

Sr.No.	Subjects	Page No.
1.	Physics	1 - 39
2.	Chemistry	40 - 90
3.	Mathematics	91 - 158

IMPORTANT FACTS AND FORMULAE FOR JEE

AIEEE - MATHEMATICS

UNITS - 1: SETS, RELATIONS & FUNCTIONS

Algebraic properties of sets:

- **1.** $A \cup (B \cup C) = (A \cup B) \cup C$
- **2.** $A \cap B = B \cap A$
- **3.** $A \cap \phi = \phi$
- $4. \qquad A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$

5.
$$(A \cap B)' = A' \cup B' \text{ and } (A \cup B)' = A' \cap B'$$

(De Morgan's Laws)

Formulae for domains of functions:

- 1. $\operatorname{dom}(f + g) = \operatorname{dom} f \cap \operatorname{dom} g$
- 2. $\operatorname{dom}(f g) = \operatorname{dom} f \cap \operatorname{dom} g$
- 3. $\operatorname{dom}(f/g) = \operatorname{dom} f \cap \operatorname{dom} g \cap \{x : g(x) \neq 0\}$
- 4. $\operatorname{dom}\left(\sqrt{f}\right) = \operatorname{dom} \boldsymbol{f} \cap \{x : f(x) \ge 0\}$

Type of functions:

- **1. Surjective function:** If a function $f: A \rightarrow B$ is such that each element in B is an image of atleast one element in A, then *f* is a function of A 'onto' B or *f* is a *surjective function* (also called onto *function*) from A to B.
- 2. **Injective function:** If function does not take the same value at two distinct points in its domain, then the function is said to be an *injective function* (also called one-to-one *function*)
- **3. Bijective function:** If a function *f* is both one-to-one and onto, the *f* is said to be a *bijective function*.

UNITS – 2: COMPLEX NUMBERS

1. Property of Order

It states that (a + ib) < (or>) c + id is not defined for complex numbers. For example, the statement 9 + 6i < 2 - i make no sense.

i) The sum of four consecutive powers of *i* is zero.

 $i^{n} + i^{n+1} + i^{n+2} + i^{n+3} = 0, n \in I$

ii) $\sqrt{a}\sqrt{b} = \sqrt{ab}$ is valid only if atleast one of *a* and *b* is non-negative.

If a and b are both negative then

 $\sqrt{a}\sqrt{b} = -\sqrt{ab}$

2. Properties of Conjugate Complex Numbers

(i)
$$z_1 + z_2 = z_1 + z_2$$
 and $z_1 - z_2 = z_1 - z_2$

(ii)
$$\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$$
 and $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$

(iii)
$$z_1 \overline{z_2} - \overline{z_1} z_2 = 2 \operatorname{Re} \left(z_1 \overline{z_2} \right)$$

3. Rotational approach

If z_1 , z_2 , z_3 be vertices of a triangle ABC described in counter-clockwise sense (see Fig.) then:

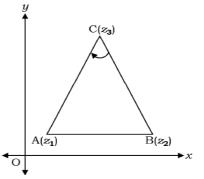
$$\frac{(z_2 - z_3)}{|z_2 - z_3|} = \frac{(z_1 - z_3)}{|z_1 - z_3|} e^{i\alpha}$$

 $\operatorname{amp} \frac{z_2 - z_3}{z_1 - z_3} = \alpha = \angle \operatorname{BCA}$

or

4.

(i)
$$|z| = |\overline{z}| = |-z| = |-\overline{z}|$$



(ii)
$$z\overline{z} = |z|^2$$

(iii) $|z^n| = |z|^n$
(iv) $|z_1 + z_2| \le |z_1| + |z_2|$
(v) $|z_1 - z_2| \ge |z_1| - |z_2|$
(vi) $|z_1 z_2| = |z_1| |z_2|$
(vii) $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$
(viii) $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2\left\{|z_1|^2 + |z_2|^2\right\}$
(ix) $||z_1| - |z_2|| \le |z_1 - z_2|$
(x) $|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$, where a, $b \in \mathbb{R}$.
Properties of Argument of Complex Numbers

(i)
$$\operatorname{Arg} (z_1 z_2) = \operatorname{Arg} (z_1) + \operatorname{Arg} (z_2)$$

(ii)
$$\operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \operatorname{Arg}\left(z_1\right) - \operatorname{Arg}\left(z_3\right)$$

(iii) Arg $(z_1z_2z_3...,z_n) = Arg (z_1) + Arg (z_2) + Arg (z_3)... + Arg (z_n)$

(iv) Arg
$$(z^n) = n \operatorname{Arg} (z)$$

(v) If
$$\operatorname{Arg}\left(\frac{z_2}{z_1}\right) = \theta$$
, then $\operatorname{Arg}\frac{z_1}{z_2} = 2k\pi - \theta, k \in l$

6. Demoivre's theorem

(a) If n is a positive or negative integer, then

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

(b) If n is a positive integer, then

$$(\cos\theta + i\sin\theta)^{1/n} = \cos\left(\frac{2k\pi + \theta}{n}\right) + i\sin\left(\frac{2k\pi + \theta}{n}\right)$$

Demoivre's theorem is valid if n is any rational number.

– Lakshya Educare

5.

7. Some important Results

- (i) If z_1 and z_2 are two complex numbers, then the distance between z_1 and z_2 is $|z_1 z_2|$.
- (ii) Segment joining points A(z_1) and B(z_2) is divided by point P(z) in the ratio $m_1 : m_2$ then $z = \frac{m_1 z_2 + m_2 z_1}{(m_1 + m_2)}$, m₁ and m₂ are real.
- (iii) The equation of the line joining z_1 and z_2 is given by
 - $\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \end{vmatrix} = 0$ (non-parametric form)
- (iv) Three points z_1 , z_2 and z_3 are collinear if

$$\begin{vmatrix} z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \\ z_3 & \overline{z_3} & 1 \end{vmatrix} = 0$$

(v) $\overline{az + az} + b = 0, b \in \mathbb{R}$ describes equation of a straight line

Slope of line: The complex slope of the line $\overline{az} + \overline{az} + b = 0$ is

$$-\frac{a}{b} = -\frac{\text{coeffi.of } \overline{z}}{\text{coeffi.of } z}$$

- (vi) $|z z_0| = r$ is equation of a circle, whose centre is z_0 and radius is r
- (vii) If $|z z_1| + |z z_2| = 2a$, where $2a > |z_1 z_2|$ then point z describes an ellipse.
- (viii) $\frac{|z-z_1|}{|z-z_2|} = k$ is a circle if $k \neq 1$, and is a line if k = 1.
- (ix) If $\operatorname{Arg} \frac{(z_1 z_3)(z_3 z_4)}{(z_1 z_3)(z_2 z_3)} = \pm \pi$, 0, the points z_1, z_2, z_3, z_4 are concyclic.

UNIT – 3: MATRICES & DETERMINANTS

1. Some Important Terms

A matrix $A = (a_{ij})_{m \times n}$ is said to be a

(i)	Row matrix	if $m = 1$
(ii)	Column matrix	if $n = 1$
(iii)	Null or zero matrix	if $a_{ij} = 0$, $\forall i \text{ and } j$
(iv)	Square matrix	if $m = n$
(v)	Diagonal matrix	if $m = n$ and $a_{ij} = 0$, $\forall i \neq j$
(vi)	Scalar matrix	if $m = n$ and $a_{ij} = 0$, $\forall i \neq j$
		and $a_{ij} = \lambda, \forall i = J$
(vii)	Unit or identity matrix	if $m = n$ and $a_{ij} = 0$, $\forall i \neq j$
		and $a_{ij} = 1, \forall i = J$

2. Properties of matrix multiplication

i) If A is a square matrix, then

 $A^{m} A^{n} = A^{m+n}, \ \forall \ m, \ n \in \mathbb{N}$ $(A^{m})^{n} = A^{mn}, \ \forall \ m, \ n \in \mathbb{N}$

ii) If A is an invertible matrix then

(A-1BA)m = A-1BmA

and $A^{-m} = (A^{-1})^m, \forall m \in \mathbb{N}$

3. Transpose of a Matrix

Definition: The transpose of a matrix $A = (a_{ij})_{m \times n}$, denoted by A'

(or by A') is the matrix $A' = (b_{ij})_{n \times m}$, where $b_{ij} = a_{ji}$, $\forall i$ and j.

By \overline{A} we mean a matrix $B = (b_{ij})_{m \times n}$, where $b_{ij} = \overline{a}_{ij}$, where \overline{a} denotes conjugate of a and by A^* we mean

$$\mathbf{A}^{\star} = \left(\overline{\mathbf{A}}\right)' = \left(\overline{\mathbf{A}}'\right)$$

Properties of Transpose of a Matrix

- i. (A + B)' = A' + B'
- ii. (kA)' = kA' where k is a scalar.
- iii. (AB)' = B'A' [Reversal law]
- iv. If A is an invertible matrix, then $(A^{-1})' = (A')^{-1}$

4. Adjoint and Inverse of a Matrix

The adjoint of a square matrix $A = (a_{ij})_{m \times n}$ is defined to be the matrix adj. $A = (b_{ij})_{n \times m}$, where $b_{ij} = A_{ji}$ where, A_{ji} is the cofactor of (j, i)th element of A.

Properties of Adjoint

- i) $A(adj A) = (adj A) A = |A| I_n$
- ii) $adj (kA) = k^{n-1} (adj A)$
- iii) adj(AB) = (adj B) (adj A)

Properties of Inverse

- i) $AA^{-1} = A^{-1} A = I_n$
- ii) (A-1)-1 = A
- iii) $(kA)^{-1} = k^{-1} A^{-1} \text{ if } k \neq 0$
- iv) $(AB)^{-1} = B^{-1}A^{-1}$ [reversal low]
- v) Inverse of a matrix if it exists is unique.

vi) For a matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $Adj. A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
and $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} ifad - bc \neq 0$

5. Properties of Determinants

- i) The interchange of any two rows (or columns) in Δ changes its sign.
- ii) If all the elements of a row (or column) in Δ are zero or if two rows (or columns) are identical (or proportional), then the value of Δ is zero.
- iii) If all the elements of one row (or column) is multiplied by a nonzero number k, then the value of the new determinant is k times the value of the original determinant.
- iv) If Δ becomes zero on putting $x = \alpha$, then we say that $(x \alpha)$ is factor of Δ .

v)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ 0 & b_2 & b_3 \\ 0 & 0 & c_3 \end{vmatrix} = a_1 b_2 c_3 = \begin{vmatrix} a_1 & 0 & 0 \\ b_1 & b_2 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

6. Systems of Linear Equations

The system of homogeneous linear equations

 $a_1x + b_1y + c_1z = 0$ $a_2x + b_2y + c_3z = 0$

and $a_3x + b_3y + c_3z = 0$

has a non-trivial solution (i.e., at least one of x, y, z is non-zero) if

 $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$

and if $\Delta \neq 0$, then x = y = z = 0 is the only solution of above system (Trivial solution).

Cramer's Rule: Let us consider a system of equations

 $a_1x + b_1y + c_1z = d_1;$ $a_2x + b_2y + c_2z = d_2;$ $a_3x + b_3y + c_3z = d_3;$

Here $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, $\Delta_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$,

By Cramer's Rule, we have $x = \frac{\Delta_1}{\Delta}$, $y = \frac{\Delta_2}{\Delta}$, and $z = \frac{\Delta_3}{\Delta}$

7. Differentiation of Determinant Function

If $F(x) = \begin{vmatrix} f_1 & f_1 & f_1 \\ g_2 & g_2 & g_2 \\ h_3 & h_3 & h_3 \end{vmatrix}$ where $f_1, f_2, f_3; g_1, g_2, g_3; h_1, h_2, h_3;$ are the

functions of *x*, then

$$\therefore \qquad \mathbf{F}'(x) = \begin{vmatrix} f_1' & f_1' & f_1' \\ g_2 & g_2 & g_2 \\ h_3 & h_3 & h_3 \end{vmatrix} + \begin{vmatrix} f_1 & f_1 & f_1 \\ g_2' & g_2' & g_2' \\ h_3 & h_3 & h_3 \end{vmatrix} + \begin{vmatrix} f_1 & f_1 & f_1 \\ g_2' & g_2' & g_2' \\ h_3 & h_3 & h_3 \end{vmatrix} + \begin{vmatrix} f_1 & f_1 & f_1 \\ g_2 & g_2 & g_2 \\ h_3' & h_3' & h_3' \end{vmatrix}$$

8. Cyclic Order

If elements of the rows (or columns) are in cyclic order,

i.e., i)
$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a-b)(b-c)(c-a)$$

ii)
$$\begin{vmatrix} a & b & c \\ a^{2} & b^{2} & c^{2} \\ bc & ca & ab \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3} \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca)$$

iii)
$$\begin{vmatrix} a & bc & abc \\ b & ca & abc \\ c & ab & abc \end{vmatrix} = \begin{vmatrix} a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3} \end{vmatrix} = abc(a-b)(b-c)(c-a)$$

iv)
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

v)
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a^{2}+b^{2}+c^{2}-3abc)$$

UNIT – 4: QUADRATIC EQUATIONS

1. Roots of the equation

$$ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 are α and β

2. Sum and product of the roots:

$$S = \alpha + \beta = -\frac{b}{a};$$
 $P = \alpha\beta = \frac{c}{a}.$

3. To find the equation whose roots are α and β

$$x^2 - \mathbf{S}x + \mathbf{P} = \mathbf{0}$$

where S is sum and P is product of roots.

4. Nature of the roots

D = $b^2 - 4ac$ where D is called discriminant.

- (a) If $b^2 4ac \ge 0$, roots are real
 - i) $b^2 4ac > 0$, roots are real and unequal.
 - ii) $b^2 4ac = 0$, roots are real an equal. In this case, each b

root =
$$-\frac{b}{2a}$$

- iii) $b^2 4ac$ = perfect square, roots are rational.
- iv) $b^2 4ac = not$ a perfect square, roots are irrational.

(b) if
$$b^2 - 4ac < 0$$
, i.e., -ve, then $\sqrt{b^2 - 4ac}$ is imaginary.
Therefore the roots are imaginary and unequal.

5. Symmetric function of the roots

If α and β are the roots of $ax^2 + bx + c = 0$, then

- i) $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$
- ii) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta$
- iii) $\alpha \beta = \sqrt{(\alpha + \beta)^2 4\alpha\beta}$
- iv) $\alpha^2 \beta^2 = (\alpha + \beta)(\alpha \beta)$
- v) $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} 3\alpha\beta(\alpha + \beta)$

vi)
$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$$

6. Condition for Common roots

Equations: $a_1x^2 + b_1x + c_1 = 0$ Roots: $a_2x^2 + b_2x + c_2 = 0$ Condition for one common root: $(c_1a_2 - c_2a_1)^2 = (b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1)$

Condition for both the roots to be common:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

- ⇒ **Note:** If the coefficient of x^2 in both the equations be unity, then the value of common root is obtained by subtracting their equations.
- 7. Inequalities

a)	$x^2 > a^2$ is positive	if $\langle -a \text{ or } x \rangle a$
b)	$x^2 < a^2$	if $-a < x < a$
c)	$a^2 < x^2 < b^2$ double inequality	$\therefore a < x < b \text{ or } -b < x < -b$

8. In an inequality you can always multiply or divide by a +ve quantity but not by a -ve quantity. Multiplying by a -ve quantity or taking reciprocal will reverse the inequality.

e.g., $a > b \Rightarrow -a < -b$ or $\frac{1}{a} < \frac{1}{b}$.

Lakshya Educare

a.

UNIT – 5: PERMUTATIONS & COMBINATIONS

1. Fundamental Principle of Counting

- (i) *Multiplication Principle*: There are m ways doing one work and n way doing another work then way of doing both work together
 = m.n.
- (ii) Addition Principle: There are m way doing one work and n ways doing another work then ways doing either m ways or n ways
 = m + n.
- 2. The number of ways of arranging n distinct objects in a row taking $r(0 \le r \le n)$ at a time is denoted by ⁿ P_r or P(n, r)

and
$${}^{n}P_{r} = n(n-1)(n-2)....(n-r+1) = \frac{n!}{(n-r)!}$$

Note that, ${}^{n}P_{0} = 1$, ${}^{n}P_{1} = n$ and ${}^{n}P_{n-1} = {}^{n}P_{n} = n!$

- **3.** The number of ways of arranging *n* distinct objects along a circle is (n-1)!
- 4. The number of ways of arranging *n* beads along a circular wire is $\frac{(n-1)!}{2}.$
- **5.** The number of permutations of n things taken all at a time, p are alike of one kind, q are alike of another kind and r are alike of a third kind and

the rest n - (p + q + r) are all different is $\frac{n!}{p!q!r!}$.

- 6. The number of ways of arranging n distinct objects taking r of them at a time where any object may be repeated any number of times is n^{r} .
- The number of selecting at least one object out of 'n' distinct object
 = 2ⁿ 1
- 8. **Derangements:** The number of derangements (No object goes to its scheduled place) of *n* objects.

$$= n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^{\mathbf{n}} \frac{1}{n!} \right)$$

9. The coefficient of x^r in the expansion of $(1-x)^{-n} = {n+r-1 \choose r} C_r$

10. Some Important Results

- (i) ${}^{n}C_{0} = {}^{n}C_{n} = 1, {}^{n}C_{1} = n$
- (ii) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
- (iii) ${}^{n}C_{x} = {}^{n}C_{y} \Leftrightarrow x = y \text{ or } x + y = n$
- (iv) ${}^{2n+1}C_0 + {}^{2n+1}C_1 + \dots + {}^{2n+1}C_n = 2^{2n}$
- (v) ${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n-1}C_{r-1}$

(vi)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(vii)
$${}^{n}C_{r} + {}^{n+1}C_{n} + {}^{n+2}C_{n} + \dots + {}^{2n+1}C_{n} = {}^{2n}C_{n+1}$$

UNIT – 6: MATHEMATICAL INDUCTION AND ITS APPLICTIONS

It is often used to prove a statement depending upon a natural number n.

Ist Principle of Induction

If P(n) is a statement depending upon n, then to prove it by induction, we proceed as follow:

- i) Verify the validity of P(n) for n = 1
- ii) Assume that P(n) is true for some positive integer *m* and then using it establish the validity of p(n) for n = m + 1.

Then, P(n) is true for each $n \in N$

IInd Principle of Induction:

In P(n) is a statement depending upon n but beginning with some positive integer k, then to prove P(n), we proceed as follows:

- i) Verify the validity of P(n) for n = k
- ii) Assume that the statement is true for $n = m \ge k$. Then, using it establish the validity of P(n) for n = m + 1.

Then, P(n) is true for each $n \ge k$.

UNIT – 7: BINOMIAL THEOREM & ITS APPLICATIONS

1. Binomial Theorem

It *n* is a positive integer and $x, y, \in \mathbb{C}$ then

$$(x+y)^{n} = {}^{n}C_{0} x^{n-0} y^{0} + {}^{n}C_{1} x^{n-1} y^{1} + {}^{n}C_{2} x^{n-2} y^{2} + \dots + {}^{n}C_{n} y^{n}$$

Here ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{n}$ are called binomial coefficient.

2. Some Important Points to Remember

(i) **General term:** General term = (r + 1)th term

$$\Rightarrow$$
 T_{r+1} = ⁿC_r x^{n-r} y^r, where r = 0, 1, 2,...., n.

- (ii) **Middle term:** The middle term depends upon the value of *n*.
 - (a) If n is even,

i.e.,
$$\left(\frac{n}{2}+1\right)$$
th term is the middle term.

(b) If *n* is odd, there are two middle terms,

i.e.,
$$\left(\frac{n+1}{2}\right)$$
th and $\left(\frac{n+3}{2}\right)$ th are two middle terms.

(iii) Greatest Term:

:.

- (a) If p is an integer, then Tp and T_{p+1} are equal and both are greatest term
- (b) If p is not an integer, then $T_{[p]+1}$ is the greatest term, where [.] denotes the greatest integral part.

(iv) Greatest Coefficient:

- (a) If *n* is even, then greatest coefficient ${}^{n}C_{n/2}$
- (b) If *n* is odd, then greatest coefficients are ${}^{n}C_{\underline{n-1}}$ and ${}^{n}C_{\underline{n+1}}$.

(v) Important Formulae:

- (a) $C_0 + C_1 + C_2 + C_3 + \dots + C_n = 2^n$
- (b) $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n \cdot 1}$

 \Rightarrow sum of odd binomial coefficients = sum of even binomial coefficients

- (c) $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n$
- (d) $C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots C_{n-r}C_n = 2nC_{n-r}$

where $C_0, C_1, C_2, C_3, ...$ represent ${}^{n}C_0, {}^{n}C_1, {}^{n}C_2, {}^{n}C_3, ...$

(vi) General Binomial theorem:

If $n \in \mathbb{R}, -1 < x < 1$, then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)(n-2)}{r!}x^r + \dots \infty$$

(vii) Important Expansions:

- (a) $(1 + x)^{-1} = 1 x + x^2 x^3 + \dots + (-1)^r x^r + \dots$
- (b) $(1-x)^{-1} = 1 + x^1 + x^2 + x^3 + \dots + x^r + \dots$
- (c) $(1 + x)^{-2} = 1 {}^{2}C_{1}x + {}^{3}C_{2}x^{2} {}^{4}C_{3}x^{3} + \dots + (-1)^{r}{}^{r+1}C_{r}x^{r} + \dots$
- (d) $(1 + x)^{-2} = 1 + {}^{2}C_{1}x + {}^{3}C_{2}x^{2} + {}^{4}C_{3}x^{3} + \dots + {}^{r+1}C_{r}x^{r} + \dots$

UNIT – 8: SEQUENCES & SERIES

1. Arithmetic Progression
(i)
$$T_n = a + (n-1)d, n \in I$$

(ii)
$$S_n = \frac{n}{2} [2a + (n-1)d], n \in I$$

where $T_n = n$ th term of an AP

 $S_n = \text{sum of } n \text{ terms of an AP}$

- a =first term of an AP
- *d* = Common difference
- (iii) Arithmetic Mean (AM) of two quantities a and b,

$$A = \frac{a+b}{2}$$

(iv) AM of *n* gives quantities,

$$A_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

(v)
$$T_n = S_n - S_{n-1} (n \ge 2)$$

2. Geometric Progression (GP)

- (i) $T_n = ar^{n-1}$ where a = first term of the GP, $r = common ratio of the GP and <math>T_n = n^{th}$ term of the GP
- (ii) Sum of *n* terms of a GP

$$\mathbf{S}_{\boldsymbol{n}} = \frac{a\left(1 - r^{\boldsymbol{n}}\right)}{\left(1 - r\right)}$$

(iii) Sum of an infinite number of terms of a GP, when |r| < 1

$$S_{\infty} = \frac{a}{1-r}$$

(iv) Geometric mean of two quantities *a* and *b*,

$$G^2 = ab, ab > 0$$

(v) Geometric mean of n given quantities, a_1, a_2, \dots, a_n . G_n = $(a_1 a_2 a_3 \dots a_{n-1} a_n)^{1/n}$

(vi) Common ratio
$$= \frac{T_n}{T_{n-1}}$$
.

3. Harmonic Progression (HP)

(i) nth term of a HP,

$$T_n = \frac{1}{a + (n-1)d}$$

(ii) Harmonic mean of a and b,

$$H = \frac{2ab}{a+b}$$

(iii) Relation between A, G and H

$$AH = \left(\frac{a+b}{2}\right)\left(\frac{2ab}{a+b}\right)$$
$$= ab = G^{2}$$

$$\Rightarrow$$
 AH = G²

(iv) A>G>H, i.e., A, G, H are in descending order of magnitude.

4. Arithmetico-Geometric Sequence

Sum of an infinite number of terms of the sequence ab, (a + d)br, $(a + 2d)br^2$,... is

$$S = \frac{ab}{1-r} + \frac{dbr}{\left(1-r\right)^2}$$

5. Series of natural numbers

(i)
$$\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

(ii)
$$\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(iii)
$$\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

(iv) $\sum a = a + a + + a(n \text{ terms}) = na$

6. Exponential and Logarithmic series

(i)
$$e^{\mathbf{x}} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

(ii)
$$\frac{e^{x} + e^{-x}}{2} = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots$$

(iii)
$$\frac{e^{x} - e^{-x}}{2} = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$

(iv)
$$a^{\mathbf{x}} = 1 + x \ln a + \frac{x^2}{2!} (\ln a)^2 + \frac{x^3}{3!} (\ln a)^3 + \dots$$

(v)
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots |x| < 1$$

(vi)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + n \in \mathbb{R}$$

UNIT -: 9 DIFFERENTIAL CALCULUS

Functions

Formulae for domain of a function

- **1.** Domain $(f(x) + g(x)) = \text{Domain } f(x) \cap \text{Domain } g(x)$
- **2.** Domain $(f(x) \cdot g(x)) = \text{Domain } f(x) \cap \text{Domain } g(x)$
- **3.** Domain $\left(\frac{f(x)}{g(x)}\right)$ = Domain $f(x) \cap$ Domain $g(x) \cap \{x : g(x) \neq 0\}$
- 4. Domain $\sqrt{f(x)}$ = Domain $f(x) \cap \{x : f(x) \ge 0\}$
- **5.** Domain (fog) = Domain g(x), where fog is defined by $fog(x) = f\{g(x)\}$

Odd and Even Function

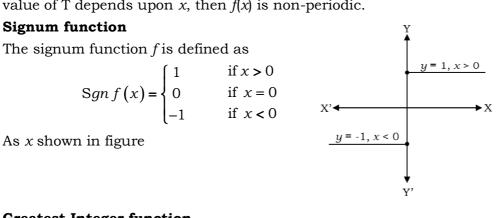
- (i) A function is an odd function if f(-x) = -f(x) for all x.
- (ii) A function is an even function if f(-x) = f(x) for all x.

Periodic function

A function f(x) is said to be a periodic function of x, if there exist a positive real number T such that f(x + T) = f(x) for all x.

If positive value of T independent of x then f(x) is periodic function and if the value of T depends upon x, then f(x) is non-periodic.

Signum function



Greatest Integer function

If f(x) = [x + n], where $n \in I$ and [.] denotes the greatest integer function, then f(x) = n + [x].

- a) $x-1 < [x] \le x$
- [-x] = -[x], if $x \in I$ b)

c)
$$[-x] = -[x] - 1$$
, if $x \notin I$

- d) $[x] \ge n \Rightarrow x \ge n, n \in I$
- $[x] \le n \Rightarrow x < n+1, n \in I$ e)
- f) $[x] > n \Rightarrow x \ge n+1, n \in I$
- $[x] < n \Rightarrow x < n, n \in I$ g)

Modulus function (or Absolut-Value-function)

Modulus function is given by

$$\mathbf{y} = |\mathbf{x}| = \begin{cases} x & x \ge 0\\ -x & x < 0 \end{cases}$$

Properties of Modulus Function

 $|x| \le a \Rightarrow -a \le x \le a; (a \ge 0)$ a)

b) $|x| \ge a \Rightarrow -a \text{ or } x \ge a; (a \ge 0)$

c)
$$|x \pm y| \le |x| + |y|$$

d)
$$|x \pm y| \ge |x| - |y|$$

Limits and Continuity

Frequently used Limits

(i)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e = \lim_{h \to 0} \left(1 + h \right)^{1/h}$$

(ii)
$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

(iii)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}, \text{ where } n \in Q$$

(iv)
$$\lim_{\theta \to 0} \frac{\sin \theta^c}{\theta^c} = 1$$
 and $\lim_{\theta \to 0} \frac{\tan \theta^c}{\theta^c} = 1$

(v)
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \left(a > 0 \right)$$

(vi)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = l$$

(vii)
$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \log_a e(a > 0, a \neq 1)$$

Expansions of Trigonometric Functions

(i)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

(ii)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

(iii)
$$\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots$$

Sandwich Theorem

If *f*, *g*, *h* are functions, such that $f(x) \le g(x) \le h(x)$ then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x) \le \lim_{x \to a} h(x)$$

Indeterminate Forms

If a function f(x) takes any of the following forms at x = a

 $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 0^{\mathbf{0}}, \infty^{\mathbf{0}}, 1^{\infty}$

then f(x) is said to be indeterminate at x = a.

L'Hospital's Rule

Let f(x) and g(x) be two functions, such that f(a) = 0 and g(a) = 0, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Provided f'(a) and g'(a) are both non-zero.

Derivatives

Differentiability and Continuity

For a function f(x)

- (a) Differentiable \Rightarrow Continuous
- (b) Continuous \neq Differentiable

 \Rightarrow Not Differentiable (c) Not Continuous

Theorems on Derivatives

(i)
$$\frac{d}{dx}\left\{f_{\mathbf{1}}(x) \pm f_{\mathbf{2}}(x)\right\} = \frac{d}{dx}f_{\mathbf{1}}(x) \pm \frac{d}{dx}f_{\mathbf{2}}(x)$$

(ii)
$$\frac{d}{dx}(k(x)) = k \frac{d}{dx} f_1(x)$$
, where k is any constant.

(iii)
$$\frac{d}{dx} \{ f_1(x) \cdot f_2(x) \} = f_1(x) \frac{d}{dx} f_2(x) + f_2(x) \frac{d}{dx} f_1(x)$$

(iv) If
$$y = f_1(u)$$
, $u = f_2(v)$ and $v = f_3(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$

Some Standard differentials

- (i)
- Standard differentials $\frac{d}{dx} = x^{n} = nx^{n-1}, x \in \mathbb{R}, n \in \mathbb{R}, x > 0 \quad (ii) \qquad \frac{d}{dx} (\sqrt{x}) = \frac{1}{2\sqrt{x}}$ $\frac{d}{dx} (e^{x}) = e^{x} \quad (iv) \qquad \frac{d}{dx} (a^{x}) = a^{x} \ln a$ $\frac{d}{dx}(e^{\mathbf{x}}) = e^{\mathbf{x}}$ (iii)

- Lakshya Educare

109

MATHEMATICS

(v)
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

(vii)
$$\frac{d}{dx}(\sin x) = \cos x$$

(ix)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(xi)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

(xiii)
$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{\left(1-x^{2}\right)}}$$

$$(xv) \qquad \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

(xvii)
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$$

(vi)
$$\frac{d}{dx} (\log_a x) = \frac{1}{x} \log_a e$$

(viii)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(x)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

(xii)
$$\frac{d}{dx}(\operatorname{cosec} x) = \operatorname{cosec} x \cot x$$

(xiv)
$$\frac{d}{dx}\left(\cos^{-1}x\right) = \frac{-1}{\sqrt{\left(1-x^{2}\right)}}$$

(xvi)
$$\frac{d}{dx} \left(\cot^{-1} x \right) = \frac{-1}{1+x^2}$$

(xviii)
$$\frac{d}{dx}\left(\operatorname{cosec}^{-1} x\right) = \frac{-1}{x\sqrt{\left(x^2 - 1\right)}}$$

Some Standard Substitutions

Expression	Substitution
$\sqrt{a^2 - x^2}$	$x = a\sin\theta$ or $a\cos\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$ or $a \cot \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$ or $a \csc \theta$
$\sqrt{\frac{a+x}{a-x}}$ or $\sqrt{\frac{a-x}{a+x}}$	$x = a\cos\theta$ or $a\cos 2\theta$
$\sqrt{\left(2ax-x^2\right)}$	$x = a \left(1 - \cos \theta \right)$

Critical Points

The points on the curve y = f(x) at which $\frac{dy}{dx} = 0$ or $\frac{dy}{dx}$ does not exist are known as the critical points. Rolle's Theorem

If a function f(x) is defined on [a,b] satisfying

- (i) f is continuous on [a, b]
- (ii) f is differentiable on (a, b)

(iii) f(a) = f(b) then $c \in (a, b)$ such that f'(c) = 0

Lagrange's mean value Theorem

If a function f(x) is defined on [a, b] satisfying

(i) f is continuous on [a, b]

(ii) f is differentiable on (a, b) then $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Test of Monotonicity

- (i) The function f(x) is **monotonically increasing** in the interval [a, b], if $f'(x) \ge 0$ in [a, b]
- (ii) The function f(x) is **strictly increasing** in the interval [a, b], if f'(x) > 0 in [a, b]
- (iii) The function f(x) is **monotonically decreasing** in the interval [a, b], if $f'(x) \le 0$ in [a, b]
- (iv) The function f'(x) is **strictly decreasing** in the interval [a, b], if f'(x) < 0 in [a, b]

Working Rule for Finding Maxima and Minima

(a) First Derivative Test

To check the maxima or minima at x = a

- (i) If f'(x) > 0 at x < a and f'(x) < 0 at x > a i.e., the sign of f'(x) changes from +ve to -ve, then f(x) has a local maximum at x = a.
- (ii) If f'(x) < 0 at x < a and f'(x) > 0 at x > a i.e., the sign of f'(x) changes from -ve to +ve, then f(x) has a local minimum at x = a.
- (iii) If the sign of f'(x) does not change, then f(x) has neither local maximum nor local minimum at x = a, then point 'a' is called a point of **inflection**.

(b) Second Derivative Test

- (i) If f''(a) < 0 and f'(a) = 0, then 'a' is a point of local maximum.
- (ii) If f''(a) > 0 and f'(a) = 0, then 'a' is a point of local minimum.

- Lakshya Educare

111

(iii) If f''(a) = 0 and f'(a) = 0, then further differentiate and obtain f'''(a)

(iv) If
$$f'(a) = f''(a) = f''(a) = \dots = f^{n-1}(a) = 0$$
 and $f^n(a) \neq 0$

In *n* is odd then f(x) has neither local maximum nor local minimum at x = a, then point '*a*' is called a point of *inflection*.

If n is even, then if $f^{n}(a) < 0$ then f(x) has a local maximum at x = a and if $f^{n}(a) > 0$ then f(x) has a local minimum at x = a.

Note: Maximum or Minimum values are also called local extremum values. For the points of local extremum either f'(x) = 0 or f'(x) does not exist.

UNIT – 10: INTEGRAL CALCULUS Methods of Integration List of Basic Forms of Integrals

1.
$$\int f(\mathbf{\phi}(x)\mathbf{\phi}'(x)) dx$$

Substitution $\varphi(x) = t$

$$2. \qquad \int f(x) \mathbf{\phi}'(x) dx$$

Integration by parts

$$\int f(x) \mathbf{\phi}'(x) dx = f(x) \mathbf{\phi}(x) - \int \mathbf{\phi}(x) f'(x) dx$$

3. $\int e^{ax} p_n(x) dx$, where $p_n(x)$ is polynomial of degree *n*.

Applying the formula for multiple integration by parts (see above), we get

$$\int e^{ax} p_n(x) \, dx = e^{ax} \left[\frac{p_n(x)}{\alpha} - \frac{p'_n(x)}{\alpha^2} + \frac{p''_n(x)}{\alpha^2} - \dots + (-1)^n \frac{p_n^{(n)}(x)}{\alpha^{n+1}} \right] + C$$

4.
$$\int \frac{Mx + N}{x^2 + px + q} dx. p^2 - 4q < 0$$

Substitution, $x + \frac{p}{2} = t$

$$\mathbf{5.} \qquad \mathbf{I_n} = \int \frac{dx}{\left(x^2 + 1\right)^n}$$

Reduction formula is used

$$I_{n} = \frac{x}{(2n-2)(x^{2}+1)^{n-1}} + \frac{2n-3}{2n-2}I_{n-1}$$

6. $\int \frac{P(x)}{Q(x)} dx$, where $\frac{P(x)}{Q(x)}$ is a proper rational fraction $Q(x) = (x - x_1)^1 (x - x_2)^m \dots (x^2 + px + q) \dots$

Integrand is expressed in the form of a sum of partial fractions

$$\int \frac{P(x)}{Q(x)} = \frac{A_1}{(x - x_1)} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_1}{(x - x_1)^1} + \frac{B_1}{(x - x_1)} + \frac{B_2}{(x - x_1)^2} + \dots + \frac{B_m}{(x - x_2)^m} + \dots + \frac{M_1 x + N_1}{x^2 + px + q} + \frac{M_2 x + N_2}{(x^2 + px + q)^2} + \dots + \frac{M_k x + N_k}{(x^2 + px + q)^k} + \dots$$

7. $\int \frac{Mx + N}{\sqrt{ax^2 + bx + c}} dx$

By the substitution $x + \frac{b}{2a} = t$ the integral is reduced to a sum of two integrals:

$$\int \frac{\mathbf{M}x + \mathbf{N}}{\sqrt{ax^2 + bx + c}} dx = \mathbf{M}_1 \int \frac{t \, dt}{\sqrt{at^2 + m}} + \mathbf{N}_1 \int \frac{dt}{\sqrt{at^2 + m}}$$

The first integral is reduced to the integral of a power function and the second one is a tabular integral.

8. $\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx$, where R is a rational function of x and $\sqrt{ax^2 + bx + c}$.

Reduced to an integral of rational fraction by the Euler substitutions:

$$\sqrt{ax^2 + bx + c} = t \pm x\sqrt{a} \quad (a > 0)$$

$$\sqrt{ax^2 + bx + c} = tx \pm x\sqrt{c} \quad (c > 0)$$

$$\sqrt{ax^2 + bx + c} = t(x - x_1) \quad (4\alpha - b^2 < 0)$$

Where x_1 is the root of the trinomial $ax^2 + bx + c$.

The indicated integral can also be evaluated by the trigonometric substitutions:

$$x + \frac{b}{2a} = \begin{cases} \frac{\sqrt{b^2 - 4ac}}{2a} \sin t \\ \frac{\sqrt{b^2 - 4ac}}{2a} \cot t & (a < 0, ac - b^2 < 0) \end{cases}$$
$$x + \frac{b}{2a} = \begin{cases} \frac{\sqrt{b^2 - 4ac}}{2a} \sec t \\ \frac{\sqrt{b^2 - 4ac}}{2a} \sec t \\ \frac{\sqrt{b^2 - 4ac}}{2a} \csc t & (a > 0, 4ac - b^2 < 0) \end{cases}$$
$$x + \frac{b}{2a} = \begin{cases} \frac{\sqrt{4ac - b^2}}{2a} \tan t \\ \frac{\sqrt{4a - b^2c}}{2a} \cot t & (a > 0, 4ac - b^2 < 0) \end{cases}$$

9.
$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx$$
, where $P_n(x)$ is a polynomial of degreed n.

write the equality

$$\int \frac{P_{\boldsymbol{n}}(x)dx}{\sqrt{ax^2 + bx + c}} = Q_{\boldsymbol{n}\cdot\boldsymbol{1}}(x)\,\sqrt{ax^2 + bx + c} + k\int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

Where $Q_{n-1}(x)$ is a polynomial of degree n-1. Differentiating both parts of this equality and multiplying by $\sqrt{ax^2 + bx + c}$, we get the identity

$$P_{n}(x) = Q_{n-1}(x)(ax^{2} + bx + c) + \frac{1}{2}Q_{n-1}(x)(2ax + b) + k ,$$

Which gives a system of n + 1 linear equations for determining the coefficients of the polynomial $Q_{n-1}(x)$ and factor k.

And the integral $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ is taken by the method considered in No. 10(M = 0; N = 0)

$$10. \quad \int \frac{dx}{\left(x-x_1\right)^m \sqrt{ax^2+bx+c}} \, 3$$

This integral is reduced to the above–considered integral by the substitution

$$x - x_1 = \frac{1}{t}$$

11. $\int \mathbb{R}(\sin x, \cos x) dx$

Universal substitution $\tan \frac{x}{2} = t$ If R(-sin x, cos x) = -R(sinx, cos x), then the substitution cos x = t is applied If R(sin x, -cos x) = -R(sinx, cos x), then the substitution sin x = t is applied If R(-sin x, -cos x) = -R(sinx, cos x), then the substitution tan x = t is applied $\int \sin ax \sin bx \, dx$

 $\int \sin ax \cos bx \, dx$ $\int \cos ax \cos bx \, dx$

Transform the product of trigonometric function into a sum or difference, using on of the following formulas;

 $\sin ax \sin bx = \frac{1}{2} [\cos(a-b)x - \cos(a+b)x]$ $\cos ax \cos bx = \frac{1}{2} [\cos(a-b)x - \cos(a+b)x]$ $\sin ax \cos bx = \frac{1}{2} [\sin(a-b)x - \sin(a+b)x]$

13. $\int \sin^m x \cos^n x \, dx$

Where m and n are integers.

If *m* is an odd positive number, then apply the substitution $\cos x = t$ If *n* is an odd positive number, apply the substitution $\sin x = t$ If m + n is an negative number, apply the substitution $\tan x = 1$ If *m* and *n* are even non-negative numbers, use the formulas

Lakshya Educare

12.

$$\sin^2 x = \frac{1 - \cos 2x}{2}; \cos^2 x = \frac{1 + \cos 2x}{2}$$

14. $\int \sin^p x \cos^q x \, dx \quad (0 < x < \pi/2)$

 \boldsymbol{p} and \boldsymbol{q} –rational numbers.

Reduce to the integral of the binomial differential by the substitution $\sin x = t$

$$\int \sin^{p} x \cos^{q} x \, dx = \int t p \left(1 - t^{2}\right)^{q-1} dt \qquad (\text{see No. 14})$$

15. $\int \mathbf{R}(e^{ax}) dx$.

Transform into an integral of a rational function by the substitution $e^{ax} = t$

Indefinite Integration

1. Properties of Indefinite Integration

(i)
$$\int \left[f_1(x) \pm f_2(x) \pm \dots \pm f_n(x) \right] dx$$
$$= \int f_1(x) \, dx \pm \int f_2(x) \, dx \pm \dots \pm \int f_n(x) \, dx + C$$

(ii)
$$= \int k f(x) dx = k \int f(x) dx + C$$

(iii)
$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{(n+1)} + C$$

(iv)
$$\int \frac{f'(x)}{f'(x)} dx = ln |f(x)| + C$$

(v)
$$\int \frac{f'(x)}{f'(x)} dx = 2\sqrt{f(x)} + C$$

2. Standard Results in Integration

(i)
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

In particular
$$\int 1 dx = \int x^{0} dx = x + C$$

(ii)
$$\int \frac{1}{x} dx = \ln |x| + C$$

(iii)
$$\int e^{x} dx = e^{x} + C$$

(iv)
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C; a \neq 1, a > 0$$

(v)
$$\int \sin x dx = -\cos x + C$$

(vi)
$$\int \cos x dx = \sin x + C$$

(vii)
$$\int \tan x dx = \ln |\sec x| + C$$

(viii)
$$\int \cot x dx = \ln |\sec x| + C$$

(ix)
$$\int \sec x dx = \ln |\sec x + \tan x| + C = -\ln |\sec x - \tan x| + C$$

$$= \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C$$

(x)
$$\int \csc x dx = \ln |\csc x - \cot x| + C = \ln |\csc x + \cot x| + C$$

$$= \ln \left| \tan \frac{x}{2} \right| + C$$

(xi)
$$\int \sec^{2} x dx = \tan x + C$$

(xii)
$$\int \sec x \tan x dx = \sec x + C$$

(xiii)
$$\int \sec x \tan x dx = \sec x + C$$

(xiv)
$$\int \csc x \cot x dx = -\operatorname{cosec} x + C$$

(xiv)
$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

(xvi)
$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

(xvii)
$$\int \frac{dx}{a^{2} - x^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{a - x} \right| + C$$

$$(\text{xviii}) \quad \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$$

$$(\text{xix}) \quad \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right| + C$$

$$(\text{xx}) \quad \int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left|x + \sqrt{x^2 + a^2}\right| + C$$

$$(\text{xxi}) \quad \int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{x}{a}\right) + C$$

$$(\text{xxiii}) \quad \int \sqrt{a^2 - x^2} dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C$$

$$(\text{xxiii)} \quad \int \sqrt{a^2 - x^2} dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\ln\left|x + \sqrt{x^2 + a^2}\right| + C$$

$$(\text{xxiv}) \quad \int \sqrt{x^2 - a^2} dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\ln\left|x + \sqrt{x^2 - a^2}\right| + C$$

$$(\text{xxiv}) \quad \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

$$(\text{xxvii)} \quad \int \frac{1}{x^n} dx = \frac{-1}{(n-1)x^{n-1}} + C$$

Definite Integration Properties of Definite Integrals

(i)
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$$

(ii)
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

(iii)
$$\int_{a} f(x) \, dx = \int_{a} f(x) \, dx + \int_{c} f(x) \, dx$$

Where c, is a point within or out of the interval [a, b].

(iv)
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$

(v)
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
 or 0

According as f(x) is even or odd function of x.

(vi)
$$\int_{0}^{2a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & \text{if } f(2a-x) = f(x) \\ 0, & \text{if } f(2a-x) = -f(x) \\ 0, \end{cases}$$

(vii)
$$\int_{a}^{b} f(x) dx = (b-a) \int_{0}^{1} f((b-a)x + a) dx$$

(viii)
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

(ix)
$$\int_{a+n\mathbf{T}}^{b+n\mathbf{T}} f(x) \, dx = \int_{a}^{b} f(x) \, dx$$

where f(x) is periodic with period T and $n \in I$.

(x) If
$$f(a + x) = f(x)$$
, then $\int_{0}^{na} f(x) dx = n \int_{0}^{a} f(x) dx$

(xi) If
$$f(x) \le \phi$$
 for $x \in [a, b]$, then $\int_{a}^{b} f(x) dx \le \int_{a}^{b} \phi(x) dx$

(xii)
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

(xiii) Leibnitz's rule:

If f continuous on [a, b] and u(x) and v(x) are differentiable functions of x whose values lie in [a, b] then

$$\frac{d}{dx}\int_{u(x)}^{v(x)} f(t) dt = f\left\{v(x)\right\} \cdot \frac{dv}{dx} - f\left\{u(x)\right\} \cdot \frac{du}{dx}$$

UNIT - 11: DIFFERENTIAL EQUATIONS

(i) d(xy) = x dy + y dx

(ii)
$$d\left(\frac{x}{y}\right) = \frac{y\,dx - x\,dy}{y^2}$$

(iii)
$$d\left(\tan^{-1}\frac{x}{y}\right) = \frac{y\,dx - x\,dy}{x^2 + y^2}$$

(iv)
$$d [ln(xy)] = \frac{x \, dy - y \, dx}{xy}$$

(v)
$$d\left(ln\left(\frac{x}{y}\right)\right) = \frac{y\,dx - x\,dy}{xy}$$

(vi)
$$d\left[\frac{1}{2}ln(x^2+y^2)\right] = \frac{x \, dx + y \, dy}{x^2+y^2}$$

(vii)
$$d(x^{\boldsymbol{p}}y^{\boldsymbol{q}}) = x^{\boldsymbol{p}\cdot\boldsymbol{1}}y^{\boldsymbol{q}\cdot\boldsymbol{1}}(py\,dx + qx\,dy)$$

UNITS – 17: TRIGONOMETRY

Trigonometric Functions and Identities

1. Measurement of an Angle

- (i) 1° = 60 minutes = 60'
- (ii) 1' = 60 seconds = 60''
- (iii) Each interior angle of a regular polygon of n sides is equal to $\frac{(n-2)\pi}{n}, n > 2$

2. Some Important Formulae and Identities

sin(A+B) = sin A cos B + cos A sin Bsin(A-B) = sin A cos B - cos A sin B $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\cos(A-B) = \cos A \cos B + \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B};$ $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ $\tan(45^{\circ} + A) = \frac{1 + \tan A}{1 - \tan A};$ $\tan(45^{\circ} - A) = \frac{1 - \tan A}{1 + \tan A}$ $sin (A + B) sin(A - B) = sin^2 A - sin^2 B = cos^2 B - cos^2 A$ $\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$ $2 \sin A \cos B = \sin (A+B) + \sin (A-B)$ $2 \cos A \sin B = \sin (A+B) - \sin (A-B)$ $2 \cos A \cos B = \cos (A+B) + \cos (A-B)$ $2 \sin A \sin B = \cos (A-B) - \cos (A+B)$ $\sin C + \sin D = 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2} \qquad \sin C - \sin D = 2 \cos \frac{C + D}{2} \sin \frac{C - D}{2}$ $\cos C + \cos D = 2 \cos \frac{C + D}{2} \cos \frac{C - D}{2}$ $\cos C - \cos D = 2 \sin \frac{C + D}{2} \cos \frac{D - C}{2}$ $\sin 2A = 2\sin A \cos A = \frac{2\tan A}{1 - \tan^2 A} \qquad \cos 2A = \begin{cases} 1 - \sin^2 A \\ \cos^2 A - \sin^2 A = \frac{1 - \tan^2 A}{1 + \tan^2 A} \end{cases}$ $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$ $\sin^2 A = \frac{1 - \cos 2A}{2}$ and $\cos^2 A = \frac{1 + \cos 2A}{2}$ $\sin 3A = 3 \sin A - 4 \sin^3 A;$ $\cos 3A = 4 \cos^3 A - 3 \cos A$ $\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$ **Conditional Identities** If $A + B + C = 180^{\circ}$, then $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$ (i) (ii) $\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C$

(iii) $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$

- Lakshya Educare

3.

(iv)
$$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

(v) tan A + tan B + tan C = tan A tan B tan c

(vi)
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$$

4. Trigonometrical Ratios

- (i) $\sin^4 \theta + \cos^4 \theta = 1 2\sin^2 \theta \cos^2 \theta$
- (ii) $\sin^{6}\theta + \cos^{6}\theta = 1 3\sin^{2}\theta\cos^{2}\theta$
- (iii) $\sin^2 \theta + \cos^4 \theta = \cos^2 \theta + \sin^4 \theta = 1 \sin^2 \theta \cos^2 \theta$
- (iv) $\sin^2 \theta + \csc^2 \theta \ge 2, \cos^2 \theta + \sec^2 \theta \ge 2$ and $\sec^2 \theta + \csc^2 \theta \ge 4$

5. Some standard Results

- (i) $\tan \theta + \cot \theta = 2 \operatorname{cosec} 2\theta$
- (ii) $\cot \theta \tan \theta = 2 \cot 2\theta$

(iii) $\sin \theta + \cos \theta$ has the same sign as that of $\sin \left(\theta + \frac{\pi}{4} \right)$

- (iv) $\sin \theta \cos \theta$ has the same sign as that of $\sin \left(\theta \frac{\pi}{4} \right)$
- (v) Maximum value of $a \sin x + b \cos x$ is $\sqrt{a^2 + b^2}$ and its minimum value is $-\sqrt{a^2 + b^2}$.
- (vi) The equation $a \sin x + b \cos x = c$ has real solutions only if $|c| \le \sqrt{a^2 + b^2}$, i.e., if $c^2 \le a^2 + b^2$
- (vii) $\tan (x_1 + x_2 + x_3 + \dots + x_n) = \frac{S_1 S_3 + S_5 \dots}{1 S_2 + S_4 \dots},$

UNIT - 12 : TWO DIMENSIONAL GEOMETRY

Straight Lines

1. Distance Formula

The distance between two points $P(x_1,y_1)$ and $Q(x_2,y_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Note : Distance of (x_1, y_1) from origin = $\sqrt{x_1^2 + y_1^2}$

2. Section formula

If R (x, y) divides the line joining P(x₁, y₁) and Q(x₂, y₂) in the ratio $m_1 : m_2 (m_1, m_2 > 0)$ then

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}; \quad y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \quad \text{(divides internally)}$$

and
$$x = \frac{m_1 x_2 - m_2 x_1}{m_1 - m_2}; \quad y = \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2} \quad \text{(divides externally)}$$

The mid point of PQ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

3. Area of a Triangle

The area of a \triangle ABC with vertices A (x_1, y_1) ; B (x_2, y_2) and C (x_3, y_3) is denoted by \triangle and is given as:

$$\Delta = \frac{1}{2} \begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix} = \frac{1}{2} \Big[x_{1} (y_{2} - y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2}) \Big]$$

4. Standard points of a Triangle

(i) The centroid of a triangle with vertices A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) is

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

(ii) The incentre of the triangle ABC is

$$\left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$

a, b, c being the sides BC, CA, AB of the triangle respectively.

(iii) The orthocenter of the triangle ABC is

$$\left(\frac{x_1 \tan A + x_2 \tan B + x_3 \tan C}{\tan A + \tan B + \tan C}, \frac{y_1 \tan A + y_2 \tan B + y_3 \tan C}{\tan A + \tan B + \tan C}\right)$$

(iv) The circumcentre of the triangle ABC is

$$\left(\frac{x_1 \tan 2A + x_2 \tan 2B + x_3 \tan 2C}{\tan 2A + \tan 2B + \tan 2C}, \frac{y_1 \tan 2A + y_2 \tan 2B + y_3 \tan 2C}{\tan 2A + \tan 2B + \tan 2C}\right)$$

5. Collinearity of three Given Points

The three given points are collinear i.e., lie on the same straight line if

- (i) Area of triangle ABC is zero.
- (ii) Slope of AB = slope of BC = slope of AC
- (iii) Distance between A and B + distance between B and C = Distance between A and C
- (iv) Find the equation of the line passing through any two points, if third point satisfied the equation of the line then three points are collinear.

6. Slope of a line

The slope of a line joining two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \tan \theta \left(x_1 \neq x_2 \right)$$

where θ is angle which the line makes with the positive direction of *x*-axis.

7. Equation of Straight line in Various Forms

(i) **General Form :** The general equation of the first degree in x and y is ax + by + c = 0, where a and b can not be zero at the same time.

Its slope is $= -\frac{a}{b}$

Intercept on the x-axis is $= -\frac{c}{a}$

Intercept on the y-axis $= -\frac{c}{b}$

(ii) Intercepts form: The equation of a line making intercepts 'a' and 'b' upon x and y axes respectively is given by

$$\frac{x}{a} + \frac{y}{b} = 1$$

- (iii) **Slope-intercept form :** The equation of line which has slope m and cuts off an intercept c upon *y*-axis is given by y = mx + c where $m = \tan \theta$
- (iv) **Point-Slope form :** The equation of a line passing through the point (x_1, y_1) and having slope m is given by

 $y - y_1 = m(x - x_1)$

- (v) **Two point Form**: The equation of a line passing through two points (x_1, y_1) and (x_2, y_2) is given by $(y - y_1) = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1)$
- (vi) **Parametric Form :** The equation of a line passing through
 - (x_1, y_1) and making an angle θ with the positive direction of x-axis
 - is $\frac{x x_1}{\cos \theta} = \frac{y y_1}{\sin \theta} = r$

Where *r* is the distance of the point (x, y) from the point (x_1, y_1) . If *r* is positive, then the point (x, y) is on the right of (x_1, y_1) but if *r* is negative then (x, y) is on the left of (x_1, y_1) .

(vii) **Normal Form :** The equation of a line on which the perpendicular from origin is of length p and the perpendicular makes an angle a with the positive direction of x-axis is given by, $x \cos a + y \sin a = p$

8. Positions of points (x_1, y_1) and (x_2, y_2) relative to a given line

If the points (x_1, y_1) and (x_2, y_2) are on the same side of the line

ax + by + c = 0, then $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ both are of the same sign and hence $\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c} > 0$, and if the points (x_1, y_1) and (x_2, y_2) are on the opposite of the line ax + by + c = 0, then $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ both are of signs opposite to each other and hence

 $\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c} < 0$

9. Angle between two Lines

Angle between two lines whose slopes are m_1 and m_2 is $\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

Corollary 1: If two lines whose slopes are m_1 and m_2 are parallel if

 $\boldsymbol{\theta} = 0 \left(\operatorname{or} \boldsymbol{\pi} \right) \Leftrightarrow \tan \boldsymbol{\theta} = 0 \Leftrightarrow m_1 = m_2.$

Corollary 2: If two lines whose slopes are m_1 and m_2 are perpendicular if $\theta = \frac{\pi}{2} \left(\text{or} - \frac{\pi}{2} \right)$

 $\Rightarrow \cot \theta = 0 \Rightarrow m_1 \cdot m_2 = -1$.

Note : Two lines given by the equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are

(i) Parallel if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$

(ii) Perpendicular if $a_1 a_2 + 4b_1 b_2 = 0$

(iii) Identical if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

10. Length of perpendicular from a Point on a Line

The length of perpendicular from (x_1, y_1) on ax + by + c = 0 is

$$\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

11. Distance between Two Parallel Line.

The perpendicular distance between the parallel lines ax + by + c = 0 and $ax + by + c_1 = 0$ is

$$\frac{c_1 - c}{\sqrt{\left(a^2 + b^2\right)}}$$

12. Family of Lines

Any line passing through the point of intersection of the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ can be represented by the equation $(a_1x + b_1y + c_1) + \lambda(a_2x + b_2y + c_2) = 0$.

13. Concurrent Lines

The three lines $a_i x + b_i y + c_i = 0$, i=1,2,3 are concurrent if

 $\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0$

14. Equations of the bisectors of the angles between two Lines

Equations of the bisectors of the lines

$$\begin{split} & L_{1}:a_{1}x+b_{1}y+c_{1}=0 \ \text{ and } \ L_{2}:a_{2}x+b_{2}y+c_{2}=0 \\ & \left(a_{1}b_{2}\neq a_{2}b_{1}\right) \text{ where } c_{1}>0 \ \text{ and } c_{2}>0 \ \text{ are } \end{split}$$

– Lakshya Educare

127

$$\frac{(a_1x + b_1y + c_1)}{\sqrt{(a_1^2 + b_1^2)}} = \pm \frac{(a_2x + b_2y + c_2)}{\sqrt{(a_2^2 + b_2^2)}}$$

Conditions	Obtuse angle bisector	Acute angle bisector
$a_1a_2 + b_1b_2 < 0$	-	+
$a_1a_2 + b_1b_2 > 0$	+	-

Pair of Straight Lines

1. Homogeneous Equation of Second Degree

An equation of the form $ax^2 + 2hxy + by^2 = 0$ is called a homogeneous equation of second degree. It represent two straight lines through the origin.

- (i) The lines are real and distinct if $h^2 ab > 0$.
- (ii) The lines are coincident if $h^2 ab = 0$.
- (iii) The lines are imaginary if $h^2 ab < 0$.

(iv) If the lines represented by $ax^2 + 2h xy + by^2 = 0$ be $y - m_1 x = 0$ and $y - m_2 x = 0$ then $(y - m_1 x)(y - m_2 x) = y^2 + \frac{2h}{b}xy + \frac{a}{b}x^2 = 0$

$$\Rightarrow m_1 + m_2 = -\frac{2h}{b}, m_1 m_2 = \frac{a}{b}$$

2. Angle between two Lines

If $a + b \neq 0$ and θ is the actual angle between the lines $ax^2 + 2hxy + by^2 = 0$, then

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

Note: Lines $ax^2 + 2hxy + by^2 = 0$ are mutually perpendicular iff a + b = 0

3. Equation of the Bisectors of the Angles between the Lines $ax^2 + 2h xy + by^2 = 0$

The equation of bisectors is $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$

4. General equation of Second Degree

The equation, $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, is the general second degree equation.

It represents a pair of straight lines if

$$\Delta = abc + 2 fgh - af^{2} - bg^{2} - ch^{2} = 0$$

if
$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

otherwise it represents a conic (i.e., if $abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0$)

Circle and Family of circles

i.e.,

- 1. The equation of a circle with centre (h, k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$. If the centre is at the origin, the equation of circle is $x^2 + y^2 = r^2$.
- 2. Equation of the circle on the line segment joining (x_1, y_1) and (x_2, y_2) as diameter is $(x x_1)(x x_2) + (y y_1)(y y_2) = 0$
- **3.** The general equation of a circle is

 $x^{2} + y^{2} + 2gx + 2fy + c = 0$

Where g, f, c are constants. The centre is (-g, -f) and the radius is $\sqrt{g^2 + f^2 - c}, (g^2 + f^2 \ge c).$

Note : A general equation of second degree

$$a x^{2} + 2h xy + by^{2} + 2gx + 2fy + c = 0$$

In x, y represents a circle if

(i) Coefficient of x^2 = coefficient of y^2 i.e., $a = b \neq 0$

- (ii) Coefficient of xy is zero, i.e. h = 0.
- **4.** The equation of the circle through three non-collinear points A (x_1, y_1) , B (x_2, y_2) , C (x_3, y_3) is

$$\begin{vmatrix} x^{2} + y^{2} & x & y & 1 \\ x_{1}^{2} + y_{1}^{2} & x_{1} & y_{1} & 1 \\ x_{2}^{2} + y_{2}^{2} & x_{2} & y_{2} & 1 \\ x_{3}^{2} + y_{3}^{2} & x_{3} & y_{3} & 1 \end{vmatrix} = 0$$

5. The point P (x_1, y_1) lies outside, on or inside the circle

$$S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$$
. according as

$$S_1 \equiv x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c > = or < 0.$$

6. The parametric co-ordinates of any points on the circle

$$(x-h)^2 + (y-k)^2 = r^2$$
 are given by
 $(h+r\cos\theta, k+r\sin\theta), (0 \le \theta < 2\pi)$

7. The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at the point (x_1, y_1) is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$ and that of the normal is

$$y - y_1 = \frac{y_1 + f}{x_1 + g} (x - x_1)$$

The equation of tangent to the circle $x^2 + y^2 = r^2$ at the point (x_1, y_1) is

 $xx_1 + yy_1 = r^2$ and that of the normal $\frac{x}{x_1} = \frac{y}{y_1}$.

8. The general equation of a line with slope m and which is tangent to a circle

$$x^{2} + y^{2} = a^{2}$$
 is $y = mx \pm a \sqrt{(1 + m^{2})}$.

9. The locus of point of intersection of two perpendicular tangents is called the director circle. The director circle of the circle

 $x^2 + y^2 = a^2$ is $x^2 + y^2 = 2a^2$.

10. Equation of the chord of the circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ in terms of its middle point (x_1, y_1) is

 $T = S_1$

Where

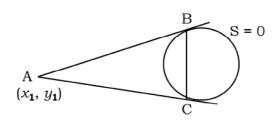
$$T = xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c; S_1 = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$$

11. Equation of the Chord of contact

Equation of the chord of contact of the circle

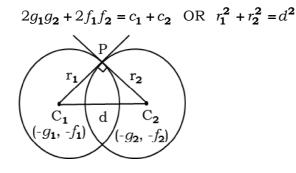
 $x^2 + y^2 + 2gx + 2fy + c = 0$

is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$



12. Length of tangent = $\sqrt{(x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c)} = \sqrt{S_1}$

13. Condition of orthogonality of two circles



14. Pair of tangents

Tangents are drawn from P(x_1 , y_1) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ Then equation of pair of tangents is

- **15. Radical Axis :** The equation of radical-axis if two circles $S_1 = 0$ and $S_2 = 0$ is given by $S_1 S_2 = 0$ (coefficient of x^2 , y^2 in S_1 and S_2 are 1).
- 16. Family of Circles

Let $S \equiv x^2 + y^2 + 2gx + 2fy + C = 0$

 $S' \equiv x^2 + y^2 + 2g'x + 2f'y + C' = 0$

and L = px + qy + r = 0, then

 (i) If S = 0 and S' = 0 intersect in real and distinct points, S+λS'=0(λ ≠ −1) represents a family of circles passing through these points. S - S' = 0 (for λ = −1) represents the common chord of the circles S = 0 and S' = 0.

Conic Section

Conic is the locus of a point moving in a plane so that the ratio of its distance from a fixed point (known as focus) to its distance from a fixed line (known as directrix) is constant. This ratio is known as Eccentricity and is denoted by e.

If e = 1, then locus is a **Parabola**.

If e < 1, then locus is an **Ellipse.**

If e > 1, then locus is a **Hyperbola**.

Nature of Conics

The equation of conics is represented by the general equation of second degree

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, when its discriminant, $\Delta \neq 0$.

The discriminant of the above equation is given by

 $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2$

The following table shows the nature of conic for different condition on a, b and h.

Condition	Nature of Conic	
h = 0, a = b	a Circle	
$ab - h^2 = 0$	a Parabola	
$ab - h^2 > 0$	an Ellipse	
$ab-h^2 < 0$	a Hyperbola	
$ab - h^2$ and $a + b = 0$	a Rectangular hyperbola.	

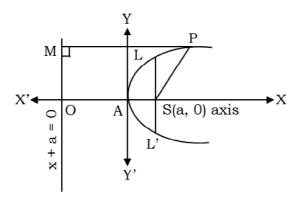
Parabola

1. Standard form of a Parabola

The general form of standard parabola is $y^2 = 4ax$, where *a* is constant.

2. Important Properties

- (i) SP = PM and AS = AO
- (ii) Vertex is at origin $A \equiv (0,0)$
- (iii) Focus is at $S \equiv (a, 0)$
- (iv) Directrix is x + a = 0
- (v) Axis is y = 0 (x-axis)
- (vi) Length of latus rectum = LL' = 4a
- (vii) Ends of the latus rectum are L = (a, 2a) and L'(a, -2a).
- (viii) The parametric equation is : $x = at^2$, y = 2at.



3. General equation of a parabola

$$(x-a)^{2} + (y-b)^{2} = \frac{(lx+my+n)^{2}}{l^{2}+m^{2}}$$

This equation is of the form

 $(mx - ly)^2 + 2gx + 2fy + C = 0$

Which is the general equation of a parabola.

4. Position of a Point (h, k) with respect to a Parabola y² = 4 ax Let P be any point (h, k). Now P will lie outside, on or inside the parabola according as

 $\left(k^2 - 4ah\right) > = 0.$

5. Equation of the tangent

Equation of tangents in terms of slope, $y = mx + \frac{a}{m}, m \neq 0$.

The equation of the tangent at any point (x_1, y_1) on the parabola $y^2 = 4ax$ is $yy_1 = 2a(x + x_1)$

Corollary 1: Equation of tangent at any point having parameter 't' is

 $ty = x + at^2$ Slope of tangent is $\frac{1}{t}$

Corollary 2: Co – ordinates of the point of intersection of tangents at 't₁' and 't₂' is $\{at_1t_2, a(t_1 + t_2)\}$.

Corollary 3 : If the chord joining ' t_1 ' and ' t_2 ' is a focal chord, then $t_1 t_2 = -1$.

$$\Rightarrow t_2 = \frac{-1}{t_1}$$

Hence if one extremity of a focal chord is $(at_1^2, 2at_1)$, then the other

extremity
$$\left(at_{\mathbf{2}}^{\mathbf{2}}, at_{\mathbf{2}}\right)$$
 becomes $\left(\frac{a}{t_{\mathbf{1}}^{\mathbf{2}}}, -\frac{2a}{t_{\mathbf{1}}}\right)$.

6. Equation of the Normal

Equation of normal at any point 't' is

 $y = -tx + 2at + at^{3}$

Slope of normal is *-t*.

7. Equation of the Normal in terms of slope

 $y = mx - 2 am - am^3$

at the point $(am^2, -2am)$

Hence any line y = mx + c will be a normal to the parabola if $c = -2 am - am^3$.

8. Equation of chord with mid point (x_1, y_1)

The Equation of the chord of parabola $y^2 = 4ax$, whose mid point be (x_1, y_1) is

 $T = S_1$

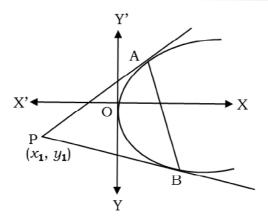
Where $T = yy_1 - 2a(x + x_1) = 0$

and $S_1 = y_1^2 - 4ax_1 = 0$

9. Chord of Contact

If PA and PB be the tangents through point $P(x_1, y_1)$ (see Figure) to the parabola $y^2 = 4 ax$, then the equation of the chord of contact AB is

 $yy_1 = 2a (x+x_1)$ or T = 0 at (x_1, y_1)



10. Pair of Tangents

If P (x_1 , y_1) be any point lies outside the parabola $y^2 = 4 ax$, and a pair of tangents PA, PB can be draw to it from P, (see Figure) then the equation of pair of tangents PA and PB is

 $SS_1 = T^2$

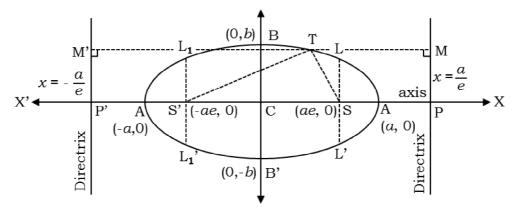
Where, $S \equiv y^2 - 4ax = 0$

Ellipse

1. Standard form of an Ellipse

The general form of standard ellipse is :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a > b)$$
, where a and b are constants. (see Figure below)



2. Important Properties

- (i) ST = e TM
- (ii) Co-ordinate of centre C (0,0)
- (iii) Equation of directrix $x = \pm a / e$
- (iv) Equation of latus rectum $x = \pm ae$

3. General Equation of an Ellipse

$$(l^{2} + m^{2})\{(x-a)^{2} + (y-b)^{2}\} = e^{2}(lx + my + n)^{2}$$

4. Parametric Equation of an Ellipse

The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are

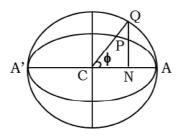
 $x = a \cos \phi$, $y = b \sin \phi$, where ϕ is the parameter.

5. Auxiliary Circle and Eccentric angle

The circle described on the major axis of an ellipse as diameter is called its auxiliary circle (see Figure) .

- Lakshya Educare

137



The equation of the auxiliary circle is

$$x^2 + y^2 = a^2$$

 $\therefore Q \equiv (a \cos \phi, a \sin \phi) \text{ and } P \equiv (a \cos \phi, b \sin \phi)$

 $(\phi = eccentric angle)$

6. Condition for tangency

A line y = mx + c is tangent to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $c = \pm \sqrt{\left(a^2m^2 + b^2\right)}$.

Corollary 1 : $x \cos \alpha + y \sin \alpha = p$ is a tangent if

$$p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha.$$

Corollary 2: lx + my + n = 0 is a tangent if $n^2 = a^2 l^2 + b^2 m^2$.

7. Equation of the Tangent

(i) The equation of the tangent at any point (x_1, y_1) on the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ is } \frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1.$$

(ii) The equation of tangent at any point ϕ' is $\frac{x}{a}\cos\phi + \frac{y}{b}\sin\phi = 1$.

8. Equation of the Normal

- (i) The equation of the normal at any point (x_1, y_1) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ is } \frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$
- (ii) The equation of the normal at any point $|\phi|$ is

 $ax \sec \phi - by \csc \phi = a^2 - b^2$

9. Equation of chord with mid point (x_1, y_1)

The equation of the chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, whose mid point be (x_1, y_1) is T = S₁

Where
$$T \equiv \frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1 = 0$$
; $S_1 \equiv \frac{x_1^2}{a^2} + \frac{y^2}{b^2} = 1$

10. Chord of Contact

If PA and PB be the tangents through point P(x_1 , y_1) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then the equation of the chord of contact AB is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.

11. Pair of tangents

Let P(x_1 , y_1) be any point lying outside the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and a pair of tangents PA, PB can be drawn to it from P. then the equation of pair of tangents of PA and PB is

 $SS_1 = T^2$

12. Important properties of an Ellipse

- (i) If α , β , γ , δ be the eccentric angles of the four concyclic points on an ellipse then $\alpha + \beta + \gamma + \delta = 2n\pi$, $n \in I$
- (ii) The necessary and sufficient condition for the normal at three α , β , γ points on the ellipse to be concurrent is

$$\sin(\beta + \gamma) + \sin(\gamma + \alpha) + \sin(\alpha + \beta) = 0$$

Hyperbola

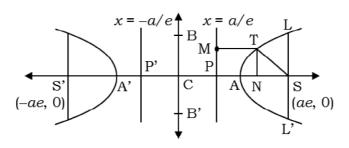
1. Standard form of a Hyperbola

If (a, b) is the focus S, and lx + my + n = 0 is the equation of directrix, then the standard equation of a hyperbola is

$$(l^{2} + m^{2})\{(x-a)^{2} + (y-b)^{2}\} = e^{2}(lx + my + n)^{2}$$

- Lakshya Educare

139



2. Important Properties

(i) ST = e TM

- (ii) Co-ordinates of vertices A and A' are $(\pm a, 0)$.
- (iii) Co-ordinates of the foci S and S' are $(\pm ae, 0)$.
- (iv) Equation of directrix $x = \pm a / e$.
- (v) Equation of latus rectum $x = \pm ae$ and length $LL' = L_1L_1 = \frac{2b^2}{a}$.

3. Parametric Equation of the Hyperbola

The parametric equations of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $x = a \sec \phi, y = b \tan \phi$, where ϕ is the parameter.

4. Condition for Tangency

A line y = mx + c is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ iff $c^2 = a^2m^2 - b^2$.

5. Equation of the Tangent

(i) The equation of the tangent at any point (x_1, y_1) on the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

(ii) The equation of tangent at any point ϕ' is $\frac{x}{a}\sec\phi-\frac{y}{b}\tan\phi=1$

6. Equation of Chord with Midpoint (x_1, y_1)

The equation of the chord of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ whose mid point be (x_1, y_1) is T = S₁

Where
$$T = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1 = 0$$
, $S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 = 0$

7. Chord of Contact

If two tangents are drawn through a point (x_1, y_1) to the hyperbola $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then the equation of the chord of contact is

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1 \text{ or } T = 0 \text{ at}(x_1, y_1)$$

8. Pair of Tangents

If a pair of tangents is drawn from any point (x_1, y_1) outside the hyperbola, then the equation of pair of tangent is

 $SS_1 = T^2$

Where
$$S = \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$$
; $S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1 = 0$; $T = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1 = 0$

9. Asymptotes of Hyperbola

A hyperbola has two asymptotes passing through its centre. Asymptotes

of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are given by $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$.

Note : Angle between asymptotes = $2 \tan^{-1} \left(\frac{b}{a} \right)$.

10. Rectangular Hyperbola

If asymptotes of the standard hyperbola are perpendicular to each other it is known as rectangular hyperbola.

Properties of Rectangular Hyperbola $xy = c^2$

— Lakshya Educare

141

'ť

(i) Eccentricity,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{2}$$
.
(ii) Since $x = ct$, $y = \frac{c}{t}$ satisfies $xy = c^2$, $(x, y) = \left(ct, \frac{c}{t}\right)$ is called a point with parameter t .
(iii) Equation of the chord joining t_1 and t_2 is
 $x + y t_1 t_2 - c(t_1 + t_2) = 0$
(iv) Equation of tangent at 't' is
 $x + yt^2 - 2ct = 0$
(v) Equation of normal at 't' is
 $xt^2 - yt - ct^4 + c = 0$
(vi) Equation of tangent at (x_1, y_1) is

$$xy_1 + yx_1 = 2c^2$$

(vii) Equation of normal at (x_1, y_1) is

$$xx_1 - yy_1 = x_1^2 - y_1^2$$

UNIT - 13 : THREE DIMENSIONAL GEOMETRY

- 1. **Distance formula:** The distance between two points $P(x_1, y_1, z_1)$ and $Q(x_1, y_2, z_2)$ in space is given by $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
- 2. Section formula: If R (x, y, z) divides the join of P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) in the ratio $m_1 : m_2 (m_1, m_2 > 0)$ then

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}; y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}; z = \frac{m_1 z_2 + m_2 z_1}{m_1 + m_2}$$

(divides internally), and
$$x = \frac{m_1 x_2 - m_2 x_1}{m_1 - m_2}; y = \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2}; z = \frac{m_1 z_2 - m_2 z_1}{m_1 - m_2}$$
(divides externally)
Lakshva Educare

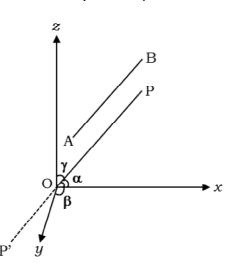
3. Centroid of a triangle: The centroid of a triangle ABC whose vertices are $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ are

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$

4. Direction Cosines (d.c.'s):

If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are direction cosines of a given line AB, then

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$



- 5. Direction ratios (d.r.'s): direction ratios of a line are numbers which are proportional to the direction cosines of a line. Direction ratios of a line PQ, where P and Q are (x_1, y_1, z_1) and (x_2, y_2, z_2) respectively, are $x_2 x_1, y_2 y_1$ and $z_2 z_1$.
- 6. **Relation between the d.c.'s and d.r.'s:** If *a*, *b*, *c* are the d.r.'s and *l*, *m*, *n* are the d.c.'s then

$$l = \pm \frac{a}{\sqrt{\left(a^2 + b^2 + c^2\right)}}, \ m = \pm \frac{b}{\sqrt{\left(a^2 + b^2 + c^2\right)}}, \ n = \pm \frac{c}{\sqrt{\left(a^2 + b^2 + c^2\right)}}$$

7. Angle between two Lines

$$\cos \theta = \pm \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{\left(a_1^2 + b_1^2 + c_1^2\right)} \sqrt{\left(a_2^2 + b_2^2 + c_2^2\right)}}$$

and
$$\sin \theta = \pm \frac{\sqrt{\sum \left(b_1 c_2 - b_2 c_1\right)^2}}{\sqrt{\left(a_1^2 + b_1^2 + c_1^2\right)} \sqrt{\left(a_2^2 + b_2^2 + c_2^2\right)}}$$

8. Angle between two Planes

If θ be the angle between the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ then

$$\theta = \cos^{-1} \left(\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{\left(a_1^2 + b_1^2 + c_1^2\right)} \sqrt{\left(a_2^2 + b_2^2 + c_2^2\right)}} \right)$$

Also, **1.** If planes are perpendicular then $a_1a_2 + b_1b_2 + c_1c_2 = 0$

2. If planes are parallel then, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

9. Length of Perpendicular from a point to a Plane

The length of perpendicular from (x_1, y_1, z_1) on ax + by + cz + d = 0 is

$$\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{(a^2 + b^2 + c^2)}}$$

10. Family of Planes

Any plane passing through the line of intersection of the planes ax + by + cz + d = 0 and $a_1x + b_1y + c_1z + d_1 = 0$ can be represented by the equation

 $(ax + by + cz + d) + \lambda(a_1x + b_1y + c_1z + d_1) = 0$

UNITS – 14 : VECTOR ALGEBRA

Position Vector of $R(\overline{r})$ dividing \overline{PQ} in the ratio m: n is 1. $\overline{r} = \frac{m\overline{q} + n\overline{p}}{m+n}$ [internal division] and $\overline{r} = \frac{m\overline{q} - n\overline{p}}{m - n}$ [external division] If $\overline{a} = a_1 \overline{i} + a_2 \overline{j} + a_3 \overline{k}$, 2. $\overline{b} = b_1 \overline{i} + b_2 \overline{j} + b_3 \overline{k}$ $\overline{a}.\overline{b} = |\overline{a}||\overline{b}|\cos \theta$; also $\overline{a}.\overline{b} = a_1b_1 + a_2b_2 + a_3b_3$ $\cos \theta = \frac{\overline{a}.\overline{b}}{|\overline{a}||\overline{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$ $\overline{a}.\overline{b} = 0 \implies a = 0 \text{ or } b = 0 \text{ or } a \perp b$ 3. $\overline{a} \times \overline{b} = |\overline{a}| |\overline{b}| \sin \theta \overline{e}; \ |\overline{a} \times \overline{b}| = |\overline{a}| |\overline{b}| \sin \theta$ 4. $\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a}.\overline{c})\overline{b} - (\overline{a}.\overline{b})\overline{c}$ 5. $(\bar{a} \times \bar{b}).\bar{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{vmatrix} = \bar{a}.(\bar{b} \times \bar{c}) = [\bar{a}\,\bar{b}\,\bar{c}]$ 6. $\overline{a}, \overline{b}, \overline{c}$ are coplanar if and only if $\overline{a}.(\overline{b} \times \overline{c}) = 0$. 7. Area of parallelogram OACB = $\left| \overline{a} \times \overline{b} \right|$ 8. Area of $\triangle OAB = \frac{1}{2} |\bar{a} \times \bar{b}|$

- **9.** Volume of parallelepiped = $[\overline{a} \, \overline{b} \, \overline{c}]$
- **10.** For any 3 vectors $\overline{a}, \overline{b}, \overline{c}, [\overline{a} \ \overline{b} \ \overline{c}] = [\overline{b} \ \overline{c} \ \overline{a}] = [\overline{c} \ \overline{a} \ \overline{b}]$

11. Unit vector
$$\perp^{\mathbf{r}}$$
 to \overline{a} and $\overline{b} = \pm \frac{\overline{a} \times \overline{b}}{|\overline{a} \times \overline{b}|}$ and $\sin \theta = \frac{|\overline{a} \times b|}{|\overline{a}||\overline{b}|}$

UNITS - 15 : MEASURES OF CENTRAL TENDENCY & DISPERSION

1. Arithmatic Mean (AM)

(i) Individual Series
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

(ii) Discrete Series
$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \dots + f_n x_n}{f_1 + f_2 + \dots + f_n} = \frac{1}{N} \sum_{i=1}^n f_i x_i$$

where
$$N = \sum_{i=1}^{n} f_i$$

2. Geometric Mean (GM)

(i) Individual series

G =
$$(x_1, x_2, \dots, x_n)^{1/n}$$

(ii) Discrete series

$$\mathbf{G} = (x_1^{f_1} \; x_2^{f_2} \; \; x_n^{f_n})^{1/\mathbb{N}}$$
 , where $\mathbb{N} = \sum_{i=1}^n f_i$

3. Harmonic Mean (HM)

$$H = \frac{1}{\frac{1}{n} \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right)}$$

or $\frac{1}{H} = \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}$ (Individual series)
and $\frac{1}{H} = \frac{1}{\frac{1}{N} \sum_{i=1}^n \frac{f_i}{x_i}}$ (Discrete series)

If $x_1, x_2, \ldots, x_n > 0$, then it is known that

 $AM \ge GM \ge HM$

4. Median

$$M = l + \frac{h}{f} \left(\frac{N}{2} - C \right)$$
 where, $N = \sum_{i=1}^{n} f_i$

h = the width of the median class

C = the cumulative frequency (c.f.) of the preceding to the median class.

f = the frequency of the median class

l = the lower limit of the median class

5. Mode

Mode (for continuous series) = $l + \frac{(f_1 - f_0)}{(2f_1 - f_2 - f_0)} \times h$

where l = the lower limit of the modal class (the class having maximum

frequency)

 f_1 = frequency of the modal class

 f_0 = frequency of the class preceding the modal class

 f_2 = frequency of the class succeeding the modal class

h = width of the modal class

6. Mean - Deviation (MD)

$$MD = \frac{1}{N} \sum_{i=1}^{n} f_i |x_i - A|, \text{ where } N = \sum_{i=1}^{n} f_i$$

7. Standard Deviation (SD)

$$\boldsymbol{\alpha^2}$$
 (Variance) = $\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$

and Standard deviation = $\sqrt{Variance}$

UNITS - 16 : PROBABILITY

1. Definition

The probability of occurrence of an event is the ratio of the number of cases in its favour to the total number of cases (equally likely).

 $P(E) = \frac{n(E)}{n(S)} = \frac{\text{number of Favourable cases}}{\text{total number of cases}}$

2. Types of Events

- (i) **Equally likely Events :** The given events are said to be equally likely, if none of them is expected to occur in preference to the other.
- (ii) **Independent Events :** Two events are said to be independent if the occurrence of one does not depend upon the other. If a set of events E_1, E_2, \ldots, E_n are independent events, then

 $P(E_1 \cap E_2 \cap E_3 \cap \dots \cap E_n) = P(E_1) \cdot P(E_2) \cdot \dots \cdot P(E_n)$

(iii) **Mutually Exclusive Events :** A set of events is said to be *mutually exclusive* if occurrence of one of them precludes the occurrence of any of the remaining events.

If a set of events E_1 , E_2 ,, E_n are mutually exclusive events, then

 $P(E_1 \cap E_2 \cap E_3 \cap \dots \cap \cap E_n) = \phi$

then $P(E_1 \cup E_2 \cup E_3 \cup \dots \cup E_n) = P(E_1) + P(E_2) + \dots P(E_n)$

(iv) **Exhaustive Events :** A set of events is said to be *Exhaustive* if the performance of the experiment results in the occurrence of at least one of them.

If a set of Events E_1, E_2, \ldots, E_n are exhaustive events, then

 $P(E_1 \cup E_2 \cup E_3 \cup \dots \cup \cup E_n) = 1$

(v) **Compound Events :** If E_1, E_2, \dots, E_n are mutually exclusive and exhaustive events, then if E is any event,

- Lakshya Educare

$$P(E) = \sum_{i=1}^{n} P(E \cap E_i) = \sum_{i=1}^{n} P(E_i) \cdot P\left(\frac{E}{E_i}\right), \text{ if } P(E_i) > 0.$$

3. Conditional Probability

The probability of occurrence of an events E_1 , given that E_2 has already occurred is called the conditional probability of occurrence of E_1 on the

condition that E_2 has already occurred. It is denoted by $P\left(\frac{E_1}{E_2}\right)$

i.e.,
$$P\left(\frac{E_1}{E_2}\right) = \frac{P(E_1 \cap E_2)}{P(E_2)}, E_2 \neq \phi$$

4. Bayes's Theorem or Inverse Probability

If E_1 , E_2 ,, E_n are *n* mutually exclusive and exhaustive events such that

$$P(E_i) > 0, (0 \le i \le n)$$

and E is any event, then for $1 \le k \le n$,

$$P\left(\frac{E_{\boldsymbol{k}}}{E}\right) = \frac{P(E_{\boldsymbol{k}})P\left(\frac{E}{E_{\boldsymbol{k}}}\right)}{\sum_{\boldsymbol{k=1}}^{n} P(E_{\boldsymbol{k}})P\left(\frac{E}{E_{\boldsymbol{k}}}\right)}.$$

5. Important Results

(i) If
$$E_1$$
 and E_2 are arbitrary events, then

$$\mathrm{P}(\mathrm{E}_1 \cup \mathrm{E}_2) = \mathrm{P}(\mathrm{E}_1) + \mathrm{P}(\mathrm{E}_2) - \mathrm{P}(\mathrm{E}_1 \cap \mathrm{E}_2)$$

(ii) If E_1 , E_2 , E_3 are three events then

$$\begin{split} \mathrm{P}(\mathrm{E}_1 \cup \mathrm{E}_2 \cup \mathrm{E}_2) &= \mathrm{P}(\mathrm{E}_1) + \mathrm{P}(\mathrm{E}_2) + \mathrm{P}(\mathrm{E}_3) \\ &- \mathrm{P}(\mathrm{E}_1 \cap \mathrm{E}_2) - \mathrm{P}(\mathrm{E}_2 \cap \mathrm{E}_3) - \mathrm{P}(\mathrm{E}_3 \cap \mathrm{E}_1) + \mathrm{P}(\mathrm{E}_1 \cap \mathrm{E}_2 \cap \mathrm{E}_3) \end{split}$$

149

UNITS – 17 : TRIGONOMETRY

Trigonometric Functions and Identities

1. Measurement of an Angle

- (i) $1^{\circ} = 60$ minutes = 60' (ii) 1' = 60 seconds = 60"
- (iii) Each interior angle of a regular polygon of n sides is equal to

$$\frac{(n-2)\pi}{n}, n > 2.$$

2. Some Important Formulae and Identities

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$ $\sin(A - B) = \sin A \cos B - \cos A$ $\sin B$

 $\cos (A + B) = \cos A \cos B - \sin A \sin B$ $\cos (A - B) = \cos A \cos B + \sin A$ $\sin B$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}; \qquad \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
$$\tan(45^{0} + A) = \frac{1 + \tan A}{1 - \tan A}; \qquad \tan(45^{0} - A) = \frac{1 - \tan A}{1 + \tan A}$$
$$\sin(A + B) \sin(A - B) = \sin^{2} A - \sin^{2} B = \cos^{2} B - \cos^{2} A$$
$$\cos(A + B) \cos(A - B) = \cos^{2} A - \sin^{2} B = \cos^{2} B - \sin^{2} A$$
$$2 \sin A \cos B = \sin(A + B) + \sin(A - B) = 2 \cos A \sin B = \sin(A + B) - \sin(A - B)$$
$$2 \cos A \cos B = \cos(A + B) + \cos(A - B) = 2 \sin A \sin B = \cos(A - B) - \cos(A + B)$$
$$\sin C + \sin D = 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2} \qquad \sin C - \sin D = 2 \cos \frac{C + D}{2} \sin \frac{C - D}{2}$$
$$\cos C + \cos D = 2 \cos \frac{C + D}{2} \cos \frac{C - D}{2} \qquad \cos C - \cos D = 2 \sin \frac{C + D}{2} \sin \frac{D - C}{2}$$
$$\sin 2A = 2 \sin A \cos A = \frac{2 \tan A}{1 + \tan^{2} A} \qquad \cos 2A = \begin{cases} 1 - 2 \sin^{2} A \\ \cos^{2} A - \sin^{2} A = \frac{1 - \tan^{2} A}{1 + \tan^{2} A} \\ 2 \cos^{2} A - 1 \end{cases}$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^{2} A} \qquad \sin^{2} A = \frac{1 - \cos 2A}{2} \ \operatorname{and} \cos^{2} A = \frac{1 + \cos 2A}{2} \\ \operatorname{Lakshya} Educare$$

 $\sin 3A = 3 \sin A - 4 \sin^3 A;$

 $\cos 3A = 4 \cos^3 A - 3 \cos A$

 $\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$

3. Conditional Identities

If $A + B + C = 180^{\circ}$, then

- (i) $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$
- (ii) $\cos 2A + \cos 2B + \cos 2C = -1 4 \cos A \cos B \cos C$
- (iii) $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$
- (iv) $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
- (v) $\tan A + \tan B + \tan C = \tan A \tan B \tan c$
- (vi) $\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$

4. Trigonometrical Ratios

- (i) $\sin^4 \theta + \cos^4 \theta = 1 2\sin^2 \theta \cos^2 \theta$
- (ii) $\sin^{6}\theta + \cos^{6}\theta = 1 3\sin^{2}\theta\cos^{2}\theta$
- (iii) $\sin^2 \theta + \cos^4 \theta = \cos^2 \theta + \sin^4 \theta = 1 \sin^2 \theta \cos^2 \theta$
- (iv) $\sin^2 \theta + \csc^2 \theta \ge 2$, $\cos^2 \theta + \sec^2 \theta \ge 2$ and $\sec^2 \theta + \csc^2 \theta \ge 4$

5. Some standard Results

- (i) $\tan \theta + \cot \theta = 2 \csc 2\theta$
- (ii) $\cot \theta \tan \theta = 2 \cot 2\theta$
- (iii) $\sin \theta + \cos \theta$ has the same sign as that of $\sin \left(\theta + \frac{\pi}{4} \right)$
- (iv) $\sin \theta \cos \theta$ has the same sign as that of $\sin \left(\theta \frac{\pi}{4} \right)$

(v) Maximum value of
$$a \sin x + b \cos x$$
 is $\sqrt{a^2 + b^2}$ and its minimum
value is $-\sqrt{a^2 + b^2}$.
(vi) The equation $a \sin x + b \cos x = c$ has real solutions only if
 $|c| \le \sqrt{a^2 + b^2}$, i.e., if $c^2 \le a^2 + b^2$
(vii) $\tan (x_1 + x_2 + x_3 + \dots + x_n) = \frac{S_1 - S_3 + S_5 - \dots}{1 - S_2 + S_4 - \dots}$,
where S_r stands for the sum of the products of
 $\tan x_1$, $\tan x_2$, $\tan x_3$, $\tan x_n$ taken r at a time. For example,
 $\tan (A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B} \tan C - \tan C \tan A}$
 $\tan (A + B + C + D) = \frac{\sum \tan A - \sum \tan A \tan B \tan C}{1 - \sum \tan A \tan B + \tan A \tan B} \tan C \tan D}$
In particular, $\tan 4A = \frac{4 \tan A - 4 \tan^3 A}{1 - 6 \tan^2 A + \tan^4 A}$
(viii) " m, n " theorem
If D is a point on the side BC of a triangle ABC
such that BD : DC :: $m : n$,
 $\angle ADC = \theta, \angle BAD = \alpha, \angle CAD = \beta$
then
 $(m + n) \cot \theta = m \cot \alpha - n \cot \beta$ and
 $(m + n) \cot \theta = n \cot B - m \cot C$

(ix)
$$\cos\theta\cos 2\theta\cos 2^2\theta\ldots\cos 2^n\theta$$

$$=\frac{\sin 2^{n+1}\theta}{2^{n+1}\sin\theta} \text{ for all } n \in \mathbb{N}$$

(x)
$$(2 \cos \theta - 1)(2 \cos 2\theta - 1).(2 \cos 2^2 \theta - 1) \dots (2 \cos 2^n \theta - 1)$$

 $2 \cos 2^{n+1} \theta + 1$ for all $n \in \mathbb{N}$

$$= \frac{1}{2\cos\theta + 1} \text{ for all } n \in \mathbb{N}$$
(xi) $\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots \sqrt{2 + 2\cos 2^n \theta}}}} = 2\cos\theta$

for all $n \in \mathbb{N}$, where there are n square root signs on the left hand side.

(xii)
$$\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \dots + \sin(\alpha + n - 1\beta)$$

$$=\frac{\sin\left(\frac{\boldsymbol{\alpha}+\boldsymbol{\alpha}+\overline{n-1}\boldsymbol{\beta}}{2}\right)\sin\frac{n\boldsymbol{\beta}}{2}}{\sin\left(\frac{\boldsymbol{\beta}}{2}\right)}, n \in \mathbb{N}$$

(xiii) $\cos \alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos(\alpha + \overline{n-1}\beta)$

$$=\frac{\cos\left(\frac{\boldsymbol{\alpha}+\boldsymbol{\alpha}+\overline{n-1}\boldsymbol{\beta}}{2}\right)\sin\frac{n\boldsymbol{\beta}}{2}}{\sin\left(\frac{\boldsymbol{\beta}}{2}\right)}, n \in \mathbb{N}$$

Trignometric Equations

$$\sin x = 0 \Leftrightarrow x = n\pi, n \in I$$

$$\cos x = 0 \Leftrightarrow x = (2n+1)\frac{\pi}{2}, n \in I$$

$$\tan x = 0 \Leftrightarrow x = n\pi, n \in I$$

$$\sin x = \sin \alpha \Leftrightarrow x = n\pi + (-1)^n \alpha, n \in I$$

$$\cos x = \cos \alpha \Leftrightarrow x = 2n\pi \pm \alpha, n \in I$$

$$\tan x = \tan \alpha \Leftrightarrow x = n\pi \pm \alpha, n \in I$$

$$\sin^2 x = \sin^2 \alpha \Leftrightarrow x = n\pi \pm \alpha, n \in I$$

$$\cos^{2} x = \cos^{2} \alpha \Leftrightarrow x = n\pi \pm \alpha, n \in I$$
$$\tan^{2} x = \tan^{2} \alpha \Leftrightarrow x = n\pi \pm \alpha, n \in I$$

Properties and Solution of Triangles

1. Relations between the Sides and Angles of a Triangle

(i) Sine Formulae

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, where R is the circumradius of the triangle.

or $a = k \sin A$, $b = k \sin B$, $c = k \sin C$ where k is some nonzero constant.

or
$$\sin A = \frac{a}{k}$$
, $\sin B = \frac{b}{k}$, $\sin C = \frac{c}{k}$, *k* being some non-zero constant.

(ii) Cosine Formulae

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}, \cos B = \frac{c^2 + a^2 - b^2}{2ca} \text{ and } \sin C = \frac{a^2 + b^2 - c^2}{2ab}$$

(iii) **Projection Formulae**

 $a = b \cos C + c \cos B$; $b = c \cos A + a \cos C$; $c = a \cos B + b \cos A$

(iv) Napier's Analogy

$$\tan\frac{\mathbf{B}-\mathbf{C}}{2} = \frac{b-c}{b+c}\cot\frac{\mathbf{A}}{2}; \ \tan\frac{\mathbf{C}-\mathbf{A}}{2} = \frac{c-a}{c+a}\cot\frac{\mathbf{B}}{2}; \ \tan\frac{\mathbf{A}-\mathbf{B}}{2} = \frac{a-b}{a+b}\cot\frac{\mathbf{C}}{2}$$

(v) Semi-sum Formulae

$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}; \ \sin\frac{B}{2} = \sqrt{\frac{(s-a)(s-c)}{ac}}; \ \sin\frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}; \qquad \cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ac}}; \qquad \cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$$
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}; \qquad \tan \frac{B}{2} = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}; \qquad \tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$
$$\text{where, } s = (a+b+c) / 2$$
$$\Delta = \frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ac \sin B, \text{ where } \Delta = \text{Area of } \Delta \text{ABC}$$
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)} \qquad (\text{Hero's formula})$$

2. Circumradius (R) and Inradius (r) Formulae

(i)
$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = \frac{abc}{4\Delta}$$

(ii)
$$r = \frac{\Lambda}{s} = (s-a)\tan\frac{\Lambda}{2} = (s-b)\tan\frac{B}{2} = (s-c)\tan\frac{C}{2}$$

(iii)
$$r = 4R \sin\frac{\Lambda}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

Inverse Trigonometric Functions Important Formulae

$$y = \sin^{-1}x \text{ iff } x = \sin y, |x| \le 1, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$y = \cos^{-1}x \text{ iff } x = \cos y, |x| \le 1, y \in [0, \pi]$$

$$y = \tan^{-1}x \text{ iff } x = \tan y, x \in \mathbb{R}, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$y = \cot^{-1}x \text{ iff } x = \cot y, x \in \mathbb{R}, y \in (0, \pi)$$

$$y = \sec^{-1}x \text{ iff } x = \sec y, |x| \ge 1, y \in \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$$

$$y = \csc^{-1}x \text{ iff } x = \csc y, |x| \ge 1, y \in \left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right]$$

$$\begin{split} \sin^{-1} x + \cos^{-1} x &= \frac{\pi}{2}, |x| \leq 1 & \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R} \\ \sec^{-1} x + \csc^{-1} x &= \frac{\pi}{2}, |x| \geq 1 & \sin^{-1}(-x) = -\sin^{-1}x, |x| \leq 1 \\ \cos^{-1}(-x) &= \pi - \cos^{-1}x, |x| \leq 1 & \tan^{-1}(-x) = -\tan^{-1}x, x \in \mathbb{R} \\ \cos^{-1}\left(\frac{1}{x}\right) &= \sec^{-1}x, |x| \geq 1 & \sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}x, 0 < |x| \leq 1 \\ \sin^{-1}\left(\frac{1}{x}\right) &= \csc^{-1}x, |x| \geq 1 & \csc^{-1}\left(\frac{1}{x}\right) = \sin^{-1}x, 0 < |x| \leq 1 \\ \tan^{-1}\left(\frac{1}{x}\right) &= \cot^{-1}x, x > 0 & \sin(\cos^{-1}x) = \cos(\sin^{-1}x) = \sqrt{1-x^2}, |x| \leq 1 \\ \sec(\csc^{-1}x) &= \csc(\sec^{-1}x) = \frac{|x|}{\sqrt{x^2-1}}; |x| > 1 \\ \tan^{-1}x + \tan^{-1}y &= \tan^{-1}\left(\frac{x+y}{1-xy}\right), xy < 1 & \tan^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} + \tan^{-1}x, x < 1 \\ \tan^{-1}\left(\frac{1-x}{1+x}\right) &= \frac{\pi}{4} - \tan^{-1}x, x > -1 & \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x, |x| < 1 \\ 2\sin^{-1}x &= \sin^{-1}\left(2x\sqrt{1-x^2}\right), |x| \leq \frac{1}{\sqrt{2}} & 2\cos^{-1}x = \cos^{-1}(2x^2-1), x \in [0, 1] \\ 3\sin^{-1}x &= \sin^{-1}(3x-4x^3), |x| \leq \frac{1}{2} & 3\cos^{-1}x = \cos^{-1}(4x^3-3x), \frac{1}{2} \leq x \leq 1 \\ \sin^{-1}x + \sin^{-1}y &= \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) \\ for those values of x and y in [-1, 1] for which LHS lies in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \end{split}$$$

$$\cos^{-1} x + \cos^{-1} y = \cos^{-1} \left(xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right)$$

where x, y are real numbers in [-1, 1] such that LHS lies in the interval $[0, \pi]$.

(i)
$$\sin^{-1} x + \sin^{-1} y = \pi$$
 iff $x = y = 1$

(ii)
$$\sin^{-1} x + \sin^{-1} y = -\pi$$
 iff $x = y = -1$

(iii) $\cos^{-1} x + \cos^{-1} y = 0$ iff x = y = 1

(iv)
$$\cos^{-1} x + \cos^{-1} y = 2\pi$$
 iff $x = y = -1$

(v)
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\cot^{-1}x = 2\tan^{-1}\left(\frac{1}{x}\right)$$
 for $x \ge 1$

(vi)
$$\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$
, where $xy > 1$, $x > 0$, $y > 0$.

UNITS – 18 : MATHEMATICAL REASONING

- (i) $p \wedge q$ is true if p and q are both true.
- (ii) $p \lor q$ is false if p and q are both false.
- (iii) If p is true, then ~ p is false.If p is false, then ~ p is true.
- (iv) $p \Rightarrow q$ is true in all cases except when p is true and q is false.

(v) $p \Leftrightarrow q$

- (a) $p \Leftrightarrow q$ is true if both p and q have same truth value.
- (b) $p \Leftrightarrow q$ is false if p and q have opposite truth value.
- (vi) If p is any statement, t is tautology and c is contradiction, then :

(a)	$p \lor t \equiv t$	(b)	$p \wedge t \equiv p$
(c)	$p \lor c \equiv p$	(d)	$p \wedge c \equiv c$

Complement Laws :

(a) $p \lor (\sim p) \equiv t$ (b) $p \land (\sim p) \equiv c$ (c) $\sim t \equiv c$ (d) $\sim c \equiv t$

Involution Laws :

(a) $\sim (\sim p) = p$

DeMorgan's Laws :

If p and q are any two statements, then :

(a) $\sim (p \lor q) \equiv (\sim p) \land (\sim q)$ (b) $\sim (p \land q) \equiv (\sim p) \lor (\sim q)$

Laws of Contrapositive :

 $p \Rightarrow q \equiv \sim q \Rightarrow \sim p$

(vii) If a compound statement contains variables t (tautology) and c (contradiction), then its dual is obtained by replacing t by c and c by t in addition to the replacement of \lor and \land by \land and \lor respectively.

Types of Statements :

- i) If a statement is always true, then the statement is called "tautology."
- ii) If a statement is always false, then the statement is called "contradiction."
- iii) If a statement is neither tautology nor a contradiction, then it is called "contingency."

Converse, Contrapositive, Inverse of a Statement

If $p \rightarrow q$ is a hypothesis, then

- i) Converse $q \rightarrow p$.
- ii) Contrapositive $\sim q \rightarrow \sim p$.
- iii) Inverse ~ $p \rightarrow ~ q$.