BRAIN MAP

GRAVITATION

CLASS XI

Newton's Law of Gravitation

Gravitational force (F) between two bodies is directly proportional to product of masses and inversely proportional to square of the distance between them.

$$\vec{F} = -\frac{Gm_1m_2}{r^2} \cdot \hat{r}$$

Law of orbits: Every planet revolves around the sun in an elliptical orbit and the sun is situated at one of its foci.

Kepler's Laws of **Planetary Motion**

Law of areas: The areal velocity of the planet around the sun is constant

i.e.,
$$\frac{dA}{dt}$$
 = a constant

Acceleration due to gravity

- For a body falling freely under gravity, the acceleration in the body is called acceleration due to gravity.
- Relationship between g and G $g = \frac{GM_e}{R^2} = \frac{4}{3}\pi GR_e \rho$

where G = gravitational constant ρ = density of earth

 M_e and R_e be the mass and radius of earth

Characteristics of gravitational force

- It is always attractive.
- It is independent of the medium.
- It is a conservative and central force.
- It holds good over a wide range of distance.

revolution of a planet is directly proportional to the cube of semi major axis of the elliptical orbit.

Law of periods: The square of the time period of

Gravitational Potential Energy

Work done in bringing the given body from infinity to a point in the gravitational field.

$$U = -GMm/r$$

Gravitational potential

Work done in bringing a unit mass from infinity to a point in the gravitational

$$V = \frac{-GM}{r}$$

Escape speed

The minimum speed of projection of a body from surface of earth so that it just crosses the gravitational field of earth.

$$v_e = \sqrt{\frac{2GM}{R}}$$

Variation of acceleration due to gravity (g)

Due to altitude (h)

$$g_h = g \left(1 - \frac{2h}{R_e} \right)$$

The value of g goes on decreasing with height.

Due to depth (d)

$$g_d = g \left(1 - \frac{d}{R_e} \right)$$

The value of g decreases with depth.

Due to rotation of earth

$$g_{\lambda} = g - R_e \omega^2 \cos^2 \lambda$$

At equator, $\lambda = 0^\circ$
 $g_{\lambda_{\min}} = g - R_e \omega^2$
At poles, $\lambda = 90^\circ$

$$g_{\lambda_{\text{max}}} = g_p = g$$

Types of Satellite

Polar satellilte

- Time period: 100 min
- Revolves in polar orbit around the earth.
- Height: 500-800 km.
- Uses: Weather forecasting, military spying

Geostationary satellite

- Time period: 24 hours
- Same angular speed in same direction with earth.
- Height: 36000 km.
- Uses: GPS, satellite communication (TV)

Orbital speed of satellite

Earth's

Satellite

The minimum speed required to put the satellite into a given orbit.

$$v_0 = R_e \sqrt{\frac{g}{R_e + h}}$$

For satellite orbiting close to the earth's surface

$$v_0 = \sqrt{gR_e}$$

Time period of satellite

$$T = \frac{2\pi}{R_e} \sqrt{\frac{(R_e + h)^3}{g}}$$

For satellite orbiting close to the earth's surface

$$T = 2\pi \sqrt{\frac{R_e}{g}} = 84.6 \text{ min}$$

Energy of satellite

- Kinetic energy $K = \frac{GM_e m}{2(R_e + h)}$
- Potential energy U =
- Total energy

$$E = K + U = -\frac{GM_e m}{2(R_e + h)}$$

ALTERNATING CURRENT **ELECTROMAGNETIC WAVES**

CLASS XII

Applied across capacitor

Purely capacitive circuit

Current leads the voltage by a phase angle of $\pi/2$.

$$I = I_0 \sin(\omega t + \pi/2); I_0 = \frac{\varepsilon_0}{X_C} = \omega C \varepsilon_0$$
where $X_C = 1/\omega C$

Alternating Current

Current which changes continuously in magnitude and periodically in direction.

Alternating voltage

 $\varepsilon = \varepsilon_0 \sin \omega t$

Applied across resistor

Purely resistive circuit

Alternating voltage is in phase with current.

$$I = \varepsilon / R = I_0 \sin \omega t$$

Applied across inductor

Purely inductive circuit

Current lags behind the voltage by a phase angle of $\pi/2$.

$$I = I_0 \sin(\omega t - \pi/2); I_0 = \varepsilon_0/X_L = \varepsilon_0/\omega L$$

where $X_I = \omega L$

Transformer

Transformer ratios

$$\frac{\varepsilon_S}{\varepsilon_P} = \frac{I_P}{I_S} = \frac{N_S}{N_P} = k$$

Efficiency of a transformer,

$$\eta = \frac{\text{output power}}{\text{input power}} = \frac{\varepsilon_S I_S}{\varepsilon_P I_P}.$$

Step-up transformer,

 $\varepsilon_S > \varepsilon_P$, $I_S < I_P$ and $N_S > N_P$.

Step-down transformer,

 $\varepsilon_{S} < \varepsilon_{P}, I_{S} > I_{P}$ and $N_{S} < N_{P}$.

Combining LCR in series

Power in ac circuit

Average power (P_{av})

$$P_{av} = \varepsilon_{rms} I_{rms} \cos \phi$$
$$= \frac{\varepsilon_0 I_0}{2} \cos \phi$$

Power factor

- Power factor: $\cos \phi = \frac{R}{R}$
- In pure resistive circuit, $\phi = 0^{\circ}; \cos \phi = 1$
- In purely inductive or capacitive circuit

$$\phi = \pm \frac{\pi}{2}; \cos \phi = 0$$

In series LCR circuit, At resonance, $X_L = X_C$ $\therefore Z = R \text{ and } \phi = 0^{\circ}, \cos \phi = 1$

Energy density of electromagnetic waves

Average energy density

$$< u> = \frac{1}{2} \varepsilon_0 E_0^2 = \frac{1}{2} \frac{B_0^2}{\mu_0}$$

Intensity of electromagnetic wave = $\frac{1}{2} \varepsilon_0 E_0^2 c$

Series LCR circuit

- $\varepsilon = \varepsilon_0 \sin \omega t$, $I = I_0 \sin(\omega t \phi)$ Impedance of the circuit: $Z = \sqrt{R^2 + (X_L - X_C)^2}$
- Phase difference between current and voltage is ϕ

$$\tan \phi = \frac{X_L - X_C}{R}$$

- For $X_L > X_C$, ϕ is +ve. (Predominantly inductive)
- For $X_L < X_C$, ϕ is –ve. (Predominantly capacitive)

Electromagnetic Waves

Waves having sinusoidal variation of electric and magnetic field at right angles to each other and perpendicular to direction of waves propagation.

Production of electromagnetic waves

- Through accelerating charge
- By harmonically oscillating electric charges.
 - Through oscillating electric dipoles.

Resonant series LCR circuit

When $X_L = X_C$, Z = R, current becomes maximum.

Resonant frequency $\omega_r = \frac{1}{\sqrt{LC}}$

Quality factor

It is a measure of sharpness of resonance.

$$\therefore Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Displacement current

Displacement current arises wherever the electric flux is changing with time.

$$I_D = \varepsilon_0 d\phi_E / dt$$

Maxwell's equations

 $\int \vec{E} \cdot d\vec{S} = \frac{q}{q}$ (Gauss's law for electrostatics)

 $\int \vec{B} \cdot d\vec{S} = 0 \quad \text{(Gauss's law for magnetism)}$

 $\int \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}$ (Faraday's law of electromagnetic induction)

 $\int \vec{B} \cdot d\vec{l} = \mu_0 \left(I + \varepsilon_0 \frac{d\phi_E}{dt} \right)$ (Maxwell-Ampere's circuital law)