Page # 18

Exercise - III	(Subjective Problems)
Nuclear Physics 1. Calculate the mass of an α -particle. Its binding energy is 28.2 MeV.	The atomic masses needed are as follows : ¹⁹ O 19 _C 19.003576 u 18.998403 u
2. Find the binding of ${}^{56}_{20}$ Fe. Atomic mass of 56 Fe is 55.9349 u and that of 1 H is 1.00783 u. Mass of peutrop = 1.00867 u	²⁵ Al ²⁵ Mg 24.990432 u 24.985839 u 10 Find the maximum energy that a beta particl
3. Find the kinetic energy of the α -particle emitted in the decay ²³⁸ Pu \rightarrow ²³⁴ U + α . The atomic masses needed are as follows: ²³⁸ Pu ²³⁴ U ⁴ H	can have in the following decay $^{176}Lu \rightarrow ^{176}Hf + e + \overline{v}$ Atomic mass of ^{176}Lu is 175.942694 u and tha of ^{176}Hf is 175.941420 u.
238.04955 u 234.04095 u 4.002603 u Neglect any recoil of the residual nucleus.	11. Consider the beta decay
4. How much energy is released in the following reaction ? ⁷ Li + p $\rightarrow \alpha + \alpha$ Atomic mass of ⁷ Li = 7.0160 u and that of ⁴ He = 4.0026 u.	where ¹⁹⁸ Hg [*] represents a mercury nucleus in an excited state at energy 1.088 MeV above th ground state. What can be the maximum kineti energy of the electron emitted ? The atomic mas
5. ³² P beta-decays to ³² S. Find the sum of the energy of the antineutrino and the kinetic energy of the β -particle. Neglect the recoil of the daughter nucleus. Atomic mass of ³² P = 31.974 u and that of ³² S = 31.972 u.	 197.966760 u. 12. A uranium reactor develops thermal energ at a rate of 300 MW. Calculate the amount of ²³⁵U being consumed every second. Averag energy released per fission is 200 MeV.
6. Potassium- 40 can decay in three modes. It can decay by β^- -emission, β^+ -emission or electron capture. (a) Write the equations showing the end products. (b) Find the Q-values in each of the three cases. Atomic masses of	13. Calculate the Q-value of the fusion reactio ⁴ He + ⁴ He = ⁸ Be. Is such a fusion energetically favourable ? Atomi mass of ⁸ Be is 8.0053 u and that of ⁴ He is 4.0026 u
$^{40}_{18}$ Ar, $^{40}_{19}$ K and $^{40}_{20}$ C are 39.9624 u, 39.9640 u and 39.9626 u respectively. 7. 228 Th emits an alpha particle to reduce to	14. The binding energies per nucleon for deutero $(_1H^2)$ and helium $(_2He^4)$ are 1.1 MeV and 7.0 MeV respectively. The energy released when two deuterons fuse to form a helium nucleus $(_2He^4)$ is the second sec
²²⁴ Ra. Calculate the kinetic energy of the alpha particle emitted in the following decay. $^{228}Th \rightarrow ^{224}Ra^* + \alpha$	15. Suppose that the Sun consists entirely chydrogen atom and releases the energy by th
Atomic mass of ²²⁸ Th is 228.028726 u, that of ²²⁴ Ra is 224.020196 u and that of ⁴ / ₂ He is 4.00260 u. 8. Calculate the maximum kinetic energy of the beta particle emitted in the following decay	nuclear reaction, $4_1^1 H \rightarrow _2^4 He$ with 26 MeV of energy released. If the total output power of the Sun is assumed to remain constant at 3.9×10^2 W, find the time it will take to burn all the hydrogen. Take the mass of the Sun at 1.7×10^{30} kg.
scheme : ${}^{12}N \rightarrow {}^{12}C^* + e^+ + v$ ${}^{12}C^* \rightarrow {}^{12}C + \gamma(4.43 \text{ MeV})$ The atomic mass of ${}^{12}N$ is 12.018613 u. 9. Calculate the Q-value in the following decays : (a) ${}^{19}O \rightarrow {}^{19}F + e + \overline{v}$ (b) ${}^{25}AI \rightarrow {}^{25}Ma + e^+ + v$	16. To positron is a fundamental particle wit the same mass as that of the electron and with charge equal to that of an electron but of opposit sign. When a positron and an electron collide they may annihilate each other. The energ corresponding to their mass appears in tw photons of equal energy. Find the wavelength of the radiation emitted.

[Take: mass of electron = $(0.5/C^2)$ MeV and hC = 1.2×10^{-12} MeV.m where h is the Plank's constant and C is the velocity of light in air] 17. When two deutrons ($_1$ H ²) fuse to from a helium nucleus $_2$ He ⁴ , 23.6 MeV energy is released. Find the binding energy of helium if it is 1.1 MeV for each nucleon of deutrim. 18. A π^+ meson of negligible initial velocity decays to a μ^+ (muon) and a neutrino. With what kinetic energy (in eV) does the muon move? (The rest mass of neutrino can be considered zero. The rest mass of the π^+ meson is 150 MeV and the rest mass of the muon is 100 MeV.) Take neutrino to behave like a photon. Take = $\sqrt{2}$ = 1.41. 19. Consider the following reaction; ${}^{2}H_1 + {}^{2}H_1 = {}^{4}He_2 + Q$. Mass of the deuterium atom = 2.0141u; Mass of the helium atom = 4.0024 u This is a nuclear reaction in which the energy Q is released is MeV. 20. The activity of a radioactive sample falls from 600 s ⁻¹ to 500 s ⁻¹ in 40 minutes. Calculate its half-life. 21. The number of 238 U atoms in an ancient rock equals the number of 206 Pb atoms. The half-life of decay of 238 U is 4.5 × 10 ⁹ y. Estimate the age of the rock assuming that all the 206 Pb atoms are formed from the decay of 238 U. 22. A radioactive decay counter is switched on at t = 0. A b - active sample is present near the counter. The counter registers the number of b - particles emitted by the sample. The counter registers 1 × 10 ⁵ b - particles at t = 36 s and 1.11 × 10 ⁵ b - particles at t = 108s. Find T _{1/2} of this sample	25. Radioactive ¹³¹ I has a half-life of 8.0 days. A sample containing ¹³¹ I has activity 20 µCi at t = 0. (a) What is its activity at t = 4.0 days ? (b) What is its decay constant at t = 4.0 days ? 26. The decay constant of ²³⁸ U is 4.9 × 10 ⁻¹⁸ s ⁻¹ . (a) What is the average-life of ²³⁸ U ? (b) What is the half-life of ²³⁸ U ? (c) By what factor does the activity of a ²³⁸ U sample decrease in 9 × 10 ⁹ years ? 27. Carbon (Z = 6) with mass number 11 decyas to boron (Z = 5). (a) Is it a β ⁺ -decay or a β ⁻ decay ? (b) The half-life of the decay scheme is 20.3 minutes. How much time will elapse before a mixture of 90% carbon-11 and 10% born 11 converts itself into a mixture of 10 % Carbon-11 and 90% Boron-11. 28. ²³⁸ U decays to ²⁰⁶ Pb with a half-life of 4.47 × 10 ⁹ y. This happens in a number of steps. Can you justify a single half-life for this chain of processes ? A sample of rock is found to contain 2.00 mg of ²³⁸ U and 0.600 mg of ²⁰⁶ Pb. Assuming that all the lead has come from uranium. find the life of the rock. 29. Nuclei of radioactive element A are being produced at a constant rate α. The element has a decay constant λ. At time t = 0, there are N ₀ nuclei of the element. (a) Calculate the number N of nuclie of A at time t. (b) If α = 2N ₀ λ, calculate the number of nuclei of A after one halflife of A & also the limiting value of N as t →∞.
23. An isotopes of Potassium $^{40}_{19}$ K has a half life	
of 1.4 \times 10° year and decays to Argon $^{40}_{18}\text{Ar}$ which	
 is stable. (i) Write down the nuclear reaction representing this decay. (ii) A sample of rock taken from the moon contains both potassium and argon in the ratio 1/7. Find age of rock 	
24. At $t = 0$, a sample is placed in a reactor. An unstable nuclide is produced at a constant rate R in the sample by neutron absorption. This nuclide β - decays with half life τ . Find the time required to produce 80% of the equilibrium quantity of	

this unstable nuclide.

394,50-Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671 IVRS No: 0744-2439051, 52, 53, www. motioniitjee.com, info@motioniitjee.com