Solutions Slot – 2 (Physics)

		J	EE QUESTIONS
1.	$\begin{array}{c} I \\ I \\ I \\ B \\ 2I \\ I \\ 2I \\ I \\ 2I \\ I \\ I \\ I \\ I $	7.	$F \xrightarrow{f_2} f_1$ $a_2 = a_1 + \alpha R \dots (1)$ $F - f = m_2 (a_2) \dots (2)$ $f + f = m a \dots (3)$
2.	$\begin{aligned} \Gamma &= I \\ \vec{\tau} &= \vec{A} \times \vec{L} \\ \vec{\tau} &\perp \vec{L} \vec{\tau} \perp \vec{A} \\ and \vec{\tau} &= \frac{dL}{dt} \end{aligned}$	8.	$f.R - f_1 R = \frac{m_1 R^2}{\alpha} \times \frac{a_1}{R} \dots (4)$ In a limiting case Normal Reaction
3.	component of $\vec{\tau}$ along \vec{A} is zero there is no change of \vec{L} along \vec{A} $\frac{R/4V}{4}$ (3) $2 \times mg \times R/4 + mg 2 \times 5 \times R/4 = \frac{1}{2} \left(\frac{MR^2}{4} + M\left(\frac{R}{2}\right)^2 + M\left(\frac{5R}{2}\right)^2\right) \approx 2$		will through E. so torque about O is $F \frac{L}{2} + f \frac{L}{2} = \frac{NL}{2}$ $x \frac{R}{D} = \frac{MR^2}{D}$
	$2\left(4 + \frac{1}{4}\right) + \frac{1}{4}\left(4\right) = \frac{1}{2} \frac{mR^{2}[4+1+25]}{16} \cdot \omega^{2}$ $\Rightarrow 3mgR = \frac{1}{2} \frac{mR^{2} \times 30.W^{2}}{10}$ $\Rightarrow W = \sqrt{\frac{2g}{10R}}$ Created with EP (4) = $\sqrt{\frac{2g \times 16}{5R}}$	9.	$I = \frac{1}{2}$ $I_{xx'} = I + MR^2 = \frac{MR^2}{2} + MR^2 = \frac{3}{2}MR^2$ $\therefore M = \rho L \text{ and } R = \frac{L}{2\pi}$ $I_{xx'} = \frac{3}{8} \frac{\rho L^3}{\pi^2}$
4.	Speed = W. 5R/4 = $\sqrt{\frac{3}{10R}} \cdot \frac{3}{4}$ Speed = $\sqrt{5gR}$ Mv $\frac{a}{2} = \frac{2 \times M \times a^2 \times W}{3}$ $\longrightarrow \omega$ $\frac{2 \times Ma^2}{3}$	10.	As the beads are released the distance from AO is continuoesly change and speed is continuoesly change. so $w \neq$ const value and L about AO is change continously (due to r change) Net τ about AO is zero is the system so L conserved. T Energy is conserved because increase its K.E.= change is P.E.
5. 6.	$W = \frac{3v}{4a}$ W remains unchanged Because friction is absent. Angular Momentum about 0 = I _{disc} W + mvR = $\frac{1}{2}$ mR ² W + m(WR)R = $\frac{3}{2}$ mR ² W	11.	$ \begin{array}{c} $
MOTION Nurturing potential through education WRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com			

$$\Rightarrow \qquad W = \frac{6v}{l} \qquad \dots \dots (1)$$

From Linear Momentum Conservation $mV_0 = MV$ (2)

$$e = 1 = \frac{v + wL/2 - 0}{v_0}$$

$$\Rightarrow v_0 = v + \frac{wL}{2} \qquad \dots (3)$$

From equation (2)

$$\frac{m}{M} = \frac{v}{v_0}$$

From equations we get

$$\frac{m}{M} = \frac{1}{4}$$
12.

Let N be the \perp distance of C.M. from AB Impulse = change in linear Momentum

linear speed after time t in combined motion (Rotational + Translational)

$$v' = 2v \sin\left(\frac{wt}{2}\right)$$

From equation (1), (2), (3) $v_0 = 4v$

$$w = \frac{3v_0}{2l}$$
, $v' = \frac{v_0}{2\sqrt{2}}$

Angular Impulse = change in angular Momentum $6(0.5) = I_{AW} (w + 1)$ $I_{AB} = I_{CM} + Mr^2 = 1.2 + 30 r^2$ $\Rightarrow 3 = (`1.2 + 30 r^2) (1 + w)$ (2) From equation (1) & (2) r = 0.1 m & 0.4 m(Reject, because w = -ve) Put r = 0.1 m in equation (1) w = 1 rad /sec**13.** Mass of complete disc = 4M

$$I_{disc} = \frac{1}{2} (4M)R^2$$

 $I_{\text{section}} = \frac{I_{\text{disc}}}{4} = \frac{MR^2}{2}$

Since sheet return with same Angular velocity of 1 rad/sec. So sheet will never comes to Rest.

$$F_{hnz} = mw^2 r = 2mw^2 \frac{\sqrt{3}}{2}l = \sqrt{3}mw^2 l$$

Torque about A
$$\tau_A = F \frac{\sqrt{3}I}{2} = 2 m/^2 \alpha$$

$$\alpha = \frac{\sqrt{3}F}{4mI}$$

Now
$$a_t \left(\frac{\sqrt{3}F}{4ml}\right) \left(\frac{l}{\sqrt{3}}\right) = \frac{F}{4m}$$

acceleration of C.O.M. along x axes Let F_x be be the force applied by the hinged along x-axis then. $F_x + F = (3m) (a_t)$

$$F_x = -\frac{F}{4}$$

F has no component along y direction

⇒ Contripletal force $F_y = \sqrt{3}mw^2 I$ **15.** About the center

Beccause about center τ of $\frac{mv^2}{r}$ is zero.

16. Given

1

Angular impulse = change in angular momentum mvl = ml²w

$$w = \frac{v}{l}$$
17.
$$wr \qquad v = \frac{v}{l}$$

 $V_{q} > V_{c} > V_{P}$ **18.** Let initial moment of inertia is I and angular velocity is w.

So K = $\frac{1}{2}$ Iw²

From angular momentum conservaiton $IW = 2IW_{f}$

$$W_f = \frac{W}{2}$$

$$K_{f} = \frac{1}{2}.2IW_{f}^{2} = \frac{1}{2}.2I.\frac{W^{2}}{4} = \frac{K}{2}$$

Block held fixed f = mg normal force N = F normal may produce torque because it may shift F will not produce torque due to passing C.O.M.

20. $I_0 = \frac{9mR^2}{2}$

Moment of inertia of

R/3 disc about is

$$I = I_{con} + M \left(\frac{2R}{3}\right)^{2}$$

$$= \frac{m(R/3)^{2}}{2} + \frac{4R^{2}}{9}M$$

$$I = \frac{MR^{2}}{2}$$
remaining disc = $\frac{9MR^{2}}{2} - \frac{MR^{2}}{2}$

$$= 4MR^{2}$$
21.
21.
 $\overrightarrow{0}$ $\overrightarrow{0}$ $\overrightarrow{1}$ $\overrightarrow{1}$ $\overrightarrow{1}$
 $\overrightarrow{1}$ is not constant due decreasing in speed, only direction of L will constant.
22. Angular momentum about O is conserved
 $L_{i} = L_{f}$ $M \underbrace{0}$ $\underbrace{1}$ \underbrace

$$Mg \frac{1}{2} \cos \theta + fL \sin \theta = N_1 L \cos \theta$$
fsin $\theta = N_1 \cos \theta - \frac{Mg \cos \theta}{2}$
Put the value of N_1 from equation (1), we get
$$f = \frac{(M+m)}{2}g \cot \theta$$
25. $I = \frac{2}{5}MR^2$
Now, $I = \frac{Ma^2}{2} + Ma^2$

$$\int \frac{2}{5}MR^2 = \frac{Ma^2}{2} + Ma^2$$

$$a = \frac{2R}{\sqrt{15}}$$
26. If friction is sufficient for pure ralling
then $f = \frac{mg \sin \theta}{1 + \frac{1}{C}}$
For cylinder $C = \frac{1}{2}$

$$f = \frac{mg \sin \theta}{3}, f = \frac{mg \sin \theta}{3}$$
A $\theta \downarrow f \uparrow$
In pure rolling friction opposes translation
motion and support Rotational
(Provided Net Tarque)
27. At B
$$\frac{1}{2}mv^2 + \frac{1}{2}Iw^2$$
At C
$$\frac{1}{2}mv_1^2 + \frac{1}{2}Iw^2$$
For chart of the form the form

Now if plate is in equilibrium then $\tau_{AB} = 0$ From $\int \tau dt = chagnein A.M.$ Mg $\frac{b}{2} = n. m. \frac{3b}{2}v(A)$ $v = \frac{3 \times 10}{100 \times 0.01 \times 3} \left(\frac{ab}{2}\right)$ Area = $\frac{ab}{2} = 1m^2$ v = 10 m/sec**29.** $\frac{1}{2}Kx_1^2 = \frac{1}{2}I(2w)^2$(1) $\frac{1}{2}Kx_{2}^{2} = \frac{1}{2}2I(w)^{2}$(2) equation (1) / (2) $\frac{x_1}{x_2} = \sqrt{2}$ 30. From angular momentum conservation (Friction is internal force) 2 W(I) + w(2I) = (2I + I) w' $w' = \frac{4wI}{3I} = \frac{4}{3}w$ $\int \tau_{\text{friction}} \times t = \text{change is angular momentum}$ $\tau_{(\text{friction})t} = \frac{4}{3} \text{wI} - 2I \text{w} \Rightarrow \tau_{\text{friction}} = \frac{2I \text{w}}{2t}$ **31.** Initial K.E₀ = $\frac{1}{2}$ I(4w²) + $\frac{1}{2}$.2Iw² $= 3Iw^2$ Final K.E_f = $\frac{1}{2}(3I)\frac{16w^2}{9} = \frac{8}{3}Iw^2$ Loss in K.E. = $-\frac{8}{3}Iw^2 + 3Iw^2 = \frac{Iw^2}{3}$ **32.** $\frac{1}{2}$ mv² + $\frac{1}{2}$ Iw² = mg $\left(\frac{3v^2}{4g}\right)$ Put w = $\frac{V}{R}$ $\frac{1}{2}\frac{I}{R^2} = \frac{3}{4}m - \frac{1}{2}m$ $I = \frac{mR^2}{2}$ (disc) 33. Force at centre increase linear velocity

For solid cylinder C = $\frac{1}{2}$ For hellow cylinder C = 1

$$a = -g \frac{\sin \theta}{1+c}$$

 $a_{HC} < a_{sc}$ So $t_{HC} > t_{sc}$ Kinetic energy of both cylinder is same (mgh)

35.
$$F_{external} = 0$$

P = conserved

$$V_A = 0, V_B = V$$

and $V_C = 2V$

$$2 - f_2 = 2a = 0.6 \Rightarrow f_2 = 1.4$$

$$\tau = I\alpha \Rightarrow (f_2 - f_1) R = MR^2 \frac{a}{R}$$

$$1.4 - f_1 = Ma = 0.6$$

$$f_1 = 0.8 = \mu (2) = \frac{P}{10} \times 2$$

P = 4

al through education

ΜΟΤ

38.
$$\tau = \frac{dL}{dt} = \frac{d}{dt}(I\omega)$$
$$\tau = \omega \frac{dI}{dt} = \omega \frac{d}{dt}(I_{rod} + I_m)$$
as $I_{rod} = com$
$$\Rightarrow \tau = \frac{wd}{dt}(I_{insect})$$
$$= \omega \frac{d}{dt}(mr^2)$$
$$= m\omega \left(2r\frac{dr}{dt}\right) = 2m r\omega v$$
$$= 2m(vt)\omega v$$
$$\tau \propto t$$

39.

 $L_{_0}$ remains cons. in magnitude and direction but $L_{_P}$ changes its direction continously hence $L_{_P}$ is variable

40.

Let σ be the density off disc.

$$\sigma = \frac{M}{\pi (2R)^2} = \frac{M}{4\pi R^2}$$

Here M \rightarrow Mass of disc without cavity \therefore Mass of cavity = $\sigma \times \pi R^2 = M/4\pi R^2 \times \pi R^2 = M/4$

 I_{o} = MI of disc with non cavity - MI of cavity (About O)

$$I_{o} = \left[\frac{1}{2}M(2R)^{2}\right] - \left[\frac{1}{2}\left(\frac{M}{4}\right)R^{2} + \frac{M}{4}R^{2}\right]$$
$$I_{o} = \frac{4MR^{2}}{2} - \frac{1}{8}MR^{2} - \frac{M}{4}R^{2} = \frac{16MR^{2}}{8} - \frac{3MR^{2}}{8}$$

 $\rm I_p$ = M.I. of Disc without cavity about P - M.I. of cavity(aboutP)

 $= \left\lceil \frac{1}{2} \mathsf{M}(2\mathsf{R})^2 + \mathsf{M}(2\mathsf{R})^2 \right\rceil - \left\lceil \frac{1}{2} \left(\frac{\mathsf{M}}{4} \right) \mathsf{R}^2 + \frac{\mathsf{M}}{4} \left(\sqrt{5} \mathsf{R} \right)^2 \right\rceil$ $I_{P} = 37 \frac{MR^{2}}{8}$

$$\therefore \frac{I_{P}}{I_{o}} = \frac{37}{13} \approx 2.8 \approx 3$$

41. C

42. A

Consider case (a)

at
$$t = T/2$$
 at t

- 43. D Given ω is same.
- 44. A,B

$$V_{p} = 3 \operatorname{Ree}_{i} - \operatorname{Ree}/4 \quad i + \frac{\sqrt{3}}{4} \operatorname{Ree}\hat{k}$$

$$= 11/4 \operatorname{Rw}_{\hat{i}} + \frac{\sqrt{3}}{4} \operatorname{Rw}_{\hat{k}}$$

45. D

$$\begin{split} I_{p} &> I_{Q} \\ a &= \frac{g \sin \theta}{1 + I / MR^{2}} \\ \text{Hence } a_{p} &< a_{0} \\ t_{p} &> t_{Q} \\ V_{p} &< v_{Q} \\ \text{And as } \omega &= v/R \\ \text{So } \omega_{p} &< \omega_{Q} \end{split}$$

