
with the plane )
r—y+2z+1=0. 3)
The solution of the system of equatioﬁs M, @), B isx=2,y=5,
Q
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z=1. Hence the line (1), (2) meets the plane (3) in the point
2, 5,1). .
Example 2. TFind the intersection of the line
r—2y+42+4=0, (1) x+y+2-8=0, (2)
with the plane r+22—4=0. ()]
From (1) and (4), x=4—2z,y=4+=z
The sabstitution of these values, x=4—22, y =4 42z in (2) gives
4—-22z4+4+2+2—-8=0. ’
But this is an identity (it may be written 0-z + 0 = 0) and is therefore
satisfied by every value of 2.
Hence the line (1), (2) lies in the plane (4).
The left members of (1), (2), (4) must therefore be connected by an
identity of the form %k, B + k2 E» + ks E3=0. And, in fact,

(x—2y+42+4H)+2(@x+y+2-8)—3(x+22—-4)=0.
Example 3. TFind the intersection of the line
r—2y+42z+4=0, (1) z+y+2—8=0, (2)

with the plane Tz +22=0. )
From (1) and (5), x=—22, y =2+ 2.
The substitution of these values, t =—2z, y =24 2, in (2), gives

—22424+24+2—8=0 or 0.2—6=0.

But this equation has no finite root ; its root is oo [Alg. § 5227.

Hence the line (1), (2) is parallel to the plane (5).

The left members of (1), (2), (5) are connected by an identity of the
form ky By + ks Es + ks E5 + 1 =0, namely

(x—2y+4z+4)+2@+y+2—-8)—3(x+22)+12=0.

296. The necessary and sufficient condition that the four
planes represented by the equations

Aix+ By+ Ciz+ D =0, Ad,x+ B,y+ C,z+ D,=0,
Az + Byy+ Cyz+ Dy=0, A+ Byy+ Ciz+ D=0,
shall meet in a common point is

Al Bl Ol Dl

4, B, C, D,

A By Cy Dy

A, B, C, D,
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For, the condition that the four planes shall meet in a com-
mon point is that their equatlons shall have a common solu-
tion [Alg. § 922].

This, of course, is also the condition that the line represented
by any two of the equations shall meet the line represented
" by the remaining two.

297. Exercises. Planes and straight lines.

1. Find the equation of the plane whose x-, -, and z-intercepts are
3, 2, and — 1, respectively.

2. Find the equation of the plane through the three points (0, 0, 0),
(0,1, 2), and (1, — 1, 3). What are the x-, y-, and z-intercepts of this
plane ?

3. Find the equation of the plane through the three points (1, 1, 1),
(1, —1,1),and (—7, —3, —5). Show that the plane is parallel to the
y-axis, and find its - and z-intercepts.

4. Prove that the four points (1, 2, 3), (2, 4, 1), (-1, 0, 1), (0, 0, 5)
lie in one plane, and find the equation of this plane.

5. For what value of 2/ will the four points (1, 2, —1), (8, -1, 2),
2, —2,3), (1, —1, ') lie in one plane, and what is the equation of
this plane ¢

6. Find the equations of the lines in which the three coordinate planes
are cut by the plane3x —2y 4+ 72z + 5= 0.

7. Find the equation of the plane the direction cosines of whose nor-
mal are proportional to 8, —1, 2, and whose distance from the origin is 5.

8. Find the distance from the origin, and the x-, y-, z-intercepts
of the plane 8x — 4y +2—72=0.

9. Find the distance of the point (3, — 1, 2) from the plane
22 —y+22—156=0.

10. Find the distance of the point (2, 1, —3) from the plane
242y +32z—5V14=0.

11. What is the equation of the plane through the point (5, —2, 7)
and parallel to the plane 22 + 8y —22z+4+4=0?

12. TFind the equation of the plane through the point (4, — 2, 5) and

parallel to the plane 2 —y + 224 7 =0. What is the distance between
these two parallel planes ?
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13. What is the character of the locus of each of the following equa-
tions: f(y) =0, ay+bz+c=0, 2>+ y2=0a? y2+22=02 22422 =¢?
Sflzy2) =0, 22+ Y2+ 2> =a??

14. How do the points (1, 2, —1), (3, —1, 2), (2, —2,3), and
(1, —1, 2) lie with respect to the planex +2y —2+3=0?

15. Find the equation of the plane through the origin and through the
intersection of the planes2x+3y—2z2+4=0andx—2y+42z—3=0.

16. A plane passes through the line of intersection of the planes
3ex+4y—22z+5=0and x—2y+ 2+ 7 =0, and its z-intercept is — 3 ;
find its equation. )

17. A plane passes through the line of intersection of the planes
2¢—8y—2z—3=0and x+2y+42z+1=0, and its 2- and y-mtercepts
are equal ; find its equation.

18. Find the equation of the plane determined by the origin and the
line (x—2)/1=(y+2)/2=(2—1)/—2.

19. Prove that thelinex +3y—2+1=0,22x—y+422—-3=0 liesin
the plane 72 4+ 7y +2—3=0.

20. Find the equation of the plane through the two points (2, 0, 1),
(-1, 1, 2), and perpendicular to the plane 8x +y —z = 0.

21. The two planes 22 4+3y—62+3=0 and 8x —y+42—5=0
are given. Find the cosine of the angle between them. Does the origin
lie in the acute angle or in the obtuse angle between these planes ?

22. Find the sine of the angle made by the line x/2=y/3=2/—1
with the plane 2x+y —32=0.

23. Find the cosine of the angle between the two lines

xr—2 1/+2 z—1 and x+1:y—l.:z+3.
2 2 1 1 -1 1

24. Prove that the following two lines are perpendicular :
—2_y+2_z-1 and z+2_y—4_2z2+3.
2 3 7 -1 1 2 8
25. Do the following points lie on a line: (2, 4, 6), (4,6, 2), (1, 3,8)?
26. For what value of & will the following three points lie on one line :
(kv =3, 10)7 (27 -2, 3)1 (6’ -1, _‘4)?
27. Is there a value of £ for which the following three points lie on
one line: (%,1, —2), (2,—-2,%),(—2, —1,3)?

.
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28. Find the equations of the lines through each of the following
pairs of points: (1, 1, 1) and (2, 0,3) ; (— 1,5, —5) and (— 1,2, —5);
(8, 5, 4) and (5, 2, 2).

29. Find the equations of the line which passes through the point
(2, — 1, 5), and whose direction cosines are proportional to 1, — 2, 2.

30. Find the cosine of the angle between the line joining the points
1, —2,4),(2, —1,3) and the line /3 =(y +1)/1=(z—9)/—2.

31. Find the cosine of the angle between the line joining the points
(3, —1,0), (1, 2, 1) and the line joining the points (-2, 0, 1), (1, 2, 0).

32. Find the projection of the line segment from the point (2, — 5, 1)
to the point (4, — 1, 5) upon the line (x — 1)/2 =(y +2)/ —1= (2+56)/2;
also upon the plane 2 —y 4+ 22z =0.

33. Find the equation of the plane through the point (1, — 2, 1) and
perpendicular to the linez — 2 = (y + 1)/ —4 =2/8.

34. Find the equation of the plane through the origin and perpen-
dicular to the line3x —y +42+56=0,x+y —2=0.

35. Find the length of the perpendicular from the point (5, — 2, — 1)
to the plane 8x —y 4+ 42427 =0; also the equations of the line of
which this perpendicular is a segment.

36. Reduce the equations of the linex —y +2—5=0, 20—y—2—4=0
to the symmetric form.

37. Reduce to the symmetric form the equations of the line of inter-
section of the planes1 —2x+3y—6z=0and14+x—y +32=0.

38. Find the value of % for which the following lines are per-
pendicular : ’
x——3:y+1:zf3 and x—1:y+5:z+2_
2k k+1 5 3 k—2
39. Find the values of % for which the following planes are perpen-
dicular: kx—5y+ (k+6)2+383=0 and (k—1)x+ ky+2=0.

40. Find the equations of the line I through the point (2, 3, 4) and,
(1) equally inclined to the axes of reference, (2) meeting the y-axis at
right angles, (3) perpendicular to the zz-plane.

41. Find the equation of the plane through the point (1,4, 8) and
perpendicular to the line of intersection of the planes 32 +4y 472 4+4=0
and * —y+22+2=0. Also the equations of the line through the
given point and parallel to the line of intersection of the given planes,
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42. Find the equations of the projectionsof the line 3x — 2y + 2z —4=0,
¢ — 2y — 32z + 1 =0 upon each of the coordinate planes.

43. Find the equations of the planes which bisect the angles between
the planes 2x —3y +42z=0,and 4x—2y —32—2=0.

44, Find the direction cosines of the line of intersection of the planes
given in the last exercise; also the cosine of the obtuse angle between
the planes. Does the point (1, 1, 1) lie in this angle ?

45. -Find the point of intersection of the three planesx + 2y — z + 3=0,
3x—y+2z+1=0,and2x—y+2—-2=0.

46. Find the point (or points) where the plane x+2y—2+3=01is
met by the line3x—y+22+1=0,20—3y+32—2=0.

4%, For what value of D do the following four planes meet in a com-
mon point: x +2y—2+4+3=0,3c—y+22+1=0,20—y+4+2—-2=0,
2+y—2+D=0?

48. Prove thatthe line t +2y—2+3=0,32—y + 22+ 1 =0 meets
the line 20— 2y +32—2=0, 2 —y—2+3=0.

49. Find the point where the line (x—3)/2=(y—4)/3=(2—5)/6
meets the plane 2 +y +2=0. How far is this point from the point
(3,4,5)°?

50. Do the planes2x+5y+32=0, Ty—b62z+4=0, and x—y+42—2=0
pass through the same straight line ? Prove that the first two of these
planes and the plane x — y + 4 # = 8 intersect in parallel lines.

51. Find the perpendicular distance from the point (1, 4, — 4) to the
linex+2y—2+38=0,3x—y+22+1=0. Alsothedistance from the
point (— 2, 1, 3) to this line.

52. Find the equation of the plane through the points (1, —1, 2),
(3, 0, 1) and parallel to the linex +y—2=0, 2e+y + 2 =0.

53. Find the equation of the locus of a point whose distance from the
z-axis is twice its distance from the xy-plane.

54. Find the equation of the locus of a point whose distance from the
origin is three times its distance from the planex — 2y + 22z =0.

55. Prove that the equation of the plane through the line x/l1=y/m=2/n
and perpendicular to the plane of the two lines x/m =y/n =2/l and
xm=y/l=2z/mis(m—n)x+(n—Dy+ (I —m)z=0.

56. Let (x—a)/N=(y —B)/n=(2—v)/»(1) be any line in space,
and let the point (&, B, ) be called C, and let A («/, y', 2’) be any point
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in space. Find the length and direction cosines of C4 ; then find the
square of the sine of the angle between (1) and C4; and thus prove
that the square of the distance from the point (u/, y', 2') to the line
@E—)/N=U—B)/n=(—")/vis

Y —B 2/ —v|2 2

+

2'—y o' —a o —a y —p|2

" v v A A I

57. Let =% _¥—Ui_2=Cy ang T=G_Y=by_2—6,
A M1 v Ao Mo va
be two lines. Prove
(1) The equation of the plane through the point (a, 8, ¥) and parallel
to both the lines (Z;) and (1) is

T—a N Ag

y—B8 m m
Z2—Y v1 »v2

1l
4

(2) The condition that the lines (/;) and (I2) intersect is

a; — Az )\1 )\2
bi—Dbs w1 pe|=0.
Ci—C vi V2
- (8) If 6 denote the angle between the lines (/1) and (l3), the length of
the shortest line from a point on the one to a point on the other is

ay — Qg )\1 A

b1—b2 w1 el
€C1—C v v

sin 6

(4) The equations of the planes perpendicular to the plane of (1) and
containing the lines (I;) and (l2), respectively, are

T—as A (mve — pevr)
Y—0bz pm2 (rhe —wl)|=0.
z—co vz (Ape—Nem)

x—ar N (uve — par)
y—0br m (v1de —wehp)
z—c1 v1 (Mpe— Aepa)

=0,

And these are the equations of the line of the shortest distance between
(1) and ().

58. Prove that the two straight lines whose direction cosines are given
by the equations uv + »XN+Au =0, 2X 4+ 2 u — v =0 are at right angles.
[If N1, p1, v1, Aoy peg, vo are the two solutions, the elimination of \ gives
the quadratic 2 u2 — puv — 12 =0, for whose roots ujue/vive=—1/2; and
the elimination of u in the same way gives MA\o/viva=—1/2. Addition
gives Mg + uype + v1v2 =0.]
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69. Prove that the two straight lines whose direction cosines are given
by the equations A24 u2 —»2=0, N+ p + »=0 make an angle of 60°
[Let Ay, p1, v1, Ae, me, v be the two solutions; then the elimination of A
gives the quadratic u? 4 wv =0, for whose roots u; =0, and us + vo = 0.
These valuessetin X\ + u 4+ » =0, give A\; + »; =0, and A, = 0. Thedirection
cosines are (1/V2,0, — 1/V2), (0, 1/V2, —1/V?2).]

60. Prove that the two straight lines whose direction cosines are given
by the equations A2 +Au + p2— 12 =0 and A\ —pu—» =0 make an angle
of 60°.

61. Prove that the equations of the two bisectors of the angles be-
tween the two lines a/M =y/m=2/n and x/\g =y /us=2/v: are
of A+ X)) =y/(p1 £ we) =2/ (v £ »m).

62. If the line 2/\ =y/u=2z/v=r, through the origin O, meets the
plane Az + By + Cz+ D =0 in the point H, prove that the length of OH
is — D/(AN+ Bu + Cv). Prove that the line is parallel to the plane
when AX 4+ Bu + Cv =0, even when the coordinates are oblique.

63. If @, b, ¢, be the intercepts of any plane, and p be the perpen-
dicular from the origin, prove that 1/a2 + 1/02 + 1/¢* = 1/p2.

64. Interpret (x — %)%+ (¥ —y)? +(z — 21)? =(A\& + uy + vz —p)%
when A2 4 u2+42=1. [The locus of a point P (%, y, #) equally distant
from the point Py (%1, y1, 21) and the plane Ax + puy + vz —p =0.]

65. Interpret (x —x1)%2 + (¥ — y1)2 + (2 — #1)2 =(4dx 4 By + Oz+ D)2

66. For the cases where 424+ B2+ (2 is >1, =1, <1, interpret
-2+ —y)?+ (-2’ ={d@@—2) + By—u) +C(z— 2)}
[Locus is real cone ; a straight line ; the point (x1, 1, 21).]

67. If A be any plane area, and 4., 4,, 4. its projections on the
three coordinate planes, prove that the projection of A on any plane 8 is
prgd = prgd, + prgdy +prg4..

[Let 6 be the angle between the original plane and 8, and \, g, » and
N, w!, ¥ the direction cosines of the perpendiculars to the two planes,
respectively ; then by § 117, 4, =X4, and so on, and hence by § 284,
cos 0. A= NN+ pu+vv)A=NA, + p'4, + v A..]

68. If 4 be any plane surface, and A., 4,, A, its projections on the
coordinate planes, prove that 42 = 4,2+ 4,2+ 4.2 [§ 117].

69. If a plane cut the axes in 4, B, C, and if «, b, ¢ be the intercepts,
prove that the area of ABC is §(b%¢* + ¢*a? + a? b‘z)%.
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70. The area of a triangle with the angular points Py(z2, ys, 22,),

P3(x3, Y3y 23), Ps(s, Ys, 24) is [Ex.

Yo 2z 112 |zg
lys 23 1| +|23
Ys 24 1 24

71. The perpendicular distance from the plane P,

Py(1, 91, 1) Is [§ 274, §277, §279]

21 Y1 2z 1 Yz 22
22 Y2 22 1| Jlys =3
x3 ys 23 1 Ys 24
s Ys 24 1

68 and § 52]
o
x3
ory

[

12 o2 y2 12
1 + X3 Ys 1
1 Xy Ys 1

P; P, to the point

12 xy 1[2 xo Yo 1[212
1)y les a3 1) 4|as ys 1
1 X4 1 Xy Y4 1

72. Since the volume of a tetrahedron is one third a base by the corre-
sponding altitude, the volume of a tetrahedron with the angular points
Py, P;, P3, Pyis [by the two preceding exercises]

x1
L2

3

X4

Y1
Y2
Y3
Ya

21
22
23

“4

1

1
1
1



CHAPTER XV
THE SHAPE OF THE CONICOIDS. CONFOCALS

298. The conicoid, and its points of intersection with a line.
Let F'(, y, 2) =0 (1) denote an algebraic equation of the sec-
ond degree, namely :

F(w,y,2) = ax® 4+ by® 4 c2® + 2 fyz + 2 gz + 2 hay
+2lx+2my+2n2+d=0. aan
As has been seen already [§ 2647, the locus of this equation is

a surface; and, since the equation is of the second degree,
the surface is called a surfuce of the second degree, or a conicoid.

299. To find the points where any line meets this surface,
the equations of the

tions of the line be
[§ 291, (2)]

o e e O
follows: Let the equa- //)

ap s Moo\
:

tion may be found as
A " v

These equations are equivalent to the following [§ 2927:
z=a"4+Ar, y=y'+pur, z=24vr 2"
For the points which are common to the line and the sur-

face, these values of z, y, 2 [Eqs. (2')] must satisfy the equa-
tion F (x, y, z) = 0; that is, the following equation is true:

F@ + A,y + pr,2' +vr) =0, 3)
234
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The unknown quantity » occurs in this equation to the second
power, since F (, y, z) is of the second degree; and the equa-
tion may therefore be written in the form:

Ar*+2Br 4+ 0 =0. 3"

The two values of r obtained by solving this quadratic (3') are
the distances from the point (2',%',2') to the points P,, P,, where
the line (2) cuts the surface (1'). The coordinates of P, P,
are found by substituting the two values of = in (2').

300. The quadratic (3") may have two real roots; in this case
the line (2) meets the surface (1') in two real points.

Example. Find the points where the surface «? + 32 — 2247 =0 (1)
is met by the line (z — 1)/2 = (¥ —2)/3 = (¢ + 1)/2 (2).

Represent each of the equal fractions (2) by #/; then for any point
(¢, y, 2) on the line (2), 2 =2¢r"4+1, y=38»"+2, z2=2+"—1. (21

The substitution of these values of z, y, and zina2 4+ y2 — 2247 =0
gives: 9724202 4+ 11 =0. Hence, 'y = — 1, #'3= —11/9, These
values of 1/ set in the equations (2') give the coordinates of the points of
intersection, namely, (—1, — 1, —3) and (—13/9, —5/3, — 31/9).
(Prove that these values satisfy both (1) and (2), and thus check the
numerical work.)

Since the denominators in the equation of the line are not A, u, », but
are merely proportional to A, u, », the »/ here used has not the geometrical
meaning of the » in the text.

301. The quadratic (3") may have equal roots; in this case
the line meets the conicoid in two coincident points (and is
called a tangent).

Example. Show that the surface 22 — 22y + 322 -5y +10=0 (1)
is met by the line (x — 3)/1 = (y +2)/(— 2) =(2 — 3)/2 =1/ (2) in one
point-only, and find this point.

The coordinates of any point on the line are x =9/ 43, y = — 2 ¢/ — 2,
2=27"4 3 (2'); and these values of (z, ¥, #) substituted in (1) give the
quadratic /2 4+ 49’ + 4 = 0, which has equal roots, ' =— 2, — 2. This

value of ¢/ set in the equations (2') gives the coordinates of the required
point (1, 2, — 1).
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302. The quadratic (3") may have imaginary roots; in this
case the points P, and P, have imaginary coordinates, and the
line does not meet the conicoid in real points.

Example. Show that the surface x2 + y2— 22 +8 =0 (1) is met by
the line (x — 1), 2 =(y — 2)/3 = (¢#+ 1)/2 =" (2) in no real point.

From the equations (2): 2 =2+ +1,y=38r"4+2,2=2"—1 (2/);
and the setting of these values in the equation (1) gives the quadratic
972 4 209! + 12 = 0, whose roots are ' =(— 10 4 2\/——2)/9; and the
corresponding values of x, y, # obtained from (2/) are imaginary. Since
these values of =, y, z, though imaginary, algebraically satisfy the equation
(1), the line may be said to meet the conicoid in two imaginary points.

303. The quadratic (3") may be an identity, that is, the coef-
ficient of 77, the coefficient of », and the absolute term may all
three be zero; in this case every value of r will satisfy (3"),
which means geometrically that every point on the line (2) is
on the surface, or that the line lies wholly on the surface.

Example. Prove that thelineax —1=y—2=2+1=1'(2) lies en-
tirely on the surface 22 —ay + 2 +y+22—1 =0 (1).

The equations of the line (2) become: xz=1r'+1, y=242,
z=1'—1 (2"), and substituting these expressions for x, y, zin the equa-
tion of the surface (1), and reducing, a quadratic in » is obtained, which
has the form: 0.724 0.7 +0 =0. Every finite value of 7' satisfies
this equation, and therefore every point on the line is on the surface ; that
is, the line itself lies on the surface. :

304. The section of a conicoid by a plane. Since any line of
a plane cutting a conicoid, in general, meets the surface in two
points only, every plane section of a conicoid is a conic.

Example. The section of x22/9 + y2/4 +22/1 =1 (1) by the plane
z = k (2) is represented by the two equations, obtained by taking (1) and
(2) as simultaneous equations,

22/9+y2/4=1—k) and z=F.
And these two equations give the section by the plane z = & of the cylinder
229 +12/4 = (1—k2) [§262].

Therefore, the section of the conicoid (1) by the plane z =% (for k2<1)
is equal to the ellipse 22/9 + y* /4= (1 — %2) in the plane z= 0.
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305. Exercises.
Find the points of intersection of the following surfaces and lines:

1, 224292 —222+3yz+2226—42y+3x—3y+22—-4=0,
and (x —1)/2=(y —2)/3 =(z +1)/2.

2. 32 —4 24+ 22 +4ay—2yz—06xz—06r— 10y +22—223=0,
and (x +1)/3 =y +2)/2 =(2 — 2)/(= 1).

3. 32 —4y2 4+ 22—2yz —62z+4xy+82x—-10y+22+8=0,
and (& + 1)/8 =(y +2)/2 =(z — 2)/(— 1).

4, 222 4+3y2—222+ 20y —4yz—06a2+30x—5y—22—-21=0,
and (x—1)/2 =W +2)/2=(=+1).

5. The surface of Ex. 4. and (x — 1)/2 =y — 1)/2 =(2 + 7)/(—13).

6. 22 —4224+by—x+82=0,

and (& — 1)/(— 4) = — 8)/12 = (2 — 5)/3.
7. x2—42245y—x+82=0,

and (z + 8)/10 = y/(— 2)=(z + 1)/5.

306. The shape of particular conicoids. Certain forms of
the equation of the second degree will now be considered. In
a later chapter [§364] it will be proved that every equation
of the second degree can be reduced to one or the other of
these forms.

307. The ellipsoid. The conicoid which is the locus of the
equation s e
r LY
aTpte=!
is called an ellipsoid.

Since the equation involves only even powers of =, y, 2, the
surface is symmetric with respect to each of the coordinate
planes =0, y =0, and z=0, which are called its principal
planes. It is also symmetric with respect to the origin O,
which is therefore called the center of the surface.

On account of the symmetry here noted, the shape of the
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whole ellipsoid can be inferred from the shape of that part for
which all the coordinates are positive. See the figure here-

with, and also Figure 1. 7
It is at once evident from c u=o
the equation of the ellip- . / 4 ———
soid that no point of the o //j ________
surface can have an a-coor- A _
dinate which is numerically -~ /f A
greater than a, a y-coordi- /0 x
nate greater than b, or a /'
z-coordinate greater than ¢. |3 20
Hence the surface lies ¥
wholly between the planes v =a, *=—a, y=0,y=—"0, z2=c,
z=—c. Therefore, since all plane sections of conicoids are

conics [§ 304], in the case of the ellipsoid these sections, being
curves of limited extent, must be ellipses.

The sections by planes z=%k, | k | < ¢, parallel to the coordi-
nate plane z = 0,are similar ellipses having equations of the form

ﬁ"'”_’f:]— - 71?7 z=F,

a* b ¢’
and which diminish in size as & varies from 0 to ¢. And the
like is true of sections by planes parallel to the other coordinate
planes.

To find the points where the a-axis meets the ellipsoid, set
y=2=0,and = + « is obtained. And similarly for the y- and
wz-axes. Hence the ellipsoid intercepts segments of the a-, y-,
and z-axes whose lengths are 2a, 25, and Z¢, respectively.
These segments are called the axes of the ellipsoid. And a, b,
and ¢ are called the semiaxes. The ellipsoid passes through the
points A(a, 0, 0), B(0, b, 0), C(0, 0, ¢).

In the general case a, b, and ¢ are unequal. It is then con-
venient to suppose a>b>c. '

308. If a>b=c, all sections parallel to the plane z =0 are
circles. In this case the surface can be generated by revolving
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the ellipse which the equation a*/a®+2?/¢®=1 represents in
the az-plane, about the az-axis, which is its major axis.

Similarly, if a = b> ¢, all sections parallel to the plane z=0
are circles. In this case the surface can be generated by re-
volving the ellipse a?/a*+ 2°/c*=1 about the z-axis, which is
its minor axis.

The surface generated by revolving an ellipse about its major
axis is called a prolate spheroid; that generated by revolving
an ellipse about its minor axis is called an oblate spheroid.
Both surfaces are called ellipsoids of revolution. Hence, if a >c,
the equations

o 9 ) 2 2
iV 71 amd T4¥ 7
a ¢ at a®

represent a prolate spheroid and an oblate spheroid, respectively.

309. If a =10 =c, the equation becomes @*+ y* 4 2° = a? and
the surface is a sphere [§ 237].

310. Since a sum of squares of real numbers cannot equal
a negative number, there is no real solution of the equation

oyt A
—+t5t+to=— 1,
a® b

which is said to represent an imaginary ellipsoid.

311. Hyperboloid of one sheet. This is the name given to
the surface which is the locus of the equation

I
a2 b &

As in § 307, the following inferences can be drawn from the
equation :

The surface is met by the a- and y-axes in real points, but
not by the z-axis.

The sections by the planes =0 and y =0, and planes
parallel to these, are hyperbolas,



240 COORDINATE GEOMETRY IN SPACE

The sections by planes z = k, parallel to the plane z = 0, are
similar ellipses having equations of the form

w2 2 kf.’
atp=lte 2=k

which increase in size indefinitely as k increases numerically.
Since the equation involves only even powers of =z, 7, z,
the surface is symmetric with re-
spect to each of the coordinate
planes; and the shape of the whole
hyperboloid can be inferred from
the shape of that part for every
point of which @ and y are positive
and z is negative. See the figure
herewith, and also Figure 2.

312. When a = b, the sections by the planes z =k are circles.
In this case the surface can be generated by revolving the
hyperbola a*/a*— 2*/¢*=1 about the z-axis, which is its conju-
gate axis.

313. Hyperboloid of two sheets. This name is given to the
surface which is the locus of the ‘

equation
m? y2 ZZ
@R

The z-axis meets the surface in
real points, but the »- and y-axes L
do not meet it in real points. : // A= -

The sections by the planes =0, L7 LA S
y =0, and planes parallel to these, ) N
are hyperbolas. 8l 4

No point of the surface lies be-
tween the planes z =—c¢ and z=c. DBut every plane z =Kk,

for which |%| > ¢, cuts the surface in an ellipse, the size of
which increases with |k |. Hence the surface consists of two
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separate parts, one extending indefinitely above the plane
z=c, the other indefinitely below the plane z=—c.

Since the equation involves only even powers of =z, ¥, z,
the surface is symmetric with respect to each of the coordinate
planes, and the shape of the whole hyperboloid can be inferred
from the shape of that eighth of the surface every point of
which has a positive @ and y and a negative z. See the figure
herewith, and also Figure 3.

314. If a=0, the sections by planes z==%, where [%| > ¢,
are circles. In this case the surface can be generated by re-
volving the hyperbola a*/a*—2?/c*= —1 about the z-axis,
which is its transverse axis.

315. The Cone. Any surface generated by the motion in
space of aline which passes through a fixed point is called a cone.
The locus of the equation

L] 9
x|y

a® b

is a cone for which the fixed point men- \
tioned in the definition is the origin.
" TFor, evidently, if (2, ¥/, 2') be any solu-
tion of the equation, so also is (ka', ky', k2")
¥0

a solution, whatever the value of & may be.

But every point of the line joining the
point (&', ¥', ') to the origin has coordi-
nates of the form (kz', ky', kz'). Hence
the surface under consideration has the
property that the line determined by the
origin and any one of its points lies wholly

on the surface. It is therefore a cone.
The sections by planes z = £ k, parallel to 2= 0, are similar
ellipses of the form

)
2

=, z=k.

m? ?/2 k‘.l
5 P CRA
a0 ¢



242 COORDINATE GEOMETRY IN SPACE

"316. There is no real solution, except (0, 0, 0), of the

equation
0 9 9
@,y &
S+5+5=0,
at ¢

. which is called an maginary cone.
317. The conicoids of §§ 307-316 are called central conicoids.

318. The elliptic paraboloid. This name is given to the su-
face represented by the equation

a b

The equation has no constant term, and no real solution in
which z is positive. Hence the surface passes through the
origin, and lies wholly below the plane z =0, which it touches.

The sections by the planes
=0 and y=0, and planes
parallel to them, are parabolas.

The sections by planes z=1F,,
parallel to and below the plane
z =0, are ellipses which increase
in size indefinitely with | % |.

Since the equation involves
only even powers of x and y,
the surface is symmetric with
respect to each of the coordinate
planes =0 and y =0, and the shape of the whole elliptic
paraboloid can be inferred from the quarter of the surface in
front of the y = 0 plane and to the right of the x = 0 plane.
See the figure herewith, and also Figure 4.

319. If a = b, the elliptic sections are circles. In this case,
the surface can be generated by revolving the parabola
@?/a* =— 2z, 0r = — 2 a*%, about the z-axis, which is the
axis of this parabola.
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- 320. The hyperbolic paraboloid. This is the name of the
surface which is the locus of the equation '

a2 P
= - =2z
@ #
The plane z=0 cuts the surface in the pair of lines repre-

sented b .
v T4+Y—-0,2=0, and %—-’ézo,z=o.
aQ

Every other line through the origin O and in the plane z=0
crosses each of these lines at O and therefore meets the surface
in two coincident points, or touches it. Hence z=0 is the
tangent plane to the surface at O [§§ 301, 328].

In that one of the angles between the planes a:/a+ 5 /b =0,
x/a—y/b =0 which contains the w-axis, 2*/a*— /b and
therefore z, is positive. Hence that portion of the surface
which is in this dihedral angle is above the plane z =0.

Similarly, the portion of the surface which isin that dihedral
angle between the planes a/a+y/b =0, /& —y/b =0 which
contains the y-axis, is below the plane z = 0.

Planes z =k, parallel to the plane z =0,
cut the surface in hyperbolas whose trans-
verse axes are parallel to the a-
axiswhen k is positive, but parallel
to the y-axis when % is negative,
- the asymptotes of each hyperbola
being the lines of intersection of
the plane z=% with the pair of
planes 2*/a* — y?/b* = 0.

Since the equation involves
only .even powers of « and ¥, the
surface is symmetric with respect
to each of the coordinate planes
=0 and y=0, and the shape of
the whole hyperbolic paraboloid can be inferred from that
quarter of the surface in front of the plane y = 0 and to the left
of the plane = 0. See the figure herewith, and also Figure 5.

z

c’
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Every plane parallel to (or coincident with) the plane =0
cuts the surface in a parabola. For convenience in drawing
the figure, take the sections by the planes &= —1[; the equa-
tions of these sections will be

2
y2=—2b2<z—2—l(?2>, w=—_1.

This is a parabola whose axis is parallel to the z-axis, whose
vertex, the point (— I, 0, I*/2 a?), is above the plane z =0, and
which extends downward, its latus rectum (=—20% being
negative.

Similarly, every plane y = £, parallel to the plane y =0, cuts
the surface in a parabola whose axis is parallel to the z-axis
whose vertex is below the plane z=0, and which extends
upward.

The surface is saddle-shaped.

321. The cylinders and planes. As has been seen in § 262, an
equation in but two of the coordinates, say « and ¥, represents

v4

a cylindrical surface parallel to a coordinate axis. The loci of
the equations 2 2 .

BV e
o o b

are called the elliptic, hyperbolic, parabolic cylinders, respectively.

322. The equation 2?/a®+ y?/b*= —1 has no real solution;
it is said to represent an imaginary cylinder.
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323. The equation 2?/a? — y°/b* = 0 represents the two planes
zfa+y/b=0, z/a—y/b=0.

324. The equation a?/a®+ y?/0*=0 has no real solutions,
except (0, 0,2); it is true for points on the linex =0, y =0, and
these points only; it is said torepresenta pair of imaginary planes.

325. The locus of y?=a is two parallel planes, real or imagi-
nary according as a is positive or negative.

326. Finally, y? = 0 represents two coincident planes.

327. The following is a list of the forms of the equations
just considered. In a later chapter [§ 364] it will be proved
that this is a complete list of the various forms to which an
equation of the second degree can be reduced. Opposite each
equation is placed the name of the conicoid which is its locus.

@y 7 ipsoi
1. = + E + ; =1, ellipsoid [§ 307].

2. o + -|— = = —1, imaginary ellipsoid [§ 310].

3. . +Z_ 2 =1, hyperboloid of one sheet [§ 3117].
¢ ¢

4. 9;124_-12_

2t =— 1, hyperboloid of two sheets [§ 3137
al b

2
2

5. + x_ j_ =0, cone [§ 315].

2 2 2
6. IE; +%, + z_) =0, imaginary cone [§ 316].
a ¢t

7. 1Y _ 24 elliptic paraboloid [§ 318].

2 2
8. _Y—2 2 hyperbolic paraboloid [§ 320].
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02 2
9. ﬁz + -l,_, =1, elliptic cylinder [§ 321].

10. = —< =1, hyperbolic cylinder [§ 321].

ai
a
11. 3—4—5—; —1, imaginary cylinder [§ 322].
2?2 gt
12. = — 5= 0, pair of intersecting planes [§ 323].
a
=

13. 2+'Z—;= 0, pair of imaginary planes [§ 324].
p 2

14. y*=4 ax, parabolic cylinder [§ 321].
15. y*=a, two parallel planes, real or imaginary [§ 3257.
16. y2=0, two coincident planes [§ 326].

328. Tangent planes. The hyperboloid of one sheet

is met by the line
x—a' y—y z—2
. Y=y _ =r, (2)
A M v Py
or r=2Ar42, y=pr+y, z=vr+z, @
in points, P, P, whose distances, 7, 7, from the point
P' (2!, y', 2") are the roots of the equation, obtained by substi-
tuting (2') in (1),

(Ar+a')? _I_(I“ +4')? (V7'+z)2 =0, (3)

or o v
I 2 2 2
r"( e +‘>< Y ”—z—>+<“"—.,+3:—z—.,—1>=0- @)
& @

0
If P'ison (1), so that

2

+1/ 2

7 ?——].EO, )]
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one of the roots of (3") is 0, which is as it should be since P’ is
then itself one of the points of intersection of (1) and (2), say
the point P,. The second root of (3% will be 0 if the coeffi-
cient of r is also 0, that is, if A, u, » have such values that
! ! !

In this case the point P, will coincide with P’ (that is, P,) and
the line (2) will meet the surface (1) in two coincident points
at P, or be tangent to it at P, [§ 301]. The point P, is then
called the point of tangency of the line with the surface.

Eliminate A, u, v from (5) by aid of the equations (2). The
result is, P' being P,

(@ a?wl)wl + bgl)z/l _G Cfl)zl —0, ©6)
which represents a plane through (2, ¥, #) [§ 283]. From
the manner in which (6) was derived, it follows that every line
which touches the surface (1) at (x,, ¥, 2,) lies in this plane;
and, conversely, since (5) is a consequente of (2) and (6), every
line through (x, ¥, z,) which lies in the plane touches the sur-
face. The plane (6) is therefore called the tangent plane to
the surface at the point (w), 1, #)). As just said, it has the
property that the line joining any point Pz, ¥, #) in it to the
point (z;, ¥, #) is a tangent to the surface.

.When the multiplications indicated in (6) are carried out,
and @,2/a® +3,2/b* — 2,?/c? is replaced by its equal, 1, the equa-
tion becomes

XX; 2 22
Byl ™

2
which is therefore the equation of the tangent plane to the
hyperboloid (1) in its simplest form.

329. Observe that (7) can be obtained from the equation of
the hyperboloid by replacing a7 2 2* by aw,, yy;, 2z, respec-
tively.

In a similar manner [§ 3307, it can be proved that the tan-
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gent plane to any conicoid at the point ay, ¥, 2, can be obtained
by the rule: replace a% y? 2% by aw), yy,, #2,; 2wy, 29z, 222 by
Y+ Y, Yz 4y, v+ az; 22, 2y,22 by e+, y + z+zl.
(Compare § 81 and § 171.)

330. The equation of the tangent plane to any conicoid
F(x, y,2)=ax?+ by? + c22 + 2 fyz + 2 gzx + 2 hay
+2lx+2my+2n2+d=0 @
can be obtained by a method similar to that of § 328,
The conicoid is met by the line
m—)\x’:y—;y':z—yz’zr, @)
or z=Ar+2', y=ur+y, z=vr+2, @"

in points P, P»;, whose distances 71, 7, from the point P/(a/, y', 2/) are
the roots of the equation
FQr+a, pr+y', vr+2) =0, 3
which, when expanded and arranged in descending powers of r, is
{aN2 + bu2 + 2 4 2 fuv + 2 gvh + 2 hud 12
+ 2{(ax! + hy' + gz' + DN + (ha! + by’ + f2! + m)n
+ (g2’ + fy' + cz! + n)}r
+ {au'? + by'2 + c2'? + 2 fy'z! + 2 g2'z! + 2 ha'y'
+ 2 +2my' +2n2' +d} =0. (3)
In the coefficient of », represent the quantities by which \, u, » are
0F QF 9F 1 ! ' 3
= o ,or 3F/9x!', dF/dy', 0F/9z', respectively.*
dx'’ oy’ 97
The equation can then be written
(aN2 4 b 4+ ¢12 + 2 fuv + 2 gvN + 2 hAp) 12
+ (3F/3x' - N+ OF/Qy - n+ OF/92' - v)r + F (&, y', 2) =0. (3")
Hence if the point P! is on the conicoid (1), so that F(x/, y/, 2') =0 (4),
the line (2) will meet the surface in two coincident points at P/, or be
tangent to it, when A, u, » have such values that

multiplied, by

* JF/ 9z, dF/Jy, OF/Jz are called the partial derivatives of F(x, v, 2) with
respect to x, y, 2, respectively. @#/Jx is the sum of the terms obtained by
multiplying each term of F(x, ¥, ) which contains an « by the exponent of x
in that term, and then diminisbing the exponent by 1. JF/gx' is then obtained
from §F/J= by priming all the variables. (This is the notation of the calculus.)
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oF F .

The elimination of \, u, » between (5) and (2) gives
(x—x’)+ (.1/ y’)+—(z—2’)— (6)

Or, since P! is now the same as P,
oF
071 (
which represents a plane through the point Pl(xl, Y1, #21) and containing
all the tangent lines to the surface at that point. It is the tangent plane.

When 9 F/3x1, .F/Jy1, dF/9z1 are replaced by the expressions which
they represent, and the indicated multiplications are carried out, and the
result is simplified by aid of the relation F(xi, yi1, 21) =0, the equation
(7) becomes

x—x1>+6 - y1>+ (a—z1>=0, Q)

axxy + byy, + czz1 + f (Y21 + v12) + g (221 + %21) + b (@Y1 + yx1)
F+lx+x)+m@y+y)+n(z+2z1)+d=0.(8)

331. The normal. The line through a point P; on a surface
and perpendicular to the tangent plane at P, is called the
normal to the surface at P,

The equations of the normal to the surface F(x, y, 2) = 0 at the point
(21, Y1, 21) are [§§ 278, 330]

T—T1 _Y—Y1 _ 2=

9F/dr1  9F/dy: 09F/dz1

Example. Find the equation of the tangent plane and the equations
of the normal to the hyperboloid 2%+ 3y2—22—38 =0 at the point -
(2, —1, 2). The values (2, — 1, 2) satisfy the equation, and the point is
therefore on the surface.

The equation of the tangent plane at the point (x/, ¥/, 2') is

xx! +8yy' — 22! —3=0.
Setting («/, ¥/, 2') = (2, — 1, 2) in this equation gives2 x — 8y — 22 —3 =0.

The equations of the normal are (x — 2)/2 =(y+1)/—3 =(z — 2)/-2.

332. The polar plane. The equation (8) of § 330 represents
a plane, whether the point P (x,, ¥, #) lies on the conicoid
F (%, y,7)=0 or not. - This plane is called the polar plane of
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the point (xy, y;, z) with respect to the conicoid F (x, y, 2z)=0.
The point (w, 5, 2,) is called the pole of the plane. By the
reasoning employed in Chapter IX, it can be proved that the
polar plane of a point P cuts the conicoid in a conic which is the
locus of the points of tangency of all tangent lines from P to
the conicoid. If the plane does not cut the surface in real
points, the tangents from P are imaginary.

333. Exercises. Tangent planes and normals.

1. Find the equation of the tangent plane and the equations of the
normal to 2 +4 2y + 2yz — 32 =0 at the point 4(— 1, —2, 3); also at
the point B(4, 2, — 9).

2. Find the equation of the tangent plane and the equations of the
normalto a2+ 292 —2224+3yz+2zr—4ory+32x—3y+22—4=0 at
the following points: A(—2, —5/2, —4), B(1, 1, 1), C (1, 1, 5/2),
D(17 07 0)’ E(_ 4, 01 0)7 F(17 0’ 2)’ G ('_ 81 0, 2)’ II(—_ 17 - 21 0)’
J(-1, 3/2,0).

3. Find the equation of the polar plane of the point (1, —1, 2) with
respect to the conicoid a2+ 222 — 62y +2yz —4x=0.

4. Find the pole of the plane 2 x — 3y 4+ 2+ 4 =0 with respect to the
conicoid 22 —2¢y2 +4zx —2xy +8 =0. )

5. Find the equation of the tangent cone from the origin to the sphere
(r =124y - 2)?+ (2 + 1)?=38.

334. Surfaces of revolution. A surface generated by revolv-
ing a plane curve about a straight line in its plane is called a
surface of revolution.

Thus, the right circular cone, the sphere, the prolate and
oblate spheroids, and the surfaces mentioned in §§ 312 314,
319, are surfaces of revolution.

335. If the equation of a eurve in the xy-plane is f(, y) =0,
the equation of the surface got by revolving the curve about the
m-axis is f(z, Vy*+ #°) = 0. For, in the equation f(x, y) =0,
y denotes the distance from the x-axis of a point of the curve
whose abscissa is 2. And V® + 2° is the expression for this
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same distance for every position taken by the point as the
curve turns about the z-axis.

Similarly the equation of the surface got by revolving the
curve f (%, y) = 0 about the y-axis is f(Va® + 7% y) = 0.

It is evident that, if the curve is symmetric with respect to
the line about which it is revolved, the degree of the surface
will be the same as that of the curve; but, if the curve is not
symmetric with respect to this line, the degree of the surface
will be twice that of the curve.

Examples. The equation of the right circular cone got by revolving the
line y — 2 2 — 1 = 0 of the xy-plane about the x-axis is

Vet 2 —2x—1=0, ory2+22— 2z + 1)2=0.

The equation of the cone got by revolving this same line about the
y-axis 18 .
y—2Vai 22 —1=0,0rda?+422— (y —1)2=0.

Agaih, if the circle 22 + y2 = a2 be revolved about either the x- or
‘y-axis, the sphere 22 + y2 + 22 = @¢? is obtained ; if the parabola y2 = 4 ax
be revolved about the z-axis, the paraboloid y* + 22 = 4 ax is obtained ;
and so on. .

Finally, consider the surface generated by revolving the -circle
2% + (y — b)? = a?, where a < b, about the z-axis. It is a ring-shaped
surface called the torus or anchor ring. Its equation is

224 (Vyi+ 22 —b)2=a% or 4b2(y2 +2°) = (a2 — 12 — a2 — % — 2%)2,

336. Ruled surfaces. A swrface of such a character that
through every one of its points there is a straight line which
lies entirely on the surface is called a ruled surface, and the
straight line is called a generating line. [§ 303.]

337. Evidently cones and cylinders are ruled surfaces. The
hyperboloid of one sheet and the hyperbolic paraboloid are also
ruled surfaces, as will now be proved.

338. The equation of the hyperboloid of one sheet, namely
@*/a® + y*/b* — 2*/¢* =1, can be written

EED-CDe) o
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Let A denote an arbitrary constant, and consider the follow-
ing pair of simultaneous equations:

T, 2z Y z z_ 1 Y
TyZn.(14Y), T_2_2.(1_Y). 2
a+c A ( +b) a ¢ A ( b> @

For any given value of A this pair of equations represents a
straight line ; and this straight line must lie on the hyperboloid.
This follows from the fact that any set of values of z, ¥, 2
which satisfies both equations (2) must satisfy (1), since, if
the equations (2) be multiplied together, member by member,
the equation (1) is obtained. Tor every real value of A there
is one such line, and these lines together completely cover the
. surface.

But the factors of the two members of (1) can be combined
so as to form a second pair of equations involving an arbitrary
constant, namely :

Tt (128, 221 (14 3)
a+c#< b>’ac,u.<+b) @)

from which (1) may be derived by eliminating this constant, u.

This pair of equations, like the pair (2), represents a system
of straight lines which entirely cover the surface. See Figure 6.

Through every point P of the surface there will pass one
line, and but one, of each of the systems of generating lines
(2) and (3.) Moreover, the plane « determined by these two
lines is the tangent plane to the surface at P. For, if @ denote
any point of « not on either of the generating lines, the line
QP, since it crosses both generating lines at P, meets the sur-
face in two coincident points at P, or touches it [§ 328]. It
is because this line QP cannot meet the surface in more than
two points that we have the right to conclude that not more
than two generating lines, one of each system, pass through P.

Ezample. Consider the hyperboloid

§+%—ﬁ=L (0
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Here the two systems of generating lines are

LI y), 2_,=1.(1_¥

Z4z=2 (1+3), f-e=] (1 3), @
and .

@ (1Y) 2,1 (1Y)

L= @ 3) Iz #(1+Q ®

It will be found that the point (2, 6, 2) lies on (1).
To find the generating line of the system (2) which passes through this
point, substitute * = 2, y =6, z = 2 in either of the equations (2), and

solve for \. The result is A = 1. Hence the equations of the line are
@ Y
ZS_z=1—-Z. 2!
3 3 @H

In the same manner, it is found that the equations of the generating
line of the system (8) through the given point (2, 6, 2) are

stz=1+%,

x _ Y x _ 1 Yy :
= =—3(1—-2), S—z=—=(142Z). 3/
3T* ( 3) 2 % 3( +3) @)

By § 328 the equation of the tangent plane at the point (2, 6, 2) is
3x+4y—122—6=0. @)

Eliminating # and 2 between the three equations (2') and (4), the
equation 6 + 4y — 4y — 6 = 0 is obtained, which is an identity. Hence
[§ 303] the line (2') lies in the plane (4). And in the same way it can be
proved that the line (3') lies in this plane.

339. The equation of the hyperbolic paraboloid, namely
o*/a®—y*/b* =22, can be written

v N\E_N\_o,
(a + b> (a, b> ?

Hence, it can be inferred, as above, that the pair of equations
e _y_1

b
in which A is an arbitrary constant, represents a system of

generating lines which entirely covers the surface, and that
the pair of equations
vay 1 oz y_o

a'b u a b

£+?—/=2)\z,
a b

®z

represents a second system of such lines. See Figure 7.
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And, as in the case of the hyperboloid of one sheet,.it can
be proved that one line of each system, and but one, passes
through each point of the surface, and that the plane deter-
mined by these lines is the tangent plane at the point.

340. Confocal Conicoids. The system of surfaces repre-
sented by the equation
? y

a4+ A + b4
in whieh X is an arbitrary constant, is called a system of con-
Jocal conicoids. The principal sections of the system, that is,
the sections by the planes =0, y=0, and z=0, are confocal
conics [§ 166].

Suppose a>b>c. Then for all positive values of A, and
for all negative values between 0-and — ¢? (1) represents ellip-
soids; for all values of A between — ¢* and — 4% (1) represents
hyperboloids of one sheet; for all values of A between — b?
and —a?% (1) represents hyperboloids of two sheets; for
all values of A between —a’ and —oo, the locus of (1) is
imaginary.

2 2

2
=1
+62+)x ’ @)

341. The two conics (corresponding to A =— ¢ and A = — ¥
in (1) of § 340),
m? ?/2 _ , _ 172 z? _
=0, a—c* bz—c'l_l’ and y =0, m+02—,02_1’

are called the focal conics of the system (1). The first is an
ellipse, the second an hyperbola. See Figure 8.

342. Through every point (&, y', 2') there pass three conicoids
of the system (1), namely, an ellipsoid, an hyperboloid of one
sheet, and an hyperboloid of two sheets. )

For, substitute (2!, ', #') for (v, y, 2) in (1), and clear of
fractions; the result is
A+ @)+ B) A+ ¢) — A+ D) A+ ) — A+ DA+ )

— 2" A+ aHA+ ) =0. (2)
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When A = w0, the left member of (2) is positive;

when A= —¢% the left member is —2”(— ¢+ a?)(— ¢+ b?),
which is negative;

when A= —b°% the left member is —y"*(— b* + ¢*)(— b+ a?),
which is positive;

when A = — o, the left member is — a'%(— a* + b*)(— a?+ ¢?),
which is negative. Hence, the three values of A which are the
roots of (2) are real, and one of them lies between oo and — ¢,
one between — ¢ and — 0% and one between — 0* and — a? [Alg.
§ 833]. Let these three roots be A, Ay Ag respectively. The
three equations obtained by substituting A, As A4 successively,
for A in (1), namely

@ y? 2 -1 N 3
a2+xl+bﬂ+xl+cﬂ+xl » P> @)

2 V' o4 7 1 _esa>—b, @
adrg VPAA EFA >4 > ’ @)
a? Y’ 2

=1, —0P>Nn>—d 5

a2+A3+b2+A3+cﬁ+A3 ’ >h>—d ()

represent three surfaces of the system (1), all passing through

the point (2, ¥, 2'), the first, (3), being an ellipsoid, the sec-

ond, (4), an hyperboloid of one sheet, and the third, (5), an
hyperboloid of two sheets. See Figure 9.

343. The three conicoids of the system (1) which pass through
any given point (', y',2") are orthogonal, that is, their tangent
planes at (&', y,' 2") are perpendicular to one another.

For, using the notation of the preceding section, since the
conicoids (3) and (4) pass through the point (a', 3/, 2"),

m’ﬂ ,1/12 zlﬂ - w’i! yl2 z'? _
- =1 — = 1
a4 N b2+/\1+.03+)\1 ’ aﬁ+)\2+b‘2+)\2+c2+)x2 ’
and therefore (subtracting and simplifying),
mIZ . ,’/V‘J ZY?
; ; + = : + =0. (6
@@ TGN ey
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But the equations of the tangent planes to (3) and (4) at the
point (&', ', #') are

!

xx' yy' 7z _q w' vy 2
C’:2+)\1+b2+)\1+c2+)\1_ ’ a2+)\2+b2+)\2+02+ )\2_
and (6) is the condition that these two planes be perpendicu-
lar to each other [§ 285]. And it can be proved in the same
manner that the tangent planes to (3) and (5), and those to (4)
and (5), at the point (2', 3/, 2') are perpendicular to each other.

!

1,



CHAPTER XVI

POLAR COORDINATES

344. Polar coordinates. The position of a point in space can
be defined in other ways than by reference to an orthogonal
system of axes such as has been used in the preceding pages.
The following method is often employed:

As in the figure, let Oz, Oy, Oz represent the positive half
axes of a rectangular system, P any

point in space, and OG the projec- z

tion of OP upon the xy-plane. (';'”('2,),5‘(/) )
The position of P is defined by

its distance 7 from O, the angle 6

which OP makes with Oz, and the o ) z

angle ¢ (=2 OG) which the plane ~

OzP makes with the plane Ozw. e L >

When P is defined in this way, the / T / ’

system of reference is the point O, "

the half-line Oz, and the- plane Ozx;

and 7, 6, ¢ are called the polar coordinates of P referred to this
system O, Oz, Ozx. As such a system of reference there may
be taken any point O in space, any half-line Oz from O, and
any plane Ozz containing Oz.

To construct a point P(r, §, ) whose polar coordinates are
given, take in the xy-plane a half-line OG making the angle ¢
with Oz, the angle being measured from Ox toward Oy when
positive, in the contrary sense when negative; then, in the
plane Oz@ thus determined, take the half-line OP making the
angle 6 with Ogz, the angle being measured from Oz toward OG
when positive, in the contrary sense when negative; and finally
on this half-line OP itself or produced through O, according as
r is positive or negative, lay off OP of length | » | .

s 257
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345. The formulas connecting the rectangular coordinates of

P (veferred to Oz, Oy, Oz) and its polar coordinates (referred

to O, Oz, Ozx) are easily found. Complete the figure by tak-
- ing Q'L perpendicular to Ox. Then

2= 0L = OG cos ¢ = OPsin 0 cos ¢,

y= LG = 0@ sin ¢ = OPsin 6 sin ¢,

2= GP= 0P cos 6.
Hence the required formulas are

(x,y,2)

PA(r.0,9)

=1 sin 6 cos ¢,

y =1 sin 6 sin ¢,

2z =1c0s 6.
Conversely, 7, 6, ¢ are given by the
formulas:

22 21 2 o
Y=oty ‘—}—z‘, T >
tan? 6 — (mz + jlji) /z“’, . v \\\\J /
G

tan ¢ = y/x.

IES

346. Let the length of the line OG be represented by 7.
The point P is sometimes considered as determined by
(', ¢, 2), which are then called the -cylindrical coordinates of
the point.

347. Exercises. Polar coordinates.

1. Find the rectangular coordinates of the points whose polar coordi-
nates are : (3, 30°, 60°), (2, =/4, m), (1, 45°, 45°).

2. Find the polar coordinates of the points whose rectangular coordi-
nates are: (2, 3,4), (3,3, —2), (—1, —2,1).

3. What is represented by » = const. ?

1l

. What is represented by § = const. ?

. What is represented by ¢ = const. ?

4
5
6. What is represented by 6 = const. and ¢ = const.?
7. What is represented by ¢ = const. and » = const. ?
8

. What is represented by » = const. and 6 = const. ?



CHAPTER XVII

TRANSFORMATION OF COORDINATES

348. Transformation of coordinates. The formulas connect-
ing the coordinates of a point referred to two different sets
of rectilinear axes can be found. The process of changing
from one set of axes to another is called the transformation of
coordinates.

349. Two parallel sets of axes, rectangular or oblique.

Let Ox, Oy, Oz be a first set of axes, O, a point whose co-
ordinates referred to these
axes are @y, Yo, %, and O,
Oy, O, a second set of
axes parallel to Oz, Oy, Oz,
respectively. Then, if P
be any point in space, and
x, y, #z denote its coordi-
nates referred to the sys-
tem Owz, Oy, Oz, and @y, ¥y, %, G
its coordinates referred to the system Oy, Oy, Oz, exactly
as in § 144,

Po (x,4,2)
T(xl.yl.zl)

—_—
L *

G| L

T =) + Xy Y= —2+,
Y=t%+y, and yn=—y+y,
2=z + 2, Hh=—2%+=z

Since (— @y, — yo, — #%,) are the coordinates of O referred to
the system O, — x9,2;, these two sets of formulas are of pre-
cisely the same form when changing from the system O—ayz
to the system O; — @32, and when changing from the system
0, — 2,2, to the system O — ayz.

) 269



260 COORDINATE GEOMETRY IN SPACE

350. Two sets of rectangular axes with the same origin.

Let Ox, Oy, Oz and Ow;, Oy, Oz, be two systems of axes,
both rectangular, and having the common origin O. Also, let
P be any point in space, and let the coordinates of P in the
first system be (, y, 2), in the second (#,, #), z,). The formulas
connecting (, ¥, #), and (@, ¥;, 2,) can be obtained as follows:

As in the figure, connect P with O by the line segment, OP
and by the two broken
lines made up of the
z, ¥, # of P, and its
Xy, Y, 2%, respectively.
Then the projection
of OP upon any line !
will equal the projec-
tion of each of these
broken lines upon this
same line I [§ 2467,
and therefore the pro-
jection upon ! of the broken line OL, LG, GP is equal to the
projection upon ! of the broken line OL,, L, G,, G;P; that is,

priw+priy+priz=pra+pnyh+pn4.
Taking Oz, Oy, Oz, successively as ! in this equation, which
is to project upon Ow, Oy, Oz, successively, gives [§ 248]
x = @, cos (xa;) + 7, cos (xy,) + 2, cos (wz,),
Y =@, 008 (y@1) + 31 cos (yy) + 2 cos (yz),
z =, cos (2m;) + Y, cos (zy,) + # cos (2z)),
where (wx,) denotes the angle 20z, and so on.
And similarly, projecting upon Ow, Oy, Oz, successively,
and inverting the members, gives
@, =2 cos (2,@) + ¥ cos (2,y) + 2 cos (22),
%= cos (y) +y cos (yy) + 2 cos (),
2 = cos (@) + ¥ cos (%) + 2 cos (2,2).
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In the first equation of the first set, the coefficients are the
direction cosines of Ox with respect to the axes Ox,, Oy, Oz,
Similarly in the remaining two equations of this set the coef-
ficients are the direction cosines of Oy and Og, respectively,
with respect to Oz, Oy;, Oz;; and in the three equations of the
second set, they are the direction cosines of Oxz,, Oy, and Oz,
respectively, with respect to the axes Oz, Oy, Oz. The direc-
tion cosines of Oz, Oy, and Oz with respect to Ox,, Oy, Oz, will
be represented by (A, w1, 1)s (Ayy poy v2); and (Agy pg, v3), T€SPEC-
tively. Then the direction cosines of Ouwy, Oy, and Oz, with
respect to Oz, Oy, Oz will be (A, Ay Ag), (1 po pg), and
(v, va vs), Tespectively, and the two sets of equations may be
written

=M+ mYh + vz, Ty =M% + A Y + A2y
Y =A@+ poth + w2y, N=m + w Y + ps?,
2 =A@y + ps¥s + vs2y, H=n + vy +v2

O N A

These equations and the meanings ——
of the coefficients A, u, v are exhibited Mo on
in the accompanying scheme. Y |Ae p2 v
Z [Xg p3 v

The nine cosines Aj, uy, v1; Asy sy vo; Ag Mg vg Which appear
as coefficients in these equations are connected by several (in
number 22) important relations. Thus, since the coefficients
in each set of equations are the direction cosines of mutually
perpendicular lines [§ 240, § 2527,

Af "‘,‘/«12 +V12=1) Aodg + pops + vavs =07
)\22 + qug + Vf = 1, AsAy + pgpy + vy, =0, (1)
AL+t vt =1, Mo+ s+ vy =0,
A2 AT+ A= 1, vy + pave + pgvs = 0,
P-xz + IL22 + F«gz =1, nA A +vsdy = 07 (2)
v Hvi=1, M+ Aopo 4 Agps = 0.
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Again, taking the pair of equations
Mg+ Mo+ ive = 0,
Mg+ pyps+ V1V3:O;
and solving for the ratios A; : w, : vy, gives

vy A.u

Mo V2

M3 V3

A =t =

A I‘-z‘

vg Ag Ag pg

Calling each of these equal ratios 1: %,

| g vo va Ay

Ay ph
\ M3 Vs

=kX, =k,

=k, 3

Vg Ag Az g

Squaring each of these equations (3) and adding,

2 ;
= vy AP

2

’\2 2 ‘7.9 9 9
K =K ()\1' + pu + V12)~

Ag Mg

M2 Vo

M3 V3

vy Ay

But [§ 253], the left number of this equation is equal to
sin’yOz, and therefore to unity, since the angle yOz is a right
angle; and A2+ p®+v2=1. Hence

k=1 or k=+1. “)

. Again, multiplying the equations (3) by A, u;, v, respectively,
and adding, '

: vy Ve Ay Ao s .
Ayt e s + v 2 =k +p+nd),
M3 V3 vg Ag A pg
that is,
A M
Ag Mo Vo | = k= + 1. (5)
Az pg vs

Moreover, setting the value k= +1 from (4) in the equations
(3), gives:
vy Ay Az M2

A ps

y 1=

) ©)

v Ag
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and the like can be shown true for the other elements Ay, s vy
Ag s, vy of the above determinant (5), which is called the
determinant of the transformation. Hence

The determinant of the transformation is equal to +1. When
the value of the determinant vs 1, each element is equal to its
minor ; when the value of the determinant s — 1, each element
is equal to minus its minor.

It only remains to find when the value of the determinant
is 1, and when —1. If the two sets of axes are congruent,
and are made to coincide, A, =p,=v;=1 and wy=v,=v,=A,
= A;=p;=0, and the value of the determinant is 1. But if
the two sets of axes are symmetric, that is, are so situated that,
when Oz is made to coincide with Oxz,, and Oy with Oy, Oz
and Oz, have opposite directions, then, after this displacement,
M=po=1, vy=—1, and py=v, == A= A\g=pz=0, and the
value of the determinant is —1. Hence the value of the deter-
minant is 1 or — 1 according as the two sets of awes are congruent
or symmetric.

The nine quantities Ay, py, vy, Aoy poy vay Agy pa, vs, Which satisfy
the 22 relations, in (1), (2), (5), and (6), are called the coeffi-
cients of an orthogonal substitution.

351. The equations above given for @, y, z in terms of x, ¥, #,,
namely '

-'L'.= M+t iz, Y= A+ py vy, 2= A+ path + sy,

may also be used to transform from a rectangular system Oz,
Oy, Oz, to an oblique system Ow,, Oy, Oz, in which the direc-
tion cosines of Ow), with respect to Ow, Oy, Oz, are Ay Ay, Ay,
those of Oy, are u;, pg ps, and those of Oz, are vy, vy, va.

By solving these equations for =, 1, 2;, expressions for a,, 3, 2,
are obtained in terms of z, y, 2 which are of the first degree,
but lack the simplicity of form they have when the system
Owx,, Oy, Oz, is rectangular.
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352. Since all the equations of transformation in §§ 349, 350,
351, are of the first degree in both x, y, z and @, y,, #, and any
transformation of rectilinear coordinates may be effected by
these equations singly or combined, the degree of an equation
is not increased by a transformation of coordinates. And it
cannot be decreased ; for if it could, the transformation back to
the original axes would give an equation of lower degree than
the original equation.

353. Exercises. Transformation of coordinates.

1. Transform the equation 22 —3yz+ y2—6x+ 2 =0 to parallel
axes through the point (1, — 1, 2).

2. Apply the transformation x =0+ 21, ¥ = Yo+ ¥1, 2 =20+ 21 to
the equation 22 — 292422422 — 3y + 2z =0, and give such values to
Zo, Yo, %o that the transformed equation shall lack all terms of the first
degree,

3. Prove that the three planes £ 4+2y+22=0, 22 +y—22=0,

22 —=2y+2z=0 are perpendicular to one another, and, calling their
lines of intersection Ox;, Oy, Oz, find the equations of transformation
from the system O, Oy, Oz to the system Oxi, Oy;, Oz, ; and vice versa.

4. Solve the same problem for the planes x +y + 2 =0, x—2y+2z =0,
r—2z=0,



CHAPTER XVIII

GENERAL EQUATION OF THE SECOND DEGREE

354. Centers. As in §§ 299, 328, and 330, the distances
from the point P, to the points P,, P, where the conicoid

F(z, y, z)= as®+ by*+ c2* 4+ 2 hay + 2 guoz+ 2 fyz

+2l+2my4+2n2+d=0 (1)
is met hy the line
T—T_Y—Y_2"%
A " v

=1 @
are the roots of the equation in 7,
far2 4+ bp’ + e + 2 hdu + 2 gAv + 2 fuvir®
+ 2§ (aay 4 hyo + 920 + DA
+ (ko4 by + o + m)p
+ (g2 S+ cao+n)vir
+ (axs® 4 byy® + ez’ + 2 hagyo + 2 gw 20 + 2 fiyzo
+ 2 Iy + 2 my, + 2 nzy + d)=0, 3)
or, (aA*+bp’+c’+2hap + 2 ghv + 2 fur)r?
+(0F/0zy - X+ OF/dy, - p+0F /02y - v)r+ F (a0, %y 20)=0. (3"
If P, is the mid-point of P, P,, the roots r, = PP,
1, = P,P, are equal in length;
but since P, is between P,

and P, PP, and P,P, are of
opposite sign; and therefore & ;
7 =—1y or, 1+ 1r,=0. But, /C/P' b R v
in any quadratic equation in P
7, in which the sum of the roots is zero, the coefficient of r is
zero; therefore in (3)

OF /0wy - X+ OF/dyy - .+ 0F/dzy - v = 0. @)

266
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This equation (4) will be true for all values of A, u, v, if @, ¥, %
have such values that d.F/dx,, 0F/dy,, 0F/0z, are each zero; that

is, if azy+ hyy +92%+ 1=0,
hay + byo + f2o+m = 0, 6))
9%+ Yo +czo+ n = 0.

355. If the equations (5) are both independent and consist-
ent [§ 2947, they have a single solution (a, ¥, %), and this is
finite. Hence, in this case, there exists a point Py(a, o, 20),
which bisects every chord through it. This point is called
the center of the conicoid.

It is convenient to use the following notation in the solu-
tion of (5): The determinant

a hog 1 .
A= h b f m (6)

g fc n

i m n d

is called the determinant of the coefficients of the general
equation (1). The co-factor of any element in A will be repre-
sented by the capital letter corresponding to that element.
With this notation the solution of (5),

@ — 2 1 )

)

h g 1 a g U] Ja b 1] Jahyg
b f m h f m h b m h b f
f ¢ n g ¢ n g f n g f ¢
becomes : x=L/D,y=M/D, 2= N/D. ®)
Example. Fi{ld the coordinates of the center of the conicoid
2242 —22+ 22 +4wy+4yz—2y+42—4=0.
The equations (5) for the center of this conicoid are,
r+2y+2=0,
2e+y+22—1=0,
r+2y—2+2=0.
‘The center is the point (— 1/3, —1/3, 1).



GENERAL EQUATION OF THE SECOND DEGREE 267

356. The equations (5) may not be consistent [§ 295, (2)],
and in this case the equations (5) have no finite solution in com-
mon. The geometric statement of this is that the center is
at an infinite distance. Algebraically, in the equations (8),
D =0, and at least one of L, M, N, is not zero.

Example. Find the coordinates of the center of the conicoid
22 4+49y2—22+4day+4yz+222+224+6y—32—-4=0.
The equations (5) for the center of this conicoid are,

r+2y+2+1=0,
224+4y+4+224+3=0,
r+2y—2—3/2=0.
Here D=0, L =—4, M =2, N=0; and the equations (8) give for the
center (o, w, 0/0) ; the center is at an infinite distance. (The surface
is a paraboloid.)

357. The equations (5) may not be independent [§ 295, (1)],
and in this case every solution of two of the equations (5) is a
solution of the third; that is, the three planes represented by
(5) pass through a line. (This line may be at infinity.) The
geometric statement of this is, that there is a line of centers.
The algebraic statement of the condition is that D=0, L =0,
M=0, N=0. )

Example 1. Find the coordinates of the center of the conicoid
22 +4y2—22+4xy+4yz+222+22+4y—224+d=0.
The equations (5) for the center of this conicoid are
z+2y+2z+1=0,
22 +4y+22+2=0,
x+2y—2z—1=0.
These equations are equivalent to « =— 2y, 2 =—1; that is, any point
x —0 —_¥— 0 _z +1
2/vV5 —1/vs 0
surface is a cylinder.)
If @ =— 1, the point (0, 0, — 1) lies on the surface, and it will be seen

on the line is a center of the conicoid. (The
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that the original equation represents two planes, its left member being
the product of the factors indicated below :

EH2y+Q+VDz+ Q+VIr+2y+ (1 —-V2)2z+ (1 —V2)}=0.
Example 2. Find the coordinates of the center of the conicoid
2244yt +24+4ay+2a2+4yz+20+4y+22—-3=0.
The equations (5) for the center of this conicoid are
r+2y+2+1=0,
20+4y+224+2=0,
r+2y+2+1=0.
That is, every point on the plane x + 2y + 2+ 1 =0 is a center of the
conicoid ; and it will be seen that the original equation can be written
x+2y+2+3)(x+2y+2—1)=0.
Example 3. TFind the coordinates of the center of the conicoid
22+ 22—2zc+x+4y=0.

The second equation of (5) is 2 =0. Hence in this case the derivation
of the equations (5) from (4) fails. But (4) will be true if u =0,
0F/dx, =0, dF/d2,=0. That is, the line PP, is parallel to the
xz-plane, and the coordinates of the center P, satisfy the first and
third equations of (), namely, %, —2,+ 1/2 =0, — &, +2,=0. The
center is on a line perpendicular to the y-axis (since u =0), and at in-
finity in the plane 2 — 2z = 0. There is a line of centers at infinity ; in
fact, by a method similar to that of § 1568 the equation can be written
(x—2+k)2=(-1+2k)x—4y—2kz+ k% Theplanesx—z+%k=0
and (—142k)x —4y — 2 kz+ k2 =0 will be perpendicular to each other,
if(—1+2k)—4.0+2%k=0,0r 4%k =1, or £k = 1/4, and the given equa~
tion then becomes (x — z +1/4)2 =—(1/2) (x + 8 y + z — 1/8), or, finally,

(x—z‘g1/4)2:_4(_@)(x+8zgj£_1/8)_

(The surface is a parabolic cylinder.)

358. Conicoid referred to center. When the conicoid has
a finite center, the equation of the surface referred to the cen-
ter as origin is obtained as follows:

Let the center be C(a, ¥y, 2)). The transformation of § 349,
namely, ® =2, + ), ¥ =¥+ Yo 2 =2+ 2, changes
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F (2, y, 2)= ax® + by’ + c2* + 2 hay + 2 gz + 2 fyz
+2lx+2my+2nz+d=0 (1)
into
azy? + by > + ez’ + 2 hayy, + 2 gz, + 2 fyzy

+ 2(axy + hyo + g2o+ 1) -,

+ 2(hay + byy + [z + m) < 4y
+ 2(gmo + Yo + 2o + ) + 21+ F (a0, Yo, 29) = 0. 2
Let d'= F(%%, Yo, 20)- 3)
Then, since (2, Yo, %) is the center, the coefficients of ay, ¥, -
z, are zero [§ 354, (5)], namely,

awy+ hyo+ 92+ 1 = 0, “
haey + byo + foo +m =0, ()
9%+ fYo+ czo+ n=0, 6)

and the equation (2) of the surface referred to the center be-
comes, after dropping the subscripts,

a? + byt + e+ 2 hay +2grz+ 2 fyz 4+ d' =0, )

Multiplying (4) by @, (5) by yo (6) by 2z, and subtracting
from d' = F (2, Yo, 20) gives

d' = lay + myy + nz, + d, C))
which can be written ’
lay + myo + nzy 4 (d — d')= 0. 9
The determinant of the equations (4), (5), (6), (9) is
a h g 1
h b f m ‘
g f oo =0. 10)
i m n (d—d)
@ b Z Z !]]" 'lm
Therefore, d'-|h b f|= , 11
g 5ol 9o

‘l m n d
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or, using the symbols defined in § 355,
d'=A/D. 12)
When the coordinates of the center have been found, the
value of d' can be obtained from (8); or it may be obtained

from (12). The equation (7) of the surface referred to its
center as origin is then known.

359. Exercises. Centers of conicoids.

Find the centers of the conicoids represented by the following equations ;
and, when there is one center at a finite distance from the original origin,
transform the equation to the center as origin.

1. 202492 —22—2zx—4doay+4yz+2y —42—4=0.
224+ y?+22—2yz+ 2z —22y—x+y—2=0.
y2t+ze+3ay+2yz+3x+2y=0.

ba249y2+ 922— 122y —6yz + 122 — 362 =0.
2—axz—yz—2=0.

202 +4y2—22—8xy+8x—8y+4=0.
xy+yz+axz—9=0.

® N e oo owo®

6224282 4+522—8ay —4axz—120x+8y+42=0.

360. Diametral and principal planes. By a chord of a coni-
coid is meant the line joining any two of its points.

361. The locus of the mid-points of any system of parallel
chords of a conicoid is a plane.

In finding the equations for the center in § 354,
the equation (4) of that sec-
tion was considered true for
all values of (A, g, v); but if,
on the other hand, the direc- L o ——o——————0—
tion cosines (A, u, v) in the
equations of the line (2) of
§ 354 are considered given, then the equation § 354, (4), or
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(awy 4 hyo + 920 + 1) A+ (havg 4 byo + f20 + m)

+ (920 +fYo + c2o+n)v =0, 4)
states that Py(@, Yo %) Will be the mid-point of a chord having
the given direction cosines A, u, v, if it lies anywhere on the
plane [obtained by changing the order of the terms in (4/)]
(@A ~+hp+gv) x4+ (AA +dp )y + (A + fu+ )2z

+ (I 4 mp + ) =0. “"
(Compare § 108, (6).) Hence, all chords of the system (2) of
§ 354 are bisected by the plane (4''), as was to be proved.

362. A plane which bisects a system of parallel chords of a

. conicoid is called a diametral plane. If such a plane be per-

pendicular to the chords which it bisects, it is called a principal
plane.

363. To determine the principal planes of « conicoid.
The plane (4") of § 361 will be perpendicular to the chords
(2) of § 354 which it bisects, if A, p, v have such values that

ax + h,u.+gv= hX 4+ b +fv=g)\ +/ntov ®)

A ® v
If % denote the value of these equal fractions, the equaitions
(5) are equivalent to the following:

(@—=T)A+hp +gv=0
h)\+(b—7€),u+fv=0 . (6)
gA+ S+ (c—R)y=0

The elimination of A, u, v gives

a—k R /]
R b—k f =0, )
7] S c—k
or, expanding and collecting terms,
B—(a+b+)k+ (be+ca+ab—f2—g*— Nk
— (abe + 2 fgh — af? — bg* — ch?) =0. @)
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For any value of % which satisfies (7') the three equations
(6) in A, p, v are consistent. Hence if %, denote a real root of
(7") [equation (7') has at least one real root since it is a cubic]
and if k, be substituted for & in any two of the equations (6)
and these equations be solved for A : u : v, values of these ratios
will be obtained for which (4'") will represent a principal plane.

As a matter of fact all three roots of (7') are real.*

364. Classification of conicoids. It has just been seen that
every conicoid has a principal plane. Take any point O, in
this plane, and through O, take the line O, perpendicular to
the plane and any two lines Oyy,, Oy, in the plane which are
at right angles to each other. And suppose the equation
F(x, y, 2)=0 (1) transformed [Chapter XVII] to Ow,, Oy,
0,2, as new axes of reference. The transformed equation will
have the form

a'w?+ Dy’ + o’ + 2y + 2mly + 20 +d' =0, (2)
that is, it will lack all terms in which @, enters to the first

* Cauchy’s proof of the reality of the three roots of the discriminating
cubic, that is, the equation (7), is as follows:

Let the equation (7) be written in the form

KE=k—a){(k—0)(k—c)—f B —{g*(k—b) + h2(k—c) +2fgh}=0. (7")

Let b > ¢, or b = ¢, and first consider the expression {(k—b)(k—c) —f%.

‘When . k=4 b c —0,
then {k—=0)k—c)—SAB=+w —f2 —f2 + o0,

Therefore {(k — b)(k — ¢) —f % is zero for a value of & between + o and b,
inclusive, and for a value of & between —o and ¢, inclusive; let these
values of & be, @ and 7, respectively; then +o0 >a>b>c>y>— .

1. Suppose & =~ <. If in the original cubic (7”), k be set equal to 4w, &, v,
— oo, successively, then the left member of (7”") will become pdsitive, negative,
positive again, negative again, successively. This can be proved as follows:

(1) When &k =+ o, then K =-4 0.
(2) When k& = «, then (¢ — b) (¢ — ¢)— f2 =0, and the expression K becomes
—{g2(t—b) +2fgh + 2t — )} = —{+ gVt — b + AV — ]2
= — (a perfect square) = a negative number.
(3) When % = 8, then (b —v)(¢c—7v) —f2 =0, and the expression X becomes
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power. For, by hypothesis, the plane 2, =0 is a principal
plane and therefore bisects all chords of the conicoid which are
parallel to O,. Hence, if the point (x,, %', 2,") be on the sur-
face, the point (—, ¥/, 2,') will also be on the surface. But
this requires that the equation shall lack the terms just men-
tioned. ‘

But the equation (2) can be rid of the y,2, term, if present, by
the method explained in § 145, Ex. 2. It is merely necessary
to take in the plane @, = 0 two lines Oy, Oz, which make the
angle L tan=' 2 f' / (b' — ¢') with Oy, and Oy, respectively, and
then to transform the equation to Ow,, Oy, O, as axes of
reference.

It has thus been proved that, by a transformation of co-
ordinates, every equation of the second degree can be reduced
to the form

Ax*+ By*+ CZ#*+2 My +2 N2+ D=0, 3)
where 40, but any of the other coefficients may be 0.

—{=g%b—7) +2fgh —h2(c—7)}=+{g?(b —v)—2f9h+12(c — )}
=+{+ gVb—7 F hVe—7}2= + (a perfect square) = a positive number.

(4) When £ =— o, then K =—<0.

Therefore the cubic (7”) has one real root between -+« and , another
real root between & and 7, and a third root between v and — . That is, the
cubic has three real roots.

2. When o=+, then {(k—b)(k—c) —f2 is a perfect square, namely,
(k—a)2. But the condition that {k2— (b+c)k+ (bc—f2)} be a perfect
square [Alg. § 635, 2] is b242bc 42— 4(bc —f2) =0, or (b—c)2+4/2=0,
or finally, b =c and f=0. In this case the cubic (7”) becomes

(E—0){(k—a)(k—D)—g2—Ah2%}=0.

One root of this cubic is b, and the other two are obtained from the quadratic
factor, that is, from

K2~ (a+b) k+{ab — (92 + 19} =0,
the solution of which gives
2k=a+b+Va?+2ab+b2—4ab+4(92+h)=0a+Dd +V (a—b)2+4(g2+12).

These last two values of & are also real, and again the cubic has three real
roots, as was to be proved.
T
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1. Suppose both B and C to be different from 0.
The equation can be written in the form

2 N 2 J’[? N2
2 ot = — =
Ax +B<y+%[> +O’<z+0) B+O' D.

Call the right member D', and transform [by § 349] to the
origin (0, — M/B, — N/C). Then the equation becomes

Ax?+ By + C#2=D'.

If D' 0, divide the equation by D' and so reduce it to one of
the forms

a? oyt 2 xr oyt 2P
55+b—2+c—2=1; ;2+—2——2=1,
A o 2
dTpta=—h aTEp a b

where a? is written for | D'/A4 |, and so on.
If D'=0, the equation will have one of the forms
a? |y 2 @y 2
atEta=" ety a0
2. Suppose C, one of the coefficients B, C, to be 0. The
"equation can be written in the form

M
B

2 MZ
Am2+B<y+ > +2Nz+D_§-=O.

Hence when N== 0, by a change of origin,
Aa? 4+ By*+ 2 Nz=0,
which may be reduced to one of the forms

@
a

@ P v _
;2-}-[72_;[:22, —172_~j:2z.

Similarly when N =0, by a change of origin,
Aa*+4 By + D'=0,
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where D' may be 0, and this may be reduced to one of the

forms:
2

+ £ =0.

AL
s

3. Finally, suppose both B and O to be 0. The equation is

-then
A’ +2 My+2 Nz+4 D=0.

By a transformation of coordinates in which the plane
2My+2 N2+ D=0 is taken as a new plane of reference
y = 0, this equation can be reduced to the form

2t =4 ay,

or interchanging » and y, to

y’=4ax.
But if both M and N are 0, it has the form
?=a,
or interchanging « and y,
y'=a, .

where, in particular, @ may be 0.
These are the forms of the equation of the second degree
given in the list of § 327.

365. The cone. When an equation of the second degree
represents a cone with the center (or vertex) as origin, it fol-
lows, as in § 315, that if (a', ¥, 2') be any solution of the equa-
tion, so also is (kz', ky', k2") a solution, whatever the value of
k may be. Therefore, the most general equation of a cone of
the second degree referred to the center as origin must be
homogeneous, or of the form

ax? + by* + ¢ + 2 hay + 2 gaz + 2 fyz =0
That is, in the equation (7) of § 358, d' =0; and therefore
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[§ 358, (12)] A =0, since D is not oo. Conversely, when
A =0, and D = 0, then d' = 0, and the surface is a cone.

When there is a line of centers [§ 3577, and the surface is a
cylinder or a pair of planes, the equations giving the center
are not independent, and D =0, L =0, M = 0, N = 0; whence
A =0. Conversely, if A=0 and D=0, then will L=0,
M =0, N=0, and the surface therefore will be a cylinder
or a pair of planes; this can be proved as follows:

Since a determinant with two identical rows is zero, it
follows that

aL +hM +gN+1D =0, @)

RL +bM + fN 4+ mD=0, ©

gL+ fM + cN +nD =0, ®3)

and, by definition,
IL+4+mM+nN4+dD = A. “4)
When A = 0 and D =0, these four equations become

al +hM+ gN =0, an

hL+bM + fN =0, @)

gL+ fM 4 cN =0, 3"

IL +mM+4nN = 0. 4H

In the equations (2), (8'), (4'), either the elements L, M, N
themselves are all zero, or the determinant of the coefficients
is zero, that is, L is 0; and in the same way, from (1'), (3"),
and (4"), it follows that M =0, and from (1'), (2'), and (4'),
that N = 0.

366. Therefore, A = 0 is the necessary and sufficient condition
that the general equation of the second degree represents a cone;
when also D = 0, this cone has its center or vertex at infinity and
is therefore either a cylinder or a pair of planes.

367. Invariants. There are four expressions made up of
the coefficients of the general equation of the second degree,
the values of which remain unchanged when the equation of the
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surface is changed by a transformation from one orthogonal
system of axes to any other such system [§ 349, § 350]. On
account of this property these expressions are called invari-
ants. The four invariants of
F(z, y, 2)= ax’+ by’ +c2* + 2 hay + 2 gez + 2 fyz
+2lz+2my+2n24+d=0
are
I=a+0b+c

J=bc+ ca+ ab— f2—g*—12
D = abe + 2 fyh — af? — by® — cl?,

a h g 1

h b f m
A=

g f ¢ n

I m n d

where A is called the discriminant of F(z, y, 2).

368. Proof that I, J, and D are invariants.

Any orthogonal transformation can be regarded as made
up of one transformation to parallel axes [§ 349] and of one
orthogonal transformation about the origin [§ 350].

The transformation to parallel axes [§ 349] affects only the
absolute term and the coefficients of the terms of the first de-
gree of F(w, y, 2), but does not change the coefficients of the
terms of the second degree, and therefore leaves I, J, and -D
unchanged.

The orthogonal transformation of § 350 does not give a term
of the second degree from a term not originally of the second
degree, and changes

U,= aa® + by + ¢ + 2 hay + 2 gz + 2 fyz
into U,= a'z” + b'y'2 te2’ 42 na'y' + 2 g'w'z' + 2 fly'2".
Build the function ¢(2, y, 2) = U,—k(@*+3*+2°). Then,
since (2* + y% +2°) is the square of the distance from the origin
to the representative point (&, y, 2), it remains unchanged when



278 . COORDINATE GEOMETRY IN SPACE

the axes are twisted about the origin, and U, changes into U,
and ¢(z, y, 2) changes into ¢'(«, ¥/, 2")= U’y — k(m’2+y'2+z'2).
If now k have such a value that ¢(z, y, 2) splits up into the
product of two linear factors [§ 150], and ¢(x, ¥, 2)= 0, there-
fore, represents two planes, then ¢'(z/, ¥, 2') =0 also repre-
sents two planes, and ¢'(z', ¥', #) also splits up into the prod-
uct of two factors. Therefore, ¢(x, y, 2) and ¢'(2', ¥', 2') will
split up into the product of two linear factors for the same
value of k.

The condition that ¢ (, y, #) shall split up into two linear
factors is [§ 150, (3)],

(a—E)(d—k)(c—k)—(a —k) f2— (b—k) g*— (c— k) i*+2 fgh =0,
or, I —(a+ b+ )+ (be+ca+ab — f2—g* — WPk — D =0,
or [§ 3677, B—Ik+Jk— D=0, @

The condition that ¢'(2', y', 2') shall split up into two linear
factors is, in the same way,

B—It+J'Ek— D =0, @)
where I', J', and D' are the same functions of the coefficients
of U'yas I, J, and D are of the coefficients of U,.

Since the roots of (1) and (2) are the same, their coefficients
are in proportion, and since the coefficients of %* are equal, the
other coefficients are equal in pairs, namely,

I=I', J=J'| D=D),

which was to be proved.

369. The equation (1) of § 368 is called the discriminating
cubic of F(x, y, 2).

370. Proof that A is an invariant.

Let (, y, 2) be the coordinates of a point P when referred
to a coordinate system O-wyz, and let (', ¥', 2') be the coordi-
nates of the same point when referred to another coordinate
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system C-x'y'2’. Let the coordinates of C in the O-wyz system
be OL, LG, GC; and let the coor-

dinates of O in the C-a'y'z' system Pl
be (—ay, — ¥, —2). //P\(f'”'Z) %
Let the equation of any coni-
coid referred to the O-ayz system z
be
F (2, y, 2) = ax® 4 by’ + c2* /
+ 2 hay + 2 gez + 2 fyz
+ 2+ 2my+2nz+d=0, (1) (—xn Uy V
G

and let this equation become
FI (m" y" Z') J— a! I‘7+ b' 72+CIZ12 + 2h'ﬂ7’y' + 2 gfm'zl + 2J-Iy'z"
+ 202 +2m'y' + 207 +d' =0, - ©

when referred to the C-a'y'z' system.
Build the equation

6@, 1, )= F (3, y, 2)— kia*+ P+ A—1}=0.  (3)
The sum 2?4 y*+ 27 is the square of the length of the line
OP in the O-ayz system [§ 237]; and, in the C-x'y'?’
system, the square of the length of this same line OP is
@ +2)2 4+ @' +3)*+ (&' +2)* [§ 236]. Therefore the transfor-
mation which changes F (#, y, 2) = 0, (1),into F'(2, ¢/, 2')= 0, (2),

also changes
P,y 9~ ke 4+ 42 —1}=0 @)

into

F@, y, 2")— k{(@'+ 2)*+ '+ )+ @'+ 2P — 1} =0. (4)

Let the discriminants of (1), (2), (3), and (4) be represented
by A, A, A, and A,, respectively ; namely:

a ]L g l a’ ]l' gl ZI
it h b f om A om
A= g f ¢ nl’ A= g f ¢ |’
I m n d ' m' o d
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a—k h 9 l
A h b—k f m
=g I c—k n ’
l m n d+ k&
a -k R 9 I — Fkax,
L ¥—k f' m' — ky,
=g f! ¢ —k n'—key

U'—Fwy, m'—Fy n' —kyy  d'—E(@?+ y?+2°—1)

Let, now, k have such a value that (3) represents a cone,
then A;=0 [§ 366]; for this value of k, (4) also represents
the same cone, and therefore A;=0. That is, the roots of
A;=0 and A,= 0, regarded as equations in %, are equal, and
therefore the coefficients of ¥ in A;=0 and A,=0 are in pro-
portion. The coefficient of &*in A;=0 is —1, and the coeffi-
cient of %*in A,=0 is

1.0 0 = 1 00 oy
01 0 w (010 Bi__q
0 0 1 2z 1001 oy T
N o @+y’+zi-1) 00 0 —1

Hence all the corresponding coefficients are not only in pro-
portion but equal. The absolute term of A; =0 is A}, and the
absolute term of A,=0 is A,. Therefore A;=A,; that is,
from the definition, the discriminant is an invariant, as was to
be proved.

371. Classification of conicoids. In § 364, (3) it has been
proved that by a transformation of coordinates the terms of
the second degree in the general equation can be reduced to
Ax? 4 By® + C2?; that is, with the notation of § 368, the trans-
formation of § 364 changes U, into U'y= Ax"+ By"”+ (2"
- and the equation (2) of § 368 becomes

B—(A+ B+ O)k*+ (BC+CA+ ABk— ABC=0,
the roots of which are k, = A4, k= B, k;= C. But the roots
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of equations (1) and (2) of § 368 are the same; therefore the
roots of the discriminating cubic of F' (x, y, 2) =0 are 4, B, C,
the coefficients of % 37 2% in § 364, Eq. (3); and [§ 364, 1., 2.,
and 3.] the equation F'(x, y, ) =0, represents a central coni-
coid, when the discriminating cubic has no zero root; a pa-
raboloid, an elliptic or hyperbolic cylinder, or a pair of planes
(real or imaginary), when this cubic has one zero root; a
parabolic cylinder or a pair of parallel or coincident planes,
when this cubic has two zero roots.

If two of the roots of the discriminating cubie are equal and
different from zero, the surface is a surface of revolution.

372. Recapitulation. The following symbols, definitions,
and equations are used in connection with the equation
F (x, y, 2) =02’ + by’ + ¢z + 2 hxy‘+ 2 guz+2 fyz
+2lx+2my+2 nz4+d=0. @
The discriminating cubic is
Kk) =8 —(a+b+c)k*+ (be+ ca+ ab — f?— g — W)k
— (abe + 2 fygh — af? — bg* — ch?) = 0. )]
The invariants are I, J, D, A.

I=(a+b+c). 3)

J=(be+ca+ ab—f*— g — h?). 4

D = (abc+2 fygh — af* — bg® — ch?). o)
a h gl

A= ;‘ ;j Fom. ©6)
I m n d

A=IL+mM+nN+dD. 6"

L, M, N, D, .- are the cofactors of [, m, n, d, .-+ in A,
A is the discriminant of the equation.
D is the discriminant of the terms of the second degree.
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The equations giving the center are

L 0F, /0wy = axy+ hyy +92,+1 =0,

+ 8Fy/8yy = hay + by +Sa0+m =0, (D
3 0F,/ 0% = g%+ fYy +czo+n =0,
with lay + my, + nzy+d =d, ®

where d' is the absolute term of the equation of the conicoid
when transformed to the center as origin.

Also, d'=A/D. 9)
(a) and (b). When %, ks, ks, the roots of the discriminating

cubic (2), are all different from zero, they give, with d', the
equation of the conicoid referred to its axes, namely,

ket +kyf + k2 +d' =0; 10)
and these roots, k,, k,, k,, set for & in any two of the equations,

(a—k)r+ hp+ gv=0,
AAH(b—F)p+ fr=0, . 11
gr + ff"‘+(c—k)v:();

give the direction cosines of the perpendiculars to the principal
planes, that is, of the axes of the conicoid.

(¢) When one of the roots of the diseriminating cubic is
zero, the other two roots, &, and k,, set successively in any two
of the equations (11) give the directions of the two diametral
planes; and (when A 5 0) set in

kKO 0 0
0O %k 0 O

A=l o o ol orA=—h Eon”, (12)
0-0 2 0

they give ' in the transformed equation of the paraboloid,
which (1) then represents, namely,

ke +ky*+2n'2=0. 13)

(d) When D=0 and A=0, and k, and k,, two of the roots
of the discriminating cubic, are different from zero, there is a
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line of centers. In this case, the values of &, and k,, and the
corresponding principal planes obtained from (11) determine
the cylinder or pair of planes which (1) represents.

‘() When D=0 and A=0, and two roots of the discrimi-
nating cubic are zero, a method similar to the method for the
parabola in the plane will give the parabolic cylinder or
parallel planes which (1) represents.

The sixteen forms of § 347 can be classified as follows:

D A k 1 kz k;;

Ellipsoid, real or imagi-
nary, or hyperboloid of
one or two sheets,

Cone, real or imaginary.
Elliptic or hyperbolic pa-
raboloid.

Elliptic, hyperbolic, or
imaginary cylinder, or
intersecting planes, real
or imaginary.
Parabolic cylinder, or par-
allel or coincident planes.

(@) || not 0 | not 0 || not 0 | not 0 | not 0

(b) || not 0 0 not0 | not 0 | not 0

(¢) 0 {mnot0 || not0 | noto 0 {
() 0 0 not 0 | not 0 0 {
[
4
L

(e) 0 0 not 0 0 0

373. The analysis of the general equation of the second
degree. In the study of a given equation of the second degree
it is ordinarily better to proceed as follows:

Derive the equations § 372, (7),

OF, /0, =0, 8F,/dy, =0, dF,/dz=0.

I. (D+0,A0). If these equations (7) give one center at
a finite distance, find this center; obtain d' from (8) or (9);
then solve the diseriminating cubie (taking the roots, when not
integral, to one place of decimals), and write the equation (10)
in one of the forms 1-6, § 327; from (11) obtain the direction
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cosines of the corresponding principal axes. This is the case
in which D=0, A=0.

II. (D=0,A=0). Ifin attempting to solve the equations
(7), it is found that D =0, calculate A by (6') or (6), and %, and
k, from (2), (k3=0). When A =0, find ' from (12), and write
the equation (13) in one of the forms 7 or 8, § 327.

III. (D=0,A=0). If in attempting to solve the equations
(7), it is found that D =0, calculate A by (6') or (6), and %,
and %, from (2), (k;=0). When A =0, find the line of centers;
and the cylinder or intersecting planes represented by the
equation, if two roots of (2) are different from zero; but, if a
second root of (2) is zero, the terms of the second degree form a
perfect square, and a method similar to that of § 158 can be
followed to find the parabolic cylinder or pair of parallel planes
represented by the equation in this case.

Example 1. Analyze the equation
22 —29y2 46224+ 1222 — 16— 4y —362+ 62 =0.
The equations giving the center are )
2+62—8=0, —2y—2=0,6x+062—18=0.
The center is (2, — 1, 1), and @' is + 30, Dis 60, =6, J =— 44, and
the discriminating cubic, is
B—b5k—44%k—60=0,
the roots of which are,
kl = 10, ko :—2, ks :—3;
hence, by transformation, the equation becomes
1022 — 292 —322430=0.
Corresponding to the root %; =10, the equations (11) give the values
(2/V13, 0, 3/V13) as the direction cosines of the new z-axis, and the
roots ks =— 2, k3 =—38 give (0, 1, 0), (8/V13, 0, —2/V13), respec-
tively, as the direction cosines of the new y- and z-axes.
That is, the given equation represents the hyperboloid of one sheet
— 22/(V3)2 + y2/(V1B)? + 2%/ (V10)2 =1,
with the center at (2, — 1, 1), and the direction cosines of the -, y-, and
z-axes, (2/V18, 0, 8/V13), (0, 1, 0), (3/V13, 0, — 2/V/13), respectively.
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Observe that in this example the roots of the discriminating cubic are
integral, which is not the case in the following example.

Example 2. Analyze the equation

202 4+3y2—22246ay—2ax2+2yz—42x—8y 41024 3/5=0.

The equations giving the center are
2¢+3y—2—2=0, 3x+3y+2—4=0, —x+y—2245=0.
The center is (24/5, — 8, —7/5), and d' is —4. D= -5, I=3,
J =—15; hence the discriminating cubic is K(k) =*3—3k2— 15k +5=0,
which has one negative and two positive roots. Since K (— 2) is positive
and K(— 3) is negative, the negative root lies between — 2 and -3,
and further since K(— 2.9) is negative and K(— 2.8) is positive, the
‘negative root to one place of decimals is ; = — 2.8, /(0.4) is negative,
K(0.3) is positive, therefore ks =0.3. Since D = kiksks, therefore
ks = — b/k1ke = 6, approximately ; and since I='(%k; + k2 + k3), there-
fore k3 = 3 + 2.8 — 0.3 = 5.5, approximately ; and since K (5.5) is negative
and /(5.6) is positive, k3 = 6.6, The equation of the conicoid referred
to its axes is therefore

(— 2.8)x% + (0.3)y2 + (6.5)22 —4 =0,
LS L S LA L
o AT aB I @ B 007
The first and last of the equations (11) are here (2—A)A+3pu —v =0
and A —u+ (2 +k)»=0, and they give for the direction cosines of the
three axes: when £k; = — 2.8, (0.38, — 0.32, 0.87) ; when /k;=0.3,
(0.66, — 0.556, — 0.52) ; when %3 = 5.5, (0.65, 0.76, 0.01).

That is, the equation represents approximately the hyperboloid of one
sheet x%/(1.2)2— %/ (8.7)2— 22/(0.9)2=— 1, with the center at the point
(24/5, — 8, —7/5), and with direction cosines of the %-, -, and z-axes,
(0.38, —0.32, 0.87), (0.66, — 0.55, — 0.52), (0.65, 0.76, 0.01), respectively.

Example 3. Analyze the equation

2224 2y2—422—2yz— 2z —b6xy—2x—2y+2=0.
The equations giving the center indicate that the center is at infinity.
Calculation gives D =0, A =9.9.9/16, I=0, J = — 81/4. The dis-
criminating cubic is #% — (81/4)k = 0, the roots of which are %; = 9/2,
ke = — 9/2, k3 = 0. The equation (12) gives »' = 4 3/2 and the given
equation therefore represents the hyperbolic paraboloid

x? x?
—_— =32z
(V2/3)2  (V?2/3)2

See also the examples of § 357 (centers).
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374. Exercises. Conicoids.

Analyze the following equations :

1, 112241092+ 622 —8yz+422—122y+722—72 y+36 24+150=0.
2. 224292+ 322 —4ay—4xz+4=0.
4x2+y2—i;4z2—4xy—4yz+8zx+2x—4z/+3z+1:O.
32a2+y?+422—-8ay— 1622+ 96x—20y —82 + 103 =0.
822—6yz—06ze—T2x—5y+62+3=0.

3222+ Y2+ 22— 160y — 162 +6yz—6x— 12y — 1224+ 18=0.
22 —29y2+222+3zx—ay—20x+T7y—52—3=0.
x2+y2+22+4xy—2xz+4yz—1=0.

© ® X o o B w0

a2 —2ay —2yz —222—4 =0.

10. Vz+Vy+Vz=0.

11. 2224+ 65y2+22—4ay—22—4y—-8=0.

12. 224+ 292 —-322 - 122y +8az—4yz+1=0.

13. 222+ 292 — 422 —bwy —22x—2yz — 22— 2y + 2 =0.
14, 502 — 2+ 22+4ay+6az+22+4y+62—-8=0.
15. 2m2+3y2+5a:y‘+2xz+3yz—4y+82—32=0.
16. m2+y‘-’+zz+iy+yz+azz—1:0.

17. 822 — a2 —y2+40y—9=0.

18. m2+y2+z2—2my+2zz-i-2'yz —-1=0.

19. 22 —(y—2)2/3+(z+1)Y/4=1.

20. (x—1)2—(y —2)2+(2—3)2=0.

21, a2+ y2+224+2x—4y—62=0.

22. 2924+ 322 4+2x—4y+62=0.

23, a2 — 4224+ 5y—x+82=0.

24, 2+x4+y+224+1=0.

25. (x+2y+22)2—QRx+y—22P2+22x—2y+2)2=0.
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375. Exercises (including loci problems).

1. Prove that the line x +y =0, z =0 lies wholly on the surface
a8 + ys + 23 =0.

2. From the equations of the tangent planes to the cone and the
hyperbolic paraboloid, prove that when a point P is made to move along
a generating line of a cone, the tangent plane at P remains stationary ; but
that when a point P is made to move along a generating line of a hyper-
bolic paraboloid, the tangent plane at P revolves about the generating line.

3. Prove that, if £, =0, E; = 0, E3 =0 represent three mutually per-
pendicular planes, and pq, ps, ps the perpendicular distances of the point
P(x, y, 2) from these planes, the equation F(p;, ps, ps) = 0 represents a
surface related to the planes £y =0, E; =0, E3 = 0 precisely as the sur-
face represented by the equation F (x, y, #) = 0 is related to the coordinate
planesx =0, y =0, 2=0.

4. Find the equations of the projections upon each of the coordinate
planes of the curve of intersection of the plane x —y + 22z — 4 =0 with
the conicoid 22 — yz + 32 =0. )

5. Prove that the ellipsoid x2/a? + »2/b2% + 22/c? = 1, where a > b >c¢,
is cut by the sphere 22 + y2 + 22 = b2 in two circular plane sections. [ When
the equations are simultaneous, % (1/0%—1/a%) — 2%2(1/c¢* — 1/0%) =0,
which has two real ‘factors.]

6. Find the equation of the plane which is the locus of the mid-points
of all chords of the conicoid x2 4 8 y2 = 2z whose direction cosines have
the ratios 1:2: 3.

7. The normal to the ellipsoid 22/a2 + y2/b2 + 2%/c? = 1at the point P
meets the plane z = 0 in the point ¢ ; show that the locus of the mid-pont
of P@ is an ellipsoid.

8. Prove that the cone, cylinder, hyperboloid of one sheet, and hyper-
bolic paraboloid are the only ruled surfaces of the second degree.

9. A line of constant length has its extremities on two fixed straight
lines ; prove that the locus of the middle point is an ellipse. [Take for
z-axis the common perpendicular to the given lines, and for ay-plane the
plane midway between the given lines and parallel to them, and for the
%- and y-axes the lines which bisect the angles made by the projections
of the given lines on the xy-plane. Then the given lines are: y = mz,
z=cj;and y =— mx, 2 =—c. Let (21, y1, 21) and (X2, ¥2. 22) be the ex-
tremities of the line of constant length, 217; then y; = ma;, 2, =¢, and
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Y2 =— My, 22 =— c. For the representative middle point (zx, y, z), then
2= (%1 +22)/2=(y1—y2)/2m, Y= Y1+ ¥2)/2=m (21— x2)/2, and
2= (21 + #2)/2 =0. Moreover, (x1 — 22)2+ (y1— Y2)2 + (21— 22)2 =4 12
Therefore, 4 y2/m?2+4 4 m2x2+ 4 c2=412 Hence the locus of the mid-
point is given by: 2 =0 and m2? + y%/m? = (12 — c?), which represent
an ellipse. ] '

10. Aline, 7, moves so as always to intersect three given straight lines,
1y, lg, 13, which are not all parallel to the same plane; find the equation
of the surface generated by the straight line. [Let 7 be (x — 2/)/\ =etc.,
and 7; be (x — a1)/M =ete. Then I will meet I, [§ 297, 57, (2)], if

@@ = b)— w2 — e)IN +H{M (& — c)— ni(a' - a)}p
+ {m@'—ar) — M@y — b)}r =0.

The conditions that ? meet I3 and I3 are similar equations with the sub-
scripts 2 and 3, respectively. Therefore, calling (x, y, #) the coordinates
of the representative point on the generating line, which have been thus
far (x/, y', #'), the locus of the representative point is given by the
vanishing of a determinant, the first row only of which will be written,
namely,

] lll(y— bl)——/u.l(z—cl), )\1(2‘—01) —_ Vl(x—-(tl), ,ul(x — dl)—)\l(y—bl) I =0,
The coefficient of xyz in the determinant is (writing first rows only),

l"ly A1, I“l]+|'_:“'17 —Vly’_)\ll

which is zero; and the coefficient of y2z is | »;, N1, — Ay | which is zero,
and so for all the other terms of the third degree. Therefore the locus is
a conicoid. ]

11. Determine the locus of a point which moves so as always to be
equally distant from two given straight lines. [Take axes as in Ex. 9.]

12. Through two straight lines given in space two planes are taken at
right angles to oné another; find the locus of their line of intersection.
[Take axes as in Ex. 9.]

13. Find the surface generated by a straight line which is parallel to a
fixed plane and which meets two given straight lines.

14. Any two finite straight lines are divided in the same ratio by a

straight line; find the equation of the surface which this straight line
generates.

15. If any chord of a conicoid through a point O meets its polar plane
in B and the surface in P; and P;, prove that 1/0P, +1/0P; = 2/0R,
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and therefore that the chord is cut harmonically. [Take O for origin,

and the chord as /X = y/u = 2/v =7, and find the equations giving OR,
OPy, and OP:.]

16. The locus of the centers of all plane sections of a conicoid which
pass through a fixed point is a conicoid. [The equation of the locus is
(% — x0) 0F/ 920 + (Y—Y0)0F/9yo + (2 — 20)0F/92z0 =0, where now
(%, y, #) is the fixred point and (%o, Yo, 20) is the representative point
of the locus.]

17. The locus of the centers of parallel sections of a conicoid is a

straight line., [The locus is aFﬁ\axo = 0F/dys _ 9F/dz
" v
are constant and the representative point of the locus is (20, Yo, 20)-.]

where (X, g, »)

18. Prove that the line /X = y/u = z/v = r meets the central conicoid
Ax? 4+ By? + Cz2 =1, in points given by 1/72 = AN2 + Bu? + C»2. Thence
prove that the lines which pass through the origin and meet the conicoid
in two coincident points at infinity (asymptotic lines, § 138) satisfy the
relation AN? 4 Bu? 4+ C»? =0, and that any representative point on such
a line satisfies the relation Ax? 4+ By% 4+ Cz2 =0, the locus of which is a
cone. (This cone is called the asymptotic cone.)

19. The sum of the squares of the reciprocals of any three semi-
diameters of an ellipsoid which are mutually perpendicular is a constant.
[If »; is the semidiameter with the direction cosines (Ai, w1, »), then
1/172 = M2/ a2 + w2/b2 + »2/c?, and similarly for the others. The sum is
a constant. ]

20. If three fixed points on a straight line are each on one of three
mutually perpendicular planes, prove that the locus of any fourth fixed
point on the line is an ellipsoid. [Let 4, B, C' be the first three fixed
points each on one of the mutually perpendicular planes, which will be
taken as the coordinate planes, and let the fourth fixed point be P (z, y, 2)
when the line has any representative position ; let AP, BP, CP be a, b, ¢,
respectively ; and let the direction cosines of the line be (A, u, »). Then
A =2a/a, p=y/b, v=2/c, and the locus is an ellipsoid.]

21. Find the equation of the cone whose vertex is at the center of an
ellipsoid and which passes through all the points of intersection of the
ellipsoid and a given plane. [Let the plane be Ax 4+ By'-+ Cz =1 and
the ellipsoid x2/a2 + y2/b2 + 2%/c% =1 ; then the equation of the required
cone is x2/a2 + y2/b2 + 22/c2 — (Ax + By + Cz)2=0.]

22. Find the equation of the cone whose vertex is at the center of an

ellipsoid and which passes through all the points of intersection of the
U
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ellipsoid and a fixed concentric sphere. [Let the equation of the sphere
be 22 4+ y2 + 22 = 1/R?, and that of the ellipsoid, A2x2+4 B%2 4 0?2 =1,
then the equation of the required cone is :
(4% — B¥)a? + (B> — Ry + (02— RH)22 =0.]
23. Let I, m, n be half the coefficients of the first degree terms of any

equation of the second degree. Prove that, if the rectangular axes be
twisted in any manner about the origin, (2 4 m? + 22) will be an invariant.

24. Prove that, if three chords of a conicoid have the same middle
point, they all lie in a plane, or intersect in the center of the conicoid.

25. Prove that nine points, in general, determine a conicoid, and that
a single infinity of conicoids pass through eight given points. Prove
that all conicoids through eight given points have a common curve of
intersection. [Consider §; =0, 8; =0, S;—AS:=0.] Prove that any
three conicoids have eight common points (real or imaginary).

26. From the equation 22492+ 2242z +2my+2n2+d=0 of a
sphere, prove that four points, in general, determine a sphere.

27. Let S be a symbol for a2+ y2+22421x +2my + 202+ d, and
8y be a symbol for the same expression when the coefficients have the
subseript 1, and so on. Prove that S;— 83 =0 represents a plane.
This plane is called the radical plane of the spheres §; =0, 8;=0.

Prove that the radical plane is the locus of the points the tangents
from which to the two spheres are equal.

The point, 81 = Ss = S; = Sy is called the radical center of the spheres
Sl = 0, Sg = 0, S;; = 0, S4 =0.

Prove that the spheres &, =0, S; = 0 are orthogonal at all the points of
intersection if 2 1172 + 2 myms + 2 Ry — dy — dy = 0. [Compare §§ 62-65.]

28. Prove that the plane Az + py + vz —p =0 (1) will be tangent to
the ellipsoid a%/a® + y?/02 + 22/c2 —1 =0, if p? = a?\2 4 b%u2 + cH2. [If
(x!, ', 2') be the point of tangency, the plane (1) and the tangent. plane

xx!/a? + yy' /b2 + z2'/c2 — 1 = 0 will be the same, when
wla _y/v_efe 1
N ow v p
or when, z'/a = a\/p, y'/b = bu/p, 2'/c = cv/p, or, squaring and adding,
when a2\2/p? + b2u2/p? + c22/p? = 1.]

29. The locus of the point of intersection of three mutually perpen-
dicular tangent planes of an ellipsoid is a sphere, called the director
sphere. [From Ex. 28, the equation '

M+ Y + 11z = Vai\? 4 b%u? + ¢,
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represents one tangent plane; similar equations with the subscripts 2 and
3 represent the other two. Squaring and adding the three equations gives
24 y2 422 =a?+ 0%+ %] .

30. From any point in space, six normals can be dropped to an ellip-

soid. [The equation of the normal is
Ezﬂzy—'ylzz—ﬁ:
wm/a? T oot afer
and therefore
zi/a=ax/(a®+ k), yu/b=by/(D*+ k), z/c=cz/(2+ k). (D)
Let (x, y, ) be a fixed point, then k is given by the equation
a2/ (a? + k)2 + b2/ (02 + k)24 ¢2Y/ (2 + k)2 —1=0,

which is of the sixth degree in k. Each of the six roots of this equation,

set in (1) gives the foot of a normal.]

31. Let P, P2, Ps; be three points on an ellipsoid. Prove that, if P;
is on the diametral plane of the system of chords parallel to OP,, then
will P; be on the diametral plane of OP;. Let OP; be the line of inter-
section of the diametral planes of OP; and OP,; prove that the diametral
plane of -OP; is O Py P,, so that the plane through any two of the three
lines OPy, OP;, OP; is diametral to the third. These three planes are
called conjugate planes, and the three lines OP;, OP;, OP; are called
conjugate semidiameters. [The condition that the point (wxg, ya, 23) is
on the diametral plane of OP; is x122/a® + y1y2/b2+ z122/¢? =0.]

32. If P, P., P; are extremities of three conjugate diameters, prove
that (x1/a, y1/b, z21/¢), (®2/a, Yo/b, 22/¢), (xs/a, ys/b, z3/¢) are the direc-
tion cosines of three straight lines perpendicular in pairs, and that
therefore x;2 + 22 + 232 = a2, etc. Prove that the sum of the squares of
three conjugate semidiameters of an ellipsoid is constant, and equal to
a? +b% + ¢2  Prove also that the volume of the parallelepiped which has
three conjugate semidiameters of an ellipsoid for conterminous edges
is constant and equal to abe.

33. Prove that the equation of the ellipsoid referred to three conjugate
diameters as oblique axes is 22/a’2 4 y2/b'2 + 22/¢’2 = 1, where o/, b', ¢’
are the lengths of the semiconjugate diameters. [The equation will be
of the form ax? + by?+ c22+2haxy+2grz +2fyz=1. (See § 351.)
From the definition of the conjugate diameters, if («/, ¥, 2') is on the sur-
face, so also will (—/, ¥/, 2'), (x, — ¥, /), (2', y', = 2') be on the sur-
face, and therefore %, g, and f are all zero. And in the resulting equation

[
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ar2+by?+c22=1,if y=0, z=0, then a = 1/22, which in this case is
¢ =1/a’?, ete.]

34, If a parallelepiped be inscribed in an ellipsoid, its edges will be
parallel to a set of conjugate diameters.

35. If two conicoids have one plane section in common, their other
points of intersection lie on another plane. [Let the common plane sec-
tion be z =0, and axz? + by2 + 2 hay + 2lx + 2 my + d =0 ; then the most
general conicoid which passes through this conic is

(aa2+ by2 +2hay + 2%+ 2my + d) + 2(A\x + py +vz —p) =0.]

36. Prove that four cones, real or imaginary, will pass through the
curve of intersection of two conicoids. [Compare Ex. 25.]

37. All conicoids which pass through seven given points pass through
another fixed point. [Consider S;=0, S2=0, S3=0, 81+ A8+ uSz=0.]



TABLE A

CERTAIN ALGEBRAIC SyMBOLS, DEFINITIONS, AND
THEOREMS

1. The symbol | a| means the “absolute ” or numerical value
of a. Thus, |3|=3,and | —3|=3.

2. The symbol # means “not equal to.” Thus, @+ 0 means
that a is not equal to 0.

3. The symbol a/b has the same meaning as %- The slant
line is called the solidus.

4. The absolute term of an equation is the term which does
not involve the unknown letter or letters. Thus, in the equa-
tion a4 3 ¢ — 2 = 0, the absolute term is — 2.

5. The identity or identical equation, A= B, means that the
expression 4 can be transformed into the expression B by the
rules of reckoning. Thus, (@ +y)*=2* 42 ay+y?; similarly
22-3.242=0.

An identity in one or more letters does not impose any
restriction on the values of these letters; it is true for all
values of these letters.

On the contrary, an equation of condition, as * — 2=0, or
x4+y=0, is the statement of a condition which a certain
letter or certain letters are to satisfy, and it restricts the
letter or letters to values which satisfy this condition. Thus,
o — 2 =0 restricts = to the value 2; and « + y = 0 restricts 2
and y to pairs of values which are equal numerically but of
opposite signs. .

It is customary to call both identical equations and equations
of condition “equations” simply, and to use the symbol = in
both, instead of = in the one and = in the other.
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6. Quadratic equations. The roots, @, =, of a quadratic
equation in the form :
—b+Vii—4dac ac

ar*+bx+4¢c=0 are
2a

The roots and coefficients are connected by the relations

x4+ 2, =—0/a, @, =c/a.

The roots are equal, when b2 —4 ac = 0; real and distinct
when ® — 4 ac > 0; imaginary, when »* —4ac<0.

One root is 0, if ¢ is 0; both roots are 0, if both ¢ and b are 0.

One root is oo, if @ is 0; both roots are oo, if both a and b
are 0.

If the equation has the form az®*+2 b2z + ¢ =0, the roots
are (—b, +Vb*—ac)/a; and the roots are equal when
b2 —ac=0.

7. It is customary to represent an expression involving the
single unknown or variable letter ¢ by the symbol f(2). The
value which the expression takes for & = a is then represented
by f(a). Thus, if f(x) =2+ 32 —2, then f(0)=—2, and
J1)=1+43—-2=2, and so on.

Similarly, an expression involving the two variables @, ¥
may be represented by the symbol f(x, y), and the value which
it takes when = a, y =10, by f(«, ). Thus, for example, if
S@y)=a*—2xy+y4thenf(1,2)=1*—-2.1.242°=1,and
so on. In like manner, f(, ¥, ) is used to represent an expres-
sion involving the three variables @, y, 2.

8. If f(x) = 0 denote a rational, integral equation, and the
numbers f(a) and f(b) have opposite signs, the ‘equation
has at least one root between a and b. Thus, in the case of
the equation f(2)=a*—42*+2=0, f(—1)=-3, f(0) =2,
SFD=—1, f(&)=—6, fB)=—7T,f(4) =2; hence the three
roots of the equation lie between — 1 and 0, 0 and 1, 3 and 4,
respectively.



TABLE B

CeERTAIN TRIGONOMETRIC DEFINITIONS AND FORMULAS

1. The angle subtended at the center of a circle by an are
equal to the radius is called a-radian.

- The measure of any angle in teyms of the radian is called
the circular measure of the angle.

Since angles at the center of a circle are proportional to the
arcs which they subtend, the ratio of any angle to the radian,
that is, its circular measure, is equal to the ratio of the arc
which it subtends at the center of any circle to the radius of
that circle. Hence the circular measure of an angle is equal
to the length of the arc which it subtends at the center of a
circle of unit radius.

The length of the circumference of a circle of unit radius is
27 Hence the circular measure of an angle equal to four
right angles, or 360° is 2 #; that of an angle of 180°, 90°, 45°,
1°, is x, w/2, =/4, 7/180, respectively. :

2. A line CP turned about C from the initial position CO
is said to generate the angle OCP having the initial line CO
and the terminal line CP. If the rotation is counter-clockwise,
the angle is said to be positive; if in the contrary sense, nega-
tive. See the figure on the next page.

3. Let P be any point on the terminal line of the angle OCP,
and take P4 perpendicular to the initial line CO. Then, for
all positions of the terminal line, A4 is called the projection of
P, and CA the projection of OP on OO, and AP is called the
projecting line. The projection CA is positive or negative
according as A lies to the right or left of C. The projecting
line AP is positive or negative according as P lies above or
below CO. The terminal line CP is always considered posi-
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tive. The six ratios which can be formed with CP, C4, and
/2

s/2
AP are called the trigonometric functions of the angle OCP.

They are defined as follows:
sin OCP = % - %}% ’
cos OCP =%}4’ = mll)';?ij—m_e,
cot OCP = % - ﬁ% ’
CP_ tetminal line

sec OCP = CA~  projection ’
cosec OOP=Q£— terminal line

AP~ projecting line
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The algebraic signs of these functions depend upon the signs of
CA and AP, thelatter being determined by the rule already given.
Using the notation indicated in the figure, it will be seen that

AP/C’P:sinqS:cos(g— ¢>>=—cos<g+qs>
3w _

=sin (r — ¢)=—sin(w+¢)=—cos(7 ¢>

=cos<—27—r+¢)=—sin(27r— #)= — sin (— ).
CA4/CP=cos ¢ =sin G — ¢> = sin<g+ ¢>

=—cos<vr—¢>=—cos<w+¢>=—siu(37”—qs)

=—sin(%’—r+¢>=cos(27r—¢)=cos(— ~

4. The following is a list of some of the more important
formulas connecting the trigonometric functions of one or two
angles :
sin? 4 +cos?4=1, tan’A4+41=sec’ 4, cot? 4 +1 = cosec? 4.
sinA=1/cosec. 4, cosA=1/sec 4, tan.A=1/cot 4.

sin(4 + B) =sin .4 cos B =+ sin B cos 4.
cos(A4 + B) =cos 4 cos B F sin 4 sin B.
tan(4 + B) = (tan 4 + tan B)/(1 T tan 4 tan B).
sin2 4=2sin 4 cos 4, tan 2 4 =2 tan 4/(1 — tan® 4).
cos24=cos’ A—sin?4=1—2sin’4=2cos’ 4—1.
2sin?4=1—cos2.4, 2cos’4=1+cos2 A.
cos = cos?(®/2) — sin®(x/2) =1 — 2 sin® (x/2) = 2 cos? (x/2)—1.
2 sin®(x/2) =1—cosw, 2cos’(x/2)=1+4coswm.
sin (z/2) = V(A — cos #) /2, cos (z/2) =V (1 + cos z) /2.
“tan (2/2) = VI — cos @)/(1 + cos @). '
sin# + siny=2sinl (¢ + y) cos i(x Fy).
cosx +cos y = 2 cos + (¢ + y) cos & (z — ).
cos®—cosy = — 2sin § (v + ) sin  (x —y).




TABLE C

DERIVATIVES AND PARTIAL DERIVATIVES

1. Let f(x) denote an expression which is rational and in-
tegral with respect to . Multiply each term involving x by
the exponent of @ in the term and then diminish the exponent
by 1. The algebraic sum of the results thus obtained is called
the derivative of f(), and is represented by the symbol f'(z) or

.the symbol df (@)

dx

Thus, if f(2) =2 —3 a* + 2, then f'(z) =3 a2 — 6 2.

2. Let f(x, ) denote an expression which is rational and
integral with respect to « and y. The expression obtained, as
in 1, by multiplying each term involving @ by the exponent
of xin the term and then diminishing the exponent by 1, is
called the partial derivative of f(x, y) with respect to x and is

represented by the symbol of ((;v’ Y) or af(x, y)/dx. The ex-
f
pression similarly related to y is called the partial derivative
of f(w, y) with respect to y, and is represented by of (;‘" Y), or
Y

Yy
of(x, y)/9y.
Thus, if f(z, y) =%y — 2 22 +3 @ — 2, then

af(;e,y)=2wy_2yz+3, af(g’?/=m2—4wy.
1 Y

3. The partial derivatives of Sz, y, 2) with respect to =, y,
and z have meanings similar to those explained in 2, and are

represented by o (mé Y, 2 , or df(x, y, 2)/dx, and so on.
x
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TABLE D

Four-prACE LogArITHMS oF NumMBERS FrRoM 1.0 To 9.9

.0

1

2

3 4

5

.6 .7

.8

9

0000
3010
4771

6021
6990
7782

8451
9031
9542

WOI ouB wNH| 2

0414
3222
4914

6128
7076
7853

8513
9085
9590

0792
3424
5061

6232
7160
7924

8573
9138
9638

1139 | 1461
3617 | 3802
5185 | 6316

6335 | 6435

7243 | 7324

7993 | 8062

8633 | 8692
9191 | 9243
9685 | 9731

1761
3979
5441

6532
7404
8129

87561
9294
9777

2041 | 2304
4150 | 4314
55663 |-5682

6628 | 6721
7482 | 76569
8195 | 8261

8808 | 8865
9345 | 9395
9823 | 9868

2563
4472
5798

6812
7634
8326

8921
9445
9912

2788
4624
5911

6902
7709
8388

8976
9494
9956

TABLE E

LeneTH OF ARcs IN RADIANS, AND NATURAL TRIGONOMETRIC
Fu~cTioNs ror INTERVALS oF 5°

DEeé. Arc SN TaN Cor Cos
o 0.000 0.000 0.000 ® 1.000 1.571 20
5 0.087 0.087 0.087 11.430 0.996 .| 1.484 85
10 0.175 0.174 0.176 5.671 0.985 1.396 80
15 0.262 0.259 0.268 3.732 0.966 1.309 75
20 0.349 0.342 0.364 2.747 0.940 1.222 70
25 0.436 0.423 0.466 2.145 0.906 1.134 65
30 0.524 0.500 0.577 1.732 0.866 1.047 60
35 0.611 0.574 0.700 1.428 0.819 0.960 55
40 0.698 0.643 0.839 1.192 0.766 0.873 50
45 0.785 0.707 1.000 1.000 0.707 0.785 45
Cos Cot TAN SN Aro DEe.
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TABLE F

Tae LETTERS OF THE GREEK ALPHABET, WITH THEIR NAMES

A a o alpha ) I. iota Pp tho
BB  beta K« kappa 2o s sigma
Ty gamma AN lambda Tr tau
Ad delta Mp mu Tv upsilon
Ee epsilon N» nu ® ¢ ¢ phi

Z¢ zeta aE xi Xx chi
H»n eta Oo omicron vy psi
0§ 6 theta Or pi Qw  omega
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