EXERCISE - II

MULTIPLE CHOICE QUESTIONS

Pressure at the bottom = 2hρg force at the bottom = 2hρgA
 At balancing condition
 Downward force by vessel wall + W = F
 ⇒ F.W. = F_D

2.

 $\tan \theta = \frac{a}{g}$ (backward)

- 3. $W_B = W_1$ $W_a = W$ Buoyancy due to air = W $\Rightarrow When air inside the balloon$ $W = W_2$ Buoyancy eliminate the effect of air inside the balloon $\Rightarrow W_1 = W_2$ So, $W_2 = W_1 + W$
- 4. Balance B reads = 5 Kg + BuoyancyA reads = $2 \text{ Kg} - \text{F}_{\text{B}}$
- 5. (A) Slphon works when $h_3 > O$ This will create a pressure difference (B) $P_3 = P_0 = P_2 + \rho g h_3$ $P_2 = P_0 - \rho g h_3$ (C) $P_3 = P_0$

6.

for
$$x_m \Rightarrow \frac{dx}{dy} = 0$$

$$\Rightarrow$$
 y = h

7.
$$F = \rho a v^2$$

 $P = F v = \rho a v^3$

$$8. \qquad x = \sqrt{2gy} \sqrt{\frac{2(H-y)}{g}}$$

From $A_1V_1 = A_2V_2$ $V_2 > V_1$ From Bernoulli's

$$P_x + \frac{1}{2} \rho V_1^2 = P_y + \frac{1}{2} \rho V_2^2$$