
Solutions Slot – 2 (Physics)

$$R = \frac{V}{i}$$

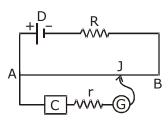
$$i_1 < 4A$$

$$20 = i_1R$$

$$R = \frac{20}{i_1} > 5\Omega$$

$$i = i_g \left(1 + \frac{r_g}{R} \right)$$

 $V = i_g (r + R_g)$ **16. A,C,D**


If devices are ideal then $R_v = \infty$ so i = 0 $R_A = 0$

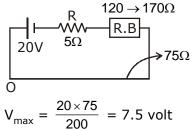
So (A)

(C)

(D) :: Current through ammeter and voltmeter will be high.

17. A

- (A) Zero deflection does not depend on r
- (B) If $R > R_0$ then drop across
 - potentiometer is negligible
 - ... We will not get zero deflection
- (C) Notes


(D) Notes

18. A,B

As emf of E_1 is distributed over the wire AB. Hence A is correct E_2 is balanced by fraction of length of wire $E_1 > E_2$.

We only balance potential difference hence B is correct.

19. A,B,C

20. A,C

In parallel each will take 10A and hence combination requires 10 + 10 = 20 A In series current will be same in each fuse and that will be equal to required circuit current hence combination requires the same current 10 A

